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Abstract

Financial networks are an important source of systemic risk, but often only partial
network information is available. In this paper, we use data on bank-firm credit
relationships in Japan and conduct a horse race between different network recon-
struction methods in terms of their ability to reproduce the actual credit networks.
We then compare the different reconstruction methods in terms of their implied
systemic risk levels. In most instances we find that the observed credit network
significantly displays the highest systemic risk level. Lastly, we explore different
policies to improve the robustness of the system.
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1 Introduction

The 2007-09 financial crisis has brought the interconnectedness of the financial system
to light, and financial networks have been identified as an important source of sys-
temic risk. Accordingly, the regulatory framework has taken a more macroprudential
perspective to maintain the stability of the system as a whole. For example, Basel III
introduced capital surcharges for systemically important financial institutions.

Stress tests are an important tool to assess the vulnerability of a given financial
network. To this end, detailed data on interactions between individual financial in-
stitutions is required. However, it is difficult to collect such data in full and to make
them readily available to researchers (e.g., due to data confidentiality), such that we
generally do not have complete information about financial networks. For example,
Haldane (2015) suggests that even among the world’s largest banks the collection of
interbank exposure data is partial and patchy; in fact, even regulators often do not
have complete information (see Glasserman and Young (2016)). In response, several
data collection initiatives have been proposed, but granular interaction-specific data
generally remain unavailable (Anand et al. (2017)).

Finding accurate reconstruction methods for financial networks from partial infor-
mation is therefore an important topic. Most of the existing work, however, focuses
on the case of interbank credit networks (Squartini et al. (2017); Gandy and Ver-
aart (2017); Anand et al. (2017)). Over the last decade, common asset holdings (or
overlapping portfolios) have been identified as an important source of systemic risk
(Shleifer and Vishny (2011); Caccioli et al. (2014); Greenwood et al. (2015); Cont and
Wagalath (2016); Gualdi et al. (2016)). The idea is that, when leveraged investors
suffer a decline in their investment portfolios, they often have to liquidate (parts of)
their investments (Adrian and Shin (2010)). Such liquidations can have systemic ef-
fects, when asset sales are synchronized among many investors, potentially leading to
fire sale contagion dynamics. Thus, investors which were unaffected by the original
shock may have to sell additional assets due to the selling pressure of other investors.
Empirical evidence suggests that fire sales occur in many different markets (see, e.g.,
Pulvino (1998) for real assets, Coval and Stafford (2007) for equities, and Ellul et al.
(2011) for corporate bonds), which can result in contagious dynamics between asset
classes (see, e.g., Manconi et al. (2012)).1 Hence, understanding the structure and
stability of such common asset holdings is important, but often hampered by issues of
data availability.

In this paper, we focus on reconstructing and stress testing bipartite credit networks
using detailed micro-data on bank-firm credit interactions in Japan for the period
1980 - 2010. We explore the performance of several network reconstruction methods
at different aggregation levels along two different dimensions. First, we look at their
capacity to reproduce the topological features of the observed credit networks. This
part of the paper is closest to some recent works on unipartite interbank networks (e.g.,
BIS (2015), Anand et al. (2017), and Mazzarisi and Lillo (2017)). Following these

1Fire sales are also dangerous because they provide an incentive for banks to hoard liquidity, a
behavior that can potentially lead to a complete freeze of the financial system (Diamond and Rajan
(2011); Gale and Yorulmazer (2013)).
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studies, some of the methods being explored in this paper require different amounts
of information as inputs, which may not always be readily available. One of our
purposes is therefore to understand how adding such information affects a method’s
performance - one would expect that methods requiring more information as inputs
should be able to reproduce the network more accurately. Interestingly, we find that
this is not always the case: for example, we find that MaxEntropy often manages
to distribute the observed weights most accurately, but performs poorly in terms of
placing links correctly. Hence, there is no single ”best” reconstruction method - it
depends on the assumed criterion of interest.

We also look at each method’s ability to reproduce observed levels of systemic risk.
For this purpose, we use the stress test algorithm for overlapping portfolios of Huang
et al. (2013) and apply it to the actual and the reconstructed credit networks. To
the best of our knowledge, this is the first paper to conduct a horse race of bipar-
tite network reconstruction methods in terms of their systemic risk level.2 Our main
findings are two-fold: firstly, we identify a significantly negative time trend for the
observed systemic risk levels of the Japanese banking system. This suggests that the
system has become less vulnerable to systemic asset liquidations over time. Secondly,
in most instances the actual credit networks significantly display the highest levels of
systemic risk, which means that all the reconstruction methods tend to underestimate
systemic risk. This is a remarkable finding given that some of the reconstruction meth-
ods under study here generate very different network architectures; for example, the
MaxEntropy (MinDensity) approach yields a maximally (minimally) connected credit
network. In addition, we show that the choice of the aggregation level (i.e., bank-firm
or bank-industry level) affects the individual performance of the different reconstruc-
tion methods. Thus, one needs to carefully consider the appropriate aggregation level
when reconstructing credit networks.

Lastly, given that the observed credit networks tend to display the highest levels of
systemic risk, we explore different policies (such as merging banks depending on their
size, breaking up banks, and leverage caps) in order to improve the robustness of the
system. Our main finding is that no single policy can reduce the systemic risk level of
the actual network to that of the most stable reconstruction method. Nevertheless, we
find that leverage cap and merging the largest banks should reduce systemic risk most
significantly. This finding is driven by the fact that the largest banks in our sample
tend to use relatively low leverage values. Therefore, merging those banks into one
single institution results in a very large, but moderately leveraged bank which is less
likely to default.

Overall, this paper contributes to different strands of literature: first, we add to
the growing literature on reconstructing financial networks from partial information
(Squartini et al. (2017); Gandy and Veraart (2017); Anand et al. (2017); see Squartini
et al. (2018) for a recent survey). For the case of bipartite networks we are only aware
of the works of Di Gangi et al. (2015) and Squartini et al. (2017). Given that most
existing reconstruction methods have been designed for the case of unipartite credit
networks, we adjust some of these methods to the case of bipartite networks. Second,
we contribute to the literature on systemic risk assessment by performing stress tests

2Some related papers for the case of unipartite interbank networks are Mistrulli (2011), Anand
et al. (2015), and Gandy and Veraart (2017).
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both for the actual and the reconstructed credit networks. Thus, we provide a measure
of systemic risk of the Japanese banking system over time. Lastly, relatively little is
known about the role of the aggregation levels of financial networks for stress testing.
For example, Hale et al. (2015) study the optimal aggregation level for stress testing
models on macroeconomic variables and they find that the aggregation level in fact
matters. Our conclusion is similar, but our approach differs since we explore the role
of aggregation level for stress testing models in financial networks.

The remainder of this paper is structured as follows. Section 2 defines the credit
network at different aggregation levels, and section 3 briefly describes the dataset. In
section 4, we explore the performance of network reconstruction methods in terms of
their ability to match the observed credit network topology. In section 5, we look at
the capability of each methods to reproduce the observed levels of systemic risk. In
section 6, we analyze different policy measures in order to improve the robustness of
the system. Section 7 summarizes the main findings and concludes.

2 The Credit Network

Let us start by defining the credit network at different aggregation levels. The most
granular data (disaggregated level) is the credit interaction network between banks
and firms. The baseline credit network consists of two distinct sets of nodes, where
the first set contains a total number of nB nodes (banks), and the second set a total
of nF nodes (firms). A link exists between a bank and a firm when there is a credit
relationship between the two. The network is bipartite, since links can only arise
between banks and firms.

This credit network can be represented as a rectangular matrix of size (nB × nF ),
which we denote by W. An element wij of this matrix represents the total value of
credit extended by bank i to firm j at a given point in time.3 The value of wij can
thus be seen as a measure of link intensity. The total loan volume can be calculated
as

v =
∑
i

∑
j

wij.

For what follows, it is also useful to define the strengths of banks and firms as their
corresponding loan volumes:

sBi =
∑
j

wij

and
sFj =

∑
i

wij

for bank i and firm j, respectively.

We also define the binary adjacency matrix, B, where each element bij = 1 if
wij > 0 and zero otherwise. From the binary network matrix, we calculate the total

3We drop time subscripts in the following, but it should be clear that matrix W changes over
time.
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number of links
m =

∑
i

∑
j

bij.

In addition, we define the degrees of banks and firm as their corresponding number of
connections:

kBi =
∑
j

bij

and
kFj =

∑
i

bij.

Following Fricke and Roukny (2018), we also look at an aggregated version of the
credit (bank-industry) network, which we denote by WI. In this case, the second
set of nodes is defined based on firms’ industry affiliations, with a total number of
nI industries. We can represent firms’ industry affiliations using a new matrix A of
dimension (nF × nI), where ajk = 1 if firm j is affiliated with industry k.4 Given this,
WI can be obtained by multiplying W with A. In line with the definitions for the
original bank-firm credit network, we can define the same network indicators (strength
and degree sequences, respectively) for the aggregated network.

Note that an important reason for also exploring the aggregated networks is that
(at least some rough) information on banks’ investments in different industries/asset
classes should be more easily available than detailed microdata on asset-specific in-
vestments. From this perspective, the analyses based on the aggregated networks are
likely to be most relevant for researchers that have only relatively coarse information
on banks’ asset portfolios.

Finally, we consider an intermediate level in which we apply the network reconstruc-
tion methods at the disaggregated level (bank-firm) and then aggregate the network
according to firms’ observed industry affiliations (thus giving us a different bank-
industry credit network). We denote the intermediate aggregation level as W →WI

and calculate the same network indicators also as for the other levels. We summarize
the three different aggregation levels in Table 1.

Aggregation
level

Network
reconstruction

Systemic risk
analysis

Disaggregated disaggregated disaggregated
Aggregated aggregated aggregated
Intermediate disaggregated aggregated

Table 1: Summary of the three different aggregation levels. At the intermediate level,
we perform the network reconstruction at the disaggregated data, and conduct the
systemic risk analysis at the aggregated version of that reconstructed network.

4In our dataset, each firm is only affiliated with its major industry. In principle, one could allow
for multiple industry affiliations, in which case ajk would represent the fraction of firm j’s sales in
industry j.
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3 Data

In this paper we use historical data on bank-firm credit interactions in Japan from
the Nikkei NEEDS database for the period 1980 - 2013.5 The database provides
extensive accounting and loan information for all listed companies in Japan, and since
1996 it also covers firms traded in the JASDAQ (OTC) market. The dataset contains
information on firms outstanding loan volumes from each lender at the end of the firms
fiscal year, based on survey data (compiled by Nikkei Media Marketing, Inc.). We use
the sum of short- and long-term borrowing in everything that follows. Table 2 shows
some summary statistics in terms of the size and connectivity of the credit network at
different aggregation levels over time.6 Given that our analyses are computationally
intensive, we restrict ourselves to the years of data as shown in the first column of
Table 2.7

Panel A - Disaggregated

Year Size
v

(×1013)
Density k̄B k̄F r

C
(×10−2)

NODF

1980 151 × 1386 3.395 0.093 128.377 13.986 -0.299 0.272 0.441
1985 148 × 1443 4.350 0.088 127.770 13.105 -0.290 0.251 0.437
1990 148 × 1443 6.249 0.081 125.762 12.236 -0.306 0.218 0.427
1995 145 × 1734 7.031 0.081 140.938 11.785 -0.302 0.212 0.444
1996 147 × 2523 7.525 0.070 175.782 10.242 -0.292 0.141 0.406
2000 135 × 2607 5.987 0.061 160.304 8.301 -0.273 0.091 0.387
2005 123 × 2569 2.469 0.042 109.423 5.184 -0.272 0.029 0.322
2010 116 × 2296 2.814 0.042 96.474 4.874 -0.215 0.028 0.359

Panel B - Aggregated

Year Size
v

(×1013)
Density k̄B k̄I r C NODF

1980 151 × 33 3.395 0.516 17.033 77.939 -0.336 0.192 0.824
1985 148 × 33 4.350 0.500 16.507 74.030 -0.344 0.181 0.823
1990 151 × 33 6.250 0.498 16.424 75.152 -0.351 0.181 0.810
1995 145 × 33 7.031 0.518 17.090 75.091 -0.341 0.195 0.834
1996 147 × 34 7.526 0.536 18.238 78.853 -0.344 0.206 0.852
2000 135 × 34 5.987 0.508 17.260 68.529 -0.349 0.177 0.839
2005 123 × 34 2.470 0.488 16.585 60.000 -0.340 0.151 0.822
2010 116 × 34 2.814 0.461 15.664 53.441 -0.330 0.134 0.819

Table 2: Properties of the credit networks at different aggregation levels over time.
Panel A shows the properties of W. Panel B shows the properties of WI. k̄B and
k̄F (I) correspond to the average degree of banks and firms (industries) respectively.
As defined in the main text, r denotes the assortativity, C denotes the clustering
coefficient, and NODF denotes the nestedness.

In Table 2, we present several basic network characteristics of our dataset. Specif-
ically, we show the assortativity, the clustering coefficient, and the nestedness. In the

5See https://www.nikkeieu.com/needs/needs_data.html for details.
6A detailed explanation of the dataset, summary statistics, and a brief history of the Japanese

financial system can be found in Fricke and Roukny (2018).
7Given that bank-firm interactions are highly persistent, the structure of the credit network is

quite stable. We therefore do not expect the specific yearly networks under study in this paper to be
special relative to those in other years.
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following, we define the measures of those characteristics for the bank-firm network at
the disaggregated level. In line with these definitions, we can define the same measures
for the bank-industry network at the aggregated level.

Assortativity is the tendency of banks to connect to firms (industries) with similar
characteristics, and vice versa. We define assortativity, r, as the Pearson correlation
coefficient of the degrees of connected banks and firms. Note that r lies in the range
[−1, 1] in which positive value indicates an assortative network while negative value
denotes a disassortative network. A network is said to be assortative when high degree
banks (low degree banks) are connected to other high degree firms (low degree firms)
on average. Meanwhile, a network is said to be disassortative when high degree banks
(low degree banks) are connected to other low(er) degree firms (high(er) degree firms)
on average. Here we find that the networks are generally disassortative, both at the
disaggregated level and the aggregated level. This means that low-degree banks and
low-degree firms rarely interact with each other.

The clustering coefficient measures the degree to which nodes in a network tend to
form clusters. In a unipartite network it is usually defined as the number of observed
triangles (three closed connected nodes) relative to the maximum possible number of
triangles. Since our network is bipartite, links can only exist between different sets
of nodes (banks and firms/industries), thus triangles can not be formed. Therefore,
following Zhang et al. (2008), we consider squares instead of triangles as the basic
cycle here, such that the local clustering coefficient is defined as the ratio between the
number of observed squares relative to the maximum possible number of squares,

Cmn(i) =
qimn

(km − ηimn) + (kn − ηimn) + qimn
(1)

where m and n are a pair of neighbors of node i (see Figure 1 for an illustration), qimn
is the number of squares which include these three nodes, while ηimn = 1 + qimn.

Figure 1: Illustration of calculating the observed and the possible squares in a bipartite
network (Zhang et al. (2008)). In this figure, m and n are a pair of neighbors of node
i. Here we observe 1 square cycle (qimn = 1) that consists of node imbn, and 4 possible
squares (iman, imbn, incm, indm).

Let Crow(i) and Ccol(i) are the average Cmn(i) of node i across all possible com-
bination of its pairs of neighbors m and n, we then calculate the global clustering
coefficient as,
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C =
1

nB + nF

 nB∑
i=1

Crow(i) +
nF∑
i=1

Ccol(i)

 , (2)

which ranges between [0, 1]; higher values indicate a more clustered network, and a
value of 1 corresponds to a perfectly clustered network. Put simply, in our case higher
clustering would indicate that banks tend to cluster their investments on the same set
of firms (or industries), or equivalently, firms (or industries) tend to borrow from the
same banks. Table 2 shows that the networks are clustered at the aggregated level but
not at the disaggregated one.

Lastly, nestedness quantifies the degree to which low-degree banks (firms/industries)
tend to interact with a subset of firms/industries (banks) that the high-degree banks
(firms/industries) interact with. We follow Almeida-Neto et al. (2008) and use NODF
(Nestedness metric based on Overlap and Decreasing Fill) as our measure of nested-
ness

NODF =

∑
ij G

row
ij +

∑
ij G

col
ij

nB(nB − 1)/2 + nF (nF − 1)/2
, (3)

where

Grow
ij =

{
0 if ki ≤ kj∑nF

d=1 I{bid = 1 and bjd = 1}/min(ki, kj) otherwise.
(4)

is the paired overlap of rows i and j, which is simply the fraction of 1’s (which denotes
to the existence of a link) present in both rows i and j. A similar term Gcol

ij is used to
compute the percentage of paired overlap of columns i and j. NODF lies in the range
[0, 1]; higher values correspond to higher nestedness, and a value of 1 indicates a per-
fectly nested network. Table 2 shows that all networks are nested at both aggregation
levels, suggesting a strong overlap of Japanese banks’ loan portfolios (see Fricke and
Roukny (2018)).8

In summary, Table 2 shows that the disaggregated credit networks are sparse,
disassortative, and nested. On the other hand, the aggregated networks are also disas-
sortative and nested, but also dense and clustered. We now aim to find reconstruction
methods that are able to reproduce these features.

4 Network Reconstruction

The literature on network reconstruction is concerned with finding appropriate null
models (i.e., network randomizations) that replicate certain features of the actual
network. In this paper, we look at four different network reconstruction methods that
have been found to be of importance for unipartite financial networks (see Anand et al.
(2015); Anand et al. (2017); BIS (2015); Gandy and Veraart (2017); Mazzarisi and Lillo

8Note that these values alone do not say anything about whether these networks are significantly
nested. For this, one would have to compare them with what would be expected at random, i.e.,
using different null models. This is not the aim of this paper, but the results in Table 5 suggest that
the actual credit networks indeed tend to show higher NODF values than their random counterparts.
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(2017); Mistrulli (2011)). Existing reconstruction methods can be classified in terms
of the inputs needed to reconstruct the network, the desired network features, and the
outputs. To reconstruct a given interbank network, for example, all methods use the
information of banks’ aggregate borrowing and lending positions, respectively. In this
way, the total size of the system and the size of each individual market participant
are expected to match the actual values. In addition, some methods also use the
system’s overall connectivity (Squartini et al. (2017)), while others use each bank’s
individual connectivity (Squartini and Garlaschelli (2011)). In terms of the desired
network features, some methods focus on minimizing the total number of connections
(Anand et al. (2015)), while others focus on minimizing the exposure with respect to
each counterparty (Upper (2011)). Lastly, in terms of their outputs, some methods
produce a single network for a given set of partial information, while others generate
an ensemble of networks. Several available network reconstruction methods, including
some that we explore in this paper, have been compared with each other previously for
unipartite interbank networks, but this is one of the first studies to focus on bipartite
financial networks.

4.1 Null Models

Let us briefly describe the different null models used in this paper (see Table 3 for an
overview).

4.1.1 Details

First, we look at the well-known method of Maximum Entropy (MaxEntropy). In
the literature on financial networks, MaxEntropy is often considered as the standard
approach to derive individual interbank liabilities in the absence of further information.
It has been widely used to reconstruct interbank networks of different countries (see
Upper (2011); Anand et al. (2015)). The main characteristic of MaxEntropy is that
it generates fully connected networks, i.e., it assumes maximum diversification. Di
Gangi et al. (2015) show that, in the case of bipartite networks, MaxEntropy implies
that all market participants hold the exact same portfolio weights.

Second, we look at the Minimum Density approach (MinDensity) of Anand et al.
(2015). This method was developed in order to acknowledge the fact that real financial
networks tend to be sparse, in which case using MaxEntropy is rather problematic
(Mistrulli (2011)). In a sense, MinDensity can be seen as the opposite extreme of
MaxEntropy given that it starts from the premise that establishing/maintaining links
is costly, which is in line with the fact that most banking networks are sparse. As a
result, banks do not spread their borrowing and lending across the entire system and
MinDensity identifies the network that satisfies the total aggregate positions with the
minimum number of links. This assumption is in line with the fact that relationship
banking is of utmost importance in most banking systems. In our specific case, the
bank-firm networks are sparse as well (see Table 5). On the other hand, the aggregated
bank-industry networks are dense, such that MinDensity is likely to have difficulties
in replicating the aggregated networks.
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Null model Required information Definition and remarks

Configuration
Model 1 (CM1)

kB , kF (kI), sB , and
sF (sI) sequences

Generates ensemble of networks.

Link allocation: based on the approach of Squartini
and Garlaschelli (2011), but adjusted for bipartite
network. The probability of link existence between
every two nodes in the network,

pij =
θiγj

1+θiγj
,

is calculated by solving:∑
j

θiγj
1+θiγj

= kBi ∀i,
∑
i

θiγj
1+θiγj

= kFj ∀j.

for θ and γ.

Weight is allocated using RAS.

Configuration
Model 2 (CM2)

sB and sF (sI) se-
quences and m

Generates ensemble of networks. Using fitness
model.

Link allocation: based on the approach of Squartini
et al. (2017). The probability of link existence
between every two nodes in the network,

pij =
zViVj

1+zV iV j ,

is calculated by solving∑
i

∑
j

zViVj

1+V iV j . = m

for θ and γ.

Weight is allocated using RAS.

Maximum
Entropy

(MaxEntropy)

sB and sF (sI) se-
quences

Simple implementation of standard maximum en-
tropy approaches. Produces completely connected
network. Generates one single network. Economic
interpretation: each node is as diversified as possi-
ble.

Minimum
Density

(MinDensity)

sB and sF (sI) se-
quences

Each bank and industry have the same total loan
amounts but we minimize the total number of links.
Generates ensemble of networks. Economic interpre-
tation: each node is as specialized as possible. Based
on the approach of Anand et al. (2015), but adjusted
for the case of bipartite networks.

Table 3: Summary different network reconstruction methods used in this paper.

9



Lastly, we use two different versions of the popular configuration model (CM).
CMs are probably the most popular types of random graph models because they allow
to randomize a given network while preserving its degree distribution. As such, CM
can be quite restrictive. CMs have been previously explored in different fields, from
sociology to biology (see Fosdick et al. (2016) for an overview), and several of them
have been applied in financial network settings (Squartini and Garlaschelli (2011);
Musmeci et al. (2013); Mastrandrea et al. (2014); Cimini et al. (2015b); Squartini
et al. (2017)). We are aware of only one other application that applies the CM to
bipartite financial networks (Squartini et al. (2017)).

The first configuration model, CM1, is based on Squartini and Garlaschelli (2011),
but adjusted for the case of bipartite networks. In addition to the strength sequences,
CM1 requires the degree sequences of all nodes as additional inputs, thus preserv-
ing the exact degree distributions. The second configuration model, CM2, is based
on Squartini et al. (2017), which extends the reconstruction method for unipartite
networks introduced in Cimini et al. (2015b) to the bipartite case. CM2 preserves
the degree distribution as well, but only requires the total number of links additional
input. Hence, CM2 needs less detailed information compared to CM1.

We should stress, in contrast to MaxEntropy and MinDensity, both CMs produce
binary instead of weighted networks.9 Once, after obtaining a randomized adjacency
matrix, we need to distribute the observed credit volumes across links. There are
different approaches for this (see Table A.1 in the Appendices for an overview), but in
the following we use the standard RAS algorithm of Blien and Graef (1998).10

Method
Input Output

Aggregate
positions

Total links
Degree

sequence
Single Ensemble

CM1 v v v v

CM2 v v v

MaxEntropy v v

MinDensity v v

Table 4: Summary classification of the methods based on the input and the output.

Table 3 provides more technical details of our implementation of the four null
models. Table 4 summarizes the differences in terms of the required inputs, and
the outputs. It should be clear that CM1 requires the most detailed information as
inputs (followed by CM2), while MaxEntropy and MinDensity require only the strength
sequences. Furthermore, CM1, CM2, and MinDensity can produce an ensemble of
networks while MaxEntropy generates one single output for any particular input.

9The original model of Squartini et al. (2017), where CM2 is based on, generates weighted net-
works. However, here we only consider part of their method to produce binary networks. This part
of their method is based on the work of Saracco et al. (2015) where the formalism for the fitness
bipartite is first introduced for the world trade web.

10The RAS algorithm generally performed best in our analysis (in terms of the corresponding
L1-error), but we also experimented with the other weight allocation methods mentioned in Table
A.1 in the Appendices. The results are qualitatively similar to what is shown here. Details available
upon request from the authors.
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4.1.2 Illustration

(a) Actual (b) CM1 (c) CM2

(d) MaxEntropy (e) MinDensity

Figure 2: Weighted credit network bank-industry in 2010 and one realization for each
of the four reconstruction methods. Data are log transformed. Warmer colors indicate
stronger links, and white dots correspond to the absence of a link.

In order to provide some intuition for the typical outputs of each method, Figure 2
shows the weighted version of the actual aggregated credit network (log-transformed)
for the year 2010 and one realization of each corresponding null model. Warmer colors
denote stronger relationships, and white dots correspond to the absence of a link.
It becomes clear that different reconstruction methods can generate very different
network architectures - for example, MaxEntropy produces a fully connected credit
network while MinDensity yields a highly compartmentalized and sparse network. In
this specific case, MinDensity needs less than 5% of the total links in the actual network
to distribute the weight (the actual density is around 46%). The two CMs, on the other
hand, tend to produce networks that are visually much closer to the actual one. As
such, it is natural to expect that these will perform well.

4.2 Defining Relevant Dimensions of Comparison

In this section we define the different dimensions along which we will compare the
actual credit networks and the reconstruction methods.

4.2.1 Network Characteristics

To understand how similar the statistics of the reconstructed networks are to the
actual networks, we compare their density, average degree, assortativity, clustering
and nestedness (as defined in the previous section) at the different aggregation levels.
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4.2.2 Allocation of Links and Weights

In addition to comparing specific network properties, we also look at the performance
of each method in terms both of placing links and distributing weights correctly, re-
spectively. In the following, we formally define the network similarity measures for the
bank-firm credit network. In line with these definitions, we can define similar measures
for the bank-industry credit network.

Link Allocation. In order to understand the ability of a method to reproduce cor-
rect links in the network, we calculate the values of Accuracy, Sensitivity, and Speci-
ficity. We define the Accuracy of a given reconstructed network as

Accuracy =
1

nB × nF
nB∑
i=1

nF∑
j=1

(I{bij = 0 and b̂ij = 0}+ I{bij = 1 and b̂ij = 1}), (5)

where b̂ij equals 1 if there is a link between nodes i and j in the reconstructed network
of a given null model. Put simply, Accuracy tells us the total number of links and
non-links that are allocated correctly, relative to the size of the network.

Sensitivity

Sensitivity =
1

m

nB∑
i=1

nF∑
j=1

(I{bij = 1 and b̂ij = 1}), (6)

measures the number of actual links correctly allocated.

Lastly, Specificity

Specificity =
1

nB × nF −m

nB∑
i=1

nF∑
j=1

(I{bij = 0 and b̂ij = 0}, (7)

measures the number of non-existing links correctly allocated. These three measures
take values in the range [0, 1], with higher values corresponding to greater similarity.

Weight Allocation. We are also interested in quantifying the ability of each null
model to reproduce the observed link weights in the credit network. For this purpose,
we use three different measures: L1-error, root-mean-square deviation (RMSE) and
cosine similarity (Cos-Sim). L1-error is defined as

L1 =
nB∑
i=1

|ŝBi − sBi |+
nF∑
j=1

|ŝFj − sFj | (8)

which allows us to understand how well the reconstructed network is able to satisfy the
aggregate positions, which is the total borrowing (lending) of banks (firms/industries),
in the actual network. As mentioned previously in Table 3 and Table 4, all null models
are expected to reproduce the actual aggregate positions. Therefore, L1-error measures
the degree to which those constraints have been satisfied by a given null model. In
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everything that follows, we scale the L1-error by the average lending volume of banks
in the actual network.

Additionally, we calculate RMSE which is defined as

RMSE =

√∑nB

i=1

∑nF

j=1(ŵi,j − wi,j)2

nB × nF
, (9)

where ŵi,j is the allocated credit volume of bank i to firm j in a given reconstructed
network. In everything that follows, we scale RMSE by the average exposure of a link
in the actual network which makes values comparable over time.

Cosine Similarity as

Cos− Sim =

∑nB

i=1

∑nF

j=1 ŵi,jwi,i√∑nB

i=1

∑nF

j=1 ŵ
2
i,j

√∑nB

i=1

∑nF

j=1w
2
i,j

. (10)

to quantify deviations in the weight allocation across all links in the network.

L1-error and RMSE have values in the range [0,∞] with lower values corresponding
to greater similarity. Meanwhile, Cos-Sim has values in the range [0,1] and higher
values correspond to greater similarity.

4.3 Results on Horse Racing Different Methods

In this section, we show the empirical results on horse racing the different network
reconstruction methods. For each year under study and each null model, we generate
100 network realizations for each aggregation level. We then calculate the average
of each of the characteristics mentioned previously. For the sake of brevity and also
illustrative purposes, in the following we only show results for the year 2010, but the
results are qualitatively similar for other years and do not affect our main conclusions.

The main results for the three aggregation levels can be found in Tables 5 (network
statistics) and 6 (link/weight similarity). In all cases, the best method for each statistic
is highlighted using the ? symbol. Given that we are calculating a relatively large
number of statistics, Table 7 is then meant to summarize these results by combining
results for the individual features. For this purpose, we rank each null model based
on its closeness to the actual network (1 = most similar, 4 = least similar) and then
calculate the average rank as a measure of overall performance.11 Let us briefly describe
the results for the different aggregation levels.

4.3.1 Disaggregated Level

At the most disaggregate level (bank-firm), the top panel of Table 5 shows that the two
CMs tend to reproduce the features of the actual network reasonably well: the density,

11Note that we ignore the average degree (since it is redundant with density) and assortativity
(since it is not defined for MaxEntropy) from the calculation of the average ranks.
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Network characteristics

Disaggregated Density k̄B k̄F r
C

(×10−2)
NODF

W(116× 2296) 0.042 96.474 4.874 -0.215 0.028 0.359
CM1 0.042 96.601 4.881 ?-0.205 ?0.028 ?0.366
CM2 ?0.042 ?96.510 ?4.876 -0.321 0.062 0.254
MaxEntropy 1.000 2296 116 NaN 1.000 0.000
MinDensity 0.009 20.789 1.050 -0.125 0.000 0.009

Network characteristics

Aggregated Density k̄B k̄I r C NODF

WI(116× 34) 0.461 15.664 53.441 -0.330 0.134 0.819
CM1 ?0.460 ?15.649 ?53.392 ?-0.370 ?0.136 ?0.821
CM2 0.461 15.683 53.507 -0.248 0.131 0.704
MaxEntropy 1.000 34.000 116.000 NaN 1.000 0.000
MinDensity 0.038 1.285 4.385 -0.224 0.000 0.044

Network characteristics

Intermediate Density k̄B ¯kF→I r C NODF

W→WI 0.461 15.664 53.441 -0.330 0.134 0.819
CM1 ?0.482 ?16.395 ?55.936 ?-0.308 ?0.152 ?0.798
CM2 0.493 16.771 57.218 -0.289 0.175 0.769
MaxEntropy 1.000 34.000 116 NaN 1.000 0.000
MinDensity 0.178 6.055 20.658 -0.329 0.019 0.442

Table 5: Comparison of the statistics between the actual credit network for year
2010 and the reconstructed networks for different aggregation levels. k̄B and k̄F (k̄I )
correspond to the average degree, r denotes the assortativity, C indicates the clustering
coefficient and NODF denotes the nestedness of the network. We highlight the best
reconstruction method for a given statistic (the value closest to the actual network)
using the ? symbol.
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Link similarity Weight similarity

Disaggregated
Accu-
racy

Sensi-
tivity

Speci-
ficity

L1-error RMSE Cos-Sim

CM1 0.941 0.304 0.969 4.511 18.674 0.442
CM2 0.936 0.241 0.967 2.706 13.850 0.633
MaxEntropy 0.042 ?1.000 0.000 0.000 ?13.038 ?0.681
MinDensity ?0.955 0.071 ?0.994 ?0.000 27.896 0.278

Link similarity Weight similarity

Aggregated
Accu-
racy

Sensi-
tivity

Speci-
ficity

L1-error RMSE Cos-Sim

CM1 ?0.781 0.762 0.798 0.015 ?2.527 ?0.915
CM2 0.711 0.687 0.732 0.018 2.555 0.914
MaxEntropy 0.461 ?1.000 0.000 ?0.000 2.572 0.914
MinDensity 0.558 0.061 ?0.982 0.000 8.607 0.532

Link similarity Weight similarity

Intermediate
Accu-
racy

Sensi-
tivity

Speci-
ficity

L1-error RMSE Cos-Sim

CM1 ?0.767 0.771 0.764 4.511 2.675 0.905
CM2 0.738 0.750 0.726 2.706 ?2.530 ?0.915
MaxEntropy 0.461 ?1.000 0.000 0.000 2.572 0.914
MinDensity 0.668 0.333 ?0.954 ?0.000 3.676 0.836

Table 6: Similarity of the each null model to the actual credit network of year 2010
for different aggregation levels. The performance of each model both in terms of
placing links correctly and distributing weights is examined. Accuracy, sensitivity,
specificity and cosine similarity lies in the range [0,1] and higher values correspond
to higher similarity. L1-error and RMSE lies in the range [0,∞] with smaller values
corresponding to greater similarity. We highlight the best reconstruction method for
a given statistic (the value closest to the actual network) using the ? symbol.
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average degree, assortativity, clustering, and nestedness are always quite similar to
the actual values. On the other hand, MaxEntropy and MinDensity perform rather
poorly: for example, in terms of density MaxEntropy (MinDensity) produce much
higher (lower) values.

The results for link allocation and weight distribution (top panel of Table 6), are
broadly in line with those for the network characteristics: again the two CMs perform
relatively well across the different measures. In this case, however, the results are not
always consistent. For example, MinDensity achieves the highest Accuracy and the
lowest L1-error, but shows the worst Sensitivity, RMSE, and Cos-Sim. On the other
hand, MaxEntropy yields the worst Accuracy but the best RMSE and Cos-Sim. Not
surprisingly, MaxEntropy achieves the maximum Sensitivity simply because it predicts
a fully connected network.

We should also mention that both CM1 and CM2 generate relatively large L1-errors,
indicating that they do not manage to perfectly allocate the aggregate positions. This
is due to the nature of CM1 and CM2 as preserving the degree sequences only in
expectation, such that specific realizations can lead to some low-degree nodes being
inactive (or unconnected).12

4.3.2 Aggregated Level

Similar to the previous results, the center panel of Table 5 shows that the two CMs
tend to reproduce the observed network characteristics reasonably well at the aggre-
gated (bank-industry) level. In this particular case, CM1 consistently performs best.
For link/weight similarity, the results are also comparable (center panel of Table 6),
except for Sensitivity and Specificity which are again dominated by MaxEntropy and
MinDensity, respectively.

4.3.3 Intermediate Level

Lastly, the two bottom panels of Tables 5 and 6 show the results for the interme-
diate aggregation level, where we construct synthetic networks for the disaggregated
(bank-firm) level and then aggregate these to the industry level using firms’ observed
industry affiliations. Overall, the statistics shown here are very similar to those at the
aggregated level (with the exception of the L1-error, whose value is equal to that ob-
tained at the disaggregated level), with CM1 performing best for the network statistics
and the Accuracy.

4.4 Discussion - Network Reconstruction

Previous studies on network reconstruction in the interbank networks (Anand et al.
(2017)) suggest that the best reconstruction method depends on the type of network

12We also experimented with a minimum threshold in terms of active nodes’ degrees, but observe
a similar issue.
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Rank
Disaggregated Aggregated Intermediate

Null model rk Null model rk Null model rk
1 CM1 2.22 CM1 1.44 CM1 2.00

(1.02) (0.40) (1.18)
2 CM2 2.33 CM2 2.44 CM2 2.11

(0.67) (0.40) (0.51)
3 MinDensity 2.67 MinDensity 3.00 MinDensity 2.89

(0.58) (0.30) (0.17)
4 MaxEntropy 2.78 MaxEntropy 3.11 MaxEntropy 3.00

(1.35) (0.85) (1.00)

Table 7: Rank of the null models in term of reproducing the observed credit network
toplogy at different aggregation levels. Rank 1 corresponds to the best null model. rk
corresponds the average value for the three categories under study (standard deviation
in brackets): network characteristics, link similarity, and weight distribution.

characteristics of interest. Our results also indicate a similar finding. We see, for
example, that if we focus the horse race on the number of zeros in the adjacency matrix
that are correctly estimated (Specificity), MinDensity, which produces sparse networks,
is clearly the winner. However, when we look at the number of links correctly estimated
(Sensitivity), MaxEntropy, which generates a fully connected network, outperforms the
other methods. We also see from the value of its L1-error, RMSE, and cosine similarity
that MaxEntropy shows a better ability to reconstruct a weighted network.

Table 7 provides a compact summary of the above results. In the absence of
specific preferences (or weights) for either of the above characteristics under study,
the reported equal-weighted averages are representative for the typical performance of
either method. Overall, we find that the two CMs consistently perform best, followed
by MinDensity and MaxEntropy.

In addition, in line with BIS (2015), we also find that the performance of any
reconstruction method depends on the corresponding topological properties of the
actual networks. For example, in our application MinDensity performs better in terms
of Accuracy at the disaggregated level, where the corresponding actual networks are
relatively sparse.

These results indicate that CM1 and CM2 are able to reconstruct the adjacency
matrices and weighted networks relatively well, and they are capable to preserve the
statistical properties of the actual network at all aggregation levels. Since CM1 and
CM2 requires more information relative to the other methods (degree sequence and
total degree, respectively), to this point one can argue that adding such information
improves the performance of the reconstruction methods (see also Mastrandrea et al.
(2014) and Cimini et al. (2015a)). This finding is in line with Gandy and Veraart
(2016), where it is suggested that using the information on only aggregate positions is
not sufficient to reconstruct certain topological properties. Overall, it seems reassuring
that, despite the fact that CM1 requires more information than CM2, both methods
generate very similar networks, in some cases CM2 even outperforming CM1. This
indicates that the degree distribution of the network might indeed, to a certain extent,
be inferred without the full knowledge on the degree sequence. An obvious follow-
up question is to what extent CM2 would still perform well if we treated the overall
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density as a free parameter. We leave this as an interesting avenue of future research.

5 Systemic Risk Analysis

One of the main reasons why regulators and policymakers are interested in reconstruct-
ing financial networks from partial information is because of their potential contribu-
tion to financial instability. Therefore, exploring how well different methods are able
to reconstruct the observed networks is only the first step. The next step is to compare
how well the different network reconstruction methods are able to replicate the levels
of systemic risk of the actual credit networks. Clearly, this analysis is not independent
from the results of the previous section, in the sense that we would expect a method
that closely reproduces the actual networks to also yield similar systemic risk levels.
To the best of our knowledge, however, such an exercise has not been performed for
the case of bipartite financial networks.

5.1 Measuring Systemic Risk

Over the last decade, common asset holdings (or overlapping portfolios) have been
identified as an important source of systemic risk and several stress testing models have
been introduced (see Table B.1 in the Appendices for a comparison of different models).
In this paper, we use the stress testing model of Huang et al. (2013) in order to quantify
the vulnerability of the bipartite credit networks to systemic asset liquidations. The
model has also been used in a study of the Venezuelan banking system (Levy-Carciente
et al. (2015)) and is similar in spirit to the models in Greenwood et al. (2015) and
Caccioli et al. (2014).13

The model of Huang et al. (2013) uses a linear market impact function (always
yielding positive prices) and, in contrast to several other studies, assumes that banks
do not target their leverage. First, choosing a linear impact function can be seen as
more conservative, in the sense that we tend to overestimate the resulting price impact
of a given asset liquidation. Second, regarding the exclusion of leverage targeting, we
checked whether we find similar results as in Adrian and Shin (2010) for our sample
of Japanese banks. Figure 3 shows scatter plots of the change in leverage against the
change in total asset (both in percent) for two subsamples, with the best linear fits
shown as red lines. If Japanese banks were targeting fixed leverage values, we would
expect most observations to cluster around a vertical line at zero leverage growth. We
find that this is not the case for either of the subsamples under study here: for the
first subsample (1980-95), we find a positive relationship between the two variables,
suggesting that banks tended to use procyclical leverage during the first half of the
sample. Note that the left panel also shows results without the noisy 1988-90 data

13For the purpose of finding out how the systemic risk analysis might vary if leverage targeting
model (as in Greenwood et al. (2015)) and threshold model (as in Cont and Schaanning (2017)) are
used, we also performed the same exercise with these other models. We find that the rank ordering of
the different methods are generally consistent with those presented in the main text. See Appendices
for more details.
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Figure 3: Scatter plot of change in leverage and change in total asset of banks drawn
from our dataset. The left panel displays the result of year 1980-95, and the right
panel shows the result of year 1996-2013. Red lines show the best linear fits between
the two variables.

which improves the fit dramatically. For the second subsample (1996-2013), the right
panel shows that that assuming no leverage targeting is again a reasonable assumption.
In fact, this plot looks similar to the corresponding Figure for non-financial, non-farm
corporates in Adrian and Shin (2010). This suggests that Japanese banks appear
to manage their leverage to a certain extent, but clearly do not seem to have fixed
leverage targets.

Let us briefly sketch the model details: let the total market value of asset j be
defined as Γj =

∑
i γi,j, with γi,j the amount of asset j owned by bank i. The basic

steps of the model are:

1. We shock a given industry j by reducing its market value to p ∈ [0, 1] times its
original value. Note that a value of p = x would mean that the market value of
industry j is reduced by x, or in other words it is a (1-x) shock to industry k.
Therefore, a smaller p corresponds to a larger shock.

2. Does any bank default? This occurs if a bank’s total assets drop below its
liabilities. (Process terminates if no bank defaults.)

3. If a bank i defaults, it liquidates all of its remaining asset holdings. This has
an indirect effect on other banks, because the market value of its assets drops
proportional to α ∈ [0, 1] times the bank’s current holdings. The unit price of a

liquidated asset j becomes a fraction
Γj−αγi,j

Γj
of its original price.

4. Back to step 2 ...

Note that α is a (homogeneous) market impact parameter: a value α = 0 cor-
responds to an extremely liquid asset, which is when any sales would not alter the
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market value of the asset, while α = 1 corresponds to an extremely illiquid asset, that
is when any sales could potentially bring the market value to 0. We will discuss results
for different values of α and p, but in much of the following, we choose two values of
α for the purpose of illustrating our main results: α = 0.1 as a case of small market
impact and α = 0.5 as a case of large market impact.14

We perform the above exercise separately for each industry j. At the aggregated
level, for each iteration we shock one node (industry), while for the disaggregated level
we shock all the nodes (firms) that belong to the same industry. To quantify the
impact of a shock on industry j, we first define default rate

rj =
nBdefaultj

nB
(11)

as the ratio between the number of failed banks to the total number of active banks
in the network. We then define the probability of default

Pd =

∑nI

j=1 rj

nI
(12)

as the average of rj across all industries. This is our systemic risk measure and in the
following we use the terms systemic risk and Pd interchangeably. Finally, for a given
reconstructed network W̃ , we also define relative difference between the actual Pd and
the null model Pd as

Dr =
PW
d − P W̃

d

PW
d

. (13)

A positive (negative) value of Dr indicates that a given null model underestimates
(overestimates) the actual Pd.

5.2 Time Dynamics of Systemic Risk

Before going into the details regarding the different reconstruction methods, we first
quantify the level of systemic risk, Pd, over time. Figure 4 plots the Pd over time, both
for the disaggregated (left panel) and the aggregated level (right panel), respectively.
As a benchmark, we use the small market impact α = 0.1 with various values of
initial shock p. The plots in Figure 4 suggest that Pd is substantially smaller in 2010
compared with the values earlier in the sample. In other words, the level of systemic
risk appears to have been reduced over time. In order to assess whether this reduction
is significant, we formally test whether there is a significant trend in Pd for different
values of α and p.15 We then plot the corresponding p-value of the estimated trend
as a heatmap in Figure 5, where darker colors correspond to smaller p-values (i.e.,
significance) of the estimated trends. The Figure shows that we obtain a significant

14For small α the asset price drops by 1% when 10% of the asset is liquidated; for the large case,
the price drops by 5% when 10% of the asset is liquidated.

15Technically, for a given combination of α and p, we regress the resulting Pd on a constant and a
time variable (year).
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trend for most values of p (except for very large values) whenever α is modest.16

1980 1985 1990 1995 1996 2000 2005 2010

t

0

0.2

0.4

0.6

0.8

1

P
d

Disaggregated level

p = 0.3

p = 0.45

p = 0.6

p = 0.75

p = 0.9

(a) W

1980 1985 1990 1995 1996 2000 2005 2010

t

0

0.2

0.4

0.6

0.8

1

P
d

Aggregated level

p = 0.3

p = 0.45

p = 0.6

p = 0.75

p = 0.9

(b) WI

Figure 4: Pd over time for the disaggregated (left panel) and the aggregated level (right
panel). We use small α = 0.1 and various values of p.
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Figure 5: Trend analysis. p-value of regression analysis of Pd against a constant and
a time variable (year), for different combinations of p and α. Darker color denotes a
smaller p-value.

5.3 Results on Horse Racing Different Methods

We now turn to a detailed analysis of the different null models and their implied
levels of systemic risk. As before, we focus our presentation on the results for one
particular year of data, namely 2010. We will see that the results shown here are
again broadly consistent over time. We will show three sets of results: first, Figures
6-8 show heatmaps of Dr for all possible combinations of p and α. Second, Figure 9

16For relatively large values of α the absence of a time trend in Pd is easily explained by the fact
that in these cases all banks will tend to default in every single year. Hence, Pd will be roughly
constant over time.
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allows us to take a closer look at the systemic risk levels, Pd, for specific choices of α
(small and large, respectively) as a function of p. Third, to illustrate that our findings
are robust over time, Figure 10 shows the Pds over time for specific choices of α and p.

As for the network reconstruction part in section 4, we briefly discuss the results
separately for the three different aggregation levels. Table 8 then summarizes these
results.
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Figure 6: Relative difference of the probability of default between actual network and
the null models (Dr) at the disaggregated level for α ∈ [0,1] (small to large market
impact) and p ∈ [0,1] (large to small initial shock). Data for year 2010. Warm color
corresponds to an underestimation of the actual network, while cold color indicates an
overestimation.

5.3.1 Disaggregated Level

Figure 6 shows that the actual network behaves as the most risky system overall,
because all null models underestimate the actual Pd for most values of p and α. We
recognize that they overestimate the actual Pd only in a small region of the parameter
space, for example when p = 0.9 (small initial shock) and α = 0.1 (small market
impact). We also see from Figure 6 that the magnitude of the underestimation gets
larger as α increases.

Figure 9 (a)-(b) shows the performance of the null models for some specific values
of α as a function of p. For α = 0.1 (top left panel), we see that CM1, CM2, and
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Figure 7: Relative difference of the probability of default between actual network and
the null models (Dr) at the aggregated level for α ∈ [0,1] (small to large market
impact) and p ∈ [0,1] (large to small initial shock). Data for year 2010. Warm color
corresponds to an underestimation of the actual network, while cold color indicates an
overestimation.
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Figure 8: Relative difference of the probability of default between actual network and
the null models (Dr) at the intermediate level for α ∈ [0,1] (small to large market
impact) and p ∈ [0,1] (large to small initial shock). Data for year 2010. Warm color
corresponds to an underestimation of the actual network, while cold color indicates an
overestimation.

24



1  0.8 0.6 0.4 0.2 0  

p

0

0.2

0.4

0.6

0.8

1

P
d

Actual

CM1

CM2

MaxEntropy

MinDensity

(a) W, α = 0.1

1  0.8 0.6 0.4 0.2 0  

p

0

0.2

0.4

0.6

0.8

1

P
d

Actual

CM1

CM2

MaxEntropy

MinDensity

(b) W, α = 0.5

1  0.8 0.6 0.4 0.2 0  

p

0

0.2

0.4

0.6

0.8

1

P
d

Actual

CM1

CM2

MaxEntropy

MinDensity

(c) WI, α = 0.1

1  0.8 0.6 0.4 0.2 0  

p

0

0.2

0.4

0.6

0.8

1
P

d

Actual

CM1

CM2

MaxEntropy

MinDensity

(d) WI, α = 0.5

1  0.8 0.6 0.4 0.2 0  

p

0

0.2

0.4

0.6

0.8

1

P
d

Actual

CM1

CM2

MaxEntropy

MinDensity

(e) W→WI, α = 0.1

1  0.8 0.6 0.4 0.2 0  

p

0

0.2

0.4

0.6

0.8

1

P
d

Actual

CM1

CM2

MaxEntropy

MinDensity

(f) W→WI, α = 0.5

Figure 9: Pd for various range of initial shock p, α = 0.1 (left panels), α = 0.5 (right
panels). Data for year 2010. Dotted line indicates the value within one standard
deviation.
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Figure 10: Pd over time for α = 0.1, and small initial shock p = 0.8 (left panels) and
large initial shock p = 0 (right panels), respectively. Dotted line indicates the value
within one standard deviation.
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MaxEntropy predict very similar values of Pd, whereas MinDensity underestimates the
actual Pd much more than the others. A similar behavior of MinDensity is observed for
α = 0.5 (top right panel), but in this case also the other methods deviate substantially
from the actual Pd.

Lastly, the top two panels of Figure 10 show the Pd over time for α = 0.1 and
two different values of p (small initial shock, p = 0.8; large initial shock: p = 0). The
results, in particular the fact that the actual network tends to be the most risky one,
are in line with those presented for the year 2010.

5.3.2 Aggregated Level

As for the disaggregated level, we show the same set of Figures for the aggregated
networks in Figure 7, the center panels of Figures 9 and 10, respectively. These results
are in line with those for the disaggregated level: we again observe that the actual
network tends to be the riskiest and all reconstruction methods tend to underestimate
the actual Pd for most values of p and α. The main difference to the previous set of
results is that the null models tend to produce Pds closer to each other. This observa-
tion suggests that data aggregation may reduce differences among Pd of different null
models.

5.3.3 Intermediate Level

Relative to the other aggregation level, the most interesting results are for the in-
termediate aggregation level, since in this case MinDensity performs very well. For
example, Figure 8 shows that MinDensity tends to display very small relative errors
compared with the other methods. This can be seen even more clearly in the bottom
panels of Figure 9, where MinDensity is very close to the actual values. The bottom
panels of Figure 10 show that these results are consistent over time, but also shows
that MinDensity overestimates the observed Pd for several years.

The unusual behavior of MinDensity can be understood intuitively as follows: Min-
Density tends to produce networks as sparse as possible. This has two effects: on one
hand an asset is concentrated into fewer banks, so fire sale price dynamics lower asset
prices more severely. On the other hand, the fact that banks are loosely interconnected
between them provides less channels for shocks to be spread. For networks generated
both at the aggregated and disaggregated level, the second effect dominates the first,
leading to an underestimation of systemic risk with respect to the real network. At
the intermediate level, however, the aggregation takes place after the minimum density
networks have been generated, which increases connectivity between banks and thus
allows shocks to be propagate throughout the network more easily. We should note
that while this explains why MinDensity displays higher Pd compared to it was at the
previous levels, it is still not clear whether or not its similar behavior to the actual
network happens by coincidence.
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Rank
Disaggregated Aggregated Intermediate

Null model Pd Null model Pd Null model Pd
1 Actual 0.393 Actual 0.360 Actual 0.360

(0.254) (0.230) (0.230)
2 CM1 0.301 CM1 0.218 MinDensity 0.358

(0.202) (0.156) (0.217)
3 CM2 0.243 CM2 0.217 CM1 0.275

(0.176) ( 0.157) (0.182)
4 MaxEntropy 0.190 MinDensity 0.202 CM2 0.241

(0.149) (0.122) (0.174)
5 MinDensity 0.140 MaxEntropy 0.190 MaxEntropy 0.190

(0.096) (0.149) (0.149)

Table 8: Rank of the actual networks and the corresponding null models at different
aggregation levels. Rank 1 corresponds to the most risky network. Pd denotes the
average. We also show the standard deviation of Pd in brackets, which is calculated
using the Pd across all possible parameter values, p ∈ {0, 0.01, 0.02, ... ,1} and α ∈
{0, 0.01, 0.02, ... ,1}.

5.4 Discussion - Systemic Risk Analysis

As for the network reconstruction part, Table 8 is meant to summarize the results
from the systemic risk analysis. We rank the different methods, along with the actual
networks, based on the average Pd (and their standard deviations) for all possible
combinations of α and p. To enrich the analysis, we formally test whether the difference
between each network Pd is significant. Specifically, we run a two-sided Wilcoxon
signed rank test on each pair of the actual network and the null model (see Tables
D.1-D.3 in the Appendices for the test results).

First, we find that the actual network tends display the highest levels of systemic
risk in most instances. This is remarkable, given that some of the reconstruction meth-
ods generate very different network architectures; for example, MaxEntropy (MinDen-
sity) approach yields a maximally (minimally) connected credit network. This finding
also suggests that even the null models that preserve the degree distribution, like CM1
and CM2, fail to accurately reproduce the actual Pd. This finding is related to previous
studies on interbank networks (Mistrulli (2011) and Anand et al. (2015)) which sug-
gest that MaxEntropy underestimates the actual risk. However, our result contrasts
Anand et al. (2015) which indicates that MinDensity yields an upper bound of the
actual risk. Here we find that MinDensity in many instances heavily underestimates
the actual Pd.

Second, concerning the individual performance of each null model, we find that
CM1, followed by CM2 and MaxEntropy, has the closest behavior to the actual net-
work overall, while MinDensity shows an inconsistent performance across different
aggregation levels. Given that the null models require different inputs, we are also in-
terested in understanding how this affects the differences among their Pd. We identify
from the Wilcoxon test results that they all are significantly different, except for CM1
and CM2 in some instances. Since CM2 requires much less information than CM1, we
find that this makes CM2 more appealing for practical purposes.

Third, we find that the choice of aggregation level of financial networks matters for
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stress testing. In terms of individual performance of each null model, we find that the
differences in their Pd are reduced at the aggregated level. Additionally, we also find
that the best model varies across different aggregation levels. Our conclusion is similar
with the study of Hale et al. (2015) for stress testing models on the macroeconomic
variables, but our approach differs since we explore the role of aggregation level for
stress testing models of financial networks.

Lastly, we find that the ranking of each null model in term of reconstructing the
topological features of the actual network is not necessarily consistent with that of
reproducing actual systemic risk level (see the comparison between Table 7 and 8).
This brings up a further question on which type of network similarity result that mostly
affects the corresponding implied systemic risk level, which we leave as an interesting
avenue of future research.

6 Policy Exercise

We showed previously that, with respect to the null models we considered, the actual
network displays the highest level of Pd in most instances. This implies that it is
possible to change the structure of the network to make it more stable. With this
in mind, we now explore different kinds of policies to see if it is possible to increase
the robustness of the actual credit network. To this end, we use a similar approach
as Greenwood et al. (2015) and explore three sets of policies: (1) merging banks with
certain characteristics; (2) breaking up banks with certain characteristics; (3) imposing
a leverage cap (see Table 9).

Type Policy choice Observable outcome
1 - Banks merger Number of banks merged

A Largest 15% (total asset) 17
B Largest 15% (leverage) 17
C Smallest 15% (total asset) 17
D Smallest 15% (leverage) 17

2 - Banks break-up Number of banks split

A
Bank: Largest 15% (total asset)
Industry: Largest 15% and smallest
85% (total link)

17

B
Bank: Largest 15% (leverage)
Industry: Largest 15% and smallest
85% (total link)

17

3 - Leverage cap Equity issue
Number of

banks capped
A max debt/equity = 15 354.6 B 107
B max debt/equity = 20 79.6 B 64
C max debt/equity = 25 34.4 B 31
D max debt/equity = 30 18.5 B 11

Table 9: Different policy exercises applied to the actual network.

First, we explore the effect of merging banks. In this context, we consider four
different scenarios in which we merge a group of large or small banks that are chosen
on the basis of their size or leverage. Second, we study the effect of breaking up banks.
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Specifically, we split a large bank into two smaller banks, so that one of the smaller
banks connects only to a group of large firms, while the other links only to a group of
small firms. We define the size of firms based on the number of banks they interact
with. Lastly, we explore the effect of a leverage cap, i.e. we limit the maximum ratio
between debt to equity of a bank. In this case, we assume that banks that breach the
limit need to raise new equity to satisfy the cap, without changing the size of their
investments.

We apply each policy separately to the actual network and then conduct the sys-
temic risk analysis on these modified networks. For this exercise, we use the data
for the aggregated level and the year 2010, with small market impact, α = 0.1.17 We
compare Pd of the modified networks to that of the actual network, and to MinDensity
(the least risky network in this case).

Figure 11 shows the results for the three sets of policies. We find that merging the
largest banks based on their total assets (1A) and merging small banks based on their
leverage (1D) decreases Pd, while a merger based on other policy choices (1B and 1C)
has no impact.18 Additionally, we find that 1A reduces Pd relatively more compared
to 1D. We note that this is different to the results of Greenwood et al. (2015), where
merging banks did not decrease systemic risk, but might increase it if the merger
leads to an even more leverage bank. Our results are different because merging large
banks leads to a relatively moderately leveraged larger bank (this also explains why
1D reduces the actual Pd slightly). This explains why the Pd becomes smaller in this
scenario.

Figure 11 also shows that breaking up banks does not lower Pd as effectively as
merging banks. This is in line with the idea that the systemic risk of a large systemic
bank should be similar to the risk of n smaller duplicates of this large institution
(Adrian and Brunnermeier (2016)). Here we find that splitting the most leveraged
banks (2B) only improves the robustness of the financial system slightly, while splitting
banks with large assets (2A) in fact increases Pd.

Lastly, we observe from Figure 11 that a leverage cap may reduce Pd of the actual
network, with tighter constraints yielding lower Pd values. However, the results show
that for modest constraints (such as scenario 3D) the Pd remains largely unaffected.
Hence, a substantial part of the observed vulnerability of the system is due to the high
levels of portfolio overlap.

Overall, we find that neither of the three different policy exercises is able to decrease
Pd to the same level as Pd of the most stable reconstructed network for the particular
data (MinDensity). We find that merging banks and introducing a leverage cap may
improve the robustness of the system, while splitting banks does not. It must be
stressed that this is the case under the specifications we gave for the initial shock
and for the calculation of Pd. In particular, in the calculation of Pd all industries are
weighted equally, which implicitly assumes that the probability that the initial shock
affects a given industry is uniform across industries. For different types of assumptions,
results of policy experiments might be different.

17We also experimented with data for other years. The results are qualitatively similar to what is
shown here (details available upon request from the authors).

18Large banks are also those with large number of links.

30



1  0.8 0.6 0.4 0.2 0  

p

0

0.2

0.4

0.6

0.8

1

P
d

Actual

MinDensity

1A

1B

1C

1D

(a) Bank merger

1  0.8 0.6 0.4 0.2 0  

p

0

0.2

0.4

0.6

0.8

1

P
d

Actual

MinDensity

2A

2B

(b) Bank break-up

1  0.8 0.6 0.4 0.2 0  

p

0

0.2

0.4

0.6

0.8

1

P
d

Actual

MinDensity

3A

3B

3C

3D

(c) Bank leverage cap

Figure 11: Effect on the implementation of policy exercises to Pd of the actual network.
It is compared to MinDensity that performs as the most stable network in the stress
test for the corresponding data. Here we use the data of year 2010 with stress test
parameter α = 0.1 None of the policy is able to reduce Pd closer to the one displayed
by the most stable reconstruction method (MinDensity.) However, banks merger and
leverage cap reduce Pd most significantly.
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7 Conclusions

There is widespread interest in approximating financial networks from partial infor-
mation. In this paper, we focus on reconstructing and stress testing bipartite credit
networks using detailed micro-data on bank-firm credit interactions in Japan for the
period 1980 - 2010. We explored the performance of several network reconstruction
methods at different aggregation levels along two different dimensions. First, we find
that there is no single ”best” reconstruction method - it depends on the assumed crite-
rion of interest. Second, we look at each method’s ability to reproduce observed levels
of systemic risk. We identified a significantly negative trend over time for the observed
systemic risk levels of the Japanese banking system. This suggests that the system
has become less vulnerable to systemic asset liquidations over time. Moreover, in most
instances the actual credit networks significantly display the highest levels of systemic
risk, which means that all the reconstruction methods tend to underestimate systemic
risk. In addition, we show that the choice of the aggregation level (i.e., bank-firm or
bank-industry level) affects the individual performance of the different reconstruction
methods.

Our findings suggest several interesting paths for future research. First and fore-
most, it is important to perform similar analyses for other datasets. Secondly, an
important follow-up question is whether there are other reconstruction methods that
are able to replicate the actual systemic risk levels more closely. In this paper, we only
include a small number of popular reconstruction methods, but other methods may
work better.
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Appendices

A Weight Allocation Methods

We use RAS (Blien and Graef (1998)) method to distribute the observed credit volumes
across links for the generated adjacency matrix of CM1 and CM2. Previously, we
experimented with different weight allocation approaches defined below and finally
find that RAS generally performed best in our analysis (in term of corresponding
L1-error).
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Weight allocation method Definition

RAS (Blien and Graef
(1998))

Column constraint

ŵi,j(t+ 1) =
ŵi,j(t)

ŝ(t)Bi ,
× sBi ,

Row constraint

ŵi,j(t+ 1) =
ŵi,j(t)

ŝ(t)Fi ,
× sFi ,

where t is the respective iteration step.
Linear Programming
(Mohr and Polenske

(1987))
Maximize

nB∑
i=1

nF∑
j=1

cij,ŵi,j

subject to
nB∑
i=1

ŵi,j = sFj (j = 1, . . . , n)

nF∑
j=1

ŵi,j = sBi [i = 1, . . . , (m− 1)]

ŵi,j > (ci,j)(ε)

where bi,j > 0→ ci,j = 1, bi,j = 0→ ci,j = 0
Convex transportation
problem (Klincewicz

(1989)) ŵ = (ŵ1,1, ŵ1,2, . . . , ŵ2,nF , . . . , ŵnB ,1, ŵnB ,2, ..., ŵnB ,nF )T

s = (sB1 , s
B
2 , . . . , s

B
nB , s

F
1 , s

F
2 , . . . , s

F
nF )T

Bŵ = s

Maximum Flow ( Cormen
et al. (2009))

See Gandy and Veraart (2016) for the discussion on how to transform
this into a maximum flow problem.

Table A.1: Summary of different weight allocation methods for the bank-firm network.
Note that we can define the same methods for the bank-industry network.
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B Systemic Risk Models

To quantify the vulnerability of the bipartite credit networks to systemic asset liqui-
dations, we use the stress testing model of Huang et al. (2013) which uses a linear
market impact, and assumes that banks do not target their leverage. This model is
related with other models that have been recently introduced.

Here we compare different the models based on the type of market impact function
and whether it assumes some form of leverage targeting. First, we note that the
model of Caccioli et al. (2014) uses a non-linear market impact and neglects leverage
targeting, but then the leverage targeting is incorporated in the extended version of
that model. Similar to the extended version of Caccioli et al. (2014), the model of
Greenwood et al. (2015) incorporates leverage targeting, but assumes a linear market
impact function. Cont and Schaanning (2017) do not include pure leverage targeting,
but assume that banks have some regulatory constraint regarding their maximum
leverage and banks will only liquidate when they exceed that maximum threshold.
Another distinction between the two models is that even though the model of Cont
and Schaanning (2017) also assumes a linear market impact for small volumes, they
use a non-linear impact function with heterogeneous price impacts for each asset class.

Market impact
linear non-linear

Leverage
targeting

not-included Huang et al. (2013) Caccioli et al. (2014)

included with
threshold

Cont and Schaanning (2017)

included Greenwood et al. (2015)
Caccioli et al. (2014)

(extended)

Table B.1: Comparison between different stress testing model for bipartite credit net-
work based on the type of market impact function used and whether leverage targeting
is included or not.
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C Additional Results: Systemic Risk Analysis on

Other Models

For the purpose of finding out how the systemic risk analysis might vary if leverage
targeting model (as in Greenwood et al. (2015)) and threshold model (as in Cont
and Schaanning (2017)) are used, we also performed the same exercise with these
other models. We find that the rank ordering of the different methods are generally
consistent with those presented in the main text.
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Figure C.1: Relative difference of the probability of default between actual network and
the null models (Dr) at the aggregated level for α ∈ [0,1] (small to large market impact)
and p ∈ [0,1] (large to small initial shock). Leverage targeting model Greenwood et al.
(2015)is used. Data for year 2010. Warm color corresponds to an underestimation of
the actual network, while cold color indicates an overestimation.
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Figure C.2: Relative difference of the probability of default between actual network and
the null models (Dr) at the aggregated level for α ∈ [0,1] (small to large market impact)
and p ∈ [0,1] (large to small initial shock). Threshold model (Cont and Schaanning
(2017))is used. Data for year 2010. Warm color corresponds to an underestimation of
the actual network, while cold color indicates an overestimation.
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(b) No leverage targeting), α = 0.5
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(c) Leverage targeting, α = 0.1
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(d) Leverage targeting, α = 0.5
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(e) Threshold model, α = 0.1
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(f) Threshold model, α = 0.5

Figure C.3: Pd Comparison of different stress testing models for various range of shock
p. α = 0.1 (left), α = 0.5 (right). Data for year 2010. Dotted line indicates the value
within one standard deviation.
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D Additional Results: Wilcoxon Signed Rank Test

on the Networks

We formally test whether the difference between each network Pd is significant by
running a two-sided Wilcoxon signed rank test on each pair of the actual network and
the null model. In the tables below, we show the corresponding p-values of each test
for different range of α.

Disaggregated CM1 CM2
MaxEn-

tropy
Min-

Density
Actual 0.000 0.000 0.000 0.000
CM1 0.000 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Aggregated CM1 CM2
MaxEn-

tropy
Min-

Density
Actual 0.000 0.000 0.000 0.000
CM1 0.038 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Intermediate CM1 CM2
MaxEn-

tropy
Min-

Density
Actual 0.000 0.000 0.000 �0.811
CM1 0.000 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Table D.1: Results for all α. p-values of two-sided Wilcoxon signed rank test for
different combinations. A sufficiently small p-value indicates that the test rejects the
null hypothesis that the difference between the pairs follow a symmetric distribution
around zero. Here we test the Pd value of each network for p ∈ [0, 1] and α ∈ [0, 1].
We highlight the p-value above 0.05 using the � symbol.
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Disaggregated CM1 CM2
MaxEn-

tropy
Min-

Density
Actual 0.000 0.000 0.000 0.000
CM1 0.000 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Aggregated CM1 CM2
MaxEn-

tropy
Min-

Density
Actual 0.000 0.000 0.000 0.000
CM1 �0.158 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Intermediate CM1 CM2
MaxEn-

tropy
Min-

Density
Actual 0.000 0.000 0.000 0.000
CM1 0.000 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Table D.2: P -value of a two-sided Wilcoxon signed rank test on each pair of the
network. A sufficiently small p-value indicates that the test rejects the null hypothesis
that the difference between the pairs follow a symmetric distribution around zero.
Here we test Pd value of each network for p ∈ [0, 1] and α ∈ [0, 0.5]. We highlight the
p-value above 0.05 using the � symbol.

Disaggregated CM1 CM2
MaxEn-

tropy
Min-

Density
Actual 0.000 0.000 0.000 0.000
CM1 �0.352 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Aggregated CM1 CM2
MaxEn-

tropy
Min-

Density
Actual 0.000 0.014 0.000 0.000
CM1 �0.906 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Intermediate CM1 CM2
MaxEn-

tropy
Min-

Density
Actual 0.000 0.000 0.000 0.000
CM1 �0.398 0.000 0.000
CM2 0.000 0.000
MaxEntropy �0.100

Table D.3: Results for small α. p-values of two-sided Wilcoxon signed rank test for
different combinations. A sufficiently small p-value indicates that the test rejects the
null hypothesis that the difference between the pairs follow a symmetric distribution
around zero. Here we test the Pd value of each network for p ∈ [0, 1] and α ∈ [0, 0.1].
We highlight the p-value above 0.05 using the � symbol.
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