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Abstract

I model an open-end mutual fund investing in illiquid assets and show that the fund’s endogenous cash 

management can generate shareholder runs even with a flexible NAV. The fund optimally re-builds its 

cash buffers at time t + 1 after outflows at t to prevent future forced sales of illiquid assets. However, cash 

rebuilding at t + 1 implies predictable voluntary sales of illiquid assets, generating a predictable decline in 

NAV. This generates a first-mover advantage, leading to runs. A time-inconsistency problem aggravates 

runs: the fund may want to pre-commit not to re-build cash buffers but cannot credibly do so absent a 

commitment device.
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1 Introduction

There are rising concerns about the financial stability risks posed by open-end mutual funds, which promise

daily liquidity to shareholders but have been increasingly holding illiquid assets such as corporate bonds,

emerging market assets, bank loans, and even real estates. Given this liquidity mismatch, regulators are

worried about the potential for a bank-run-like scenario on mutual funds,1 and a large number of funds

have experienced bank-run-like redemptions in 2015 and 2016.2 However, despite the prominence of this

issue, the theoretical mechanism of mutual fund runs is not well understood and the existence of runs is

still in dispute. First, conventional wisdom suggests that mutual funds with a flexible end-of-day net asset

value (NAV) should be immune to bank-run-like crises, which occur only with fixed-NAV claims. Second,

observers also argue that careful fund liquidity management can mitigate first-mover advantages and hence

prevent runs. With these two points in mind, can there really be runs on mutual funds?

In this paper, I develop a model of an open-end mutual fund that invests in illiquid assets and show

that shareholder runs can occur in equilibrium even with a flexible NAV. The main insight is that the

combination of a flexible NAV and active fund liquidity management, both of which are viewed as means

to mitigate financial stability risks, can make the fund prone to shareholder runs when the underlying

illiquid asset prices are not perfectly forward-looking.

The mechanism works as follows. The fund optimally re-builds its cash buffers at time t+1 after outflows

at t to prevent future forced sales of illiquid assets. However, cash-rebuilding implies predictable voluntary

sales of illiquid assets and hence a predictable decline in NAV. This generates a first-mover advantage,

leading to shareholder runs. A time-inconsistency problem further aggravates shareholder runs: the fund

may want to pre-commit not to re-build its cash buffers but cannot credibly convince the shareholders not

to run absent a commitment device. Thus, despite optimal liquidity management, mutual funds are not

run-free and runs can lead to higher ex-ante asset sale losses.

My theoretical predictions are consistent with new micro-level evidence. Chen, Goldstein and Jiang

(2010), Feroli, Kashyap, Schoenholtz and Shin (2014), Goldstein, Jiang and Ng (2015), Shek, Shim and

Shin (2015) and Wang (2015) document that current fund outflows predict a future decline in fund NAV,

and the magnitude of the predictable decline in NAV is larger if the fund invests in more illiquid assets or

1The U.S. SEC implemented new rules on Nov 13, 2016 requiring mutual funds to manage liquidity risks. Also see “Potential
Emerging Threats and Vulnerabilities,” Ch. 7 in the Annual Report, the U.S. FSOC, May 2015, and “Asset Management
Industry and Financial Stability,” Ch. 3 in the Global Financial Stability Report, the IMF, April 2015.

2The Third Avenue shutdown on Dec 10, 2015 after severe runs was the first case since the 1940 Act that a U.S. mutual
fund shut down redemptions without getting approval from the U.S. SEC. Notably, the Focus Credit Fund was the single
largest holder of many high-yield corporate bonds, the fundamental of which were still good. This suggests that liquidity
mismatch played an important role in its crisis. Many so-called “liquid-alternative” mutual funds, operated by hedge fund
managers such as Whitebox Advisors, J.P. Morgan, and Guggenheim Partners also experienced shareholder runs and were
forced to close in 2015. In 2016, many real estate funds in the UK also experienced severe runs after the vote for the Brexit.
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has less cash. My model provides one mechanism to generate a first-mover advantage consistent with these

patterns and shows that it can indeed lead to runs in equilibrium. Moreover, I show that the potential for

runs can in turn distort fund liquidity management.

I formulate the ideas sketched above in a dynamic model of an open-end mutual fund. The fund has

both cash and many illiquid assets. It has many shareholders, who may redeem daily at the end-of-day

flexible NAV. The fund minimizes total expected asset sale losses by managing its cash buffer over time.

Section 2 lays out the model, which is built based on a realistic assumption that the sale prices of illiquid

assets are time-varying but not perfectly forward-looking. Specifically, flow-induced sales of illiquid assets

can create temporary sale price overshooting at t and partial reversal at t+1, as documented by Coval and

Stafford (2007) and Duffie (2010). This price pattern gives rise to a motive for fund liquidity management.

After an outflow at t, the fund may actively sell illiquid assets to rebuild its cash buffer at t+ 1 when the

sale price partially rebounds in order to avoid potentially more severe forced sales at t+ 2 should another

outflow shock come, but the prices at t do not fully reflect predictable cash rebuilding and active sales at

t+ 1. Other than this notion of asset illiquidity and the resulting liquidity mismatch, my model does not

feature other frictions at the asset level.

I show in Section 3 that under liquidity mismatch, the fund’s desire to rebuild its cash buffer can

induce shareholder runs, and more rapid cash rebuilding leads to more severe runs. Runs can occur in

equilibrium regardless of whether the fund starts with a high cash position or a low one. However, the

nature of strategic interactions among shareholders differs between these two cases.

When the fund starts with a high cash position, cash rebuilding induces shareholder runs by endoge-

nously giving rise to a first-mover advantage. When a redemption shock occurs at t, the fund starting with

a high cash position can satisfy the projected redemptions at both t and t + 1 without incurring sales.

This implies that even if the shareholders who initially plan to redeem at t + 1 ran at t, the fund would

still have enough cash at t, and thus time-t NAV would not adjust. However, since some cash is paid out

at t, the fund may want to rebuild its cash buffer by actively selling some illiquid assets at t + 1. Thus,

the shareholders who initially plan to redeem at t + 1 would get a lower NAV if they waited until t + 1,

and hence may decide to run at t. Fundamentally, cash rebuilding generates a strategic complementarity

among shareholders, which ultimately leads to runs.

Alternatively, if the fund starts with a low cash position such that it cannot satisfy the projected

redemptions at both t and t+1 without selling illiquid assets, cash rebuilding can still induce shareholder

runs despite the flexibly adjusted NAV at t. Interestingly, a shareholder is less likely to run if more of the

other shareholders decide to run. This is because runs may force the fund to sell more of its illiquid assets
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at an extremely low price at t, and any shareholder who runs at t must share that cost and get a lower

NAV. This means that shareholders’ run decisions can exhibit strategic substitutability. However, since

the fund is already running out of cash and may actively sell more assets at t+1 to rebuild its cash buffer,

waiting may only give the shareholders an even lower NAV. Therefore, the fund’s desire to rebuild its cash

buffer reinforces a strong incentive for shareholders to redeem earlier, despite the strategic substitutability.

Having analyzed the implications of cash rebuilding on shareholder runs for an arbitrary starting level

of cash, I endogenize the dynamic cash rebuilding policy of the fund. I show in Section 4 that introducing

the potential for runs gives rise to a tension absent in existing liquidity management theories. On the

one hand, rebuilding the cash buffer more rapidly at t+ 1 can trigger shareholder runs at t. As described

above, shareholder runs lead to more sales. This run concern makes a more rapid cash rebuilding policy

less appealing. On the other hand, adopting a less rapid cash rebuilding policy at t + 1 makes the fund

more likely to suffer another round of future forced sales at t + 2. Moreover, carrying less cash to t + 2

also implies that the fund will have to ultimately rebuild its cash buffer more rapidly at time t+ 3, which

can trigger future runs at t + 2. With this tension, the fund’s optimal dynamic cash rebuilding policy is

significantly different from the benchmark case where there are no runs.

Moreover, I show that the potential for shareholder runs introduces a time-inconsistency problem for the

fund, which aggravates the tension in choosing between a rapid or slow cash rebuilding policy. When the

cost of runs at t is relatively large, ex-ante, the fund may wish to commit itself to rebuilding its cash buffer

less rapidly at t+1 to reduce run risks at t. However, ex-post, the fund may instead be tempted to adopt a

more rapid cash rebuilding policy at t+1, because the time-t cost is sunk. Anticipating this, shareholders

will always have strong incentives to run at t. In other words, in the absence of a commitment device, the

fund cannot make credible announcement to convince shareholders not to run. Overall, my paper provides

theoretical underpinnings for understanding why open-end mutual funds may not be run-free, in contrast

to what the conventional wisdom suggests. The potential for shareholder runs can considerably increase

sale losses in expectation despite optimal cash management by the fund.

Fundamentally, shareholder runs in my model are driven by a key property of the NAVs of mutual

funds investing in illiquid assets: they are flexible but not perfectly forward-looking. The sale prices of

illiquid assets and thus fund NAVs at time t do not fully take into account the predictable asset sales at

t+ 1. Hence, endogenous fund cash rebuilding gives rise to predictable declines in NAV and a first-mover

advantage. Other than this insight under liquidity mismatch, my model does neither necessarily predict

massive redemptions nor imply that all mutual funds are subject to runs.

Theoretically, my model provides one plausible channel that restores the classic bank run mechanism
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(Diamond and Dybvig, 1983) in the mutual fund context, which is viewed by many observers to be run-free

because it does not feature a fixed-value claim. In my model, the first-mover advantage does not directly

come from an exogenous fixed-NAV claim at t (like the deposit at a bank). Because fund NAVs in my

model flexibly and endogenously adjust, a shareholder redeeming at t realizes that more early withdrawals

will potentially induce more sales at t and thus lower the proceeds she receives. Hence, if the fund did

not rebuild its cash buffer at t + 1, the net benefit of running over waiting could be decreasing as more

shareholders run. Rather, it is the fund’s desire to rebuild its cash buffer at t + 1 and the resulting

predictable decline in NAV that lead to a strong first-mover advantage. This mechanism highlights a

dynamic interaction between the fund and its shareholders. Such an interaction is absent in classic bank

run models, which focus on coordination failures among depositors themselves.

The mechanism in my model also differs from that underlying market runs. Bernardo and Welch

(2004) and Morris and Shin (2004) argue that if an asset market features a downward-sloping demand

curve, investors fearing future liquidity shocks will have an incentive to front-run, fire selling the asset

earlier to get a higher price. One might imagine that introducing an intermediary that helps manage

liquidity shocks can alleviate such problems. Indeed, in my model fund cash management is beneficial

to shareholders because it reduces sale losses. However, the key is that the fund’s cash rebuilding also

endogenously gives rise to predictable declines in NAV and thus run incentives. In contrast, there is no

role for liquidity management in market run models. In this sense, market run models focus on asset

markets themselves while my theory focuses on the role of financial intermediaries. This allows me to

distinguish between risks that come from active management of financial intermediaries and those that are

only a reflection of market-level frictions and would occur in the absence of intermediaries.

My model generates new policy implications, which I explore in Section 5. I consider several fund-

level policies, including in-kind redemptions, redemption fees and restrictions, credit lines, and swing

pricing, all of which aim to mitigate financial stability risks of mutual funds. Perhaps surprisingly, some of

these policies do not necessarily improve shareholder welfare in equilibrium because they may distort fund

liquidity management, and thus lead to more asset sale losses. Overall, my model suggests that policies

should be designed with the dynamic interdependence of runs and fund liquidity management in mind.

Related Literature. This paper first contributes to the burgeoning literature on financial stability

risks posed by open-end mutual funds.3,4 Empirically, Feroli, Kashyap, Schoenholtz and Shin (2014)

3Relatedly, Schmidt, Timmermann and Wermers (2016) show the existence of shareholder runs on MMFs.
4There is a broader literature on the costs of outflows to non-trading shareholders and to future fund performance; see

Christoffersen, Musto and Wermers (2014) for a review. Edelen (1999), Dickson, Shoven and Sialm (2000), Alexander, Cici and
Gibson (2007) and Christoffersen, Keim, and Musto (2007) find that flow-induced trades hurt fund performance, and redeeming
shareholders impose externalities on non-trading shareholders through trading-related costs (including commissions, bid-ask
spreads, and taxes) that are not reflected in current NAVs. Coval and Stafford (2007) further show this by highlighting the
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find that fund outflows predict future declines in NAV, suggesting the existence of run incentives for

shareholders. At a more micro level, Chen, Goldstein and Jiang (2010) find that the flow-to-performance

relationship is stronger for funds investing in less liquid stocks. Goldstein, Jiang and Ng (2015) echo the

message by showing that corporate bond funds even exhibit a concave flow-to-performance relationship.

Shek, Shim and Shin (2015) explore the underlying channel by showing that outflows are associated with

future discretionary bond sales and liquidity rebuilding in an emerging market bond fund context. Wang

(2015) finds that outflows predict a stronger decline in future NAVs when the fund has less cash or invests

in more illiquid bonds. My model predictions are consistent with these facts above.

Notably, Chen, Goldstein and Jiang (2010) and Morris and Shin (2014) have addressed the potential for

mutual fund runs from theoretical perspectives. Both papers deliver new and unique predictions regarding

the risks of mutual funds, but their focus and approach is different from this paper. Chen, Goldstein and

Jiang (2010) build a static global game model for the purpose of hypothesis development and focus on the

relationship between asset illiquidity and the flow-to-performance relationship. In that model, shareholders

who run will get a fixed-value claim if the fund is solvent (in the spirit of Diamond and Dybvig, 1983).

They also do not consider fund liquidity management. Morris and Shin (2014) build a model of runs by

funds on the asset markets, focusing on managers’ relative performance concerns. They do not distinguish

between open- and closed-end funds and thus do not consider shareholder runs.

My paper also contributes to the literature of mutual fund liquidity management. This literature

suggests that holding cash is costly because funds must give up investment opportunities (Wermers, 2000),

but cash can help them withstand redemption shocks (Edelen, 1999, Christoffersen, Keim, and Musto,

2007, Coval and Stafford, 2007). Simutin (2013) investigates the determinants of cash management for

equity funds. Chernenko and Sunderam (2015) further cover both bond and equity funds and show that

even careful liquidity management cannot fully alleviate fire-sale costs. The most relevant theory is Chordia

(1996) who shows in a static model that funds hold more cash when there is uncertainty about redemptions.

My paper documents a new aspect of fund liquidity management: rebuilding cash buffers by selling illiquid

assets can induce shareholder runs, which can in turn distort fund liquidity management.

In addition to the discussion above regarding the difference from bank runs and market runs, my paper

contributes to the bank run literature in several aspects.5,6 First, Allen and Gale (1994, 2005) show that

channel of flow-induced sales. These papers do not examine the potential for shareholder runs.
5To review the entire bank run literature is beyond the scope of this paper; I refer interested readers to Gorton and Winton

(2003) for a survey. There is also a growing literature about runs on non-bank but leveraged financial institutions, for instance,
Liu and Mello (2011) on leveraged hedge fund runs with a focus on how cash buffers help mitigate runs, Martin, Skeie and
von Thadden (2014) on repo runs, and Parlatore (2015) on MMF fragility with a focus on sponsor support. These theories
resemble classic bank run models in that investors still get a fixed-value claim if they run.

6Green and Lin (2003) and Peck and Shell (2003) examine more flexible contracts that allow the bank to condition the
payment to each depositor on the number of agents who claimed early withdrawal before her. In other words, the deposit
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market liquidity is important in determining the possibility of runs and Cooper and Ross (1998) pioneer to

examine how banks manage their liquidity buffers. In that literature, liquidity re-building helps mitigate

runs. By combining liquidity management and flexible NAV adjustment, I find the opposite in mutual

funds: liquidity re-building can generate unintended shareholder runs. Second, a new literature considers

runs in a dynamic framework, for example, He and Xiong (2012) and Cheng and Milbradt (2012). There,

investors’ run decisions depend on each other inter-temporally but the bank is cashless. My paper differs in

that shareholders’ run decisions depend on each other through the fund’s endogenous liquidity management.

Last, Ennis and Keister (2010) is closely related in that they consider the interaction between the bank’s

endogenous deposit policy intervention and its depositors’ endogenous runs. There, depositors anticipate

whether the bank will freeze remaining deposits in response to a first wave of runs, and the anticipated

policy in turn influences their run behavior. By considering the interaction between shareholder runs

and mutual fund liquidity management under a flexible fund NAV, my paper helps reveal the economic

conditions under which mutual funds are also subject to run risks.

2 The Model

2.1 Setup

Time is discrete and infinite. Discount rate is normalized to 1. There is a single open-end mutual fund

investing in two types of assets: 1) cash, which is liquid and is the only consumption good, and 2) a

continuum of many illiquid assets. The illiquid assets have an intrinsic fundamental value R > 0, which

will be paid off at the end of the game (specified later), but they do not generate any interim cash flows.

At the beginning of any date t, the fund has xt cash and at unit of the basket of illiquid assets. The

fund also has nt existing shareholders, some of whom may exit the fund by redeeming their shares in future.

To focus on redemptions, I assume that the fund has no inflows or credit lines.7 Redemptions must be met

in cash,8 so the fund may be forced to sell its illiquid assets if running short of cash, but doing this will

generate price impact and thus losses because of the underlying illiquidity problem. Specifically, the unit

sale price for any illiquid assets on date t is pt, which is lower than R and will be specified later.

Flexible Fund Net Asset Value (NAV). The end-of-day flexible NAV will reflect all the asset sale

value there is flexible. However, as the authors acknowledge, these bank deposit contracts are not observed in practice.
7I will relax this assumption in Section 5.4. As shown there, having credit lines cannot reduce potential financial stability

risks of mutual funds but may instead aggravate them in some cases.
8In Section 5 I analyze emergency rules such as redemption restrictions and in-kind redemptions.
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losses during the given day. Specifically, if the fund does not sell any assets on date t, it will be

NAVt =
atR+ xt

nt
.

However, if the fund sells any assets on date t at the sale price pt < R, the NAV will reflect those losses:

NAVt =
xt + (at − at+1)pt + at+1R

nt
. (2.1)

In (2.1), the market prices of those non-traded (and different) assets will not change. This is true for

illiquid assets, especially for those traded in OTC markets such as corporate bonds.9 This is also consistent

with the empirical evidence in Coval and Stafford (2007) that flow-induced sales only have temporary and

local price impacts within the assets being sold.

What is crucial in (2.1) is that the end-of-day NAV is flexible in the sense that it considers all the

same-day price impact and asset sale losses, which is different from the fixed deposit value in Diamond

and Dybvig (1983). However, fund NAV is still not perfectly forward-looking in the sense that it will not

perfectly reflect future price impacts induced by future asset sales. These contractual features of fund NAV

are robust regardless of the nature of different asset markets and accounting rules.

Fund Management. On any date t, the fund manager’s objective is to minimize the total expected

asset sale losses that she incurs at t and going forward. The formal objective function will be clear after I

describe the asset market.

Since all the shareholders are ex-ante identical, having a fund which minimizes total expected asset

sale losses implies that there is no ex-ante agency friction between the fund manager and the collective

shareholders. In this sense, the fund’s objective parsimoniously captures the outcome of optimal contract

design between investors and the asset manager (e.g., Bhattacharya and Pfleiderer, 1985). Minimizing

total asset sale losses is also consistent with the fund manager’s compensation being tied to the size or

equivalently the assets under management (AUM) of the fund, which is common in practice.

Timeline. Each stage consists of two dates, an even date and an odd date.10 I use 2t to denote an

even date and 2t + 1 to denote an odd date. I still use t to denote a stage or a general date when the

difference between even and odd dates is not important.

9In practice, asset prices may be correlated, and mutual funds may also use matrix pricing for non-traded assets based on
the sale price pt. But as I will discuss in the online appendix B.2, asset price correlations or different accounting rules such as
matrix pricing are not crucial for my model mechanism and will not change the insights of this model.

10I purposefully use this timeline structure to better contrast my model mechanism to classic bank run models; this model
can be viewed as a repeated version of Diamond and Dybvig (1983) but with important changes to capture mutual funds.
To make distinctions between even and odd dates is also a common modeling tool in the literature to capture time-varying
market conditions. See Woodford (1990) and Lagos and Wright (2005) for examples.
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At the beginning of each stage (i.e., right before an even date), a shock hits the economy. Specifically,

with probability π the game ends; otherwise the game continues. Only if the game continues, will there be

projected redemptions on the following two dates within the given stage. The random end-of-game event

can be thought of as an upside event in which all the illiquid assets mature at their fundamental value,

shareholders get paid off, and there will be no future redemption needs. I call this shock redemption shock

in what follows. Figure 1 shows the timeline.

..

2t

.

2t+ 1

.

2t+ 2

.

2t+ 3

.

π

.

1− π

. Early.

Shareholders

. Late.

Shareholders

.

Run

.

Lower

.

Higher

.

Sale

.

Sale

.

Price

.

Price

.

π

.

1− π

.

(Recursive)

.

Early

.

Shareholders

.

Late

.

Shareholders

.

Run

Figure 1: Timeline

Shareholders. There are three groups of shareholders within each stage: early shareholders, late

shareholders, and sleepy shareholders, all having no cash in advance. Specifically, if the game continues on

an even date 2t, µEn2t early shareholders and µLn2t late shareholders are hit by unanticipated consumption

needs and thus must redeem their shares, where 0 < µE , µL < 1 and 0 < µE+µL < 1.11 Since consumption

needs are unanticipated, the remaining (1−µE −µL)n2t sleepy shareholders do nothing but wait until the

next stage; they do not plan ahead for future stages although they may randomly become early or late

shareholders then.12 Shareholders get the endogenous and flexible end-of-day NAV when redeeming.

Early shareholders must consume on date 2t, so they always redeem their shares at the endogenous

end-of-day NAV on 2t. Late shareholders prefer to consume on date 2t+1, but can also choose to consume

on date 2t. Formally, late shareholders’ utility function is:

11As will become clear soon, the redemptions themselves do not necessarily assume or imply runs. The fractions µE and
µL are assumed to be exogenous and fixed across stages to ensure stationarity and make the model tractable. In the online
appendix B.3 I discuss a potential approach to endogenize them to capture the flow-to-performance relationship, which is
likely to worsen the trade-off underlying fund liquidity management and make run problems more persistent.

12This is consistent with the observation that many mutual fund shareholders are mom-and-pop investors: they do not
actively review their portfolios but only do so when subject to unanticipated liquidity shocks (for empirical evidence, see Agnew,
Balduzzi and Sunden, 2003, Mitchell, Mottola, Utkus and Yamaguchi, 2006, Brunnermeier and Nagel, 2008). Institutional
investors like insurance companies and pension funds also review and update their mutual fund asset portfolio infrequently.
From a theoretical point of view, this helps construct a tractable dynamic game with a long-run player (the fund manager)
and many generations of short-run players (the shareholders). It also allows me to focus on fund liquidity management as the
only channel that links different stages.
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uL(c2t, c2t+1) = θc2t + c2t+1 , (2.2)

where 0 ⩽ θ ⩽ 1. As late shareholders are risk neutral,13 their consumption choice boils down to a

binary problem: to redeem on date 2t or date 2t + 1. There is no outside storage technology. Thus, if a

late shareholder redeems on date 2t, she gets the endogenous end-of-day NAV on 2t and must consume

immediately; otherwise she gets the endogenous end-of-day NAV on 2t+ 1 and consume then.

Runs. If a late shareholder chooses to redeem on date 2t, I define that the late shareholder runs

the fund in stage t. I allow late shareholders to choose mixed strategies: the run probability of late

shareholder i is denoted by λi
2t ∈ [0, 1]. Clearly, a late shareholder’s run decision depends on the difference

of NAVs between the two dates, which in turn depends on other late shareholders’ run decisions and

the fund manager’s asset re-allocation decision in the given stage. The preference parameter θ in (2.2)

parsimoniously captures different types of shareholders with varying propensities to run.14,15 Intuitively,

when θ is lower, late shareholders are less likely to run even if the NAV is lower on date 2t+ 1.

It is worth noting that the projected redemptions themselves do not necessarily assume or imply runs

in my model, and runs do not imply massive redemptions either. Based on the formal definition above,

there will be no runs if all the late shareholders redeem on late dates. Rather, runs can happen in any given

stage due to an endogenous first-mover advantage within that stage. More interestingly, runs in different

stages will become inter-dependent due to the fund’s dynamic liquidity management.

The setting described above represents a mutual fund crisis management scenario, during which the

fund experiences repeated redemption shocks before a random recovery time.16 In the setup, π measures

how persistent the redemptions shocks are, or in other words how likely the economy is to recover from a

bad market condition. When π is lower, the game is more likely to continue, and thus the fund is more

likely to experience redemptions in the next stage. As the fund manager never knows when the game will

end, liquidity management indeed helps the fund minimize its total expected sale losses, and matters more

13In Diamond-Dybvig type bank run models, depositors are usually assumed to be risk averse, and demandable deposit
emerges as the optimal contract for risk-sharing between early and late depositors. Instead, I focus on the commonly observed
contractual features of open-end mutual funds rather than optimal contract design, so I assume risk-neutrality to help better
document the impact of flexible NAVs on shareholders’ consumption choices.

14There are many plausible explanations for different types of shareholders having different values of θ. For example, Chen,
Goldstein and Jiang (2010) suggest that institutional investors may have a lower θ because they often have stricter investment
targets and are more likely to internalize the market impact posed by own trading activities. Alternatively, Gennaioli, Shleifer
and Vishny (2015) argue that mutual funds provide trust to their shareholders. For those shareholders who value such trust,
if they choose to leave the fund early, they must give up the trust premium so can also be viewed as having a lower θ.

15This setting implies that late shareholders’ realized marginal utilities can be different on the two dates, a setting also
commonly seen in the bank run literature (for example, Peck and Shell, 2003).

16Many theories of crisis management in other contexts employ similar structures of shocks followed by a random recovery
time, for example, Lagos, Rocheteau and Weill (2011) on crises in OTC asset markets, He and Xiong (2012) on corporate debt
runs, and He and Milbradt (2015) on maturity choices in a debt rollover crisis, among others.
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when π is lower. Also, I use the end-of-game event to parsimoniously capture a normal-time scenario,

in which asset prices are likely to be high and correctly reflecting their fundamentals. In this sense, my

model is not intended as a general model of mutual fund management. The crisis management scenarios

are also pervasive in reality. They have occurred at various time horizons and for both fundamental and

non-fundamental reasons.17

Illiquid Asset Market and Sale Prices. On any date, the fund manager can sell the illiquid assets

to (unmodeled) outside investors. Flow-induced sales of illiquid assets are natural and pervasive (Shleifer

and Vishny, 1992, 1997), and they can create temporary price overshooting and reversal, making asset

prices not perfectly forward-looking (Coval and Stafford, 2007). Based on this evidence, I assume that:

Assumption 1. The sale price of any unit of illiquid assets is pE = δER on date 2t and pL = δLR on

date 2t+ 1,18 where 0 < δE , δL < 1 and δE + (1− δE)(µE + µL) < δL .19
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Figure 2: Sample Path of the Selling Prices

Assumption 1 parsimoniously captures two important aspects of flow-induced sales of illiquid assets:

1) the sale price on date 2t (i.e., right after a redemption shock) is lower than that on date 2t+ 1 due to

the over-shooting and reversal within a stage, but 2) the sale price is only imperfectly forward-looking in

the sense that pE does not fully reflect the exact amount of future predictable asset sales on date 2t + 1.

Figure 2 illustrates a sample sale price path when the game lasts for four dates.

This sale price pattern can be micro-founded by the idea of slow-moving capital in illiquid asset markets

17There are many examples. Between 2013 and 2015, the flagship Total Return fund of the Pacific Investment Management
Company (PIMCO), one of the largest fund in the U.S., has experienced net outflows for more than 28 consecutive months.
The Prudential M&G’s flagship Optimal Income fund, one of the largest bond fund in the Europe, has experienced more
than 50 consecutive trading days of net outflows in mid 2015. The largest listed fund manager in Europe, Aberdeen Asset
Management, has experienced net outflows for 15 consecutive months as of the end of 2015.

18The simplifying assumption that the sale prices are constant during a given date and do not depend on the exact amount
of asset sales is not crucial at all. What is crucial is that the end-of-day NAV depends on the amount of asset sales according
to (2.1), in which the sale prices pt is not perfectly forward-looking. One can always assume that the asset sale prices follow
a downward-sloping demand curve during a day, as shown in Figure 7 in the online appendix B.2. But under the given NAV
rule (2.1) the downward-sloping demand curves only make the model less tractable without adding new insights.

19Besides the fact that the sale price on even dates is sufficiently lower, the specific form of the inequality is not crucial.
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(Duffie, 2010) or the idea of liquidity providers’ limited attention (Veldkamp, 2011).20 When a redemption

shock just hits the economy on date 2t, there may be only a few liquidity providers available, and thus the

fund manager can only get a low sale price. If she waits until the next date 2t+1, since more (and different)

liquidity providers step in, she may find a higher sale price. But since these liquidity providers are different

across the two dates, the sale price on date 2t would still not fully account for predictable asset sales on

2t+1, that is, it is not perfectly forward-looking. Such a price pattern has been pervasive and documented

in various asset markets in particular when the assets are illiquid (for example, Coval and Stafford, 2007,

Mitchell, Pedersen and Pulvino, 2007, Jotikasthira, Lundblad, and Ramadorai, 2012, Hendershott and

Menkveld, 2014, Bessembinder, Jacobsen, Maxwell and Venkataraman, 2016, among others). Moreover, if

the game continues on date 2t+ 2, that is, when another round of redemption shock comes, the sale price

drops again and repeats the previous pattern, consistent with the timeline of the model.

Fund Liquidity Management. To meet daily redemption needs in cash, the fund manager manages

the cash position of the fund both passively and actively. On the one hand, on any date t, if the fund does

not have enough cash to meet date-t projected redemptions at the beginning-of-day NAV (i.e., NAVt−1),

the fund will be forced to raise cash until all redemption needs can be met at the end-of-day NAV (i.e.,

NAVt). Since there are no inflows and the illiquid assets do not pay interim cash flows, the fund manager

can only raise cash by selling illiquid assets passively at the sale price pt. Denote the amount of illiquid

assets that the fund must sell passively by qt, which will be endogenously determined in equilibrium.

On the other hand, in addition to selling passively for meeting redemptions, the fund can also manage its

cash buffer actively. Specifically, the fund manager can actively sell illiquid assets more than contemporary

redemption needs to rebuild the cash buffer, also at the sale price pt. Denote the amount of assets that

the fund actively sells on date t by st. I call st the fund’s cash rebuilding policy on date t. Intuitively, a

larger st means that the fund is rebuilding its cash buffer more rapidly. Notice that selling illiquid assets

either passively or actively will always hurt the fund NAV that redeeming shareholders are able to get.

Now I specify the fund’s objective function formally. Denote by T the random date on which the game

ends. In order to focus on the dynamic interaction between runs and cash rebuilding under any initial

asset positions, I intentionally omit the fund’s portfolio choice problem at the beginning. Specifically, given

any initial asset positions (at, xt), the fund manager chooses a sequence {sτ} date by date to maximize:

− Et

T−1∑
τ=t

(qτ + sτ )(R− pτ ) , (2.3)

where the expectation is taken over the random variable T . Late shareholders in stage t rely on the

20In the online appendix B.1, I provide a micro-foundation for this price pattern based on the idea of slow-moving capital.
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NAVs on date 2t and 2t + 1 to make redemption decisions under rational beliefs about the fund’s cash

rebuilding policies {s2t, s2t+1} within that stage.21 Intuitively, the fund’s cash rebuilding policies will affect

shareholders’ run decisions, which will in turn affect the fund’s optimal cash rebuilding policies.

It is important to note that, although feasible, the fund manager will never rebuild the fund’s cash

buffer on even dates in any generic equilibrium, that is, s2t = 0 for any t. This is intuitive because the

fund manages its cash buffer to avoid extremely costly sales on even dates, and hence it never makes sense

for the fund manager to actively sell assets then.22 As a result, the fund’s cash rebuilding policy in stage

t is solely determined by s2t+1, the amount of illiquid assets the fund manager actively sells on odd date

2t+ 1. In what follows, I consider s2t+1 the single choice variable of the fund manager in any stage t.

Ultimately, the above model captures a key friction: liquidity mismatch. On the asset side, because

the assets are illiquid, the sale prices are time-varying but not perfectly forward-looking. On the liability

side, redemptions must be met daily in cash. This liquidity mismatch eventually leads to the dynamic

interaction between the fund’s cash-rebuilding policy and shareholders’ run behavior.

3 Shareholder Runs

I first focus on the stage game, showing that the fund’s desire to rebuild its cash buffer can trigger

shareholder runs, and more rapid cash rebuilding leads to more severe runs.

3.1 Stage-Game Equilibrium Definition and Preliminary Analysis

The two-date stage-game equilibrium is a mixed-strategy Nash equilibrium: in any stage t (consisting of

dates 2t and 2t+1), given the fund’s initial portfolio position (a2t, x2t) and the late shareholders’ common

beliefs on the fund’s cash rebuilding policy s2t+1, a late shareholder’s run strategy maximizes her utility

given other late shareholders’ strategies. Since all the late shareholders are identical, there is no loss of

generality to consider symmetric equilibria when mixed strategies are allowed. Formally:

Definition 1. Given µE, µL, δE, δL, R, a2t, x2t, and s2t+1, a symmetric run equilibrium of the stage-t

game is defined as a run probability λ2t(a2t, x2t, s2t+1) ∈ [0, 1] such that

i) given other late shareholders’ run probability λ2t, late investor i’s optimal run probability λi
2t = λ2t

maximizes her utility function (2.2),23 and

21In the U.S., mutual funds are required by the SEC to disclose their asset positions quarterly. Theoretically, these
requirements allow shareholders to form consistent beliefs about a fund’s cash rebuilding policies.

22More precisely, rebuilding cash buffers on date 2t to punish redeeming shareholders would help only if it helps mitigate
runs and the resulting run-induced forced sales on date 2t. But doing this also means active sales on date 2t (at the same low
price as forced sales), and it is equally bad or even worse than the fund just letting shareholders run themselves. Because it
involves solving the dynamic game, this statement will be proved as Lemma 11 in the online appendix B.4.

23In a symmetric run equilibrium, the total population of shareholders who redeem on date 2t is (µE + λ2tµL)n2t.
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ii) all the late shareholders have a common belief about the fund’s cash rebuilding policy s2t+1.
24

I first describe three cases of the stage game per the fund’s starting cash position, x2t. As will become

clear shortly, different x2t implies different nature of strategic interactions among late shareholders.

3.1.1 Cash-to-Assets Ratio Regions

Assuming no cash rebuilding and no shareholder runs as the status quo, I characterize three different

cash-to-assets ratio regions of the portfolio position space {(a2t, x2t)} ⊆ R2
+ . In these different regions,

the amounts of illiquid assets that the fund is forced to sell on the two adjacent even and odd dates, that

is, q2t and q2t+1, vary. I define the cash-to-assets ratio for any date t:

ηt ≡
xt
ax

Lemma 1. Suppose the fund does not rebuild its cash buffer and no late shareholder is going to run, that

is, s2t+1 = 0 and λ2t = 0. Then there are three regions of the cash-to-assets ratio η2t in the stage-t game.

In these three regions, the amounts of illiquid assets that the fund must sell passively on dates 2t and 2t+1

are characterized by:



High Region Gh: q2t = 0, q2t+1 = 0, iff η2t ⩾
(µE + µL)R

1− µE − µL
,

Intermediate Region Gm: q2t = 0, q2t+1 > 0, iff
µER

1− µE
⩽ η2t <

(µE + µL)R

1− µE − µL
,

Low Region Gl: q2t > 0, q2t+1 > 0, iff η2t <
µER

1− µE
.

The three regions of η2t are intuitive. When η2t ∈ Gh, the fund has enough cash to meet all projected

redemptions on both date 2t and 2t + 1, and thus no forced sales occur. When η2t ∈ Gm, the fund only

has enough cash to meet redemptions on date 2t but not on date 2t+1, so it must passively sell its illiquid

asset on 2t+1. Finally, when η2t ∈ Gl, the fund does not even have enough cash to meet redemption needs

on date 2t, and thus must incur forced sales on both dates.

Lemma 1 implies that the stage game is scale-invariant. The absolute value of (a2t, x2t) plays no role

in determining the three regions. This allows me to use a single variable, the cash-to-assets ratio, to

characterize shareholder runs in the stage game. Lemma 1 also implies the population of shareholders n2t

plays no role, and thus I assume n2t = 1 in what follows without loss of generality.

24For simplicity, when analyzing the stage game, I slightly abuse the notation s2t+1 to denote both the shareholders’ common
belief about the fund’s cash rebuilding policy and the actual cash rebuilding policy itself.
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3.2 High Cash-to-Assets Ratio Region Gh

When the stage game is in the high cash-to-assets ratio region Gh, the next lemma shows that there will

always be no forced sales regardless of shareholder runs.

Lemma 2. When η2t ∈ Gh, q2t(λ2t) = q2t+1(λ2t) = 0 for any given λ2t ∈ [0, 1] .

The intuition of Lemma 2 is clear. When some late shareholders decide to run, there will be effectively

more early shareholders and fewer late shareholders, but the total population of redeeming shareholders

in the given stage is not changed. Since the fund always has sufficient cash to meet all early and late

redemption needs at the initial NAV, it indeed has enough cash on date 2t even if all late shareholders

are going to run. Thus, NAV2t will never change regardless of whether late shareholders run or not. If

the fund does not rebuild its cash buffer on date 2t+ 1, Lemma 2 further implies that NAV2t+1 = NAV2t

regardless of λ2t, suggesting that there is no strategic interaction among late shareholders absent fund cash

rebuilding.

However, given the endogenously fixed NAV2t, late shareholders may decide to run if the fund rebuilds

its cash buffer on date 2t+ 1 (i.e., s2t+1 > 0):

Lemma 3. When η2t ∈ Gh, late shareholders’ run decision λ2t exhibits strategic complementarity if and only

if s2t+1 > 0. Moreover, the strategic complementarity becomes stronger as s2t+1 increases. Mathematically:

∂∆uL(λ2t)

∂λ2t
> 0 and

∂2∆uL(λ2t)

∂λ2t∂s2t+1
> 0 ,

if and only if s2t+1 > 0, where ∆uL(λ2t) = uL(λ2t,i = 1;λ2t,−i = λ2t)− uL(λ2t,i = 0;λ2t,−i = λ2t), while

∂∆uL(λ2t)

∂λ2t
= 0 ,

when s2t+1 = 0.25

Lemma 3 suggests the existence of run incentives, which comes from the predictable decline in NAV

when the fund rebuilds its cash buffer. To see it better:

NAV2t+1 =
R

illiquid assets retained︷ ︸︸ ︷
(a2t − s2t+1) +

cash retained︷ ︸︸ ︷
x2t − (µE + λ2tµL)(Ra2t + x2t)+

cash rebuilt︷ ︸︸ ︷
δLRs2t+1

1− (µE + λ2tµL)︸ ︷︷ ︸
shareholders remained on date 2t+ 1

(3.1)

= NAV2t −
(1− δL)Rs2t+1

1− µE − λ2tµL
. (3.2)

25For brevity, in what follows when I state results about strategic complementarity and substitutability I omit the mathe-
matical definitions because they are standard.
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The predictable decline in NAV as shown in (3.2) implies that the fund manager rebuilds its cash

buffer at the expense of the late shareholders who initially plan to wait until date 2t + 1, giving rise to

run incentives. In particular, for any given s2t+1 > 0 and λ2t, the utility gain ∆uL(λ2t) of running over

waiting is θNAV2t−NAV2t+1, which is strictly increasing in λ2t by (3.2).26 This illustrates the underlying

strategic complementarity among late shareholders.

Lemma 3 suggests that both cash rebuilding and flexible NAV adjustment play crucial roles in generating

the run incentives for late shareholders, which is different from typical bank run models. If s2t+1 = 0, the

stage game features no strategic interaction at all in the high region. If NAV2t+1 was fixed, which is the

case for MMFs, cash rebuilding would not generate a wedge of value between early and late shareholders.

Also notice that although NAV2t is fixed in this case, it is endogenous and flexible by nature.27

I show that the run incentives can indeed lead to shareholder runs in equilibrium:

Proposition 1. When η2t ∈ Gh, late shareholders’ run behavior is given by the following three cases:

i) none of the late shareholders runs, that is, λ2t = 0, if

s2t+1 < sh ≡ (1− θ)(1− µE − µL)(Ra2t + x2t)

(1− δL)R
,

ii) all the late shareholders run, that is, λ2t = 1, if

s2t+1 > sh ≡ (1− θ)(1− µE)(Ra2t + x2t)

(1− δL)R
,

iii) λ2t ∈ {0, λ̃2t, 1}, if

sh ⩽ s2t+1 ⩽ sh ,

where λ̃2t is the solution to

s2t+1 =
(1− θ)(1− µE − λ̃2tµL)(Ra2t + x2t)

(1− δL)R
.

Moreover, there are 0 ⩽ sh ⩽ sh.

Proposition 1 suggests that the fund’s cash rebuilding indeed leads to shareholder runs in equilibrium,

and more rapid cash rebuilding can trigger more shareholders to run. The intuitions for the three cases

26More precisely, the utility gain is increasing in λ2t, suggesting that a waiting shareholder is hurt more if more of others
are running because she must bear a higher active sale cost per share on date 2t+ 1. It is also increasing in 1− δL and s2t+1,
suggesting that a waiting shareholder is hurt more if the price impact is larger or if the fund sells more.

27This is in contrast to typical bank run models in which a fixed-value claim is either exogenously assumed or derived as
the optimal contract in an outer risk-sharing problem.
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are as follows. In Case i), when the fund sells only a few illiquid assets, NAV2t+1 is still high enough. The

utility gain of running over waiting would be negative even if all the late shareholders decided to run, so

it follows that no one runs. In Case ii), when the fund manager actively sells so many illiquid assets to a

point where NAV2t+1 is so low and the utility gain of running would be positive even if others did not run,

all the late shareholders will run. Both Case i) and Case ii) feature a unique equilibrium. In Case iii), the

utility gain of running is negative when no one runs but becomes positive when all the late shareholders

are going to run. Strategic complementarity implies that the utility gain of running is increasing when

more late shareholders decide to run, so multiple equilibria emerge.

The next question is: what kind of costs do shareholder runs impose on the fund given its objective

function (2.3)? I examine this question by examining the law of motions of the fund’s portfolio position.

Corollary 1. When η2t ∈ Gh, the law of motions of (a2t, x2t) is given by

a2t+2 = a2t − s2t+1 , and ,

x2t+2 = x2t − (µE + µL)(Ra2t + x2t)︸ ︷︷ ︸
cash retained if no cash rebuilding

+ δLRs2t+1︸ ︷︷ ︸
cash rebuilt

+
(1− λ2t)µL(1− δL)Rs2t+1

1− µE − λ2tµL︸ ︷︷ ︸
cash saved due to NAV adjustment

,
(3.3)

where λ2t is the run probability induced by (a2t, x2t) and s2t+1, as characterized in Proposition 1.

The law of motions of a2t is straightforward by Lemma 2 because q2t = q2t+1 = 0 regardless of λ2t.

This suggests that even though cash rebuilding can trigger shareholder runs, it will not induce any forced

sales in the current stage when η2t ∈ Gh.

However, shareholder runs can offset the fund’s cash rebuilding efforts and lead to higher risk of future

forced sales. This can be seen from the law of motions of x2t in (3.3). To make this clear, I organize the

terms in the right-hand side of (3.3) in a way to better reflect the cost of shareholder runs. The first term

denotes the amount of cash retained if the fund did not rebuild its cash buffer so that the fund paid the

initial NAV to all the early and late shareholders. The second term denotes the actual amount of cash the

fund can get by selling s2t+1 illiquid assets. Neither of these two terms depends on λ2t. The third term is

more interesting; it reflects the fact that the fund can give the late shareholders less cash when it rebuilds

its cash buffer on date 2t + 1. Specifically, when s2t+1 is positive, NAV2t+1 becomes lower as shown in

(3.2). Thus, more cash remains on the fund’s balance sheet than that indicated by the first term in (3.3).

But the third term is strictly decreasing in λ2t, suggesting that this benefit of cash saving to the fund

becomes smaller when more late shareholders are running. Consequently, when more shareholders run in

equilibrium, the fund loses more cash in the given stage, carries less cash to future stages under the same
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cash rebuilding policy s2t+1, and thus faces higher risk of future forced sales.

With the intuition outlined above, it is convenient to combine the last two terms in (3.3) and define

p̂L(λ2t) ≡
[
δL +

(1− λ2t)µL(1− δL)

1− µE − λ2tµL

]
R (3.4)

as the effective sale price on the odd dates 2t + 1. It is decreasing in λ2t, meaning that the effective sale

price on odd dates is lower when more shareholders are going to run.

3.3 Low Cash-to-Assets Ratio Region Gl

Now I turn to the low cash-to-assets ratio region Gl. In this region, the fund’s starting cash position is so

low that it cannot even meet the redemption needs of the early shareholders. Thus, it is forced to sell its

illiquid assets on both dates 2t and 2t+ 1. If late shareholders run, the fund must sell even more:

Lemma 4. When η2t ∈ Gl, there are

q2t(λ2t) =

cash gap︷ ︸︸ ︷
(µE + λ2tµL)(Ra2t + x2t)− x2t
[δE + (1− δE)(µE + λ2tµL)]R︸ ︷︷ ︸

effective sale price with NAV adjustment

, and , (3.5)

q2t+1(λ2t) =

cash gap︷ ︸︸ ︷
(1− λ2t)µL · R(a2t − q2t)

1− µE − λ2tµL[
δL +

(1− λ2t)µL(1− δL)

1− µE − λ2tµL

]
R︸ ︷︷ ︸

effective sale price with NAV adjustment

, (3.6)

where q2t is increasing in λ2t, q2t+1 is decreasing in λ2t, and q2t + q2t+1 is increasing in λ2t.

I first interpret the intuition behind the expressions. In determining the amounts of forced sales, one

must know 1) the amount of cash that the fund is forced to raise (i.e., the “cash gap”), and 2) the price

at which the fund can sell its assets. Specifically, at the beginning of each date, the cash gap is defined as

the difference between the fund’s initial cash position and the amount of cash needed to meet projected

redemptions at the beginning-of-day NAV, as shown in the numerators of (3.5) and (3.6). However, the

fund does not have to raise that much cash in equilibrium, because the NAV goes down as the fund sells

its assets, and redeeming shareholders are only entitled to the end-of-day NAV, which reflects those asset

sale costs. Hence, it is equivalent to considering a counterfactual in which the fund still sells assets to close

the initial cash gap but at a higher effective sale price as the denominators of (3.5) and (3.6) indicate.
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Similarly to (3.4), I also formally define the notion of effective sale price on the even dates 2t:

p̂E(λ2t) ≡ [δE + (1− δE)(µE + λ2tµL)]R . (3.7)

Lemma 4 shows that when more late shareholders decide to run, the fund must meet more redemptions

on date 2t while fewer redemptions on date 2t+ 1. Hence, it is forced to sell more assets on date 2t while

fewer assets on date 2t+ 1.

More importantly, Lemma 4 also illustrates that runs unambiguously lead to higher total amount of

forced sales in the given stage, as shown in the monotonicity of q2t + q2t+1 in λ2t. This is because the

effective sale price on date 2t is always lower than that on date 2t + 1,28 which means that more early

redemptions must be met by selling assets at a lower effective sale price while fewer late redemptions will

be met by selling assets at a higher effective sale price. Hence, the increase of q2t will dominate the decrease

of q2t+1 when more shareholders are going to run.

Lemma 4 implies that both NAV2t and NAV2t+1 will be lower when shareholder runs occur. There are

NAV2t(λ2t) = R

illiquid assets retained︷ ︸︸ ︷
(a2t − q2t(λ2t)) +

initial cash︷︸︸︷
x2t +

cash raised︷ ︸︸ ︷
δERq2t(λ2t)

= Ra2t + x2t︸ ︷︷ ︸
NAV2t−1

−(1− δE)Rq2t(λ2t) , (3.8)

and

NAV2t+1(λ2t) =
R

illiquid assets retained︷ ︸︸ ︷
(a2t − q2t(λ2t)− q2t+1(λ2t)− s2t+1)+

cash raised and rebuilt︷ ︸︸ ︷
δLR (q2t+1(λ2t) + s2t+1)

1− µE − λ2tµL︸ ︷︷ ︸
shareholders remained on date 2t+ 1

, (3.9)

where q2t(λ2t) and q2t+1(λ2t) are given in (3.5) and (3.6).

Like in the high region, a predictable decline in NAV2t+1 may emerge because of the fund’s forced sales

and active cash rebuilding on date 2t+1. However, differing from the high region, NAV2t(λ2t) is no longer

fixed but decreasing in λ2t, as shown in (3.8). This feature changes the nature of the stage game.

Lemma 5. When η2t ∈ Gl, late shareholders’ run decision λ2t exhibits strategic substitutability for any

λ2t satisfying θNAV2t(λ2t) ⩾ NAV2t+1(λ2t) and any feasible s2t+1.
29 However, when s2t+1 increases, the

28More precisely, by the monotonicity of the effective sale prices p̂L(λ2t) and p̂E(λ2t), there is

p̂E(λ2t) ⩽ p̂E(1) < p̂L(1) ⩽ p̂L(λ2t)

for any λ2t ∈ [0, 1]. In other words, the potential for runs may change the effective sale prices on the two adjacent dates in
the given stage, but the effective sale price on 2t is still lower than that on 2t+ 1 regardless of shareholder runs.

29In equilibrium λ2t will be an endogenous function of s2t+1. But in showing the strategic interaction in the stage game,
λ2t should be treated as an independent variable. This also applies to the analysis of the intermediate region.
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strategic substitutability becomes weaker and θNAV2t(λ2t) − NAV2t+1(λ2t) becomes larger, reinforcing a

stronger incentive to redeem earlier.

The intuition behind Lemma 5 is as follows. Different from typical bank run models, a late shareholder

who decides to run must bear the higher price impact and thus accept a lower NAV2t when more of other

late shareholders also decide to run, implying strategic substitutability among late shareholders. However,

when the fund actively sells a sufficiently large amount of assets to rebuild its cash buffer, the resulting

large predictable decline in NAV2t+1 may reinforce a sufficiently strong run incentive.

Proposition 2. When η2t ∈ Gl, late shareholders’ run behavior is given by the following three cases:

i) none of the late shareholders runs, that is, λ2t = 0, if

s2t+1 < sl ≡
Ra2t − θ(1− µE)(Ra2t + x2t)− (1− θ(1− δE)(1− µE))Rq2t(0)

(1− δL)R
− q2t+1(0) ,

ii) all the late shareholders run, that is, λ2t = 1, if

s2t+1 > sl ≡
Ra2t − θ(1− µE − µL)(Ra2t + x2t)− (1− θ(1− δE)(1− µE − µL))Rq2t(1)

(1− δL)R
,

iii) some of the late shareholders run, that is, λ2t = λ̃2t, if

sl ⩽ s2t+1 ⩽ sl ,

where λ̃2t is the solution to

s2t+1 =
Ra2t − θ(1− µE − λ̃2tµl)(Ra2t + x2t)− (1− θ(1− δE)(1− µE − λ̃2tµl))Rq2t(λ̃2t)

(1− δL)R
− q2t+1(λ̃2t) .

All the q2t(λ2t) and q2t+1(λ2t) are given in Lemma 4. Moreover, there are sl ⩾ 0 and sl > sl.

Like Proposition 1, Proposition 2 also suggests that the fund’s cash rebuilding leads to shareholder runs

in equilibrium, and more rapid cash rebuilding can trigger more shareholders to run, despite the initial

strategic substitutability. In Case i), when the fund does not rebuild its cash buffer or only sells a few

illiquid assets, NAV2t+1 can be still higher regardless of shareholders’ redemption decisions, so that late

shareholders will not run. In Case ii), when the fund actively sells many illiquid assets, NAV2t+1 is so low

that the utility gain of running over waiting is positive even if all the late shareholders have already run.

Notice that all the late shareholders within the stage do not run unless the fund rebuilds its cash buffer

(since sl ⩾ 0), suggesting that only cash rebuilding by the fund can push all the shareholders to run in this
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mutual fund context.30 In Case iii), the utility gain of running over waiting is positive when no shareholder

runs but becomes negative when all the late shareholders are going to run. In this case, there exists some

partial run equilibrium in which the utility gain of running over waiting is zero.

Corollary 2. When η2t ∈ Gl, the law of motions of (a2t, x2t) is given by

a2t+2 = a2t −
forced sales︷ ︸︸ ︷

(q2t(λ2t) + q2t+1(λ2t))−s2t+1 , and , (3.10)

x2t+2 = δLRs2t+1︸ ︷︷ ︸
cash rebuilt

+
(1− λ2t)µL(1− δL)Rs2t+1

1− µE − λ2tµL︸ ︷︷ ︸
cash saved due to NAV adjustment

= p̂L(λ2t)s2t+1 , (3.11)

where λ2t is the run probability induced by (a2t, x2t) and s2t+1, as characterized in Proposition 2.

Corollary 2 implies two different costs of shareholder runs. First, shareholder runs force the fund to

sell more illiquid assets in the current stage (recall Lemma 4 shows that q2t + q2t+1 is increasing in λ2t).

Second, like that in the high region, shareholder runs lead to a lower effective sale price on date 2t+1 when

the fund rebuilds its cash buffer. This means that runs partially offset the fund’s efforts of cash rebuilding

and thus lead to higher risk of future forced sales.

Compared to the analysis for the high region in Section 3.2, Proposition 2 and Corollary 2 suggest that

starting with a low cash position makes a fund financially more fragile. Being in the low cash-to-assets

ratio region makes the fund more prone to forced sales initially. Even worse, because the fund is running

out of cash, it is likely to rebuild its cash more rapidly (as shown in Section 4), leading to more severe runs

despite the initial strategic substitutability.

3.4 Intermediate Cash-to-Assets Ratio Region Gm

In the intermediate regionGm, we still have the universal results of shareholder runs as those in the high and

low regions. Also, there are two types of run costs as those in the low region: more current-stage forced

sales and higher risk of future sales. However, the underlying strategic interaction among shareholders

becomes more involved in the intermediate region. When only a few late shareholders decide to run, the

fund will not be forced to sell its illiquid assets on date 2t, and thus NAV2t will be endogenously fixed.

However, when many late shareholders decide to run, the fund will be forced to sell its assets on date 2t,

and thus both NAV2t and NAV2t+1 vary. In this sense, the stage game in the intermediate region can

be viewed as a hybrid of one game in the high region and another in the low region, which can switch

30This is not true for a comparable bank with fixed-value deposits, in which all shareholders can run in equilibrium even if
the bank does not do anything by itself.
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from strategic complementarity to substitutability as more shareholders decide to run. However, it is still

the fund’s cash rebuilding and the resulting predictable decline in NAV2t+1 that reinforce a strong run

incentive. Given the results in Sections 3.2 and 3.3, I defer the full investigation of the intermediate region

to Appendix A.1. The formal results are stated there as Lemma 10, Proposition 13, and Corollary 4.

4 Fund Liquidity Management in the Presence of Runs

In this section, I turn to the dynamic game and endogenize the fund’s optimal cash rebuilding policy. I

show that the potential for runs gives rise to a new tension: rebuilding the cash buffer more rapidly can

trigger runs, while rebuilding it less rapidly puts the fund at higher risk of future forced sales as well as

future runs. I then show that a time-inconsistency problem further aggravates this tension, leading to

severe sales in expectation despite optimal cash management by the fund.

4.1 Dynamic Equilibrium Definition and Preliminary Analysis

The dynamic equilibrium is Markov perfect: in any stage t (consisting of dates 2t and 2t+ 1), if the game

continues, both the fund manager and the late shareholders’ strategies are functions of the state variables

a2t and x2t, the fund’s starting portfolio position, and the strategy profile is subgame perfect.

Definition 2. Given µE, µL, δE, δL, and R, a Markov perfect equilibrium is defined as a combination

of the fund manager’s optimal cash rebuilding policy function s∗2t+1(a2t, x2t) and the late shareholders’ run

decision λ2t(a2t, x2t, s2t+1) such that

i) given any state (a2t, x2t) and any generic common belief of the cash rebuilding policy s2t+1(a2t, x2t),

the late investors’ run decision λ2t(a2t, x2t, s2t+1) ∈ [0, 1] constructs a symmetric run equilibrium as defined

in Definition 1, which also determines q2t and q2t+1 in any stage,

ii) the fund manager’s optimal cash rebuilding policy function s∗2t+1(a2t, x2t, λ2t) solves the following

Bellman equation:

V (a2t, x2t) = −(1− δE)Rq2t − (1− δL)Rq2t+1 + max
s∗2t+1

[−(1− δL)Rs2t+1 + (1− π)V (a2t+2, x2t+2)] , (4.1)

iii) the state variables (a2t, x2t) are governed by the endogenous laws of motions as described in Corol-

laries 1, 2 and 4, according to the respective cash-to-assets ratio regions.

Note that the stage game may also admit multiple equilibria in some circumstances, and thus an

equilibrium selection mechanism is needed. Since equilibrium selection is not crucial to my main point
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concerning the dynamic interdependence between shareholder runs and fund liquidity management, I

assume that late shareholders will coordinate to the worst equilibrium whenever multiple equilibria occur.31

I first characterize some important properties of the value function V (a2t, x2t).

Proposition 3. A value function V (a2t, x2t) exists under the Markov strategies proposed in Definition 2.

In particular, V (a2t, x2t) is homogeneous of degree one (HD1) in (a2t, x2t).

The fact that V (a2t, x2t) is HD1 in (a2t, x2t) is important. It implies that the dynamic game is also

scale-invariant, and thus the cash-to-assets ratio η2t becomes the single effective state variable.

I also analyze how different values of π, the probability at which the game ends, shape the fund’s

optimal cash rebuilding policy. Intuitively, when the shock is less persistent (i.e., π is large), the future

risk of forced sales is small, and thus cash buffers become less valuable. Therefore, when π is sufficiently

large, it makes little sense for the fund to rebuild its cash buffer ex-ante, as doing so only induces current

active sales of assets while generating little future benefit. Thus, the model admits a type of equilibria in

which the fund finds it optimal not to rebuild its cash buffer at all.

Lemma 6. When π is sufficiently large, the equilibrium features s∗2t+1(a2t, x2t) = 0 for any starting portfolio

position (a2t, x2t).

To better illustrate the key trade-off involved in the dynamic model, in the following analysis I will

consider an arbitrarily small (but still positive) π. Intuitively, this means that the redemption shocks are

sufficiently persistent, consistent with a crisis management scenario. This will introduce significant future

risk of sales and thus give rise to a significant trade-off between current runs and future sales.32

With the help of these preliminary analyses, I solve for the equilibrium for different parameter values

of propensity to run, θ, using a guess-and-verify approach as follows.

4.2 The No-Run and Extreme-Run Scenarios: θ = 0 and θ = 1

First, I consider two extreme scenarios of θ, which are sufficient to illustrate the key trade-off underlying

the fund’s optimal cash management. One is the scenario of θ = 0, in which there are no runs. The other

is the scenario of θ = 1, in which late shareholders are indifferent between early and late consumptions so

that they have the strongest propensity to run.

31This equilibrium selection mechanism can be motivated by that the fund manager may be ambiguity averse to the potential
for shareholder runs. Alternative equilibrium selection mechanisms such as selecting the best equilibrium or the static global
game approach (Goldstein and Pauzner, 2005) will not qualitatively change my results. Note that some papers in the bank
run literature (for example, Allen and Gale, 1998, Cooper and Ross, 1998) assume shareholders to coordinate to the best
equilibrium but only to justify the existence of banks, which is irrelevant in our mutual fund context.

32It should be noted that those equilibria characterized by Lemma 6 are still intuitive and consistent with the model settings.
They are just less relevant to the main point of this paper: the dynamic interdependence of shareholder runs and fund liquidity
management in a crisis management scenario.
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I start by defining some new notations to streamline the presentation. Since the dynamic game is

scale-invariant, it is convenient to define

σ2t+1 ≡
s2t+1

a2t
,

the fraction of illiquid assets that the fund actively sell on odd dates 2t+ 1 (relative to the beginning-of-

stage asset position a2t), to denote the cash rebuilding policy. Moreover, Corollaries 1, 2, and 4 suggest

that η2t+2 is uniquely determined by (a2t, x2t) and σ2t+1.
33 Hence, it is also convenient to use η2t+2 to

denote the fund’s cash rebuilding policy when helpful.

I further divide the high region Gh into three different sub-regions: the high-low region Ghl, the high-

intermediate region Ghm, and the high-high region Ghh. The three sub-regions of the high region Gh

are defined from a dynamic perspective, and they will be useful in describing the optimal dynamic cash

rebuilding policy. When the fund starts from Gh and does not rebuild its cash buffer, by definition, after

meeting redemptions in the given stage the fund still has a non-negative cash position in the next stage.

If the fund ends up into the low region Gl in the next stage, I say that the fund starts from the high-low

region Ghl. If instead the fund ends up in the intermediate region Gm in the next stage, I say that the fund

starts from the high-intermediate region Ghm. The high-high region Ghh is defined in the same manner.

Region Cash-to-Assets Ratio

Gl η2t <
µER

1− µE

Gm
µER

1− µE
⩽ η2t <

(µE + µL)R

1− µE − µL

Ghl η2t ⩾
(µE + µL)R

1− µE − µL
and η2t+2 <

µER

1− µE
if σ2t+1 = 0

Ghm η2t ⩾
(µE + µL)R

1− µE − µL
and

µER

1− µE
⩽ η2t+2 <

(µE + µL)R

1− µE − µL
if σ2t+1 = 0

Ghh η2t ⩾
(µE + µL)R

1− µE − µL
and η2t+2 ⩾

(µE + µL)R

1− µE − µL
if σ2t+1 = 0

First, I analyze the behavior of shareholder runs in these two scenarios of θ = 0 and θ = 1, given any

generic and feasible cash rebuilding policy of the fund.

Lemma 7. When θ = 0, none of the late shareholders run in stage t, that is, λ2t(a2t, x2t) = 0 for any

(a2t, x2t) and any cash rebuilding policy σ2t+1.

Lemma 7 is straightforward. If a shareholder gets nothing when running, they will never run.

33Keep in mind that the equilibrium selection mechanism in the stage game is used when needed.
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Lemma 8. When θ = 1, all the late shareholders run in stage t, that is, λ2t(a2t, x2t) = 1 for any (a2t, x2t)

and any positive and feasible cash rebuilding policy σ2t+1 > 0.

Lemma 8 shows that when the shareholders’ propensity to run is the highest (i.e., θ = 1), all the late

shareholders decide to run if the fund actively sells any illiquid assets to rebuild its cash buffer. This is

because when θ = 1 the late shareholders simply compare between NAV2t and NAV2t+1 to decide whether

to run. If the fund rebuilds its cash buffer, NAV2t+1 will be strictly lower than NAV2t regardless of either

the fund’s initial cash position or other shareholders’ run behavior.

Now I turn to the fund’s equilibrium cash rebuilding policy. With the help of Lemma 7, the following

proposition first characterizes the optimal cash rebuilding policy when θ = 0.

Proposition 4. When θ = 0, the equilibrium cash rebuilding policy of the fund is characterized by:34

i) if η2t ∈ Gl ∪Gm ∪Ghl, the fund chooses σ∗
2t+1 > 0 such that

η∗2t+2 =
µER

1− µE
, and ,

ii) if η2t ∈ Ghm ∪Ghh, the fund does not rebuild its cash buffer, that is, σ∗
2t+1 = 0.
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Figure 3: Equilibrium Cash Rebuilding Policy When θ = 0

The fund’s optimal dynamic cash rebuilding policy when θ = 0, as characterized in Proposition 4, is

illustrated in Figure 3. In this figure, the horizontal axis denotes date, while the vertical axis denotes the

34Keep in mind that the dynamic equilibrium requires sequential optimality. In other words, the fund’s cash rebuilding
policy is optimal in a stage only when in the next stage the fund also follows its optimal cash rebuilding policy, which is again
conditional on the fund’s optimal cash rebuilding policy in the following stage, and so on.
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cash-to-assets ratio. The blue dotted line depicts the evolution of the cash-to-assets ratio if the fund does

not rebuild its cash buffer at all. The red line depicts the evolution of the cash-to-assets ratio when the

fund optimally rebuilds its cash buffer. Because of the scale-invariance and the resulting stationarity of

the dynamic game, the equilibrium cash rebuilding policy (conditional on the effective state variable, the

cash-to-assets ratio η2t) always follows the same pattern in different stages, if the game continues.

Since there are no runs in equilibrium (by Lemma 7), the main insight behind Proposition 4 is a trade-

off between current-stage active asset sales (under a policy of more cash rebuilding) and future-stage forced

sales (under a policy of no or less cash rebuilding). Intuitively, because the fund manager cares about total

expected sale losses, it is worthwhile for her to actively sell more assets at the current stage (on date 2t+1),

if the cash buffer rebuilt can help to avoid more severe sales in the next stage (on date 2t+ 2).

Due to flexible NAV adjustment, it will be convenient to use the effective sale prices as defined in (3.4)

and (3.7) to illustrate the trade-off. To see this, on the one hand, suppose there is a cash gap ∆x2t+2 > 0

on date 2t + 2. As suggested by Lemma 4, the fund manager will be forced to sell at the effective sale

price on date 2t+2 to meet the initial cash gap ∆x2t+2. On the other hand, the fund manager can choose

to actively sell more assets on date 2t+ 1, also at the corresponding effective sale price, to rebuild ∆x2t+2

unit of cash buffer in advance on date 2t + 1, carry it to date 2t + 2, and thus avoid forced sales on date

2t+ 2. This comparison helps pin down the fund’s optimal cash rebuilding policy.

Specifically, Proposition 4 says if its initial cash position falls below the high-intermediate region Ghm,

the fund optimally rebuilds its cash buffer until the next-stage cash-to-assets ratio η2t+2 reaches the cutoff

between the low region Gl and the intermediate region Gm. The reason is as follows. If the fund did not

rebuild its cash buffer, it would end up in the low region in the next stage (i.e., η2t+2 ∈ Gl). Since the

fund will be forced to sell its assets then (as the game continues with a high probability 1 − π), the fund

manager may want to rebuild its cash buffer on date 2t+1 to avoid sales on 2t+2. Specifically, because late

shareholders never run (by Lemma 7), the effective sale price to rebuild cash buffers actively on date 2t+1

is p̂L(0), while the effective sale price to raise cash passively on date 2t+2 is p̂E(0). As p̂L(0) > p̂E(0), the

fund manager always finds it optimal to rebuild its cash buffer on date 2t+ 1.

Given that the fund rebuilds its cash buffer, what is the optimal amount of active asset sales? In

equilibrium, the fund manager will rebuild the cash buffer up to a point where η2t+2 just hits the cut-off

between the low and intermediate region. This is because, on the one hand, a lower cash target still implies

forced sales on date 2t+2 at a lower effective sale price p̂E(0) and thus is not optimal. On the other hand,

any more cash rebuilding on date 2t + 1 means the fund will still have a strictly positive cash buffer on

date 2t + 3 after outflows on date 2t + 2. This is also not optimal because that cash buffer is excessive
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from the perspective of date 2t + 1. In other words, even if asset sales occur on date 2t + 3, the fund

manager will be able to sell at the higher effective sale price p̂L(0). Since the game only has a less than

one probability to continue, selling at the same effective price p̂L(0) on date 2t+ 1 to build that excessive

cash buffer is not profitable. The same intuition applies to the high-intermediate and high-high regions

(i.e., η2t ∈ Ghm ∪Ghh), in which it will not rebuild its cash buffer.

Following the same logic, I then characterize the optimal cash rebuilding policy when θ = 1. This

illustrates how the potential for runs interacts with the fund’s cash rebuilding policy.

Proposition 5. When θ = 1, the equilibrium cash rebuilding policy of the fund is characterized by:

i) if η2t ∈ Gl ∪Gm ∪Ghl ∪Ghm, the fund chooses σ∗
2t+1 > 0 such that

η∗2t+2 =
(µE + µL)R

1− µE − µL
, and ,

ii) if η2t ∈ Ghh, the fund does not rebuild its cash buffer, that is, σ∗
2t+1 = 0.
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Figure 4: Equilibrium Cash Rebuilding Policies When θ = 0 (Left) and θ = 1 (Right)

The right panel of Figure 4 illustrates the equilibrium cash rebuilding policy when θ = 1. To recap and

better show the difference, I illustrate the equilibrium cash rebuilding policy when θ = 0 on the left.

Proposition 5 says that the fund starts to rebuild its cash buffer at a higher starting cash position, and

it also rebuilds the cash buffer more rapidly compared to the scenario without runs. Specifically, once the

fund’s cash position falls below the high-high region Ghh, it rebuilds its cash buffer until the next-stage

cash-to-assets ratio η2t+2 reaches the cutoff between the intermediate region Gm and the high region Gh.
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Although Proposition 5 still features the trade-off between current- and future-stage sales, this trade-off

becomes subtler in the presence of runs. By Corollaries 1, 2 and 4, runs in equilibrium result in less effective

cash rebuilding (i.e., a lower effective sale price) on odd dates and more forced sales on even dates. Thus,

when current-stage run risks are relatively high, the fund wants to choose a less rapid cash rebuilding

policy. In contrast, when future-stage risk of sales is relatively high, notably when future-stage runs lead

to more severe future-stage sales, the fund prefers a more rapid cash rebuilding policy.

To illustrate the intuition, suppose the fund starts from the low or the intermediate region (i.e., η2t ∈

Gl ∪ Gm). By Lemma 8, all the late shareholders are going to run on date 2t if σ2t+1 > 0, which implies

a lower effective sale price (for cash rebuilding) p̂L(1) on date 2t+ 1. However, if the fund did not rebuild

its cash buffer, it would end up in the low region in the next stage, where the fund must sell at an effective

price p̂E(1). Because p̂L(1) > p̂E(1), the risk of future forced sales is relatively large. Thus, the fund still

finds it optimal to rebuild its cash buffer on date 2t + 1 to avoid more costly sales on date 2t + 2, which

also justifies shareholders’ run behavior on date 2t.

However, different from the scenario when θ = 0, when θ = 1 the fund does not stop rebuilding its

cash buffer even if the next-stage cash-to-assets ratio hits the cutoff between the low and intermediate

region. The reasoning is as follows. If the fund ended up in the intermediate region in the next stage (i.e.,

η2t+2 ∈ Gm), again by Lemma 8, all the late shareholders in the next stage will run on date 2t + 2 too.

Thus, the fund would be forced to sell its assets on date 2t + 2 at the effective sale price p̂E(1) even if

starting in the intermediate region then. Fundamentally, future-stage runs lead to higher risk of future

sales. As a result, the fund will keep rebuilding its cash buffer even when η2t+2 ∈ Gm.

In equilibrium, the fund manager will rebuild the cash buffer up to a point where η2t+2 hits the cutoff

between the intermediate and high region, which is higher than the counterpart when θ = 0. As analyzed

above, a lower cash target implies forced sales on date 2t+ 2 at a lower effective sale price p̂E(1) and thus

is not optimal. Also, a higher cash target becomes excessive despite runs in the next stage. Specifically, a

higher cash target implies that the fund would end up in the high region in the next stage (i.e., η2t+2 ∈ Gh),

where runs only lead to a lower effective sale price p̂L(1) on date 2t+3. Since the game only has a less than

one probability to continue, selling at the same effective price p̂L(1) on date 2t+ 1 to build that excessive

cash buffer is not profitable. This intuition applies to other regions as well.

Overall, compared to the scenario without runs (i.e., θ = 0), Proposition 5 and the intuition above

suggest that the trade-off in fund cash rebuilding becomes more complicated in the presence of runs. When

the starting cash position is lower, future risk of sales (notably future-stage forced sales induced by future

runs) is relatively high, and thus the fund optimally chooses a more rapid cash rebuilding policy. On the
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contrary, when the starting cash position is higher, current-stage costs of runs are relatively high, and thus

the fund optimally chooses a less rapid cash rebuilding policy.

4.3 The General Scenarios

I proceed to characterize the dynamic equilibria in the general scenarios when θ ∈ (0, 1). In these general

scenarios, the shareholders have a moderate propensity to run and thus become less sensitive to the fund’s

cash rebuilding than they would in the θ = 1 scenario. However, a sufficiently rapid cash rebuilding policy

can still push them to run. This in turn shapes the fund’s optimal cash rebuilding policy in equilibrium.

Despite the complexity of the general scenarios, all the equilibrium results can be still unified under

the same trade-off between current-stage runs and future-stage asset sales as discussed in Section 4.2. The

formal result is stated in Proposition 6.

Proposition 6. When θ ∈ (0, 1), there exist two endogenous thresholds 0 < θ < θ < 1, such that

i) if θ ∈ (0, θ], the equilibrium cash rebuilding policy is characterized by Proposition 4, that is, the cash

rebuilding policy follows that in the scenario of θ = 0,

ii) if θ ∈ (θ, θ), the equilibrium cash policies are characterized by

a) if η2t ∈ Gl ∪Gm ∪Ghl ∪Ghm, the fund chooses σ∗
2t+1 > 0 such that

η∗2t+2 = η(λ̌) ≡ (µE + λ̌µL)R

1− µE − λ̌µL

,

where λ̌ is given by  λ∗
2t > 0 iff η2t < η(λ̌) ,

λ∗
2t = 0 iff η2t ⩾ η(λ̌) ,

in which λ∗
2t denotes the run behavior under the optimal cash rebuilding policy σ∗

2t+1, and

Ghm ≡
{
η2t|η2t ⩾

(µE + µL)R

1− µE − µL
and

µER

1− µE
⩽ η2t+2 <

(µE + λ̌µL)R

1− µE − λ̌µL

for σ2t+1 = 0

}
,

b) if η2t ∈ Ghm ∪Ghh, then σ∗
2t+1 = 0, where Ghm = Ghm/Ghm,

iii) if θ ∈ [θ, 1), the equilibrium cash rebuilding policy is characterized by Proposition 5, that is, the

cash rebuilding policy follows that in the scenario of θ = 1.

As suggested by Proposition 6, when θ is close to 0, the equilibrium is the same as that when θ = 0,

while when θ approaches 1 the equilibrium is the same as that when θ = 1. As θ increases, shareholders

become more likely to run, and the fund also chooses a more rapid cash rebuilding policy in equilibrium
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Figure 5: Equilibrium Cash Rebuilding Policy When θ ∈ (θ, θ)

to better avoid future-stage sales induced by future-stage runs. Figure 5 illustrates the scenarios with a

moderate value of θ, in which the equilibrium differs from the two extreme scenarios when θ = 0 and θ = 1.

4.4 The Time-Inconsistency Problem

I illustrate the time-inconsistency problem associated with fund cash rebuilding by asking the following

question. From Propositions 4, 5, and 6, for any θ and in any equilibrium path, the fund never allows its

target of next-stage cash-to-assets ratio below the intermediate region Gm regardless of the starting cash

position. Why? In other words, can there be any circumstances in which the fund finds it optimal to adopt

a less rapid cash rebuilding policy such that the next stage game falls into the low region (i.e., η∗2t+2 ∈ Gl)?

This question is valid in views of the trade-off between current runs and future sales. Particularly, as

suggested by Corollaries 2 and 4, more shareholder runs result in more severe current-stage forced sales

when the fund starts from the low or intermediate region. Why does not the fund choose a less rapid cash

rebuilding policy to prevent current-stage runs and thus reduce those forced sale losses?

Proposition 7 suggests that, in the absence of a commitment device, a less rapid cash rebuilding policy

as mentioned above will never appear in any equilibrium path. But it may indeed be optimal if the fund

can credibly announce and commit to such a policy on date 2t. Figure 6 illustrates this problem.

Proposition 7. A cash rebuilding policy that satisfies

η∗2t+2 <
µER

1− µE
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cannot happen in any equilibrium path unless the fund can credibly commit to such a policy.
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Figure 6: The Time-Inconsistency Problem

The intuition behind Proposition 7 is a time-inconsistency problem, which aggravates the tension in

choosing between a rapid or a slow cash rebuilding policy. Starting from the low region or the intermediate

region, the fund indeed has a relatively large current-stage cost of shareholder runs because they lead to

severe current-stage forced sales. Thus, on date 2t, the fund may wish to commit itself to rebuilding its

cash buffer less rapidly on date 2t + 1 to reduce such run risks on date 2t. However, on date 2t + 1,

because all the date-2t costs of runs are sunk, the fund may instead be tempted to adopt a more rapid

cash rebuilding policy on date 2t + 1. Notably, what matters for shareholders’ run decisions on date 2t

are their beliefs about the fund’s cash rebuilding policy on date 2t + 1. In equilibrium, they can always

anticipate the fund manager’s date-2t+1 temptation to rebuild the cash buffer more rapidly, and thus will

always have strong incentives to run on date 2t. Mathematically, the intuition outlined above can be also

seen from the dynamic equilibrium definition (Definition 2) and notably from the Bellman equation (4.1)

in the non-commitment benchmark.

Proposition 7 suggests a fundamental difficulty in reducing fund shareholder runs in practice, in which a

commitment device can be hard to implement. Consequently, shareholders decide to run not only because

they expect other shareholders to run at the same time, but more importantly because they expect the

fund to rebuild its cash buffer too rapidly in the future.
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4.5 Expected Total Asset Sale Losses

Finally, I show in Proposition 8 that the potential for shareholder runs can lead to unambiguously higher

total sale losses ex-ante, regardless of the fund’s initial portfolio position. This occurs in a world where

both the fund manager and the shareholders are rational, and the fund’s cash rebuilding policy is optimal.

It suggests that the potential financial stability risks induced by mutual fund shareholder runs can be

significant and thus should not be overlooked.

Proposition 8. When θ increases, the ex-ante total sale losses become higher for any positive starting

portfolio position (a2t, x2t).

As suggested by Proposition 7, the lack of a commitment device aggravates run problems despite

optimal liquidity management by the fund. I show in Proposition 9 that introducing a commitment device

can indeed help reduce total sale losses in expectation.

Proposition 9. When the fund can pre-commit to a cash policy s2t+1 on date 2t, the ex-ante total sale

losses become lower for any positive (a2t, x2t) and any θ > 0.

Intuitively, introducing a commitment device helps reduce total sales in two ways. On the one hand,

as suggested by Proposition 7, since the fund can pre-commit to a less rapid cash rebuilding policy, it

can directly reduce current-stage forced sales by reducing shareholder runs. On the other hand, from a

dynamic perspective, the risk of future-stage sales also becomes lower due to less severe future runs, and

thus the fund is also more comfortable in choosing a less rapid cash rebuilding policy by selling assets less

aggressively in the current stage.

5 Policy Implications and Extensions

Many regulators and practitioners have proposed fund-level policies, aiming to mitigate potential financial

stability risks of open-end mutual funds. In the following, I extend the model to consider several fund-level

policies.35 I show that, perhaps surprisingly, some of them are less effective than commonly thought in

mitigating potential financial stability risks of mutual funds due to the dynamic interdependence between

shareholder runs and fund liquidity management.

5.1 Redemption Fees

The first policy proposal is to increase or eliminate the cap on redemption fees. Open-end mutual funds

can charge their shareholders redemption fees when they redeem their shares. Currently, the SEC requires

35Rather than making definitive policy prescriptions, I emphasize how the model adds new insights to policy debates.
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mutual fund redemption fees to be lower than 2%.36 Therefore, some observers argue that to increase or

eliminate the cap is likely to mitigate potential financial stability risks of mutual funds.

My model suggests that higher redemption fees may help reduce shareholder runs. Suppose 1 − κ of

the redemption proceeds are collected as redemption fees, where κ ∈ (0, 1). Thus, any shareholder who

redeems on date t only gets κNAVt.
37 Also, redemption fees are paid back directly to the fund, implying

that the fund can save (1− κ)NAVt cash per share redeemed. To better contrast to the baseline model, I

consider θ = 1, that is, when the shareholders’ propensity to run is the highest. The following proposition

shows that the introduction of redemption fees can lead to less shareholder runs in equilibrium.

Proposition 10. For any given starting portfolio position (a2t, x2t), any feasible cash rebuilding policy

s2t+1, and any proportional redemption fee 1− κ > 0, there is λκ
2t ⩽ λ2t, where λκ

2t is the equilibrium run

probability in the game with the redemption fee while λ2t is that in the game without redemption fees, all

other things being equal.

When the stage game starts from the high cash-to-assets region, redemption fees have a stronger effect.

In contrast to the baseline model where any cash rebuilding (i.e., any s2t+1 > 0) leads to shareholder runs

when θ = 1, with the redemption fee there can be completely no runs in equilibrium when s2t+1 is small.

Corollary 3. For any given starting portfolio position (a2t, x2t) satisfying η2t ∈ Gh and any proportional

redemption fee 1 − κ > 0, there exists a strictly positive s > 0 such that λκ
2t = 0 constructs the unique

stage-game equilibrium when s2t+1 ⩽ s.

Proposition 10 and Corollary 3 suggest that redemption fees can directly reduce shareholders’ run

incentives. Intuitively, with redemption fees, redeeming shareholders effectively get a value lower than

the prevailing NAV, implying a wealth transfer from redeeming shareholders to staying ones. Moreover,

in any stage, redemption fees allow the fund to save more cash proportionally, making it easier to meet

redemption needs without incurring sales. However, as suggested by Proposition 10, redemption fees do

not directly alter the dynamic interdependence between runs and fund liquidity management. They cannot

solve the time-inconsistency problem associated with the fund’s dynamic cash rebuilding policy either.38

36This is according to Rule 22c-2 of the Investment Company Act of 1940.
37According to Rule 22c-2, the U.S. SEC prohibits discriminative redemption fees solely conditional on shareholder identities

as those would effectively create classes of shareholder seniority. This implies that, in my model, the fund cannot intentionally
impose different redemption fees on early and late shareholders.

38Redemption fees may also be less effective in practice for the following reasons. First, in my extended model, redemption
fees are introduced ex-ante. However, if redemption fees are first introduced on an odd date 2t + 1 but are expected on the
previous date 2t, the late shareholders will have higher incentives to run to avoid the fees. This represents a real-world concern
that imposing higher redemption fees by itself can lead to one-time market turmoil. Other unmodeled but plausible reasons
include negative effects on future fund share sales and on the reputation of fund managers.

32



5.2 In-Kind Redemptions

In practice, open-end mutual funds may satisfy redemption requests by delivering a portion of the underly-

ing basket of assets invested, including cash, which is known as “in-kind redemptions.” Many practitioners

argue that the option to elect to in-kind redemptions can largely mitigate any financial stability risks of

mutual funds, at least during crisis times. Are in-kind redemptions really a relief?

My model suggests that in-kind redemptions can be very effective in preventing shareholder runs

within a fund, but perhaps surprisingly, they do not necessarily help reduce total sale losses or improve

total shareholder welfare. The following proposition offers a sufficient condition for such episodes.

Proposition 11. Electing to in-kind redemptions prevents shareholder runs, that is, λ(a2t, x2t) = 0 for

any (a2t, x2t). However, when θ, µL are sufficiently small and δL is sufficiently larger than δE, in-kind

redemptions lead to higher total sale loss ex-ante than a counterfactual in which the fund sticks to cash

redemptions, all other things being equal.

The intuition behind Proposition 11 relies on three progressive reasons. First, adopting in-kind re-

demptions completely eliminates any run incentives. This is because late shareholders always get the same

basket of assets regardless of the time they redeem, and they must sell the illiquid assets at a lower price pE

for consumptions if they ran, so they prefer not to run. Second, since the fund manager only cares about

total sale losses at the fund level, liquidity management becomes irrelevant. The fund will never rebuild

its cash buffer, and the initial cash-to-assets ratio η0 will never change. Third, early shareholders must sell

the illiquid assets that they get at the extremely low price pE for consumptions. These sale losses could

have been avoided if the fund manager actively managed its cash buffer. If these sale losses are significant,

shareholders will become worse-off than the counterfactual with cash redemptions.

Proposition 11 suggests that in-kind redemptions are not a free lunch, because shareholders who ask

their fund to elect to in-kind redemptions effectively give up any benefit they could get from active fund

liquidity management. This point highlights the dynamic interdependence between shareholder runs and

fund liquidity management. In addition, given that in-kind redemptions are obviously costly during normal

times since they discourage the sales of shares, the overall benefit of adopting in-kind redemptions can be

even more ambiguous. In reality, in-kind redemptions can also be hard to implement.39

39Rule 18f-1 of the Investment Company Act of 1940 implies that in-kind redemptions will not be effected unless specific
approval is first obtained from the SEC. This rule is intended to facilitate mutual fund share sales in jurisdictions where in-cash
redemptions are required.
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5.3 Redemption Restrictions

A similar emergency rule is redemption restrictions, which give a fund the right to suspend redemptions

in given periods as permitted by regulators.40 Can redemption restrictions prevent shareholder runs?

I model redemption restrictions by assuming that the fund is able to deny any individual shareholder’s

redemption request on any date with probability 1− ζ, ζ ∈ (0, 1). To better contrast to the baseline model

without redemption fees, I also consider θ = 1 when the shareholders’ propensity to run is the highest.

Proposition 12. For any given starting portfolio position (a2t, x2t) and any redemption restriction 1−ζ >

0, there is λζ
2t ⩽ λ2t, where λ

ζ
2t is the equilibrium run probability in the game with the redemption restriction

while λ2t is that in the game without redemption restrictions, all other things being equal.

Proposition 12 suggests that redemption restrictions can help reduce shareholder runs. Introducing

redemption restrictions closely resembles the introduction of redemptions fees as analyzed in Proposition

10 and Corollary 3. The intuition for Proposition 12 is clear. By the Law of Large Numbers, only ζ

of the redeeming shareholders can get cash out of the fund. Therefore, there will be effectively fewer

redemptions. But like the introduction of redemption fees, the introduction of redemption restrictions

cannot fully prevent shareholder runs or solve the time-inconsistency problem.

5.4 Credit Lines

In reality, mutual funds may turn to pre-established and usually ultra-short-term credit lines to raise cash.

My model suggests that using short-term credit lines may temporarily mitigate the negative effects of

current-stage shareholder runs, but can induce more severe sales and runs in the future. Specifically, in

stage t, suppose the fund uses pre-established credit lines (rather than selling assets) when it is in the low

or the intermediate cash-to-assets region. Thus, the fund does not have to sell any illiquid assets in meeting

redemptions on dates 2t and 2t+ 1. However, in the next stage (if the game continues) the fund will have

no cash to start (i.e., η2t+2 = 0). It thus will face more severe sales unless it can borrow more. What is

worse, the fund will be required to pay back its short-term debt first on date 2t+2, which may lead to fire

sales or default.41 Intuitively, when using credit lines the fund forgoes the option of cash rebuilding, which

is helpful when the redemption shocks are persistent (i.e., π is small). This idea resembles that in Section

5.2: it will be naive to shut down a fund’s active liquidity management when attempting to prevent runs.

40According to Rule 22e of the Investment Company Act, an open-end mutual fund is generally prohibited from suspending
the right or redemption or postponing the payment of redemption proceeds for more than seven days. However, the SEC has
the right to deem emergency periods during which a fund is able to suspend redemptions.

41Moreover, credit lines may expose a fund to debt runs as suggested by He and Xiong (2012). This is in particular relevant
when the redemption shocks are persistent so that the fund must repeatedly rollover its credit lines with multiple creditors.

34



5.5 Swing Pricing

Some observers argue that swing pricing, which allows current NAVs to reflect commissions to asset brokers

and dealers, bid-ask spreads, taxes, and other trading-related charges, can reduce the negative externalities

imposed by redeeming shareholders on non-trading ones. The new SEC rule passed in October 2016 has

allowed U.S. mutual funds to use swing pricing.42 Will it prevent shareholder runs?

In fact, swing pricing, in its currently proposed form, has already been incorporated into my baseline

model, This is because flow-induced price impacts is the only type of trading-related costs in the model,

and current NAVs have already taken them into account. Since they still do not reflect future asset sale

costs, they are not able to mitigate the risk of runs induced by active fund liquidity management.

Rather than swing pricing in its current form, my model suggests that forward-looking NAVs may help

reduce shareholder runs.43 Theoretically, this can be viewed as the optimal form of swing pricing. To

investigate optimal contract design for liquidity provision in a mutual fund context (like Green and Lin,

2003 and Peck and Shell, 2003 in a bank context) is interesting but beyond the scope of this paper.

6 Conclusion

In this paper, I build a model of an open-end mutual fund with a flexible NAV, and show that shareholder

runs can occur in equilibrium despite optimal liquidity management by the fund. With a flexible NAV,

fund cash rebuilding by selling illiquid assets implies a predictable decline in NAV and thus a first-mover

advantage, leading to runs. The presence of shareholder runs further complicates the fund’s efforts in

liquidity management, leading to higher total sale losses in expectation. Hence, appropriate design of

policies aiming for mitigating financial stability risks of mutual funds should take into account the dynamic

interdependence of shareholder runs and fund liquidity management.

Fundamentally, shareholder runs are driven by a key contractual property of illiquid mutual funds’

NAVs: they are flexible but not perfectly forward-looking. Specifically, the sale prices of illiquid assets

and thus fund NAVs at t do not take into account the predictable asset sales at t+ 1. It implies that cash

rebuilding can give rise to predictable declines in NAV and thus the potential for runs.

My model sheds new light on potential systemic risks posed by mutual funds. As mutual fund runs

42The rule is available at https://www.sec.gov/rules/final/2016/33-10234.pdf.
43This is equivalent to requiring shareholders to contract on future NAVs directly. However, shareholders cannot contract

on future NAVs because mutual funds promise to provide daily liquidity service to their shareholders. In other words, if
shareholders instead contracted on future NAVs and they had common and rational beliefs on future NAVs, they would
effectively go back to “separate accounts,” or equivalently direct holdings of the underlying assets by the shareholders, and
there will be no liquidity service provided by the funds. In this sense, there is no point to have a mutual fund in the first
place. As a result, forward-looking NAV rules may be hard to implement in reality, and runs can be viewed as a cost that
shareholders must bear to have mutual funds engage in liquidity transformation.
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lead to more forced asset sales, the underlying asset markets may become even more illiquid. As shown

in He and Milbradt (2014), this effect can cause more corporate defaults and impose considerate risks on

real economic activities. To be clear, I do not claim that mutual fund runs cause any systemic risks. The

systemic implications of mutual fund runs depend not only on the contagion from secondary-market sales

to primary-market investment losses, but also on how non-bank financial intermediaries interact with other

bank-like financial institutions. A thorough investigation covering all these issues is beyond the scope of

this paper, but the results here can naturally serve as a building block for future research on these issues.
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A Appendix

A.1 The Analysis of the Intermediate Cash-to-Assets Ratio Region Gm

I first characterize how shareholder runs affect the fund’s forced sales on dates 2t and 2t+ 1, respectively.

I define

λ̂2t ≡
x2t − µE(Ra2t + x2t)

µL(Ra2t + x2t)
.

By construction, within the intermediate region, there is always λ̂2t ∈ [0, 1) . The economic meaning of

λ̂2t will become clear shortly.

Lemma 9. When η2t ∈ Gm, there are:

i) if λ2t ∈ [0, λ̂2t], then

q2t(λ2t) = 0 ,

q2t+1(λ2t) =
(µE + µL)(Ra2t + x2t)− x2t

p̂L(λ2t)
, (A.1)
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where q2t+1 is increasing in λ2t, and,

ii) if λ2t ∈ (λ̂2t, 1], then

q2t(λ2t) =
(µE + λ2tµL)(Ra2t + x2t)− x2t

p̂E(λ2t)
, (A.2)

q2t+1(λ2t) =

(1− λ2t)µL · R(a2t − q2t)

1− µE − λ2tµL

p̂L(λ2t)
, (A.3)

where q2t is increasing in λ2t but q2t+1 is decreasing in λ2t.

Moreover, q2t + q2t+1 is increasing in λ2t for all λ2t ∈ [0, 1].

I first discuss the intuition behind the results when λ2t ⩽ λ̂2t. In this case, the fund has enough cash

to satisfy all the µE +λ2tµL redeeming shareholders on date 2t at the initial NAV. Thus, no illiquid assets

are forced to sell on date 2t, that is, q2t(λ2t) = 0. However, in the intermediate region the fund does not

have enough cash to satisfy all the late shareholders on the odd date. Specifically, the cash gap at the

beginning of date 2t+1 is indicated by the numerator of (A.1). Following the same intuition of Lemma 4,

the fund manager will close the gap by selling at the effective price p̂L(λ2t). As λ2t increases, the effective

sale price p̂L(λ2t) becomes lower, suggesting that the fund will be forced to sell more on date 2t+ 1.

The situation becomes different when λ2t > λ̂2t. Compared to Lemma 4, the two conditions (A.2) and

(A.3) are exactly the same as conditions (3.5) and (3.6) there. This is because when λ2t > λ̂2t the cash

position x2t becomes inadequate to satisfy the µE +λ2tµL redeeming shareholders on date 2t at the initial

NAV, so that the stage game effectively jumps into the low cash-to-assets ratio region. The monotonicity

of q2t, q2t+1, and (q2t + q2t+1) all follows the same intuition there.

It is worth noting that, regardless of whether λ2t ⩽ λ̂2t or λ2t > λ̂2t, more late shareholder runs always

lead to unambiguously higher forced sales within the entire stage (including both date 2t and 2t+ 1).

Similarly, I can characterize the NAVs. When λ2t ∈ [0, λ̂2t], by Lemma 9 there is

NAV2t(λ2t) = Ra2t + x2t , (A.4)

and

NAV2t+1(λ2t) =
R

illiquid assets retained︷ ︸︸ ︷
(a2t − q2t+1(λ2t)− s2t+1)+

cash retained︷ ︸︸ ︷
x2t − (µE + λ2tµL)(Ra2t + x2t)+

cash raised and rebuilt︷ ︸︸ ︷
δLR(q2t+1(λ2t) + s2t+1)

1− (µE + λ2tµL)︸ ︷︷ ︸
shareholders remained on date 2t + 1

= NAV2t −
(1− δL)R (q2t+1(λ2t) + s2t+1)

1− µE − λ2tµL
. (A.5)
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where q2t+1(λ2t) is given in (A.1). Clearly, the NAV on date 2t as in (A.4) is also constant and the same

as that in the high region. The NAV on date 2t+ 1 as in (A.5) also features the same expression as (3.2)

in the high region. These suggest that shareholders’ strategic interaction in this sub-region is the same as

that in the high region.

When λ2t ∈ (λ̂2t, 1], by Lemma 9 there are

NAV2t(λ2t) = Ra2t + x2t − (1− δE)Rq2t(λ2t) , (A.6)

and

NAV2t+1(λ2t) =
R (a2t − q2t(λ2t)− q2t+1(λ2t)− s2t+1) + δLR (q2t+1(λ2t) + s2t+1)

1− µE − λ2tµL
, (A.7)

where q2t(λ2t) and q2t+1(λ2t) are given in (A.2) and (A.3). Note that, the NAVs as in (A.6) and (A.7) are

exactly the same as (3.8) and (3.9) in the low region, suggesting that shareholders’ strategic interaction in

this sub-region is the same as that in the low region.

The following lemma shows that the stage game in the intermediate region features a switch from

strategic complementarity to substitutability when more shareholders are going to run.

Lemma 10. When η2t ∈ Gm, there are:

i) if λ2t ∈ [0, λ̂2t], late shareholders’ run decision λ2t exhibits strategic complementarity for any feasible

s2t+1 ∈ [0, a2t − q2t+1(λ2t)], and the strategic complementarity becomes stronger as s2t+1 increases, and,

ii) if λ2t ∈ (λ̂2t, 1], late shareholders’ run decision λ2t exhibits strategic substitutability for any λ2t

satisfying θNAV2t(λ2t) ⩾ NAV2t+1(λ2t) and any feasible s2t+1 ∈ [0, a2t − q2t(λ2t) − q2t+1(λ2t)], and the

strategic substitutability becomes weaker as s2t+1 increases.

Lemma 10 can be understood in view of Lemma 3 (for the high region) and Lemma 5 (for the low region).

In the first sub-region [0, λ̂2t], shareholders who run can get the endogenously fixed NAV on date 2t at

the expense of shareholders who wait. More running shareholders or a more rapid cash rebuilding policy

implies a larger magnitude of predictable decline in the NAV on date 2t+1, leading to a stronger strategic

complementarity. In the second sub-region, however, running shareholders must accept an endogenously

lower NAV themselves because the fund is forced to sell its illiquid assets on date 2t, when the sale price is

extremely low. The resulting higher sale losses suggest that more shareholder runs make other shareholders

less likely to run. But again, more rapid cash rebuilding still gives rise to a larger magnitude of predictable

decline in the NAV on date 2t+ 1 and thus reinforces the run incentive.

Because of the switch of strategic interaction, shareholders’ equilibrium run behavior exhibits a richer

pattern. Despite the complicated equilibrium construction in the intermediate region, it still indicates that
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fund cash rebuilding leads to runs and more rapid cash rebuilding triggers more severe runs in equilibrium.

Proposition 13. When η2t ∈ Gm, late shareholders’ run behavior is given by the following five cases:

i) none of the late shareholders runs, that is, λ2t = 0, if

s2t+1 < sm ≡ Ra2t − θ(1− µE − λ̂2tµL)(Ra2t + x2t)

(1− δL)R
− q2t+1(λ̂2t) ,

ii) if

s2t+1 > sm ≡ Ra2t − θ(1− µE)(Ra2t + x2t)

(1− δL)R
− q2t+1(0) , then ,

a) all the late shareholders run, that is, λ2t = 1, if

s2t+1 > sm ≡ Ra2t − θ(1− µE − µl)(Ra2t + x2t)− (1− θ(1− δE)(1− µE − µl))Rq2t(1)

(1− δL)R
,

b) some of the late shareholder runs, that is, λ2t =
˜̃
λ2t ∈ [λ̂2t, 1), if

s2t+1 ⩽ sm ,

where
˜̃
λ2t is the solution to

s2t+1 =
Ra2t − θ(1− µE − ˜̃

λ2tµl)(Ra2t + x2t)− (1− θ(1− δE)(1− µE − ˜̃
λ2tµl))Rq2t(

˜̃
λ2t)

(1− δL)R
− q2t+1(

˜̃
λ2t) ,

iii) if sm ⩽ s2t+1 ⩽ sm, then,

c) λ2t ∈ {0, λ̃2t, 1}, if

s2t+1 > sm ,

where λ̃2t is the solution to

s2t+1 =
(1− θ)(1− µE − λ̃2tµL)(Ra2t + x2t)

(1− δL)R
− q2t+1(λ̃2t) ,

d) λ2t ∈ {0, λ̃2t,
˜̃
λ2t}, if

s2t+1 ⩽ sm ,

where λ̃2t is given in Case c) and
˜̃
λ2t is given in Case b).

The expressions of q2t(λ2t) and q2t+1(λ2t) are given in Lemma 9. Moreover, sm ⩾ 0 and sm > sm.

The intuition behind Proposition 13 is clear in view of Propositions 1 and 2. By Lemma 10, the stage
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game in the intermediate region starts with strategic complementarity when only a small fraction of late

shareholders decides to run. Hence, it is the strategic complementarity in the first sub-region [0, λ̂2t] that

determines whether any late shareholder will run at all. As in Case i), when λ̂2t of the late shareholders

decide to run, if the utility gain of running over waiting is still not positive, none of the late shareholders

will ever run. In Case ii), the utility gain of running over waiting is already positive even if no one

runs, so that at least λ̂2t of the late shareholders will run due to the strategic complementarity in the

sub-region [0, λ̂2t]. However, as the stage game switches to the second sub-region (λ̂2t, 1], there can be

strategic substitutability. In sub-case a), the fund uses a rapid cash rebuilding policy so that all the late

shareholders run despite the strategic substitutability, while in sub-case b) the substitutability is strong

so that λ2t =
˜̃
λ2t ∈ [λ̂2t, 1) of the late shareholders are going to run. Finally, in Case iii), the strategic

complementarity in the first sub-region [0, λ̂2t] is moderate. When this happens, the worst equilibrium will

be determined by the magnitude of strategic substitutability in the sub-region (λ̂2t, 1], as shown in Case

c) and Case d).

As usual, I show how shareholder runs increase the risk of forced sales by exploring the laws of motions.

Corollary 4. When η2t ∈ Gm, the law of motions of (a2t, x2t) is given by

a2t+2 = a2t − (q2t(λ2t) + q2t+1(λ2t))− s2t+1 , and , (A.8)

x2t+2 = p̂L(λ2t)s2t+1 , (A.9)

where λ2t is the run probability induced by (a2t, x2t) and s2t+1, as characterized in Proposition 13.

A.2 Proofs

In this appendix, I provide proofs for the main results in the main text; more technical proofs for Propo-

sitions 3 and 6 as well as proofs for the results in Section 5 are provided in the online appendix.

Proof of Lemma 1. First, in the high cash-to-assets ratio region, the fund needs to sell no illiquid assets

on either date 2t or 2t+1. Since no sale losses are incurred in this region, both early and late shareholders

are able to get the same NAV as that at the beginning of date 2t, that is,

NAV2t = NAV2t+1 =
Ra2t + x2t

n2t
.

Moreover, the initial cash position should be large enough to meet the redemption needs of all shareholders
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on dates 2t and 2t+ 1 at such a constant NAV:

x2t ⩾ (µE + µL)n2t ·
Ra2t + x2t

n2t
,

yielding

η2t ⩾
(µE + µL)R

1− µE − µL
, (A.10)

the criterion for the high region.

Then, in the intermediate region, as no sale is incurred on date 2t, the initial cash position is high

enough to meet the redemption needs of early shareholders at the initial NAV but insufficient to meet late

shareholders’ redemption needs:

µEn2t ·
Ra2t + x2t

n2t
⩽ x2t < (µE + µL)n2t ·

Ra2t + x2t
n2t

,

which leads to

µER

1− µE
⩽ η2t <

(µE + µL)R

1− µE − µL
, (A.11)

the criterion for the intermediate region.

Finally, in the low region, the cash position is even inadequate to meet early shareholders’ redemption

needs at the initial NAV. This means

x2t < µEn2t ·
Ra2t + x2t

n2t
,

which yields

η2t <
µER

1− µE
, (A.12)

the criterion for the intermediate region.

It is straightforward to check that (A.10), (A.11), and (A.12) are also sufficient conditions.

Proof of Lemma 2. Suppose λ2tµL late shareholders run. This situation is equivalent to a counterfactual

in which there are initially µ′
E = µE + λ2tµL early shareholders and µ′

L = (1 − λ2t)µL late shareholders

but no late shareholder runs. Since µ′
E + µ′

L = µE + µL, by Lemma 1, q2t = q2t+1 = 0 is true in the

counterfactual situation and so is true in the original situation with λ2tµL late shareholders running.
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Proof of Lemma 3. By Lemma 2 and the definition of ∆uL(λ2t):

∆uL(λ2t) = θNAV2t −NAV2t+1 = (θ − 1)(Ra2t + x2t) +
(1− δL)Rs2t+1

1− µE − λ2tµL
.

Taking derivatives yields:

∂∆uL(λ2t)

∂λ2t
=

(1− δL)µLRs2t+1

(1− µE − λ2tµL)2
> 0 ,

which takes value 0 when s2t+1 = 0, and

∂2∆uL(λ2t)

∂λ2t∂s2t+1
=

(1− δL)µLR

(1− µE − λ2tµL)2
> 0 .

Proof of Proposition 1. By Lemma 3, the stage game exhibits strategic complementarity when

s2t+1 > 0. Also notice that any shareholder runs only if θNAV2t ⩾ NAV2t+1. Thus, in Case i), none

of the late shareholders runs if

θNAV2t < NAV2t+1(1) , (A.13)

in which NAV2t+1(λ2t) is a function of λ2t. Solving inequality (A.13) leads to

s2t+1 <
(1− θ)(1− µE − µL)(Ra2t + x2t)

(1− δL)R
≡ sh .

Alternatively, in Case ii), all the late shareholders run if

θNAV2t > NAV2t+1(0) , (A.14)

the solution of which is

s2t+1 >
(1− θ)(1− µE)(Ra2t + x2t)

(1− δL)R
≡ sh .

Finally, in Case iii), if neither (A.13) nor (A.14) holds, there exists a λ̃2t ∈ [0, 1] that solves

θNAV2t = NAV2t+1(λ̃2t) .

Note that, λ̃2t constructs an equilibrium because by definition ∆uL(λ̃2t) = 0 and thus no shareholder

would have an incentive to deviate from it. In addition, in this case, again by Lemma 3, there are

θNAV2t ⩾ NAV2t+1(1) and θNAV2t ⩽ NAV2t+1(0), which means λ2t = 1 and λ2t = 0 are also two
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equilibria when (A.13) and (A.14) are both violated.

Proof of Corollary 1. By Lemma 2, q2t(λ2t) = q2t+1(λ2t) = 0 for any arbitrary λ2t ∈ [0, 1] . Thus, the

evolution of the asset position directly follows:

a2t+2 = a2t − q2t − q2t+1 − s2t+1 = a2t − s2t+1 .

For the evolution of the cash position, the fund pays all the redeeming shareholders by cash at the

respective end-of-day NAVs on date 2t and 2t + 1, and rebuilds its cash buffer on date 2t + 1. Note that

there will be no cash raised by forced sales. Thus:

x2t+2 = x2t − (µE + λ2tµL)NAV2t − (1− λ2t)µLNAV2t+1 + pLs2t+1

= x2t − (µE + µL)(Ra2t + x2t) + δLRs2t+1 +
(1− λ2t)µL(1− δL)Rs2t+1

1− µE − λ2tµL
.

Proof of Lemma 4. Recall that, when forced sales occur, the fund sells up to a point at which it can

satisfy the redemptions at the end-of-day NAV, which will take into account the losses from forced sales.

On the one hand, on date 2t the fund starts with a cash position x2t. Hence, on date 2t, q2t solves

x2t + pEq2t = (µE + λ2tµL)[(a2t − q2t)R+ x2t + pEq2t] ,

yielding

q2t(λ2t) =
(µE + λ2tµL)(Ra2t + x2t)− x2t
[δE + (1− δE)(µE + λ2tµL)]R

. (A.15)

On the other hand, on date 2t+ 1, the fund has no cash at all at the beginning. Hence, q2t+1 solves

pLq2t+1 = (1− λ2t)µL
(a2t − q2t − q2t+1)R+ pLq2t+1

1− µE − λ2tµL
,

yielding

q2t+1 =
(1− λ2t)µL(a2t − q2t)

(1− µE − λ2tµL)δL + (1− λ2t)µL(1− δL)
. (A.16)
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Plugging (A.15) into (A.16) leads to

q2t+1(λ2t) =

(1− λ2t)µL · R(a2t − q2t)

1− µE − λ2tµL[
δL +

(1− λ2t)µL(1− δL)

1− µE − λ2tµL

]
R

. (A.17)

For the monotonicity of q2t(λ2t), taking derivative of (A.15) leads to

∂q2t(λ2t)

λ2t
=

µL(δERa2t + x2t)

[µE(1− δE) + (1− λ2tµL)δE + λ2tµL]2
> 0 ,

implying that q2t(λ2t) is increasing in λ2t. Similar procedures based on (A.15) and (A.17) show that

q2t+1(λ2t) is decreasing in λ2t while q2t(λ2t) + q2t+1(λ2t) is increasing in λ2t.

Proof of Lemma 5. By Lemma 4 and the definition of ∆uL(λ2t):

∆uL(λ2t) = θNAV2t −NAV2t+1

= θ[(Ra2t + x2t)− (1− δE)Rq2t]−
(Ra2t + x2t)−Rq2t − (1− δL)R(q2t+1 + s2t+1)

1− µE − λ2tµL
, (A.18)

in which q2t and q2t+1 are functions of λ2t by Lemma 4. It is straightforward that ∆uL(λ2t) is larger when

s2t+1 increases. To focus on the value of λ2t that satisfies θNAV2t ⩾ NAV2t+1, there is no loss of generality

to consider θ = 1, and the analysis for a general θ naturally follows by considering subsets of λ2t. Now

plug (A.15) and (A.16) into (A.18) and then take derivative with respect to λ2t. After rearrangement, this

yields:

∂∆uL(λ2t)

∂λ2t
= −

(1− δL)µL

(
x2tC1 −

R
(
s2t+1C2 − a2tδE(1− µE − λ2tµL)

2C1

)
(1− µE − λ2tµL)2

)
((1− λ2t)µL + δL(1− µE − µL))2(µE + λ2tµL + δE(1− µE − λ2tµL))2

, (A.19)

where

C1 = (1− δE)(1− λ2t)
2µ2

L + δL(1− µE − µL)(µE + µL) + δEδL(1− µE − µL)
2 > 0 ,

C2 = ((1− λ2t)µL + δL(1− µE − µL))
2 (µE + λ2tµL + δE(1− µE − λ2tµL))

2 > 0 .

Consider

C = x2tC1 −
R
(
s2t+1C2 − a2tδE(1− µE − λ2tµL)

2C1

)
(1− µE − λ2tµL)2

for any 0 ⩽ x2t < µEn2t(Ra2t + x2t) and any 0 ⩽ s2t+1 ⩽ a2t − q2t(λ2t)− q2t+1(λ2t). Since C1 > 0, there is

x2tC1 > 0 and thus

C >
R
(
a2t
(
δE(1− µE − λ2tµL)

2C1 − C2

))
(1− µE − λ2tµL)2

. (A.20)
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Notice that C1 and C2 are only functions of λ2t, µE , µL, δE , δL, and are independent of a2t and x2t.

By construction,

δE(1− µE − λ2tµL)
2C1 − C2 ⩾ 0

for any λ2t ∈ [0, 1].

As a result, since a2t > 0 and R > 0, inequality (A.20) implies that C > 0. Plugging back to (A.19)

finally yields

∂∆uL(λ2t)

∂λ2t
< 0 ,

implying strategic substitutability.

It is straightforward that ∆uL(λ2t) is larger when s2t+1 increases. Also, by definition, C is decreasing

in s2t+1 when 0 ⩽ s2t+1 ⩽ a2t − q2t(λ2t) − q2t+1(λ2t). By (A.19) and the derivation above, the strategic

substitutability becomes weaker when s2t+1 increases.

Proof of Proposition 2. Notice that any shareholder runs only if θNAV2t ⩾ NAV2t+1. Also by Lemma

5, the stage game exhibits strategic substitutability whenever an incentive to redeem earlier exists. Thus,

in Case i), none of the late shareholders runs if

θNAV2t(0) < NAV2t+1(0) , (A.21)

which implies that θNAV2t(λ2t) < NAV2t+1(λ2t) for any λ2t by using the expressions in Lemma 4. Thus,

solving inequality (A.21) leads to

s2t+1 <
Ra2t − θ(1− µE)(Ra2t + x2t)− (1− θ(1− δE)(1− µE))Rq2t(0)

(1− δL)R
− q2t+1(0) ≡ sl .

Alternatively, in Case ii), all the late shareholders run if

θNAV2t(1) > NAV2t+1(1) , (A.22)

which implies that θNAV2t(λ2t) > NAV2t+1(λ2t) for any λ2t despite the underlying strategic substitutabil-

ity suggested by Lemma 5. Solving inequality (A.22) leads to

s2t+1 >
Ra2t − θ(1− µE − µL)(Ra2t + x2t)− (1− θ(1− δE)(1− µE − µL))Rq2t(1)

(1− δL)R
≡ sl .

Using the expressions in Lemma 4, plugging q2t(0), q2t+1(0) and q2t(1) into the definition of sl and sl
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directly yields sl ⩾ 0 and sl > sl.

Finally, in Case iii), there exists some λ̃2t ∈ [0, 1] that solves

θNAV2t(λ̃2t) = NAV2t+1(λ̃2t) ,

where λ̃2t constructs an equilibrium because by definition ∆uL(λ̃2t) = 0 and thus no shareholder would

have an incentive to deviate from it. This leads to

s2t+1 =
Ra2t − θ(1− µE − λ̃2tµl)(Ra2t + x2t)− (1− θ(1− δE)(1− µE − λ̃2tµl))Rq2t(λ̃2t)

(1− δL)R
− q2t+1(λ̃2t) .

Proof of Corollary 2. By Lemma 4, q2t(λ2t) > 0 for any arbitrary λ2t ∈ [0, 1] and q2t+1(λ2t) > 0 for

any arbitrary λ2t ∈ [0, 1). Thus, the evolution of the asset position directly follows:

a2t+2 = a2t − q2t(λ2t)− q2t+1(λ2t)− s2t+1 .

For the evolution of the cash position, notice that all the proceeds from forced sales q2t(λ2t) and

q2t(λ2t+1) go to the redeeming shareholders. Also, by definition of the low cash-to-assets region, the fund

starts with no cash on date 2t+ 1. Thus:

x2t+2 = pL(q2t+1(λ2t) + s2t+1)− (1− λ2t)µLNAV2t+1

= δLRs2t+1 +
(1− λ2t)µL(1− δL)Rs2t+1

1− µE − λ2tµL
.

Proof of Lemma 6. If a2t = 0, it is trivial that s∗2t+1(a2t, x2t) = 0. So it is only worth considering a

strictly positive a2t.

On the one hand, consider a perturbation ε > 0 of cash rebuilding around s∗2t+1(a2t, x2t) = 0. On date

2t + 1 (in stage t), regardless of the starting portfolio position (a2t, x2t), the effective sale price on 2t + 1

is at most p̂L(0) > 0. Thus, the sale loss in stage t is at least

ε(1− δL)R

p̂L(0)
> 0 .

On other other hand, consider an initial cash gap ε on date 2t + 2 (in stage t + 1). Regardless of the
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starting portfolio position (a2t+2, x2t+2), the effective sale price on 2t + 2 is at least p̂E(0) > 0, and the

physical sale price in stage t+1 is at least δER. Thus, the expected sale loss in stage t+1 due to this cash

gap is at most

ε(1− δE)R

p̂E(0)
> 0 .

Therefore, for any π satisfying

π > 1− (1− δL)p̂E(0)

(1− δE)p̂L(0)
∈ (0, 1) ,

it is optimal to choose s∗2t+1(a2t, x2t) = 0.

Proof of Lemma 7. This directly follows late shareholders’ utility function.

Proof of Lemma 8. First consider the case of η2t ∈ Gh. By Proposition 1, θ = 1 implies that sh = 0.

Again by Proposition 1, there is λ2t = 1 for any s2t+1 > 0 regardless of (a2t, x2t).

Then consider the case of η2t ∈ Gl. Similarly, by Proposition 2, θ = 1 implies that sl = 0. Again by

Proposition 2, there is λ2t = 1 for any s2t+1 > 0 regardless of (a2t, x2t).

Finally, consider the case of η2t ∈ Gm. By Proposition 13, θ = 1 implies that sm = sm = 0. Again by

Proposition 13, there is λ2t = 1 for any s2t+1 > 0 regardless of (a2t, x2t).

Proof of Proposition 4. I consider two cases according to the starting cash-to-assets ratio on date 2t.

Case 1. η2t ∈ Gl ∪ Gm ∪ Ghl. First, consider a perturbation −ε < 0 of cash rebuilding around σ∗
2t+1

that satisfies η∗2t+2 = µER/(1 − µE). On date 2t + 1 (in stage t), since there are no runs (by Lemma 7),

the effective sale price on 2t+ 1 is p̂L(0). Thus, the sale loss saved in stage t is

ε(1− δL)R

p̂L(0)
> 0 .

Now consider the same cash gap ε on date 2t+2 (under the perturbed cash rebuilding policy (σ∗
2t+1,−ε).

This implies that η2t+2 ∈ Gl. Since there are no runs, the fund must sell its assets on date 2t+2 at effective

sale price p̂E(0) > 0. Hence, the expected increase of sale loss in stage t+ 1 due to this cash gap ε is

ε(1− δE)R

p̂E(0)
> 0 .

Since δE < δL and p̂E(0) < p̂L(0), there is

ε(1− δL)R

p̂L(0)
< (1− π)

ε(1− δE)R

p̂E(0)
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for a sufficiently small but positive π, implying that the perturbation −ε is not profitable.

Next, consider another perturbation ε > 0 of cash rebuilding around σ∗
2t+1 that satisfies η∗2t+2 =

µER/(1− µE). On date 2t+ 1 (in stage t), similarly, the sale loss increased in stage t is

ε(1− δL)R

p̂L(0)
> 0 .

Under the perturbed cash rebuilding policy (σ∗
2t+1, ε) the fund gets ε more cash in stage t + 1. This

implies that η2t+2 ∈ Gm. Since there are no runs, the fund does not have to sell its assets on date 2t+ 2.

Rather, the marginal cash saves the fund’s active asset sales on date 2t + 3 at the effective sale price

p̂L(0) > 0. Hence, the expected sale saved in stage t+ 1 due to this marginal cash ε is also

ε(1− δL)R

p̂L(0)
> 0 .

Since π ∈ (0, 1), this perturbation ε is also not profitable. This verifies the optimality of η∗2t+2 =

µER/(1− µE) when η2t ∈ Gl ∪Gm ∪Ghl.

Case 2. η2t ∈ Ghm ∪ Ghh. Consider a perturbation ε > 0 of cash rebuilding around σ∗
2t+1 = 0. On

date 2t+ 1 (in stage t), similarly, the sale loss increased in stage t is

ε(1− δL)R

p̂L(0)
> 0 .

Similarly, under the perturbed cash rebuilding policy (σ∗
2t+1, ε) the fund gets ε more cash in stage t+1.

The expected sale loss saved in stage t+ 1 due to this marginal cash ε is also

ε(1− δL)R

p̂L(0)
> 0 .

Since π ∈ (0, 1), this perturbation ε is again not profitable. This verifies the optimality of σ∗
2t+1 = 0

when η2t ∈ Ghm ∪Ghh. This finally concludes the proof.

Proof of Proposition 5. I consider two cases according to the starting cash-to-assets ratio on date 2t.

Case 1. η2t ∈ Gl ∪Gm ∪Ghl ∪Ghm. First, consider a perturbation −ε < 0 of cash rebuilding around

σ∗
2t+1 that satisfies η∗2t+2 = (µE + µL)R/(1 − µE − µL). On date 2t + 1 (in stage t), since λ2t = 1 (by

Lemma 8), the effective sale price on 2t+ 1 is p̂L(1). Thus, the sale loss saved in stage t is

ε(1− δL)R

p̂L(1)
> 0 .
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Now consider the same cash gap ε on date 2t+2 (under the perturbed cash rebuilding policy (σ∗
2t+1,−ε).

This implies that η2t+2 ∈ Gl ∪ Gm. Since λ2t+2 = 1, by Lemmas 4 and 9 the fund always must sell its

assets on date 2t+2 at the effective sale price p̂E(1) > 0, even if η2t+2 ∈ Gm. Hence, the expected increase

of sale loss in stage t+ 1 due to this cash gap ε is

ε(1− δE)R

p̂E(1)
> 0 .

Since δE < δL and p̂E(1) < p̂L(1), there is

ε(1− δL)R

p̂L(1)
< (1− π)

ε(1− δE)R

p̂E(1)

for a sufficiently small but positive π. Hence, the perturbation −ε is not profitable.

Next, consider another perturbation ε > 0 of cash rebuilding around σ∗
2t+1 that satisfies η∗2t+2 =

(µE + µL)R/(1− µE − µL). On date 2t+ 1 (in stage t), similarly, the sale loss increased in stage t is

ε(1− δL)R

p̂L(1)
> 0 .

Under the perturbed cash rebuilding policy (σ∗
2t+1, ε) the fund gets ε more cash in stage t + 1. This

implies that η2t+2 ∈ Gh. Hence, by Lemma 2, regardless of runs the fund does not have to sell its assets

on date 2t+2. Rather, the marginal cash saves the fund’s active asset sales on date 2t+3 at the effective

sale price p̂L(1) > 0. Hence, the expected sale saved in stage t+ 1 due to this marginal cash ε is also

ε(1− δL)R

p̂L(1)
> 0 .

Since π ∈ (0, 1), this perturbation ε is also not profitable. This verifies the optimality of η∗2t+2 =

(µE + µL)R/(1− µE − µL) when η2t ∈ Gl ∪Gm ∪Ghl ∪Ghm.

Case 2. η2t ∈ Ghh. Consider a perturbation ε > 0 of cash rebuilding around σ∗
2t+1 = 0. On date 2t+1

(in stage t), similarly, the sale loss increased in stage t is

ε(1− δL)R

p̂L(1)
> 0 .

Similarly, under the perturbed cash rebuilding policy (σ∗
2t+1, ε) the fund gets ε more cash in stage t+1.
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The expected sale loss saved in stage t+ 1 due to this marginal cash ε is also

ε(1− δL)R

p̂L(1)
> 0 .

Since π ∈ (0, 1), this perturbation ε is again not profitable. This verifies the optimality of σ∗
2t+1 = 0

when η2t ∈ Ghh. This finally concludes the proof.

Proof of Proposition 7. It directly follows Propositions 4, 5, and 6 that for any θ,

η∗2t+2 <
µER

1− µE

is not optimal when there is no commitment device. Here I provide a sufficient condition that it can be

optimal if a commitment device is introduced.

Consider θ as defined in Proposition 6. By definition, when θ = θ + ϵ, where ϵ > 0 is arbitrarily small,

and η2t+2 = µER/(1 − µE), there is λ2t > 1 for any η2t ∈ Gl. Consider a perturbation −ε < 0 of cash

rebuilding around η2t+2 = µER/(1−µE) when η2t = µER/(1−µE), where the perturbation is chosen such

that there is λ2t = 0 for any η2t ∈ Gl. On the one hand, since λ2t+2 = 0, the cash gap resulted from this

perturbation on date 2t+ 2 leads to the following expected increase of sale loss in stage t+ 1:

ε(1− δE)R

p̂E(0)
.

On the other hand, when a commitment device is introduced, the determination of η2t+2 on 2t directly

affects q2t and q2t+1 through λ2t. Thus, under the proposed perturbation −ε < 0, there are no runs on

date 2t, and thus the sale loss saved in stage t is

∆q2t(1− δE)R+

(
ε

p̂L(λ2t)
+ ∆q2t+1

)
(1− δL)R ,

where λ2t solves

ε

p̂L(λ2t)
=

Ra2t − θ(1− µE − λ2tµl)(Ra2t + x2t)− (1− θ(1− δE)(1− µE − λ2tµl))Rq2t(λ2t)

(1− δL)R
− q2t+1(λ2t) ,

and ∆q2t = q2t(λ2t)− q2t(0) and ∆q2t+1 = q2t+1(0)− q2t+1(λ2t).

Note that ∆q2t(1− δE)R+∆q2t+1(1− δL)R > 0. Thus, if

∆q2t(1− δE) + ∆q2t+1(1− δL) > (1− π)
ε(1− δE)

p̂E(0)
− ε(1− δL)

p̂L(λ2t)
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satisfies, it is optimal for the fund to choose a less rapid cash rebuilding policy η2t+2 < µER/(1−µE).

Proof of Proposition 8. This directly follows Propositions 4, 5, and 6. Under a Markov strategy

profile, because the equilibrium is stationary, it suffices to show that a higher θ leads to higher total sale

losses within stage t for any given positive (a2t, x2t). I then consider two cases.

Case 1. η2t ∈ Gl ∪ Gm. By Propositions 4, 5, and 6, the optimal cash rebuilding policy is always

η∗2t+2(θ) > 0 where η∗2t+2(θ) is increasing in θ. By definition, η2t+2 = 0 if s2t+1 = 0. Thus, the total sale

losses in stage t is given by

Lt(θ) = (1− δE)Rq2t + (1− δL)Rq2t+1 +
η∗2t+2

p̂L + η∗2t+2

(1− δL)R(a2t − q2t − q2t+1) ,

where q2t, q2t+1, and p̂ are both functions of λ0 and in turn functions of θ. Propositions 4, 5, and 6 also

imply that λ2t is increasing in θ for any given positive (a2t, x2t). Hence, it follows Lemmas 4 and 9 that

L(θ) is increasing in θ.

Case 2. η2t ∈ Gh. By Lemma 2, q2t = q2t+1 = 0 regardless of λ2t or θ. Thus, the total sale losses in

stage t is given by

Lt(θ) = (1− δL)Rs∗2t+1 .

Define η2t+2 as the target cash-to-assets ratio if s2t+1 = 0 and η2t ∈ Gh. By Propositions 4, 5, and 6,

the difference η∗2t+2(θ)−η2t+2 is increasing in θ. Moreover, p̂L is decreasing in λ2t and thus decreasing in θ.

This implies that s∗2t+1 is increasing in θ and so is L(θ) in this case. This finally concludes the proof.

Proof of Proposition 9. Recall that, the Bellman equation for the non-commitment case is:

V (a2t, x2t) = −(1− δE)Rq2t − (1− δL)Rq2t+1 + max
s∗2t+1

[−(1− δL)Rs2t+1 + (1− π)V (a2t+2, x2t+2)] . (A.23)

When a commitment device is introduced, the Bellman equation instead becomes:

V (a2t, x2t) = max
s∗2t+1

[−(1− δE)Rq2t − (1− δL)R(q2t+1 + s2t+1) + (1− π)V (a2t+2, x2t+2)] . (A.24)

Also, the fund manager’s objective function can be re-written as

max
{s∗2τ+1}∞τ=t

Et

T−1∑
τ=t

[−(1− δE)Rq2t − (1− δL)R(q2t+1 + s2t+1)] ,

where the expectation is taken over the random variable T ,44 which is govern by π. By the Principle of

Optimality, the solution to (A.24) maximizes the fund manager’s objective function, while the solution to

44To be precise, the random variable T here denotes the stage (rather than the date) before which the game ends.
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(A.23) is feasible for the sequential problem associated with (A.24).
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B.1 A Micro-foundation for the Pattern of Asset Sale Prices

In this appendix, I show that the pattern of sale prices in the baseline model can emerge endogenously by

modeling slow-moving liquidity providers in the spirit of Grossman and Miller (1988) and Duffie (2010). It

shows that the reduced-form assumption can be rationalized as the outcome of a full-fledged equilibrium

model with both liquidity demanders and providers. To make the idea more transparent, I set the micro-

foundation in continuous time.45 I follow the building blocks in Duffie, Garleanu and Pedersen (2005, 2007),

Weill (2007) and Lagos, Rocheteau and Weill (2011) to model the gradual entry of liquidity providers and

focus on the equilibrium price implications. I also stress that this continuous-time model is designed for

proving a theoretical rationale for rather than precisely backing up the sale price pattern as specified in

Assumption 1.

Time is continuous and infinite. A probability space (Ω,F , P ) is fixed with an information filtration

{Ft, t ⩾ 0} satisfying the usual measurability conditions. There is a common discount rate r > 0. There is

a continuum of 1 of risk-neutral, infinitely lived, and competitive investors. There is a centralized market

with many different assets. The total supply of all assets is S ∈ [0, 1). Investors can hold at most one unit

of assets and cannot short sell the assets. There is also a riskfree saving account with return r, which can be

interpreted as cash equivalents. Under usual non-arbitrage conditions, this implies that the fundamental

value of the assets is 1/r.

There are two types of investors: liquidity providers and liquidity demanders. Liquidity providers

enjoy a high utility flow per time by holding one unit of assets, which is normalized to 1, while liquidity

45This baseline model is set in discrete time to highlight the discrete nature of daily redemptions and the end-of-day NAV.
But in the micro-foundation, the discrete nature is no longer important. As a result, setting a continuous-time model incurs
no loss of generality but makes the derivation mathematically more convenient.
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demanders enjoy a low utility flow δ ∈ (0, 1).

At the beginning, the economy is hit by an unanticipated liquidity shock that makes all investors

liquidity demanders. However, as time goes by, they will randomly and pairwise independently switch

to liquidity providers.46 Specifically, the times at which investors switch to liquidity providers are i.i.d.

exponentially distributed with a parameter α. Denote the endogenous population of liquidity providers by

ρ(t). By the exact law of larger numbers, there is

ρ(t) = 1− exp(−αt) . (B.1)

Intuitively, this implies that there is no liquidity provider available right at the shock time (i.e., t = 0),

while there will be more and more liquidity providers stepping into the market after the shock.

In this simple framework, the following proposition shows the pattern of asset sale price over time:

Proposition 14. The asset sale price at time t is characterized by

p(t) =
δ + (1− δ) exp(−r(tS − t))

r
,

where tS satisfies ρ(tS) = S and ρ(·) is given by (B.1).

Intuitively, the sale price drops discontinuously at t = 0 from the fundamental value, but rebounds

gradually over time (as more liquidity providers become available) until it gets back to the fundamental

value at time tS . When the next shock comes, this process repeats itself, giving rise to the price pattern

in the baseline model.

It is instructive to provide the proof here to help build intuition. First of all, I show that there is a time

at which the selling positions can be completely absorbed by liquidity providers so that the price goes back

to the fundamental. Specifically, condition (B.1) shows that more liquidity providers step into the market

as time goes by after the shock. Denote the endogenous time by which liquidity providers can absorb all

the asset supply by tS , which implies that ρ(tS) = S. Since ρ(tS) is monotone, this uniquely determines

tS . This corresponds to the baseline model that if the game ends (i.e., there are no future shocks), the

asset sale price will ultimately reflect the fundamental value.

Then I show that, between the shock time 0 and the full recovery time tS (before the next possible

shock), the asset sale price first drops and then rebounds gradually, as that in the baseline model. Note

that, at any time t between 0 and tS , there are no enough liquidity providers in the market, so that

46This dynamic process is in the spirit of Grossman and Miller (1988), in which liquidity providers only enter the market
one period after the initial liquidity shock.
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the marginal investor is a liquidity demander who has a low valuation of the assets. Since this liquidity

demander is infinitely lived, the Hamilton-Jacobi-Bellman equation leads to:

rp(t)dt = δdt+ p(t) (B.2)

This condition has an intuitive interpretation. At any time t between 0 and tS , the left hand side of

(B.2) denotes the return of selling the unit of assets at t and investing the proceeds in cash equivalents

in the time interval [t, t+ dt), while the right hand side denotes the valuation flow by holding one unit of

assets in the time interval [t, t+ dt) plus the proceeds from selling it after that. In any equilibrium path,

the liquidity demander should be indifferent between these two options of selling earlier or later. Therefore,

solving the differential equation implied by (B.2) with the boundary conditions yields the equilibrium sale

price.

Fundamentally, this micro-foundation follows the spirit of Grossman and Miller (1988) and Duffie

(2010), but differs in an important way. Specifically, liquidity providers in their models share risks with

liquidity demanders, while in both my baseline model and the micro-foundation, all the investors are risk

neutral.47 However, similar sale price pattern emerges. This is because liquidity providers in my model

have higher valuation of the underlying assets, which resemble the notion of natural buyers in Shleifer and

Vishny (1992, 1997) and thus is closer to the interpretation in the baseline model. Like that in Grossman

and Miller (1988) and Duffie (2010), liquidity providers step into the market only gradually after the

shock, implying that only a few liquidity providers are present in the market right after the shock. Hence,

investors who want to sell the assets right after the shock must accept an extremely low sale price. As

time goes by (but before the next possible shock comes), more liquidity providers with high valuation of

the underlying assets step into the market, implying that it becomes increasingly easier for the liquidity

demanders to find a better sale price.

B.2 Asset Sale Price Correlations

In the baseline model, flow-induced sales will not affect the market prices of the non-traded assets. This

is realistic given that mutual funds invest in many different illiquid assets, and flow-induced sales only

have local and temporary price impacts (Coval and Stafford, 2007). But asset prices can be potentially

correlated with each other, and the fund manager may use alternative accounting rules such as matrix

pricing to price these non-traded assets. This appendix proposes an approach to capture this alternative

47This assumption of risk neutrality also appears in other search-based models (see Duffie, Garleanu and Pedersen, 2005,
Weill, 2007, Lagos, Rocheteau and Weill, 2011, among many others).
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setting and suggests that it will not change the main insights of the baseline model.

Specifically, I assume that asset prices are perfectly correlated. This can be effectively viewed as a

setting with only one single illiquid asset. In this alternative setting, if the fund sells any assets on date t

at the sale price pt, the end-of-day flexible NAV will be:

NAVt =
xt + (at − at+1)pt + at+1pt

nt
. (B.3)

The difference between (B.3) and the baseline model’s NAV (2.1) is that the market price of the non-

traded assets will also be updated to pt, the temporary sale price. In both (2.1) and (B.3), the NAV is

flexible in the sense that it takes into account all the same-day price impact and asset sale losses, while it

is not perfectly forward-looking in the sense that it will not reflect future asset sale costs. As a result, this

alternative setting would not change my results qualitatively because future fund cash rebuilding would

still give rise to a predictable decline in NAV and thus the run incentives.

To model this alternative setting rigorously would require additional parametric assumptions regarding

how the sale price pt depends on the amount of sales at − at+1 on date t; otherwise the NAV would be

irrelevant to the amount of asset sales. It would also require additional assumptions regarding how the

prices of non-traded assets rebound if there are no subsequent asset sales. One natural and consistent

approach is to introduce a downward-sloping demand curve within each trading day, with the slope being

larger on even dates than that on odd dates to capture the idea of slow-moving capital provisions. In

addition, I also make the realistic assumption that the price impacts induced by asset sales are temporary;

the asset price always rebounds to the fundamental value at the beginning of the next trading day. Figure

7 shows a sample path of the selling prices under these new assumptions. However, these additional

assumptions will make the model less tractable; it will no longer admit closed-form solutions as those in

Sections 3 and 4. Imposing these additional assumptions also makes the model mechanism less general.

For these reasons, I choose to follow the simpler NAV rule (2.1) in the baseline model as a benchmark to

make the mechanism more transparent.

B.3 Flow-to-Performance Relationship and Endogenous Outflows

The baseline model assumes random redemption shocks, but the realized population of redeeming share-

holders in each stage is taken as exogenous. In reality, future fund flows are likely to be positively correlated

with past returns, known as the flow-to-performance relationship. Earlier research finds that future flows

mostly respond to past good performance (Ippolito, 1992, Sirri and Tufano, 1998), but recent evidence
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Figure 7: Sample Path of the Selling Prices

suggests that they also respond to bad performance in particular when the underlying assets are illiquid

(for example, Spiegel and Zhang, 2013, Goldstein, Jiang and Ng, 2015). This appendix considers the

flow-to-performance relationship and its interaction with fund shareholder runs.

To incorporate the flow-to-performance relationship, I define the fund return in stage t as

r2t+1 =
NAV2t+1

NAV2t
,

which is positive but no greater than one in my baseline model.48 I then assume that in any stage t the

populations of early and late shareholders are γ2tλEn2t and γ2tλLn2t for the even date 2t and the odd date

2t + 1, respectively, where γ2t(r2t−1) ⩾ 1 for t > 1 is a decreasing function of r2t−1 satisfying γ2t(1) = 1,

and γ0 = 1. This implies that, if current fund return is lower, there will be more shareholders redeeming

in the next stage if the game continues, capturing the flow-to-performance relationship.

This extended model is no longer stationary and does not admit closed-form solutions, but it suggests

that the flow-to-performance relationship will complicate the tension in choosing between a rapid or slow

cash rebuilding policy by the fund manager. This can be seen from Proposition 5. Suppose the fund starts

from the joint region Gl ∪ Gm ∪ Ghl ∪ Ghm where it is optimal to sell some illiquid assets to rebuild the

cash buffer (i.e., σ∗
2t+1 > 0). When the flow-to-performance relationship is introduced, σ∗

2t+1 suggested

by Proposition 5 is no longer optimal. To see this, notice that σ∗
2t+1 > 0 implies r2t+1 < 1 and then

γ2t+2 > 1. As a result, the fund either has to increase σ2t+1 to prevent more severe future fire sales due to

a larger population of redeeming shareholders in the next stage, or to decrease σ2t+1 to sustain a higher

current fund return but suffer higher risk of future forced sales. Either way, the fund incurs higher risk of

shareholder runs and higher total expected sale losses as well.

48It can be larger than one in the model with redemption fees or redemption restrictions.
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This extended model suggests a new amplification mechanism to explain fund performance persistence

in bad times. The flow-to-performance relationship first implies that it is harder for the fund to manage its

cash buffer. Due to the interdependence of shareholder runs and fund liquidity management, this further

suggests more severe runs and fire sales, leading to worse performance. Only those funds with a sufficiently

high cash-to-assets ratio are likely to withstand these hard times without incurring shareholder runs and

fire sales.

B.4 Additional Proofs

This appendix provides additional and more technical proofs for several results in the main text.

Proof of Proposition 3. The existence of a Markov equilibrium of the dynamic game follows a special

case of Theorem 2 and Corollary 6 in Khan and Sun (2002). The key is to find a measurable selection of Nash

equilibria in each stage game determined by the state variables (a2t, x2t). The Arsenin-Kunugui Theorem

(see Kechris, 1995 for a textbook treatment) guarantees that any usual equilibrium selection mechanism

such as selecting the best, the worst or the one based on the global game approach is measurable.

Under any Markov strategy profile, by definition, the strategies of both the fund manager and all

the shareholders are functions of the two state variables (a2t, x2t), and their strategies are mutually best

responses as well. In other words, strategies played in the past stages influence current-stage strategies

only through the two state variables. For convenience, in what follows I call a stage game (a2t, x2t) when

the fund starts from the portfolio position (a2t, x2t) on date 2t.

Consider any arbitrary ϕ ∈ (0, 1). Define a′2t = ϕa2t, x
′
2t = ϕx2t, and s′2t+1 = ϕa2t+1. By Lemma 1,

game (a2t, x2t) and game (a′2t, x
′
2t) start from the same cash-to-assets ratio region. By Propositions 1, 2,

and 13, if λ2t constructs a run equilibrium in game (a2t, x2t) under the cash rebuilding policy s2t+1, it

must also construct a run equilibrium in game (a′2t, x
′
2t) under the cash rebuilding policy s′2t+1. Hence,

by Lemmas 2, 4, and 9, the equilibrium amounts of forced sales in game (a′2t, x
′
2t) must be q′2t = ϕq2t,

q′2t+1 = ϕq2t+1, where q2t and q2t+1 are the equilibrium amounts of forced sales in game (a2t, x2t).

Then consider the dynamics. Fix a consistent equilibrium selection mechanism if multiple equilibria

occur. Let (a2t+2, x2t+2) be the next stage game when game (a2t, x2t) is played under the cash rebuilding

policy s2t+1. By Corollaries 1, 2 and 4, the next stage game must be (a′2t+2, x
′
2t+2), where a′2t+2 =

ϕa2t+2 and x′2t+2 = ϕx2t+2, if the current stage game (a′2t, x
′
2t) is played under the cash rebuilding policy

s′2t+1. Therefore, if s2t+1(a2t, x2t) is the optimal cash rebuilding policy in stage t for game (a2t, x2t),

s′2t+1(a
′
2t, x

′
2t) = ϕs2t+1(a2t, x2t) must be the optimal cash rebuilding policy in stage t for game (a′2t, x

′
2t).
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Hence, V (a′2t, x
′
2t) = ϕV (a2t, x2t) is indeed the value function for the dynamic game with a starting position

(a′2t, x
′
2t).

Finally, it is straightforward to see that V (0, 0) = 0.

Proof of Proposition 6. This proof proceeds in three steps. First, I show that when θ is sufficiently

small, the equilibrium is the same as that characterized by Proposition 4. Second, I characterize the

equilibrium when θ takes an intermediate value. Lastly, I show that when θ is sufficiently large, the

equilibrium is the same as that characterized by Proposition 5.

Step 1. Recall that when θ = 0, the equilibrium cash rebuilding policy is characterized by Proposition

4. By Propositions 1, 2, and 13, sh, sl, and sm are all continuous in θ. Hence, there exists a θ > 0 (explicit

expression will be calculated in the next step) such that when θ ∈ (0, θ], none of the late shareholders

chooses to run in any region if the fund still follows the cash rebuilding policy as described in Proposition

4. In addition, the proof of Proposition 4 only relies on the fact that there are no shareholder runs. This

confirms that the cash rebuilding policy as described in Proposition 4 is still optimal when θ ∈ (0, θ], which

in turn confirms the late shareholders’ run decision λ2t = 0.

Step 2. By the definition of θ, when θ > θ there exists a non-zero-measure set Grun in which at least

some of the late shareholders will run given the cash rebuilding policy described in Proposition 4. I first

show that Grun takes the form of

Grun = Gl ∪Gm , (B.4)

where Gm ⊆ Gm is connected and

inf Gm =
µER

1− µE
.

To see this, first recall the definition of sl:

sl =
Ra2t − θ(1− µE)(Ra2t + x2t)− (1− θ(1− δE)(1− µE))Rq2t(0)

(1− δL)R
− q2t+1(0) .

Note that, for every pair of (a2t, x2t) and η2t+2, there is an implied s2t+1. Using that as the threshold

sl and solving for θ backward yields that, under the cash rebuilding policy η2t+2 = µER/(1− µE), when

θ >
δL

µE + µL + δL(1− µE − µL)
≡ θ ∈ (0, 1)

there must be λ2t > 0 for η2t ∈ Gl.

Similarly, consider the definitions of sm and sh. Also under the cash rebuilding policy η2t+2 = µER/(1−
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µE), solving for the threshold θ backward yields that, when

θ >
δL

µE + µL + δL(1− µE − µL)
= θ

there must be λ2t > λ̂2t for η2t ∈ Gm, while when

θ >
δL + µL − δLµL

µE + µL + δL(1− µE − µL)
≡ θ ∈ (0, 1)

there must be λ2t > 0 for η2t ∈ Gh.

Notice that

θ < θ .

Thus, under the cash rebuilding policy η2t+2 = µER/(1 − µE), when θ ∈ (θ, θ), there is λ2t = 0 when

η2t ∈ Gh. This confirms the claim in (B.4).

Now define

η(λ̌) ≡ (µE + λ̌µL)R

1− µE − λ̌µL

∈ Gm .

For any λ̌ ∈ (0, 1), consider the following cash rebuilding policy:

η2t+2 = η(λ̌) .

Since

µER

1− µE
< η(λ̌) <

(µE + µL)R

1− µE − µL
,

there exists a θ̌ ∈ (θ, θ) such that when θ = θ̌, there is

 λ2t > 0 iff η2t < η(λ̌) ,

λ2t = 0 iff η2t ⩾ η(λ̌) .

Thus, it is natural to define that

Gm ≡
{
η2t|

µER

1− µE
⩽ η2t < η(λ̌)

}
,

and

Ghm ≡
{
η2t|η2t ⩾

(µE + µL)R

1− µE − µL
and

µER

1− µE
⩽ η2t+2 < η(λ̌) for σ2t+1 = 0

}
.
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Now I confirm that η∗2t+2 = η(λ̌) is the optimal cash rebuilding policy when θ = θ̌ and η2t ∈ Gm. First,

consider a perturbation −ε < 0 of cash rebuilding around σ∗
2t+1 that satisfies η∗2t+2 = η(λ̌). On date 2t+1

(in stage t), since λ2t = 1 (by Lemma 8), the effective sale price on 2t + 1 is p̂L(λ̌). Thus, the sale loss

saved in stage t is

ε(1− δL)R

p̂L(λ̌)
> 0 .

Now consider the same cash gap ε on date 2t+2 (under the perturbed cash rebuilding policy (σ∗
2t+1,−ε).

This implies that η2t+2 ∈ Ghm. Since λ2t+2 ⩾ λ̌, the fund always must sell its assets on date 2t+2 at most

at the effective sale price p̂E(λ̌) > 0. Hence, the expected increase of sale loss in stage t + 1 due to this

cash gap ε is at least

ε(1− δE)R

p̂E(λ̌)
> 0 .

Since p̂E(λ̌) < p̂L(λ̌), there is

ε(1− δL)R

p̂L(λ̌)
< (1− π)

ε(1− δE)R

p̂E(λ̌)

for a sufficiently small but positive π. Hence, the perturbation −ε is not profitable.

Next, consider another perturbation ε > 0 of cash rebuilding around σ∗
2t+1 that satisfies η∗2t+2 = η(λ̌).

On date 2t+ 1 (in stage t), similarly, the sale loss increased in stage t is

ε(1− δL)R

p̂L(λ̌)
> 0 .

Under the perturbed cash rebuilding policy (σ∗
2t+1, ε) the fund gets ε more cash in stage t + 1. This

implies that η2t+2 ∈ Gh. Since there will be no runs on date 2t + 2, the marginal cash saves the fund’s

active asset sales on date 2t + 3 at the effective sale price p̂L(1) > 0. Hence, the expected sale saved in

stage t+ 1 due to this marginal cash ε is

ε(1− δL)R

p̂L(1)
> 0 .

Since p̂L(λ̌) < p̂L(1) (and also π ∈ (0, 1)), this perturbation ε is also not profitable. This verifies the

optimality of η∗2t+2 = (µE +µL)R/(1−µE −µL) when η2t ∈ Gm. This analysis can be readily extended to

other subset of Gl ∪Gm ∪Ghl ∪Ghm as well as Ghm ∪Ghh following the same argument.

Finally, define

θ ≡ θ̌(λ̌ = 1) ∈ (θ, θ) .
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By construction, when θ = θ, there are λ2t > 0 for η2t ∈ Gl ∪Gm while λ2t = 0 for η2t ∈ Gh under the

corresponding optimal cash rebuilding policy η∗2t+2 = η(1).

Step 3. This step shows that when θ > θ there can not be equilibria other than that descried by

Proposition 5. In this step, I use Figure 8 to help illustrate the idea. I first show that, when θ > θ, there

must be Grun = Gl ∪Gm ∪Gh. Note that, by Step 2, there must be Gl ∪Gm ⊆ Grun when θ > θ, and thus

it suffices to show that it cannot be that

supGrun < supGh .
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Figure 8: Hypothetical Equilibrium Cash Rebuilding Policy When θ ∈ [θ, 1)

I prove this by contradiction. First suppose supGrun ∈ Ghl ∪Ghm. Define

Gh1 ≡ Grun/(Gl ∪Gm) .

By the argument in the proof of Proposition 5, when η2t ∈ Grun the equilibrium cash rebuilding policy

still features

η∗2t+2 =
(µE + µL)R

1− µE − µL
. (B.5)

However, because supGrun ∈ Ghl ∪ Ghm, one can now find another non-zero-measure connected set

Gh2 ⊆ Ghl ∪Ghm that satisfies

inf Gh2 = supGh1 ,
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in which shareholders will not run under the cash rebuilding policy (B.5).

By construction, the optimal cash rebuilding policy when η2t ∈ Gh2 should be

η∗2t+2 ⩾ supGh1 >
(µE + µL)R

1− µE − µL
. (B.6)

To see this, consider a perturbation −ε of cash rebuilding around this cash rebuilding policy. On date

2t+1 (in stage t), since there are no runs when η2t ∈ Gh2, the effective sale price on 2t+1 is p̂L(0). Thus,

the sale loss saved in stage t is

ε(1− δL)R

p̂L(0)
> 0 .

Now consider the same cash gap ε on date 2t+2 (under the perturbed cash rebuilding policy (σ∗
2t+1,−ε).

This implies that η2t+2 ∈ Gh1. Because of shareholder runs on date 2t + 2, the fund will sell its assets at

the effective sale price p̂L(1) > 0. Hence, the expected increase of sale loss in stage t+ 1 due to this cash

gap ε is

ε(1− δL)R

p̂L(1)
> 0 .

Since p̂L(1) < p̂L(0), there is

ε(1− δL)R

p̂L(0)
< (1− π)

ε(1− δL)R

p̂L(1)

for a sufficiently small but positive π, implying that the perturbation −ε is not profitable.

However, under the new, more rapid cash rebuilding policy (B.6), by the definition of sh, there must

be a subset of Gh2 in which late shareholders are going to run. This violates the definition of Gh2: a

contradiction.

Now instead suppose inf Ghh ⩽ supGrun < supGh. Again by the monotonicity and continuity of sh in

a2t and x2t, there is no loss of generality to assume that supGrun = inf Ghh + ϵ, where ϵ > 0 is arbitrarily

small. Similarly, the optimal cash rebuilding policy when η2t = inf Ghh + ϵ should be

η∗2t+2 = inf Ghh >
(µE + µL)R

1− µE − µL
. (B.7)

However, when η2t = supGhm = inf Ghh, the optimal cash rebuilding policy already leads to runs. By

the definition of sh, there must be shareholder runs when η2t = inf Ghh+ϵ under the cash rebuilding policy

(B.7). This is again a contraction. As a result, there must be Grun = Gl ∪Gm ∪Gh.

Finally, by Proposition 5, the optimal cash rebuilding policy must be the same as described there
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because the pattern of shareholder runs is the same as described by Lemma 8.

Lemma 11. Under the fund’s objective function (2.3), any cash-rebuilding policies that involve s2t > 0 in

any stage t is not optimal for the fund.

Proof of Lemma 11. I prove it by contradiction. It suffices to consider a one-stage deviation in which the

fund chooses s′2t > 0 in a given stage t but conforms to the optimal cash rebuilding policies as characterized

by Propositions 4, 5, and 6 thereafter.

I start by showing that s′2t > 0 in any stage t is not optimal when θ = 0. Suppose s′2t > 0. By Lemma 7,

shareholders will never run regardless of the fund’s cash rebuilding policies, that is, λ2t = 0, implying that

the effective sale price on date 2t is always p̂E(0). As a result, by the definition of active cash rebuilding,

the fund carries

ε = p̂E(0)s
′
2t

more cash into date 2t + 1. Notice that this ε amount of cash will be either 1) used to meet redemption

needs on date 2t+ 1 or 2) carried into the next stage t+ 1 (i.e., date 2t+ 2).

If this ε amount of cash will be used to meet redemption needs on date 2t+1, there is at least a positive

cash gap on date 2t+1, meaning the fund will be forced to sell at least some illiquid assets on date 2t+1.

However, since the effective selling price is p̂L(0) > p̂E(0) on date 2t+1, the fund can always sell less than

s′2t and at a higher physical sale price on date 2t + 1 to close that cash cap. This violates the optimality

of s′2t > 0.

Otherwise, the fund has ε cash buffer on date 2t+ 2. However, since the effective selling price on date

2t + 2 is also p̂E(0), and the game only has a π < 1 probability to continue to stage t + 1, the fund can

always wait until stage t+ 1 to raise that ε amount of cash. This again violates the optimality of s′2t > 0.

The analysis above suggests that a positive cash rebuilding s′2t > 0 on date 2t is not optimal when

there are always not shareholder runs. The following considers the scenarios in which shareholder runs

are possible. There is no loss of generality to consider θ = 1, in which late shareholders have the greatest

propensity to run, and the analysis for a general θ follows the same argument. I consider three different

and exclusive cases in this scenario.

Case 1. The initial stage equilibrium {s∗2t = 0, s∗2t+1 ⩾ 0, λ∗
2t = 0} features no runs. By Proposition

5, this implies that η2t ∈ Ghh and s∗2t+1 = 0. Now suppose s′2t > 0. This implies that NAV ′
2t ⩽ NAV ∗

2t.

Hence, by Proposition 1 for the high cash-to-asset ratio region, there are still no runs in this stage. Since

λ′
2t = λ∗

2t, the effective sale price on date 2t is always p̂E(0). As a result, by the definition of active cash
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rebuilding, the fund carries

ε = p̂E(0)s
′
2t

more cash into date 2t+ 1.

By the definition of the high-high region Ghh, there is q′2t+1 = q∗2t+1 = 0. Thus, the ε amount of

additional cash will then be directly carried into the next stage (regardless of the cash-rebuilding policy

on date 2t+1, s′2t+1), in particular, to date 2t+3. However, since the effective selling price on date 2t+3

is also p̂L(0) > p̂E(0), and the game only has a π < 1 probability to continue to stage t+ 1, the fund can

always wait until stage t+ 1 to raise that ε amount of cash. This violates the optimality of s′2t > 0.

Case 2. The stage equilibrium {s∗2t = 0, s∗2t+1 ⩾ 0, λ∗
2t > 0} features runs but no run-induced fire sales

on date 2t, that is, q∗2t = 0. By Proposition 5, this implies that η2t ∈ Ghm ∪ Ghl, s
∗
2t+1 > 0, and λ∗

2t = 1.

Now suppose s′2t > 0. This implies that NAV ′
2t ⩽ NAV ∗

2t and λ′
2t ⩽ 1 by Proposition 1 (regardless of

the cash-rebuilding policy on date 2t + 1, s′2t+1). In other words, because of the punishment on date 2t

by active asset sales, the number of late shareholders who choose to run becomes weakly lower. However,

q∗2t = 0 implies that there are still no forced asset sales on date 2t despite fewer running shareholders, that

is, q′2t = 0. In other words, no forced asset sales are ever saved in stage t. On the other hand, by the

definition of active cash rebuilding, the fund carries

ε = p̂E(λ
′
2t)s

′
2t

more cash into date 2t+ 1.

By the definition of the high-intermediate region Ghm and high-low region Ghl, there is still q′2t+1 =

q∗2t+1 = 0. Thus, this ε amount of cash will then be directly carried into the next stage t+ 1. However, in

order to rebuild this additional amount of cash on date 2t + 1, the fund can instead actively sell on date

2t+ 1 and enjoy a higher effective sale price p̂L(λ
′
2t) > p̂E(λ

′
2t) for any λ′

2t. This violates the optimality of

s′2t > 0.

Case 3. The stage equilibrium {s∗2t = 0, s∗2t+1 ⩾ 0, λ∗
2t > 0} features both runs and run-induced fire

sales on date 2t, that is, q∗2t > 0. By Proposition 5, this implies that η2t ∈ Gm∪Gl, s
∗
2t+1 > 0, and λ∗

2t = 1.

Also notice that in this case there is q∗2t+1 = 0 because there are effectively no late shareholder left on date

2t+ 1 in the initial stage equilibrium.

There are three exclusive sub-cases here and I consider them separately.

Case 3.1. Now suppose s′2t > 0 and λ′
2t = λ2t = 1, which implies NAV ′

2t > NAV ′
2t+1. In this sub-

case, NAV ′
2t is still high enough relative to NAV ′

2t+1 so that all the late shareholders still run. In other
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words, the punishment by active sales on date 2t does not help mitigate runs. As a result, we still have

q′2t = q∗2t > 0 and q′2t+1 = q∗2t+1 = 0. In other words, no forced asset sales are ever saved in stage t. On the

other hand, by the definition of active cash rebuilding, the fund carries

ε = p̂E(1)s
′
2t

more cash into date 2t+ 1.

Since q′2t+1 = q∗2t+1 = 0, this ε amount of cash will then be directly carried into the next stage t + 1.

However, in order to rebuild this additional amount of cash on date 2t + 1, the fund can instead actively

sell on date 2t + 1 and enjoy a higher effective sale price p̂L(1) > p̂E(1). This violates the optimality of

s′2t > 0.

Case 3.2. Now suppose s′2t > 0 and λ′
2t = 0, which implies NAV ′

2t < NAV ′
2t+1. In this sub-case,

NAV ′
2t becomes low enough so that all the late shareholders choose to stay until date 2t+ 1. In addition,

there are q′2t < q∗2t and q′2t+1 ⩾ q∗2t+1 = 0 in this case. However, for any s′2t+1, one can always find another

s′′2t ∈ (0, s′2t) that satisfies λ
′′
2t = 0, and NAV ′′

2t < NAV ′′
2t+1. Notice that in this case there are q′′2t = q′2t and

q′′2t+1 = q′2t+1 because λ′′
2t = λ′

2t. This violates the optimality of s′2t > 0.

Case 3.3. Now suppose s′2t > 0 and λ′
2t ∈ (0, 1), which implies

NAV ′
2t(λ

′
2t) = NAV ′

2t+1(λ
′
2t). (B.8)

Clearly, there are still q′2t < q∗2t and q′2t+1 ⩾ q∗2t+1 = 0 in this sub-case. Recall that η2t ∈ Gm ∪ Gl.

Because the fund always chooses s′2t+1 on date 2t + 1, Proposition 5 suggests that any optimal s′2t+1 on

date 2t+ 1 always satisfies that

η′2t+2 = η∗2t+2 =
(µE + µL)R

1− µE − µL
. (B.9)

Therefore, under the new cash rebuilding policies (s′2t, s
′
2t+1), Lemmas 4 and 9 suggest that

x2t − (µE + µL)(Ra2t + x2t) + p̂E(λ
′
2t)(s

′
2t + q′2t(λ

′
2t)) + p̂L(λ

′
2t)(s

′
2t+1 + q′2t+1(λ

′
2t)) = a′2t+2η

′
2t+2 . (B.10)

On the other hand, under the initial stage equilibrium, Lemmas 4 and 9 also suggest that

x2t − (µE + µL)(Ra2t + x2t) + p̂E(1)q
∗
2t(1) + p̂L(1)s

∗
2t+1 = a∗2t+2η

∗
2t+2 . (B.11)
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Notice that

p̂E(λ2t) ⩽ p̂E(1) < p̂L(1) ⩽ p̂L(λ2t) .

Plug condition (B.9) into conditions (B.10) and condition (B.11). Then comparing the left hand sides of

the two equations under condition (B.8) yields

a′2t+2 < a∗2t+2 .

This suggests that although active asset sales on date 2t can potentially reduce run-induced forced sales

on 2t, the fund ends up incurring more total asset sale losses in stage t. Since the game only has π < 1

probability to continue, this is not optimal.

Overall, the key intuition of this proof is that, rebuilding cash buffers on date 2t would help only if

it helps mitigate runs and the resulting run-induced fire sales on date 2t. Otherwise, there is no point to

actively sell at a lower price. But doing this to prevent runs also means too many active sales on date 2t

(at the same low price as forced sales), and it is equally bad or even worse than the case in which the fund

just let shareholders run themselves. Note that this proof requires Assumption 1 to hold, which guarantees

that the price impact on date 2t is large enough relative to that on date 2t+1, i.e., δE is sufficiently smaller

than δL (in other words, the sale price on date 2t is low enough).

Proof of Proposition 10 and Corollary 3. First, according to the starting cash-to-assets ratio η2t,

I still divide the stage game into three different regions. Without loss of generality, I consider n2t = 1 as

in the baseline model. Suppose the fund does not rebuild its cash buffer and no late shareholder is going

to run, that is, s2t+1 = 0 and λ2t = 0. Then there are three regions of the cash-to-assets ratio η2t in the

stage-t game. In these three regions, the amounts of illiquid assets that the fund must sell passively on

dates t and t+ 1 are characterized by:



High Region Gκ
h: qκ2t = 0, qκ2t+1 = 0 ,

Intermediate Region Gκ
m: qκ2t = 0, qκ2t+1 > 0 ,

Low Region Gκ
l : qκ2t > 0, qκ2t+1 > 0 .

I use the superscript κ to indicate the existence of the redemption fees. Note that, if a starting position

(a2t, x2t) falls into a region Gj , j ∈ {h,m, l}, it does not necessarily falls into the same region Gκ
j when
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redemption fees are introduced. But by construction, there is

Gκ
h ∪Gκ

m ∪Gκ
l = Gh ∪Gm ∪Gl ,

and

Gκ
j ∩Gκ

k = ∅, j ̸= k .

Thus it suffices to consider the three regions Gκ
h, G

κ
m, and Gκ

l separately. Here I provide a complete analysis

of the high region Gκ
h and the derivation for the other two regions directly follows.

In the high region Gκ
h, when qκ2t = 0 and λ2t = 0, there is

NAV κ
2t = Ra2t + x2t ,

and

NAV κ
2t+1 =

1− κµE

1− µE
(Ra2t + x2t) .

Thus, qκ2t = 0 and qκ2t+1 = 0 imply

η2t ⩾

(
κµE + κµL

1− κµE

1− µE

)
R

1− κµE − κµL
1− κµE

1− µE

.

This suggests that Gh ⊆ Gκ
h. This also suggests that Lemma 2 still holds. That means, for any λ2t:

NAV κ
2t(λ2t) = Ra2t + x2t .

Meanwhile, when shareholder runs and cash rebuilding are introduced, there is

NAV κ
2t+1(λ2t) =

R(a2t − s2t+1) + x2t − κ(µE + λ2tµL)(Ra2t + x2t) + δLRs2t+1

1− µE − λ2tµL
.

Therefore, when θ = 1, late shareholders’ run incentives are governed by

∆NAV κ(λ2t) =
δLRs2t+1

1− µE − λ2tµL
− (1− κ)(µE + λ2tµL)(Ra2t + x2t)

1− µE − λ2tµL
. (B.12)

When there are no redemption fees, that is, when κ = 1, this goes back to wedge (3.2) in the baseline

model. For any κ ∈ (0, 1) and any λ2t ∈ [0, 1], the second term in (B.12) is strictly positive. This directly
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implies that for any feasible s2t+1, there is λκ
2t ⩽ λ2t, where λκ

2t is the equilibrium run probability in the

game with the redemption fee while λ2t is that in the game without redemption fees, leading to the results

in Proposition 10.

Also, for any (a2t, x2t) and any κ ∈ (0, 1), define

s = inf
λ2t∈[0,1]

inf
s2t+1

{s2t+1|∆NAV κ(s2t+1;λ2t) ⩾ 0} .

By construction, there is s > 0. Then the result follows because ∆NAV κ(λ2t) is strictly increasing in

s2t+1. This leads to the results in Corollary 3 and finally concludes the proof.

Proof of Proposition 11. Under in-kind redemptions, any shareholder who redeems on date t will get

at/nt unit of assets and xt/nt unit of cash. Since there will be no forced sales at the fund level, the fund will

no longer manage its cash buffer. This implies ηt = η0 for any date t, where η0 is the initial cash-to-assets

ratio.

Consider any late shareholder on any odd date 2t+1. If she redeems and consumes on date 2t+1, she

gets δLRa0/n0+x0/n0, while if she redeemed and consumed on date 2t, she would get δERa0/n0+x0/n0.

Since δL > δE , no late shareholder will ever run in an equilibrium.

Now I consider total sale losses when θ = 0. There is no loss of generality to consider η2t = µER/(1−µE),

which is the steady-state cash-to-assets ratio in the baseline model. Again due to the scale-invariance of

the dynamic game, it suffices to consider an arbitrary state t. In the baseline model, by Proposition 4, the

sale losses in stage t under the optimal cash rebuilding policy are:

Lt = (1− δL)R(q2t+1 + s∗2t+1)

=

(1− δL)RµE

a2t −
µL(Ra2t + x2t)(
δL + µL(1−δL)

1−µE

)


(1− µE)δL + µL(1− δL) + µE
+

(1− δL)RµL(Ra2t + x2t)(
δL + µL(1−δL)

1−µE

) , (B.13)

while the sale losses in stage t under in-kind redemptions are

Lin−kind
t = (1− δE)RµEa2t + (1− δL)RµLa2t . (B.14)

Note that, when µL = 0, (B.13) reduces to

Lt =
(1− δL)RµEa2t
(1− µE)δL + µE

,
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while (B.14) reduces to

Lin−kind
t = (1− δE)RµEa2t .

Clearly, when δL is sufficiently larger than δE such that

1− δE >
1− δL

(1− µE)δL + µE
,

there is Lin−kind
t > Lt.
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