
Ahrens, Achim; Hansen, Christian B.; Schaffer, Mark E

Working Paper

Iassopack: Model Selection and Prediction with
Regularized Regression in Stata

IZA Discussion Papers, No. 12081

Provided in Cooperation with:
IZA – Institute of Labor Economics

Suggested Citation: Ahrens, Achim; Hansen, Christian B.; Schaffer, Mark E (2019) : Iassopack: Model
Selection and Prediction with Regularized Regression in Stata, IZA Discussion Papers, No. 12081,
Institute of Labor Economics (IZA), Bonn

This Version is available at:
https://hdl.handle.net/10419/193375

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/193375
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

DISCUSSION PAPER SERIES

IZA DP No. 12081

Achim Ahrens
Christian B. Hansen
Mark E. Schaffer

Iassopack:
Model Selection and Prediction with
Regularized Regression in Stata

JANUARY 2019

Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

DISCUSSION PAPER SERIES

IZA DP No. 12081

Iassopack:
Model Selection and Prediction with
Regularized Regression in Stata

JANUARY 2019

Achim Ahrens
The Economic and Social Research Institute

Christian B. Hansen
University of Chicago

Mark E. Schaffer
Heriot-Watt University and IZA

ABSTRACT

IZA DP No. 12081 JANUARY 2019

Iassopack:
Model Selection and Prediction with
Regularized Regression in Stata

This article introduces lassopack, a suite of programs for regularized regression in Stata.

lassopack implements lasso, square-root lasso, elastic net, ridge regression, adaptive lasso

and post-estimation OLS. The methods are suitable for the high-dimensional setting

where the number of predictors p may be large and possibly greater than the number of

observations, n. We offer three different approaches for selecting the penalization (‘tuning’)

parameters: information criteria (implemented in lasso2), K-fold cross-validation and h-step

ahead rolling cross-validation for cross-section, panel and time-series data (cvlasso), and

theory-driven (‘rigorous’) penalization for the lasso and square-root lasso for cross-section

and panel data (rlasso). We discuss the theoretical framework and practical considerations

for each approach. We also present Monte Carlo results to compare the performance of

the penalization approaches.

JEL Classification: C53, C55, C87

Keywords: lasso2, cvlasso, rlasso, lasso, elastic net, square-root lasso,
cross-validation

Corresponding author:
Mark E. Schaffer
School of Social Sciences
Heriot-Watt University
Edinburgh EH14 4AS
Scotland

E-mail: m.e.schaffer@hw.ac.uk

Ahrens, Hansen & Schaffer 1

1 Introduction

Machine learning is attracting increasing attention across a wide range of scientific
disciplines. Recent surveys explore how machine learning methods can be utilized in
economics and applied econometrics (Varian 2014; Mullainathan and Spiess 2017; Athey
2017; Kleinberg et al. 2018). At the same time, Stata offers to date only a limited set of
machine learning tools. lassopack is an attempt to fill this gap by providing easy-to-use
and flexible methods for regularized regression in Stata.1

While regularized linear regression is only one of many methods in the toolbox of
machine learning, it has some properties that make it attractive for empirical research.
To begin with, it is a straightforward extension of linear regression. Just like ordinary
least squares (OLS), regularized linear regression minimizes the sum of squared devia-
tions between observed and model predicted values, but imposes a regularization penalty
aimed at limiting model complexity. The most popular regularized regression method
is the lasso—which this package is named after—introduced by Frank and Friedman
(1993) and Tibshirani (1996), which penalizes the absolute size of coefficient estimates.

The primary purpose of regularized regression, like supervised machine learning
methods more generally, is prediction. Regularized regression typically does not produce
estimates that can be interpreted as causal and statistical inference on these coefficients
is complicated.2 While regularized regression may select the true model as the sample
size increases, this is generally only the case under strong assumptions. However, reg-
ularized regression can aid causal inference without relying on the strong assumptions
required for perfect model selection. The post-double-selection methodology of Belloni
et al. (2014a) and the post-regularization approach of Chernozhukov et al. (2015) can
be used to select appropriate control variables from a large set of putative confounding
factors and, thereby, improve robustness of estimation of the parameters of interest.
Likewise, the first stage of two-step least-squares is a prediction problem and lasso
or ridge can be applied to obtain optimal instruments (Belloni et al. 2012; Carrasco
2012; Hansen and Kozbur 2014). These methods are implemented in our sister package
pdslasso (Ahrens et al. 2018), which builds on the algorithms developed in lassopack.

The strength of regularized regression as a prediction technique stems from the bias-
variance trade-off. The prediction error can be decomposed into the unknown error vari-
ance reflecting the overall noise level (which is irreducible), the squared estimation bias
and the variance of the predictor. The variance of the estimated predictor is increasing
in the model complexity, whereas the bias tends to decrease with model complexity. By
reducing model complexity and inducing a shrinkage bias, regularized regression meth-
ods tend to outperform OLS in terms of out-of-sample prediction performance. In doing
so, regularized regression addresses the common problem of overfitting: high in-sample
fit (high R2), but poor prediction performance on unseen data.

Another advantage is that the regularization methods of lassopack—with the ex-

1. This article refers to version 1.2 of lassopack released on the 15th of January, 2019. For additional
information and data files, see https://statalasso.github.io/.

2. This is an active area of research, see for example Buhlmann (2013); Meinshausen et al. (2009);
Weilenmann et al. (2017); Wasserman and Roeder (2009); Lockhart et al. (2014).

2 lassopack

ception of ridge regression—are able to produce sparse solutions and, thus, can serve as
model selection techniques. Especially when faced with a large number of putative pre-
dictors, model selection is challenging. Iterative testing procedures, such as the general-
to-specific approach, typically induce pre-testing biases and hypothesis tests often lead
to many false positives. At the same time, high-dimensional problems where the number
of predictors is large relative to the sample size are a common phenomenon, especially
when the true model is treated as unknown. Regularized regression is well-suited for
high-dimensional data. The `1-penalization can set some coefficients to exactly zero,
thereby excluding predictors from the model. The bet on sparsity principle allows for
identification even when the number of predictors exceeds the sample size under the as-
sumption that the true model is sparse or can be approximated by a sparse parameter
vector.3

Regularized regression methods rely on tuning parameters that control the degree
and type of penalization. lassopack offers three approaches to select these tuning pa-
rameters. The classical approach is to select tuning parameters using cross-validation in
order to optimize out-of-sample prediction performance. Cross-validation methods are
universally applicable and generally perform well for prediction tasks, but are computa-
tionally expensive. A second approach relies on information criteria such as the Akaike
information criterion (Zou et al. 2007; Zhang et al. 2010). Information criteria are easy
to calculate and have attractive theoretical properties, but are less robust to violations of
the independence and homoskedasticity assumptions (Arlot and Celisse 2010). Rigorous
penalization for the lasso and square-root lasso provides a third option. The approach
is valid in the presence of heteroskedastic, non-Gaussian and cluster-dependent errors
(Belloni et al. 2012, 2014b, 2016). The rigorous approach places a high priority on
controlling overfitting, thus often producing parsimonious models. This strong focus on
containing overfitting is of practical and theoretical benefit for selecting control vari-
ables or instruments in a structural model, but also implies that the approach may
be outperformed by cross-validation techniques for pure prediction tasks. Which ap-
proach is most appropriate depends on the type of data at hand and the purpose of the
analysis. To provide guidance for applied reseachers, we discuss the theoretical founda-
tion of all three approaches, and present Monte Carlo results that assess their relative
performance.

The article proceeds as follows. In Section 2, we present the estimation methods
implemented in lassopack. Section 3-5 discuss the aforementioned approaches for se-
lecting the tuning parameters: information criteria in Section 3, cross-validation in
Section 4 and rigorous penalization in Section 5. The three commands, which corre-
spond to the three penalization approaches, are presented in Section 6, followed by
demonstrations in Section 7. Section 8 presents Monte Carlo results. Further technical
notes are in Section 9.

3. Hastie et al. (2009, p. 611) summarize the bet on sparsity principle as follows: ‘Use a procedure
that does well in sparse problems, since no procedure does well in dense problems.’

Ahrens, Hansen & Schaffer 3

Notation. We briefly clarify the notation used in this article. Suppose a is a vector
of dimension m with typical element aj for j = 1, . . . ,m. The `1-norm is defined as

‖a‖1 =
∑m
j=1 |aj |, and the `2-norm is ‖a‖2 =

√∑m
j=1 |aj |2. The ‘`0-norm’ of a is

denoted by ‖a‖0 and is equal to the number of non-zero elements in a. 1{.} denotes the
indicator function. We use the notation b ∨ c to denote the maximum value of b and c,
i.e., max(b, c).

2 Regularized regression

This section introduces the regularized regression methods implemented in lassopack.
We consider the high-dimensional linear model

yi = x′iβ + εi, i = 1, . . . , n,

where the number of predictors, p, may be large and even exceed the sample size, n.
The regularization methods introduced in this section can accommodate large-p models
under the assumption of sparsity: out of the p predictors only a subset of s � n are
included in the true model where s is the sparsity index

s :=

p∑
j=1

1{βj 6= 0} = ‖β‖0 .

We refer to this assumption as exact sparsity. It is more restrictive than required, but
we use it here for illustrative purposes. We will later relax the assumption to allow for
non-zero, but ‘small’, βj coefficients. We also define the active set Ω = {j ∈ {1, . . . , p} :
βj 6= 0}, which is the set of non-zero coefficients. In general, p, s, Ω and β may depend
on n but we suppress the n-subscript for notational convenience.

We adopt the following convention throughout the article: unless otherwise noted, all
variables have been mean-centered such that

∑
i yi = 0 and

∑
i xij = 0, and all variables

are measured in their natural units, i.e., they have not been pre-standardized to have
unit variance. By assuming the data have already been mean-centered we simplify the
notation and exposition. Leaving the data in natural units, on the other hand, allows
us to discuss standardization in the context of penalization.

Penalized regression methods rely on tuning parameters that control the degree and
type of penalization. The estimation methods implemented in lassopack, which we
will introduce in the following sub-section, use two tuning parameters: λ controls the
general degree of penalization and α determines the relative contribution of `1 vs. `2
penalization. The three approaches offered by lassopack for selecting λ and α are
introduced in 2.2.

4 lassopack

2.1 The estimators

Lasso

The lasso takes a special position, as it provides the basis for the rigorous penalization
approach (see Section 5) and has inspired other methods such as elastic net and square-
root lasso, which are introduced later in this section. The lasso minimizes the mean
squared error subject to a penalty on the absolute size of coefficient estimates:

β̂lasso(λ) = arg min
1

n

n∑
i=1

(yi − x′iβ)
2

+
λ

n

p∑
j=1

ψj |βj |. (1)

The tuning parameter λ controls the overall penalty level and ψj are predictor-specific
penalty loadings.

Tibshirani (1996) motivates the lasso with two major advantages over OLS. First,
due to the nature of the `1-penalty, the lasso sets some of the coefficient estimates exactly
to zero and, in doing so, removes some predictors from the model. Thus, the lasso serves
as a model selection technique and facilitates model interpretation. Secondly, lasso can
outperform least squares in terms of prediction accuracy due to the bias-variance trade-
off.

The lasso coefficient path, which constitutes the trajectory of coefficient estimates
as a function of λ, is piecewise linear with changes in slope where variables enter or
leave the active set. The change points are referred to as knots. λ = 0 yields the OLS
solution and λ→∞ yields an empty model, where all coefficients are zero.

The lasso, unlike OLS, is not invariant to linear transformations, which is why
scaling matters. If the predictors are not of equal variance, the most common approach
is to pre-standardize the data such that 1

n

∑
i x

2
ij = 1 and set ψj = 1 for j = 1, . . . , p.

Alternatively, we can set the penalty loadings to ψ̂j = (1
n

∑
i x

2
ij)
−1/2. The two methods

yield identical results in theory.

Ridge regression

Ridge regression (Tikhonov 1963; Hoerl and Kennard 1970) replaces the `1-penalty of
the lasso with a `2-penalty, thus minimizing

1

n

n∑
i=1

(yi − x′iβ)
2

+
λ

n

p∑
j=1

ψ2
jβ

2
j . (2)

The interpretation and choice of the penalty loadings ψj is the same as above. As in the
case of the lasso, we need to account for uneven variance, either through pre-estimation
standardization or by appropriately choosing the penalty loadings ψj .

In contrast to estimators relying on `1-penalization, the ridge does not perform vari-
able selection. At the same time, it also does not rely on the assumption of sparsity.

Ahrens, Hansen & Schaffer 5

This makes the ridge attractive in the presence of dense signals, i.e., when the assump-
tion of sparsity does not seem plausible. Dense high-dimensional problems are more
challenging than sparse problems: for example, Dicker (2016) shows that, if p/n→∞,
it is not possible to outperform a trivial estimator that only includes the constant. If
p, n→ jointly, but p/n converges to a finite constant, the ridge has desirable properties
in dense models and tends to perform better than sparsity-based methods (Hsu et al.
2014; Dicker 2016; Dobriban and Wager 2018).

Ridge regression is closely linked to principal component regression. Both methods
are popular in the context of multicollinearity due to their low variance relative to OLS.
Principal components regression applies OLS to a subset of components derived from
principal component analysis; thereby discarding a specified number of components
with low variance. The rationale for removing low-variance components is that the
predictive power of each component tends to increase with the variance. The ridge can
be interpreted as projecting the response against principal components while imposing a
higher penalty on components exhibiting low variance. Hence, the ridge follows a similar
principle; but, rather than discarding low-variance components, it applies a more severe
shrinkage (Hastie et al. 2009).

A comparison of lasso and ridge regression provides further insights into the nature
of `1 and `2 penalization. For this purpose, it is helpful to write lasso and ridge in
constrained form as

β̂lasso = arg min
1

n

p∑
i=1

(yi − x′iβ)
2

subject to

n∑
j=1

ψj |βj | ≤ τ,

β̂ridge = arg min
1

n

n∑
i=1

(yi − x′iβ)
2

subject to

p∑
j=1

ψ2
jβ

2
j ≤ τ

and to examine the shapes of the constraint sets. The above optimization problems
use the tuning parameter τ instead of λ. Note that there exists a data-dependent
relationship between λ and τ .

Figure 1 illustrates the geometry underpinning lasso and ridge regression for the
case of p = 2 and ψ1 = ψ2 = 1 (i.e., unity penalty loadings). The red elliptical lines
represent residual sum of squares contours and the blue lines indicate the lasso and
ridge constraints. The lasso constraint set, given by |β1|+ |β2| ≤ τ , is diamond-shaped
with vertices along the axes from which it immediately follows that the lasso solution
may set coefficients exactly to 0. In contrast, the ridge constraint set, β2

1 + β2
2 ≤ τ , is

circular and will thus (effectively) never produce a solution with any coefficient set to 0.

Finally, β̂0 in the figure denotes the solution without penalization, which corresponds
to OLS. The lasso solution at the corner of the diamond implies that, in this example,
one of the coefficients is set to zero, whereas ridge and OLS produce non-zero estimates
for both coefficients.

While there exists no closed form solution for the lasso, the ridge solution can be
expressed as

β̂ridge = (X ′X + λΨ′Ψ)−1X ′y.

6 lassopack

β2

β1

β̂0

β̂R

(a) Ridge

β2

β1

β̂0

β̂L

(b) Lasso

Figure 1: Behaviour of `1 and `2-penalty in comparison. Red lines represent RSS contour
lines and the blue lines represent the lasso and ridge constraint, respectively. β̂0 denotes
the OLS estimate. β̂L and β̂R are the lasso and ridge estimate. The illustration is based
on Tibshirani, 1996, Fig. 2.

Here X is the n × p matrix of predictors with typical element xij , y is the response
vector and Ψ = diag(ψ1, . . . , ψp) is the diagonal matrix of penalty loadings. The ridge
regularizes the regressor matrix by adding positive constants to the diagonal of X ′X.
The ridge solution is thus well-defined generally as long as all the ψj and λ are sufficiently
large even if X ′X is rank-deficient.

Elastic net

The elastic net of Zou and Hastie (2005) combines some of the strengths of lasso and
ridge regression. It applies a mix of `1 (lasso-type) and `2 (ridge-type) penalization:

β̂elastic = arg min
1

n

n∑
i=1

(yi − x′iβ)
2

+
λ

n

α p∑
j=1

ψj |βj |+ (1− α)

p∑
j=1

ψ2
jβ

2
j

 (3)

The additional parameter α determines the relative to contribution of `1 vs. `2 penal-
ization. In the presence of groups of correlated regressors, the lasso typically selects
only one variable from each group, whereas the ridge tends to produce similar coeffi-
cient estimates for groups of correlated variables. On the other hand, the ridge does not
yield sparse solutions impeding model interpretation. The elastic net is able to produce
sparse solutions for some α greater than zero, and retains or drops correlated variables
jointly.

Ahrens, Hansen & Schaffer 7

Adaptive lasso

The irrepresentable condition (IRC) is shown to be sufficient and (almost) necessary
for the lasso to be model selection consistent (Zhao and Yu 2006; Meinshausen and
Bühlmann 2006). However, the IRC imposes strict constraints on the degree of cor-
relation between predictors in the true model and predictors outside of the model.
Motivated by this non-trivial condition for the lasso to be variable selection consistent,
Zou (2006) proposed the adaptive lasso. The adaptive lasso uses penalty loadings of

ψj = 1/|β̂0,j |θ where β̂0,j is an initial estimator. The adaptive lasso is variable-selection
consistent for fixed p under weaker assumptions than the standard lasso. If p < n,
OLS can be used as the initial estimator. Huang et al. (2008) prove variable selection
consistency for large p and suggest using univariate OLS if p > n. The idea of adaptive
penalty loadings can also be applied to elastic net and ridge regression (Zou and Zhang
2009).

Square-root lasso

The square-root lasso,

β̂√lasso = arg min

√√√√ 1

n

n∑
i=1

(yi − x′iβ)
2

+
λ

n

p∑
j=1

ψj |βj |, (4)

is a modification of the lasso that minimizes the root mean squared error, while also
imposing an `1-penalty. The main advantage of the square-root lasso over the stan-
dard lasso becomes apparent if theoretically grounded, data-driven penalization is used.
Specifically, the score vector, and thus the optimal penalty level, is independent of
the unknown error variance under homoskedasticity as shown by Belloni et al. (2011),
resulting in a simpler procedure for choosing λ (see Section 5).

Post-estimation OLS

Penalized regression methods induce an attenuation bias that can be alleviated by post-
estimation OLS, which applies OLS to the variables selected by the first-stage variable
selection method, i.e.,

β̂post = arg min
1

n

n∑
i=1

(yi − x′iβ)
2

subject to βj = 0 if β̃j = 0, (5)

where β̃j is a sparse first-step estimator such as the lasso. Thus, post-estimation OLS
treats the first-step estimator as a genuine model selection technique. For the case
of the lasso, Belloni and Chernozhukov (2013) have shown that the post-estimation
OLS, also referred to as post-lasso, performs at least as well as the lasso under mild
additional assumptions if theory-driven penalization is employed. Similar results hold
for the square-root lasso (Belloni et al. 2011, 2014b).

8 lassopack

2.2 Choice of the tuning parameters

Since coefficient estimates and the set of selected variables depend on λ and α, a central
question is how to choose these tuning parameters. Which method is most appropriate
depends on the objectives and setting: in particular, the aim of the analysis (prediction
or model identification), computational constraints, and if and how the i.i.d. assumption
is violated. lassopack offers three approaches for selecting the penalty level of λ and α:

1. Information criteria: The value of λ can be selected using information criteria.
lasso2 implements model selection using four information criteria. We discuss
this approach in Section 3.

2. Cross-validation: The aim of cross-validation is to optimize the out-of-sample
prediction performance. Cross-validation is implemented in cvlasso, which allows
for cross-validation across both λ and the elastic net parameter α. See Section 4.

3. Theory-driven (‘rigorous’): Theoretically justified and feasible penalty levels and
loadings are available for the lasso and square-root lasso via rlasso. The penal-
ization is chosen to dominate the noise of the data-generating process (represented
by the score vector), which allows derivation of theoretical results with regard to
consistent prediction and parameter estimation. See Section 5.

3 Tuning parameter selection using information criteria

Information criteria are closely related to regularization methods. The classical Akaike’s
information criterion (Akaike 1974, AIC) is defined as −2×log-likelihood+2p. Thus, the
AIC can be interpreted as penalized likelihood which imposes a penalty on the number
of predictors included in the model. This form of penalization, referred to as `0-penalty,
has, however, an important practical disadvantage. In order to find the model with
the lowest AIC, we need to estimate all different model specifications. In practice, it is
often not feasible to consider the full model space. For example, with only 20 predictors,
there are more than 1 million different models.

The advantage of regularized regression is that it provides a data-driven method for
reducing model selection to a one-dimensional problem (or two-dimensional problem in
the case of the elastic net) where we need to select λ (and α). Theoretical properties of
information criteria are well-understood and they are easy to compute once coefficient
estimates are obtained. Thus, it seems natural to utilize the strengths of information
criteria as model selection procedures to select the penalization level.

Information criteria can be categorized based on two central properties: loss effi-
ciency and model selection consistency. A model selection procedure is referred to as
loss efficient if it yields the smallest averaged squared error attainable by all candidate
models. Model selection consistency requires that the true model is selected with prob-
ability approaching 1 as n→∞. Accordingly, which information information criteria is
appropriate in a given setting also depends on whether the aim of analysis is prediction
or identification of the true model.

Ahrens, Hansen & Schaffer 9

We first consider the most popular information criteria, AIC and Bayesian informa-
tion criterion (Schwarz 1978, BIC):

AIC(λ, α) = n log
(
σ̂2(λ, α)

)
+ 2df(λ, α),

BIC(λ, α) = n log
(
σ̂2(λ, α)

)
+ df(λ, α) log(n),

where σ̂2(λ, α) = n−1
∑n
i=1 ε̂

2
i and ε̂i are the residuals. df(λ, α) is the effective degrees

of freedom, which is a measure of model complexity. In the linear regression model,
the degrees of freedom is simply the number of regressors. Zou et al. (2007) show that
the number of coefficients estimated to be non-zero, ŝ, is an unbiased and consistent
estimate of df(λ) for the lasso (α = 1). More generally, the degrees of freedom of the
elastic net can be calculated as the trace of the projection matrix, i.e.,

d̂f(λ, α) = tr(XΩ̂(X ′
Ω̂
XΩ̂ + λ(1− α)Ψ)−1X ′

Ω̂
).

where XΩ̂ is the n × ŝ matrix of selected regressors. The unbiased estimator of the
degrees of freedom provides a justification for using the classical AIC and BIC to select
tuning parameters (Zou et al. 2007).

The BIC is known to be model selection consistent if the true model is among the
candidate models, whereas AIC is inconsistent. Clearly, the assumption that the true
model is among the candidates is strong; even the existence of the ‘true model’ may
be problematic, so that loss efficiency may become a desirable second-best. The AIC
is, in contrast to BIC, loss efficient. Yang (2005) shows that the differences between
AIC-type information criteria and BIC are fundamental; a consistent model selection
method, such as the BIC, cannot be loss efficient, and vice versa. Zhang et al. (2010)
confirm this relation in the context of penalized regression.

Both AIC and BIC are not suitable in the large-p-small-n context where they tend
to select too many variables (see Monte Carlo simulations in Section 8). It is well
known that the AIC is biased in small samples, which motivated the bias-corrected AIC
(Sugiura 1978; Hurvich and Tsai 1989),

AICc(λ, α) = n log
(
σ̂2(λ, α)

)
+ 2df(λ, α)

n

n− df(λ, α)
.

The bias can be severe if df is large relative to n, and thus the AICc should be favoured
when n is small or with high-dimensional data.

The BIC relies on the assumption that each model has the same prior probability.
This assumptions seems reasonable when the researcher has no prior knowledge; yet,
it contradicts the principle of parsimony and becomes problematic if p is large. To see
why, consider the case where p = 1000 (following Chen and Chen 2008): There are
1000 models for which one parameter is non-zero (s = 1), while there are 1000× 999/2
models for which s = 2. Thus, the prior probability of s = 2 is larger than the prior
probability of s = 1 by a factor of 999/2. More generally, since the prior probability
that s = j is larger than the probability that s = j− 1 (up to the point where j = p/2),
the BIC is likely to over-select variables. To address this shortcoming, Chen and Chen

10 lassopack

(2008) introduce the Extended BIC, defined as

EBICξ(λ, α) = n log
(
σ̂2(λ, α)

)
+ df(λ, α) log(n) + 2ξdf(λ, α) log(p),

which imposes an additional penalty on the size of the model. The prior distribution is
chosen such that the probability of a model with dimension j is inversely proportional
to the total number of models for which s = j. The additional parameter, ξ ∈ [0, 1],
controls the size of the additional penalty.4 Chen and Chen (2008) show in simulation
studies that the EBICξ outperforms the traditional BIC, which exhibits a higher false
discovery rate when p is large relative to n.

4 Tuning parameter selection using cross-validation

The aim of cross-validation is to directly assess the performance of a model on unseen
data. To this end, the data is repeatedly divided into a training and a validation data
set. The models are fit to the training data and the validation data is used to assess the
predictive performance. In the context of regularized regression, cross-validation can be
used to select the tuning parameters that yield the best performance, e.g., the best out-
of-sample mean squared prediction error. A wide range of methods for cross-validation
are available. For an extensive review, we recommend Arlot and Celisse (2010). The
most popular method is K-fold cross-validation, which we introduce in Section 4.1. In
Section 4.2, we discuss methods for cross-validation in the time-series setting.

4.1 K-fold cross-validation

For K-fold cross-validation, proposed by Geisser (1975), the data is split into K groups,
referred to as folds, of approximately equal size. Let Kk denote the set of observations
in the kth fold, and let nk be the size of data partition k for k = 1, ...,K. In the kth
step, the kth fold is treated as the validation data set and the remaining K − 1 folds
constitute the training data set. The model is fit to the training data for a given value of
λ and α. The resulting estimate, which is based on all the data except the observations
in fold k, is β̂k(λ, α). The procedure is repeated for each fold, as illustrated in Figure 2,
so that every data point is used for validation once. The mean squared prediction error
for each fold is computed as

MSPEk(λ, α) =
1

nk

∑
i∈Kk

(
yi − x′iβ̂k(λ, α)

)2

.

4. We follow Chen and Chen (2008, p. 768) and use ξ = 1 − log(n)/(2 log(p)) as the default choice.
An upper and lower threshold is applied to ensure that ξ lies in the [0,1] interval.

Ahrens, Hansen & Schaffer 11

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Validation

Validation

Validation

Validation

Validation

Training

Figure 2: Data partition for 5-fold cross-validation. Each row corresponds to one step
and each column to one data partition (‘fold’). In the first step, fold 1 constitutes the
validation data and folds 2-5 are the training data.

The K-fold cross-validation estimate of the MSPE, which serves as a measure of
prediction performance, is

L̂CV (λ, α) =
1

K

K∑
k=1

MSPEk(λ, α).

This suggests selecting λ and α as the values that minimize L̂CV (λ, α). An alternative
common rule is to use the largest value of λ that is within one standard deviation of
the minimum, which leads to a more parsimonious model.

Cross-validation can be computationally expensive. It is necessary to compute L̂CV
for each value of λ on a grid if α is fixed (e.g. when using the lasso) or, in the case of
the elastic net, for each combination of values of λ and α on a two-dimensional grid.
In addition, the model must be estimated K times at each grid point, such that the
computational cost is approximately proportional to K.5

Standardization adds another layer of computational cost to K-fold cross valida-
tion. An important principle in cross-validation is that the training data set should not
contain information from the validation dataset. This mimics the real-world situation
where out-of-sample predictions are made not knowing what the true response is. The
principle applies not only to individual observations, but also to data transformations
such as mean-centering and standardization. Specifically, data transformations applied
to the training data should not use information from the validation data or full dataset.
Mean-centering and standardization using sample means and sample standard devia-
tions for the full sample would violate this principle. Instead, when in each step the
model is fit to the training data for a given λ and α, the training dataset must be re-
centered and re-standardized, or, if standardization is built into the penalty loadings,
the ψ̂j must be recalculated based on the training dataset.

The choice of K is not only a practical problem; it also has theoretical implications.
The variance of L̂CV decreases with K, and is minimal (for linear regression) if K = n,

5. An exception is the special case of leave-one-out cross-validation, where K = n. The advantage
of LOO cross-validation for linear models is that there is a closed-form expression for the MSPE,
meaning that the model needs to be estimated only once instead of n times.

12 lassopack

which is referred to as leave-one-out or LOO CV. Similarly, the bias decreases with the
size of the training data set. Given computational contraints, K between 5 and 10 are
often recommended, arguing that the performance of CV rarely improves for K larger
than 10 (Hastie et al. 2009; Arlot and Celisse 2010).

If the aim of the researcher’s analysis is model identification rather than prediction,
the theory requires training data to be ‘small’ and the evaluation sample to be close to
n (Shao 1993, 1997). The reason is that more data is required to evaluate which model
is the ‘correct’ one rather than to decrease bias and variance. This is referred to as
cross-validation paradox (Yang 2006). However, since K-fold cross-validation sets the
size of the training sample to approximately n/K, K-fold CV is necessarily ill-suited
for selecting the true model.

4.2 Cross-validation with time-series data

Serially dependent data violate the principle that training and validation data are inde-
pendent. That said, standard K-fold cross-validation may still be appropriate in certain
circumstances. Bergmeir et al. (2018) show that K-fold cross-validation remains valid
in the pure auto-regressive model if one is willing to assume that the errors are un-
correlated. A useful implication is that K-fold cross-validation can be used on overfit
auto-regressive models that are not otherwise badly misspecified, since such models have
uncorrelated errors.

Rolling h-step ahead CV is an intuitively appealing approach that directly incor-
porates the ordered nature of time series-data (Hyndman, Rob and Athanasopoulos
2018).6 The procedure builds on repeated h-step ahead forecasts. The procedure is
implemented in lassopack and illustrated in Figure 3-4.

Step
1 2 3 4 5

1 T T T T T
2 T T T T T
3 T T T T T

t 4 V T T T T
5 · V T T T
6 · · V T T
7 · · · V T
8 · · · · V

(a) h = 1, expanding window

Step
1 2 3 4 5

1 T T T T T
2 T T T T T
3 T T T T T

t 4 · T T T T
5 V · T T T
6 · V · T T
7 · · V · T
8 · · · V ·
9 · · · · V

(b) h = 2, expanding window

Figure 3: Rolling h-step ahead cross-validation with expanding training window. ‘T ’
and ‘V ’ denote that the observation is included in the training and validation sample,
respectively. A dot (‘.’) indicates that an observation is excluded from both training
and validation data.

6. Another approach is a variation of LOO cross-validation known as h-block cross-validation (Burman
et al. 1994), which omits h observations between training and validation data.

Ahrens, Hansen & Schaffer 13

Step
1 2 3 4 5

1 T · · · ·
2 T T · · ·
3 T T T · ·

t 4 V T T T ·
5 · V T T T
6 · · V T T
7 · · · V T
8 · · · · V

(a) h = 1, fixed window

Step
1 2 3 4 5

1 T · · · ·
2 T T · · ·
3 T T T · ·

t 4 · T T T ·
5 V · T T T
6 · V · T T
7 · · V · T
8 · · · V ·
9 · · · · V

(b) h = 2, fixed window

Figure 4: Rolling h-step ahead cross-validation with fixed training window.

Figure 3(a) corresponds to the default case of 1-step ahead cross-validation. ‘T ’
denotes the observation included in the training sample and ‘V ’ refers to the validation
sample. In the first step, observations 1 to 3 constitute the training data set and
observation 4 is the validation point, whereas the remaining observations are unused as
indicated by a dot (‘.’). Figure 3(b) illustrates the case of 2-step ahead cross-validation.
In both cases, the training window expands incrementally, whereas Table 4 displays
rolling CV with a fixed estimation window.

4.3 Comparison with information criteria

Since information-based approaches and cross-validation share the aim of model selec-
tion, one might expect that the two methods share some theoretical properties. Indeed,
AIC and LOO-CV are asymptotically equivalent, as shown by Stone (1977) for fixed
p. Since information criteria only require the model to be estimated once, they are
computationally much more attractive, which might suggest that information criteria
are superior in practice. However, an advantage of CV is its flexibility and that it
adapts better to situations where the assumptions underlying information criteria, e.g.
homoskedasticity, are not satisfied (Arlot and Celisse 2010). If the aim of the analy-
sis is identifying the true model, BIC and EBIC provide a better choice than K-fold
cross-validation, as there are strong but well-understood conditions under which BIC
and EBIC are model selection consistent.

5 Rigorous penalization

This section introduces the ‘rigorous’ approach to penalization. Following Chernozhukov
et al. (2016), we use the term ‘rigorous’ to emphasize that the framework is grounded
in theory. In particular, the penalization parameters are chosen to guarantee consis-
tent prediction and parameter estimation. Rigorous penalization is of special interest,
as it provides the basis for methods to facilitate causal inference in the presence of
many instruments and/or many control variables; these methods are the IV-Lasso (Bel-

14 lassopack

loni et al. 2012), the post-double-selection (PDS) estimator (Belloni et al. 2014a) and
the post-regularization estimator (CHS) (Chernozhukov et al. 2015); all of which are
implemented in our sister package pdslasso (Ahrens et al. 2018).

We discuss the conditions required to derive theoretical results for the lasso in Sec-
tion 5.1. Sections 5.2-5.5 present feasible algorithms for optimal penalization choices
for the lasso and square-root lasso under i.i.d., heteroskedastic and cluster-dependent
errors. Section 5.6 presents a related test for joint significance testing.

5.1 Theory of the lasso

There are three main conditions required to guarantee that the lasso is consistent in
terms of prediction and parameter estimation.7 The first condition relates to sparsity.
Sparsity is an attractive assumption in settings where we have a large set of potentially
relevant regressors, or consider various different model specifications, but assume that
only one true model exists which includes a small number of regressors. We have
introduced exact sparsity in Section 2, but the assumption is stronger than needed. For
example, some true coefficients may be non-zero, but small in absolute size, in which
case it might be preferable to omit them. For this reason, we use a weaker assumption:

Approximate sparsity. Belloni et al. (2012) consider the approximate sparse model
(ASM),

yi = f(wi) + εi = x′iβ0 + ri + εi. (6)

The elementary regressors wi are linked to the dependent variable through the un-
known and possibly non-linear function f(·). The aim of the lasso (and square-root
lasso) estimation is to approximate f(wi) using the target parameter vector β0 and
the transformations xi := P (wi), where P (·) denotes a dictionary of transformations.
The vector xi may be large relative to the sample size, either because wi itself is
high-dimensional and xi := wi, or because a large number of transformations such as
dummies, polynomials, interactions are considered to approximate f(wi).

The assumption of approximate sparsity requires the existence of a target vector
β0 which ensures that f(wi) can be approximated sufficiently well, while using only a
small number of non-zero coefficients. Specifically, the target vector β0 and the sparsity
index s are assumed to meet the condition

‖β0‖0 := s� n with
s2 log2(p ∨ n)

n
→ 0,

and the resulting approximation error ri = f(wi)− x′iβ0 is bounded such that√√√√ 1

n

n∑
i=1

r2
i ≤ C

√
s

n
, (7)

7. For a more detailed treatment, we recommend Hastie et al. (2015, Ch. 11) and Bühlmann and Van
de Geer (2011).

Ahrens, Hansen & Schaffer 15

where C is a positive constant. To emphasize the distinction between approximate and
exact sparsity, consider the special case where f(wi) is linear with f(wi) = x′iβ

?, but
where the true parameter vector β? violates exact sparsity so that ‖β?‖0 > n. If β? has
many elements that are negligible in absolute size, we might still be able to approximate
β? using the sparse target vector β0 as long as ri = x′i(β

? − β0) is sufficiently small as
specified in (7).

Restricted sparse eigenvalue condition. The second condition relates to the Gram ma-
trix, n−1X ′X. In the high-dimensional setting where p is larger than n, the Gram
matrix is necessarily rank-deficient and the minimum (unrestricted) eigenvalue is zero,
i.e.,

min
δ 6=0

‖Xδ‖2√
n ‖δ‖2

= 0.

Thus, to accommodate large p, the full rank condition of OLS needs to be replaced by
a weaker condition. While the full rank condition cannot hold for the full Gram matrix
if p > n, we can plausibly assume that sub-matrices of size m are well-behaved. This is
in fact the restricted sparse eigenvalue (RSEC) condition of Belloni et al. (2012). The
RSEC formally states that the minimum sparse eigenvalues

φmin(m) = min
1≤‖δ‖0≤m

δ′X ′Xδ

‖δ‖22
and φmax(m) = max

1≤‖δ‖0≤m

δ′X ′Xδ

‖δ‖22

are bounded away from zero and from above. The requirement φmin(m) > 0 implies
that all sub-matrices of size m have to be positive definite.8

Regularization event. The third central condition concerns the choice of the penalty
level λ and the predictor-specific penalty loadings ψj . The idea is to select the penalty
parameters to control the random part of the problem in the sense that

λ

n
≥ c max

1≤j≤p

∣∣ψ−1
j Sj

∣∣ where Sj =
2

n

n∑
i=1

xijεi (8)

with high probability. Here, c > 1 is a constant slack parameter and Sj is the jth

element of the score vector S = ∇Q̂(β), the gradient of Q̂ at the true value β. The
score vector summarizes the noise associated with the estimation problem.

Denote by Λ = nmaxj |ψ−1
j Sj | the maximal element of the score vector scaled by

n and ψj , and denote by qΛ(·) the quantile function for Λ.9 In the rigorous lasso, we
choose the penalty parameters λ and ψj and confidence level γ so that

λ ≥ cqΛ(1− γ) (9)

8. The RSEC is stronger than required for the lasso. For example, Bickel et al. (2009) introduce the
restricted eigenvalue condition (REC). However, here we only present the RSEC which implies the
REC and is sufficient for both lasso and post-lasso. Different variants of the REC and RSEC have
been proposed in the literature; for an overview see Bühlmann and Van de Geer (2011).

9. That is, the probability that Λ is at most a is qΛ(a).

16 lassopack

A simple example illustrates the intuition behind this approach. Consider the case
where the true model has βj = 0 for j = 1, . . . , p, i.e., none of the regressors appear in the
true model. It can be shown that for the lasso to select no variables, the penalty parame-
ters λ and ψj need to satisfy λ ≥ 2 maxj |

∑
i ψ
−1
j xijyi|.10 Because none of the regressors

appear in the true model, yi = εi. We can therefore rewrite the requirement for the
lasso to correctly identify the model without regressors as λ ≥ 2 maxj |

∑
i ψ
−1
j xijεi|,

which is the regularization event in (8). We want this regularization event to occur
with high probability of at least (1 − γ). If we choose values for λ and ψj such that
λ ≥ qΛ(1 − γ), then by the definition of a quantile function we will choose the correct
model—no regressors—with probability of at least (1−γ). This is simply the rule in (9).

The chief practical problem in using the rigorous lasso is that the quantile function
qΛ(·) is unknown. There are two approaches to addressing this problem proposed in
the literature, both of which are implemented in rlasso. The rlasso default is the
‘asymptotic’ or X-independent approach: theoretically grounded and feasible penalty
level and loadings are used that guarantee that (8) holds asymptotically, as n→∞ and
γ → 0. The X-independent penalty level choice can be interpreted as an asymptotic
upper bound on the quantile function qΛ(.). In the ‘exact’ or X-dependent approach,
the quantile function qΛ(.) is directly estimated by simulating the distribution of qΛ(1−
γ|X), the (1−γ)-quantile of Λ conditional on the observed regressors X. We first focus
on the X-independent approach, and introduce the X-dependent approach in Section 5.5.

5.2 Rigorous lasso

Belloni et al. (2012) show—using moderate deviation theory of self-normalized sums
from Jing et al. (2003)—that the regularization event in (8) holds asymptotically, i.e.,

P

(
max

1≤j≤p
c
∣∣Sj∣∣ ≤ λψj

n

)
→ 1 as n→∞, γ → 0. (10)

if the penalty levels and loadings are set to

homoskedasticity: λ = 2cσ
√
nΦ−1(1− γ/(2p)), ψj =

√
1

n

∑
i x

2
ij ,

heteroskedasticity: λ = 2c
√
nΦ−1(1− γ/(2p)), ψj =

√
1

n

∑
i x

2
ijε

2
i ,

(11)

under homoskedasticity and heteroskedasticity, respectively. c is the slack parameter
from above and the significance level γ is required to converge towards 0. rlasso uses
c = 1.1 and γ = 0.1/ log(n) as defaults.11,12

10. See, for example, Hastie et al. (2015, Ch. 2).
11. The parameters c and γ can be controlled using the options c(real) and gamma(real). Note that

we need to choose c greater than 1 for the regularization event to hold asymptotically, but not too
high as the shrinkage bias is increasing in c.

12. An alternative X-independent choice is to set λ = 2cσ
√

2n log(2p/γ). Since
√
nΦ−1(1− γ/(2p)) ≤√

2n log(2p/γ), this will lead to a more parsimonious model, but also to a larger bias. To use the
alternative X-independent, specify the lalt option.

Ahrens, Hansen & Schaffer 17

Homoskedasticity. We first focus on the case of homoskedasticity. In the rigorous lasso
approach, we standardize the score. But since E(x2

ijε
2
i) = σE(x2

ij) under homoskedas-
ticity, we can separate the problem into two parts: the regressor-specific penalty loadings

ψj =
√

(1/n)
∑
i x

2
ij standardize the regressors, and σ moves into the overall penalty

level. In the special case where the regressors have already been standardized such that
(1/n)

∑
i x

2
ij = 1, the penalty loadings are ψj = 1. Hence, the purpose of the regressor-

specific penalty loadings in the case of homoskedasticity is to accommodate regressors
with unequal variance.

The only unobserved term is σ, which appears in the optimal penalty level λ. To
estimate σ, we can use some initial set of residuals ε̂0,i and calculate the initial estimate

as σ̂0 =
√

(1/n)
∑
i ε̂

2
0,i. A possible choice for the initial residuals is ε̂0,i = yi as

in Belloni et al. (2012) and Belloni et al. (2014a). rlasso uses the OLS residuals

ε̂0,i = yi−xi[D]′β̂OLS where D is the set of 5 regressors exhibiting the highest absolute
correlation with yi.

13 The procedure is summarized in Algorithm A:

Algorithm A: Estimation of penalty level under homoskedasticity.

1. Set k = 0, and define the maximum number of iterations, K. Regress yi against
the subset of d predictors exhibiting the highest correlation coefficient with yi
and compute the initial residuals as ε̂0,i = ε̂k,i = yi − xi[D]′β̂OLS . Calculate the
homoskedastic penalty loadings in (11).

2. If k ≤ K, compute the homoskedastic penalty level in (11) by replacing σ with

σ̂k =
√

(1/n)
∑
i ε̂

2
k,i, and obtain the rigorous lasso or post-lasso estimator β̂k.

Update the residuals ε̂k+1,i = yi − x′iβ̂k. Set k ← k + 1.
3. Repeat step 2 until k > K or until convergence by updating the penalty level.

The rlasso default is to perform one further iteration after the initial estimate (i.e.,
K = 1), which in our experience provides good performance. Both lasso and post-lasso
can be used to update the residuals. rlasso uses post-lasso to update the residuals.14

Heteroskedasticity. The X-independent choice for the overall penalty level under het-
eroskedasticity is λ = 2c

√
nΦ−1(1−γ/(2p)). The only difference with the homoskedastic

case is the absence of ς. The variance of ε is now captured via the penalty loadings,

which are set to ψj =
√

1
n

∑
i x

2
ijε

2
i . Hence, the penalty loadings here serve two pur-

poses: accommodating both heteroskedasticity and regressors with uneven variance.

To help with the intuition, we consider the case where the predictors are already
standardized. It is easy to see that, if the errors are homoskedastic with σ = 1, the

13. This is also the default setting in Chernozhukov et al. (2016). The number of regressors used for
calculating the initial residuals can be controlled using the corrnumber(integer) option, where 5 is
the default and 0 corresponds to ε̂0,i = yi.

14. The lassopsi option can be specified, if rigorous lasso residuals are preferred.

18 lassopack

penalty loadings are (asymptotically) just ψj = 1. If the data are heteroskedastic,
however, the standardized penalty loading will not be 1. In most practical settings, the
usual pattern will be that ψ̂j > 1 for some j. Intuitively, heteroskedasticity typically
increases the likelihood that the term maxj |

∑
i xijεi| takes on extreme values, thus

requiring a higher degree of penalization through the penalty loadings.15

The disturbances εi are unobserved, so we obtain an initial set of penalty loadings
ψ̂j from an initial set of residuals ε̂0,i similar to the i.i.d. case above. We summarize
the algorithm for estimating the penalty level and loadings as follows:

Algorithm B: Estimation of penalty loadings under heteroskedasticity.

1. Set k = 0, and define the maximum number of iterations, K. Regress yi against
the subset of d predictors exhibiting the highest correlation coefficient with yi
and compute the initial residuals as ε̂0,i = ε̂k,i = yi − xi[D]′β̂OLS . Calculate the
heteroskedastic penalty level λ in (11).

2. If k ≤ K, compute the heterokedastic penalty loadings using the formula given in
in (11) by replacing εi with ε̂k,i, obtain the rigorous lasso or post-lasso estimator

β̂k. Update the residuals ε̂k+1,i = yi − x′iβ̂k. Set k ← k + 1.
3. Repeat step 2 until k > K or until convergence by updating the penalty loadings.

Theoretical property. Under the assumptions SEC, ASM and if penalty level λ and the
penalty loadings are estimated by Algorithm A or B, the lasso and post-lasso obey:16√√√√ 1

n

n∑
i=1

(
x′iβ̂ − x′iβ

)2

= O

(√
s log(p ∨ n)

n

)
, (12)

‖β̂ − β‖1 = O

(√
s2 log(p ∨ n)

n

)
, (13)

The first relation in (12) provides an asymptotic bound for the prediction error,
and the second relation in (13) bounds the bias in estimating the target parameter β.
Belloni et al. (2012) refer to the above convergence rates as near-oracle rates. If the
identity of the s variables in the model were known, the prediction error would converge
at the oracle rate

√
s/n. Thus, the logarithmic term log(p ∨ n) can be interpreted as

the cost of not knowing the true model.

15. To get insights into the nature of heteroskedasticity, rlasso also calculates and returns the stan-
dardized penalty loadings

ψ̂Sj = φ̂j

(√
1

n

∑
i

x2
ij

√
1

n
ε̂2i

)−1

,

which are stored in e(sPsi).
16. For the sake of brevity, we omit additional technical conditions relating to the moments of the error

and the predictors. These conditions are required to make use of the moderate deviation theory
of self-normalized sums (Jing et al. 2003), which is employed to relax the assumption of Gaussian
errors. See condition RF in Belloni et al. (2012) and condition SM in Belloni et al. (2014a).

Ahrens, Hansen & Schaffer 19

5.3 Rigorous square-root lasso

The theory of the square-root lasso is similar to the theory of the lasso (Belloni et al.
2011, 2014b). The jth element of the score vector is now defined as

Sj =
1
n

∑n
i=1 xijεi{

1
n

∑n
i=1 ε

2
i

}1/2
. (14)

To see why the square-root lasso is of special interest, we define the standardized errors
νi as νi = εi/σ. The jth element of the score vector becomes

Sj =
1
n

∑n
i=1 xijσνi{

1
n

∑n
i=1 σ

2ν2
i

}1/2
=

1
n

∑n
i=1 xijνi{

1
n

∑n
i=1 ν

2
i

}1/2
(15)

and is thus independent of σ. For the same reason, the optimal penalty level for the
square-root lasso in the i.i.d. case,

λ = c
√
nΦ−1(1− γ/(2p)), (16)

is independent of the noise level σ.

Homoskedasticity. The ideal penalty loadings under homoskedasticity for the square-
root lasso are given by formula (iv) in Table 1, which provides an overview of penalty
loading choices. The ideal penalty parameters are independent of the unobserved error,
which is an appealing theoretical property and implies a practical advantage. Since both
λ and ψj can be calculated from the data, the rigorous square-root lasso is a one-step
estimator under homoskedasticity. Belloni et al. (2011) show that the square-root lasso
performs similarly to the lasso with infeasible ideal penalty loadings.

Heteroskedasticity. In the case of heteroskedasticity, the optimal square-root lasso penalty
level remains (16), but the penalty loadings, given by formula (v) in Table 1, depend on
the unobserved error and need to be estimated. Note that the updated penalty load-
ings using the residuals ε̂i employ thresholding: the penalty loadings are enforced to be
greater than or equal to the loadings in the homoskedastic case. The rlasso default
algorithm used to obtain the penalty loadings in the heteroskedastic case is analogous
to Algorithm B.17 While the ideal penalty loadings are not independent of the error
term if the errors are heteroskedastic, the square-root lasso may still have an advantage
over the lasso, since the ideal penalty loadings are pivotal with respect to the error term
up to scale, as pointed out above.

5.4 Rigorous penalization with panel data

Belloni et al. (2016) extend the rigorous framework to the case of clustered data, where
a limited form of dependence—within-group correlation—as well as heteroskedasticity

17. The rlasso default for the square-root lasso uses a first-step set of initial residuals. The suggestion
of Belloni et al. (2014b) to use initial penalty loadings for regressor j of ψ̂0,j = maxi |xij | is available
using the maxabsx option.

20 lassopack

lasso square-root lasso

homoskedasticity (i)

√√√√ 1

n

n∑
i=1

x2
ij (iv)

√√√√ 1

n

n∑
i=1

x2
ij

heteroskedasticity (ii)

√√√√ 1

n

n∑
i=1

x2
ijε

2
i (v)

√√√√ 1

n

n∑
i=1

x2
ij ∨

√∑n
i=1 x

2
ijε

2
i∑n

i=1 ε
2
i

cluster-dependence (iii)

√√√√ 1

nT

n∑
i=1

u2
ij (vi)

√√√√ 1

nT

n∑
i=1

T∑
t

x2
ijt ∨

√ ∑n
i=1 u

2
ij∑n

i=1

∑T
t=1 ε

2
it

Note: Formulas (iii) and (vi) use the notation uij =
∑
t xitjεit.

Table 1: Ideal penalty loadings for the lasso and square-root lasso under homoskedas-
ticity, heteroskedasticity and cluster-dependence.

are accommodated. They prove consistency of the rigorous lasso using this approach
in the large n, fixed T and large n, large T settings. The authors present the approach
in the context of a fixed-effects panel data model, yit = x′itβ + µi + εit, and apply
the rigorous lasso after the within transformation to remove the fixed effects µi. The
approach extends to any clustered-type setting and to balanced and unbalanced panels.
For convenience we ignore the fixed effects and write the model as a balanced panel:

yit = x′itβ + εit i = 1, . . . , n, t = 1, . . . , T (17)

The intuition behind the Belloni et al. (2016) approach is similar to that behind the
clustered standard errors reported by various Stata estimation commands: observations
within clusters are aggregated to create ‘super-observations’ which are assumed indepen-
dent, and these super-observations are treated similarly to cross-sectional observations
in the non-clustered case. Specifically, define for the ith cluster and jth regressor the
super-observation uij :=

∑
t xijtεit. Then the penalty loadings for the clustered case

are

ψj =

√√√√ 1

nT

n∑
i=1

u2
ij ,

which resembles the heteroskedastic case. The rlasso default for the overall penalty
level is the same as in the heteroskedastic case, λ = 2c

√
nΦ−1(1− γ/(2p)), except that

the default value for γ is 0.1/ log(n), i.e., we use the number of clusters n rather than
the number of observations nT . lassopack also implements the rigorous square-root
lasso for panel data, which uses the overall penalty in (16) and the penalty loadings in
formula (vi), Table 1.

Ahrens, Hansen & Schaffer 21

lasso square-root lasso

homoskedasticity (i) 2σ̂ max
1≤j≤p

∣∣∣∣∣
n∑
i=1

ψ−1
j xijgi

∣∣∣∣∣ (iv)
1

σ̂g
max

1≤j≤p

∣∣∣∣∣
n∑
i=1

ψ−1
j xijgi

∣∣∣∣∣
heteroskedasticity (ii) 2 max

1≤j≤p

∣∣∣∣∣
n∑
i=1

ψ−1
j xij ε̂igi

∣∣∣∣∣ (v)
1

σ̂g
max

1≤j≤p

∣∣∣∣∣
n∑
i=1

ψ−1
j xij ε̂igi

∣∣∣∣∣
cluster-dependence (iii) 2 max

1≤j≤p

∣∣∣∣∣
n∑
i=1

ψ−1
j ûijgi

∣∣∣∣∣ (vi)
1

σ̂g
max

1≤j≤p

∣∣∣∣∣
n∑
i=1

ψ−1
j ûijgi

∣∣∣∣∣
Note: gi is an i.i.d. standard normal variate drawn independently of the data; σ̂g =
1
n

∑
i g

2
i . Formulas (iii) and (vi) use the notation ûij =

∑
t xitj ε̂it.

Table 2: Definition of W statistic for the simulation of the distribution of Λ for the
lasso and square-root lasso under homoskedasticity, heteroskedasticity and cluster-
dependence.

5.5 X-dependent lambda

There is an alternative, sharper choice for the overall penalty level, referred to as the
X-dependent penalty. Recall that the asymptotic, X-independent choice in (11) can be
interpreted as an asymptotic upper bound on the quantile function of Λ, which is the
scaled maximum value of the score vector. Instead of using the asymptotic choice, we
can estimate by simulation the distribution of Λ conditional on the observed X, and
use this simulated distribution to obtain the quantile qΛ(1− γ|X).

In the case of estimation by the lasso under homoskedasticity, we simulate the dis-
tribution of Λ using the statistic W , defined as

W = 2σ̂ max
1≤j≤p

∣∣∣∣∣
n∑
i=1

ψ−1
j xijgi

∣∣∣∣∣ ,
where ψj is the penalty loading for the homoskedastic case, σ̂ is an estimate of the error
variance using some previously-obtained residuals, and gi is an i.i.d. standard normal
variate drawn independently of the data. The X-dependent penalty choice is sharper
and adapts to correlation in the regressor matrix (Belloni and Chernozhukov 2011).

Under heteroskedasticity, the lasso X-dependent penalty is obtained by a multiplier
bootstrap procedure. In this case the simulated statistic W is defined as in formula (ii)
in Table 2. The cluster-robust X-dependent penalty is again obtained analogously to
the heteroskedastic case by defining super-observations, and the statistic W is defined
as in formula (iii) in Table 2. Note that the standard normal variate gi varies across
but not within clusters.

22 lassopack

The X-dependent penalties for the square-root lasso are similarly obtained from
quantiles of the simulated distribution of the square-root lasso Λ, and are given by for-
mulas (iv), (v) and (vi) in Table 2 for the homoskedastic, heteroskedastic and clustered
cases, respectively.18

5.6 Significance testing with the rigorous lasso

Inference using the lasso, especially in the high-dimensional setting, is a challenging and
ongoing research area of research (see Footnote 2). A test that has been developed and
is available in rlasso corresponds to the test for joint significance of regressors using
F or χ2 tests that is common in regression analysis. Specifically, Belloni et al. (2012)
suggest using the Chernozhukov et al. (2013, Appendix M) sup-score test to test for the
joint significance of the regressors, i.e.,

H0 : β1 = . . . = βp = 0.

As in the preceding sections, regressors are assumed to be mean-centered and in their
original units.

If the null hypothesis is correct and the rest of the model is well-specified, including
the assumption that the regressors are orthogonal to the disturbance εi, then yi = εi
and hence E(xiεi) = E(xiyi) = 0. The sup-score statistic is

SSS =
√
n max

1≤j≤p

∣∣∣∣∣ 1n
n∑
i=1

ψ−1
j xijyi

∣∣∣∣∣ (18)

where ψj =
√

1
n

∑n
i=1(xijyi)2. Intuitively, the ψj in (18) plays the same role as the

penalty loadings do in rigorous lasso estimation.

The p-value for the sup-score test is obtained by a multiplier bootstrap procedure
simulating the distribution of SSS by the statistic W , defined as

W =
√
n max

1≤j≤p

∣∣∣∣∣ 1n
n∑
i=1

ψ−1
j xijyigi

∣∣∣∣∣ ,
where gi is an i.i.d. standard normal variate drawn independently of the data and ψj
is defined as in (18).

The procedure above is valid under both homoskedasticity and heteroskedasticity,
but requires independence. A cluster-robust version of the sup-score test that accom-
modates within-group dependence is

SSS =
√
nT max

1≤j≤p

∣∣∣ 1

nT

n∑
i=1

ψ−1
j uij

∣∣∣ (19)

18. Note that since gi is standard normal, in practice the term 1
σ̂g

that appears in the expressions for

the square-root lasso W will be approximately 1.

Ahrens, Hansen & Schaffer 23

where uij :=
∑T
t=1 xijtyit and ψj = 1

nT

∑n
i=1 u

2
ij .

The p-value for the cluster version of SSS comes from simulating

W =
√
nT max

1≤j≤p

∣∣∣ 1

nT

n∑
i=1

ψ−1
j uijgi

∣∣∣
where again gi is an i.i.d. standard normal variate drawn independently of the data.
Note again that gi is invariant within clusters.

rlasso also reports conservative critical values for SSS using an asymptotically-
justified upper bound: CV = cΦ−1(1 − γSS/(2p)). The default value of the slack
parameter is c = 1.1 and the default test level is γSS = 0.05. These parameters can
be varied using the c(real) and ssgamma(real) options, respectively. The simulation
procedure to obtain p-values using the simulated statistic W can be computationally
intensive, so users can request reporting of only the computationally inexpensive con-
servative critical values by setting the number of simulated values to zero with the
ssnumsim(int) option.

6 The commands

The package lassopack consists of three commands: lasso2, cvlasso and rlasso.
Each command offers an alternative method for selecting the tuning parameters λ and
α. We discuss each command in turn and present its syntax. We focus on the main
syntax and the most important options. Some technical options are omitted for the
sake of brevity. For a full description of syntax and options, we refer to the help files.

6.1 lasso2: Base command and information criteria

The primary purpose of lasso2 is to obtain the solution of (adaptive) lasso, elastic
net and square-root lasso for a single value of λ or a list of penalty levels, i.e., for
λ1, . . . , λr, . . . , λR, where R is the number of penalty levels. The basic syntax of lasso2
is as follows:

lasso2 depvar indepvars
[
if
] [

in
] [

, alpha(real) sqrt adaptive

adaloadings(numlist) adatheta(real) ols lambda(numlist) lcount(integer)

lminratio(real) lmax(real) notpen(varlist) partial(varlist)

ploadings(string) unitloadings prestd stdcoef fe noconstant

tolopt(real) tolzero(real) maxiter(integer) plotpath(method)

plotvar(varlist) plotopt(string) plotlabel lic(string) ic(string)

ebicxi(real) postresults
]

The options alpha(real), sqrt, adaptive and ols can be used to select elastic net,
square-root lasso, adaptive lasso and post-estimation OLS, respectively. The default

24 lassopack

estimator of lasso2 is the lasso, which corresponds to alpha(1). The special case of
alpha(0) yields ridge regression.

The behaviour of lasso2 depends on whether the numlist in lambda(numlist) is
of length greater than one or not. If numlist is a list of more than one value, the
solution consists of a matrix of coefficient estimates which are stored in e(betas).
Each row in e(betas) corresponds to a distinct value of λr and each column to one of
the predictors in indepvars. The ‘path’ of coefficient estimates over λr can be plotted
using plotpath(method), where method controls whether the coefficient estimates are
plotted against lambda (‘lambda’), the natural logarithm of lambda (‘lnlambda’) or the
`1-norm (‘norm’). If the numlist in lambda(numlist) is a scalar value, the solution is a
vector of coefficient estimates which is stored in e(b). The default behaviour of lasso2
is to use a list of 100 values.

In addition to obtaining the coefficient path, lasso2 calculates four information cri-
teria (AIC, AICc, BIC and EBIC). These information criteria can be used for model
selection by choosing the value of λr that yields the lowest value for one of the four in-
formation criteria. The ic(string) option controls which information criterion is shown
in the output, where string can be replaced with ‘aic’, ‘aicc’, ‘bic or ‘ebic’. lic(string)
displays the estimation results corresponding to the model selected by an information
criterion. It is important to note that lic(string) will not store the results of the
estimation. This has the advantage that the user can compare the results for differ-
ent information criteria without the need to re-estimate the full model. To save the
estimation results, the postresults option should be specified in combination with
lic(string).

Estimation methods

alpha(real) controls the elastic net parameter, α, which controls the degree of `1-norm
(lasso-type) to `2-norm (ridge-type) penalization. alpha(1) corresponds to the lasso
(the default estimator), and alpha(0) to ridge regression. The real value must be
in the interval [0,1].

sqrt specifies the square-root lasso estimator. Since the square-root lasso does not
employ any form of `2-penalization, the option is incompatible with alpha(real).

adaptive specifies the adaptive lasso estimator. The penalty loading for predictor j is
set to |β̂j,0|−θ where β̂j,0 is the OLS estimator or univariate OLS estimator if p > n.
θ is the adaptive exponent, and can be controlled using the adatheta(real) option.

adaloadings(matrix) is a matrix of alternative initial estimates, β̂j,0, used for calcu-
lating adaptive loadings. For example, this could be the vector e(b) from an initial
lasso2 estimation. The absolute value of β̂j,0 is raised to the power −θ (note the
minus).

adatheta(real) is the exponent for calculating adaptive penalty loadings. The default
is adatheta(1)

Ahrens, Hansen & Schaffer 25

ols specifies that post-estimation OLS estimates are displayed and returned in e(betas)

or e(b).

Options relating to lambda

lambda(numlist) controls the penalty level(s), λr, used for estimation. numlist is a
scalar value or list of values in descending order. Each λr must be greater than zero.
If not specified, the default list is used which, using Mata syntax, is defined by

exp(rangen(log(lmax),log(lminratio*lmax),lcount)),

where lcount, lminratio and lmax are defined below, exp() is the exponential func-
tion, log() is the natural logarithm, and rangen(a,b,n) creates a column vector
going from a to b in n-1 steps (see the mf range help file). Thus, the default list
ranges from lmax to lminratio*lmax and lcount is the number of values. The
distance between each λr in the sequence is the same on the logarithmic scale.

lcount(integer) is the number of penalty values, R, for which the solution is obtained.
The default is lcount(100).

lmax(real) is the maximum value penalty level, λ1. By default, λ1 is chosen as the
smallest penalty level for which the model is empty. Suppose the regressors are
mean-centered and standardized, then λ1 is defined as maxj

2
nα

∑n
i=1 |xijyi| for the

elastic net and maxj
1
nα

∑n
i=1 |xijyi| for the square-root lasso (see Friedman et al.

2010, Section 2.5).

lminratio(real) is the ratio of the minimum penalty level, λR, to maximum penalty
level, λ1. real must be between 0 and 1. Default is lminratio(0.001).

Information criteria

lic(string) specifies that, after the first lasso2 estimation using a list of penalty levels,
the model that corresponds to the minimum information criterion will be estimated
and displayer. ‘aic’, ‘bic’, ‘aicc’, and ‘ebic’ (the default) are allowed. However, the
results are not stored in e().

postresults is used in combination with lic(string). postresults stores estimation
results of the model selected by information criterion in e().19

ic(string) controls which information criterion is shown in the output of lasso2 when
lambda() is a list. ’aic’, ’bic’, ’aicc’, and ’ebic’ (the default are allowed).

ebicxi(real) controls the ξ parameter of the EBIC. ξ needs to lie in the [0,1] interval.
ξ = 0 is equivalent to the BIC. The default choice is ξ = 1− log(n)/(2 log(p)).

19. This option was called postest in earlier versions of lassopack.

26 lassopack

Penalty loadings and standardisation

notpen(varlist) sets penalty loadings to zero for predictors in varlist . Unpenalized
predictors are always included in the model.

partial(varlist) specified that variables in varlist are partialled out prior to estimation.

ploadings(matrix) is a row-vector of penalty loadings, and overrides the default stan-
dardization loadings. The size of the vector should equal the number of predictors
(excluding partialled-out variables and excluding the constant).

unitloadings specifies that penalty loadings be set to a vector of ones; overrides the
default standardization loadings.

prestd specifies that dependent variable and predictors are standardized prior to esti-
mation rather than standardized “on the fly” using penalty loadings. See Section 9.2
for more details. By default the coefficient estimates are un-standardized (i.e., re-
turned in original units).

stdcoef returns coefficients in standard deviation units, i.e., do not un-standardize.
Only supported with prestd option.

Penalty loadings and standardisation

fe within-transformation is applied prior to estimation. The option requires the data
in memory to be xtset.

noconstant suppress constant from estimation. Default behaviour is to partial the
constant out (i.e., to center the regressors).

Replay syntax

The replay syntax of lasso2 allows for plotting and changing display options, without
the need to re-run the full model. It can also be used to estimate the model using the
value of λ selected by an information criterion. The syntax is given by:

lasso2
[
, plotpath(string) plotvar(varlist) plotopt(string) plotlabel

postresults lic(method) ic(method)
]

Prediction syntax

predict
[
type

]
newvar

[
if
] [

in
] [

, xb residuals ols lambda(real)

lid(integer) approx noisily postresults
]

xb computes predicted values (the default).

residuals computes residuals.

Ahrens, Hansen & Schaffer 27

ols specifies that post-estimation OLS will be used for prediction.

If the previous lasso2 estimation uses more than one penalty level (i.e. R > 1), the
following options are applicable:

lambda(real) specifies that lambda value used for prediction.

lid(integer) specifies the index of the lambda value used for prediction.

approx specifies that linear approximation is used instead of re-estimation. Faster, but
only exact if coefficient path is piece-wise linear.

noisily prompts display of estimation output if re-estimation required.

postresults stores estimation results in e() if re-estimation is used.

6.2 Cross-validation with cvlasso

cvlasso implements K-fold and h-step ahead rolling cross-validation. The syntax of
cvlasso is:

cvlasso depvar indepvars
[
if
] [

in
] [

, alpha(numlist) alphacount(integer) sqrt

adaptive adaloadings(string) adatheta(real) ols lambda(numlist)

lcount(stinteger) lminratio(real) lmax(real) lopt lse notpen(varlist)

partial(varlist) ploadings(string) unitloadings prestd fe noconstant

tolopt(real) tolzero(real) maxiter(integer) nfolds(integer)

foldvar(varname) savefoldvar(varname) rolling h(integer) origin(integer)

fixedwindow seed(integer) plotcv plotopt(string) saveest(string)
]

The alpha() option of cvlasso option accepts a numlist, while lasso2 only accepts
a scalar. If the numlist is a list longer than one, cvlasso cross-validates over λr with
r = 1, . . . , R and αm with m = 1, . . . ,M .

plotcv creates a plot of the estimated mean-squared prediction error as a function of
λr, and plotopt(string) can be used to pass plotting options to Stata’s line command.

Internally, cvlasso calls lasso2 repeatedly. Intermediate lasso2 results can be
stored using saveest(string).

Options for K-fold cross-validation

nfolds(integer) is the number of folds used for K-fold cross-validation. The default is
nfolds(10), or K = 10.

foldvar(varname) can be used to specify what fold (data partition) each observation
lies in. varname is an integer variable with values ranging from 1 to K. If not speci-
fied, the fold variable is randomly generated such that each fold is of approximately

28 lassopack

equal size.

savefoldvar(varname) saves the fold variable variable in varname.

seed(integer) sets the seed for the generation of a random fold variable.

Options for h-step ahead rolling cross-validation

rolling uses rolling h-step ahead cross-validation. The option requires the data to be
tsset or xtset.

h(integer) changes the forecasting horizon. The default is h(1).

origin(integer) controls the number of observations in the first training dataset.

fixedwindow ensures that the size of the training data set is constant.

Options for selection of lambda

lopt specifies that, after cross-validation, lasso2 estimates the model with the value of
λr that minimizes the mean-squared prediction error. That is, the model is estimated
with λ = λ̂lopt.

lse specifies that, after cross-validation, lasso2 estimates model with largest λr that
is within one standard deviation from λ̂lopt. That is, the model is estimated with

λ = λ̂lse.

postresults stores the lasso2 estimation results in e() (to be used in combination
with lse or lopt).

Replay syntax

Similar to lasso2, cvlasso also provides a replay syntax, which helps to avoid time-
consuming re-estimations. The replay syntax of cvlasso can be used for plotting and
to estimate the model corresponding to λ̂lopt or λ̂lse. The replay syntax of cvlasso is
given by:

cvlasso
[
, lopt lse plotcv(method) plotopt(string) postresults

]
Predict syntax

predict
[
type

]
newvar

[
if
] [

in
] [

, xb residuals lopt lse noisily
]

Ahrens, Hansen & Schaffer 29

6.3 rlasso: Rigorous penalization

rlasso implements theory-driven penalization for lasso and square-root lasso. It allows
for heteroskedastic, cluster-dependent and non-Gaussian errors. Unlike lasso2 and
cvlasso, rlasso estimates the penalty level λ using iterative algorithms. The syntax
of rlasso is given by:

rlasso depvar indepvars
[
if
] [

in
] [

weight
] [

, sqrt partial(varlist)

pnotpen(varlist) noconstant fe robust cluster(variable) center

xdependent numsim(integer) prestd tolopt(real) tolups(real) tolzero(real)

maxiter(integer) maxpsiiter(integer) lassopsi corrnumber(integer) maxabsx

lalternative gamma(real) c(real) supscore ssnumsim(integer) ssgamma(real)

testonly seed(integer) ols
]

pnotpen(varlist) specifies that variables in varlist are not penalized.20

robust specifies that the penalty loadings account for heteroskedasticity.

cluster(varname) specifies that the penalty loadings account for clustering on variable
varname.

center center moments in heteroskedastic and cluster-robust loadings.21

lassopsi use lasso or square-root lasso residuals to obtain penalty loadings. The default
is post-estimation OLS.22

corrnumber(integer) number of high-correlation regressors used to obtain initial resid-
uals. The default is corrnumber(5), and corrnumber(0) implies that depvar is used
in place of residuals.

prestd standardize data prior to estimation. The default is standardization during
estimation via penalty loadings.

Options relating to lambda

xdependent specifies that the X-dependent penalty level is used; see Section 5.5.

numsim(integer) is the number of simulations used for the X-dependent case. The
default is 5,000.

lalternative specifies the alternative, less sharp penalty level, which is defined as

20. This option differs from that of notpen(varlist) as used with cvlasso and lasso2; see the discussion
in Section 9.

21. For example, the uncentered heteroskedastic loading for regressor j is ψ̂j =
√

1
n

∑
i x

2
ij ε̂

2
i . In

theory, xijεi should be mean-zero. The centered penalty loading is ψ̂j =
√

1
n

∑
i(xij ε̂i − µ̂)2

where µ̂ = 1
n

∑
i xij ε̂i.

22. The option was called lassoups in earlier versions.

30 lassopack

2c
√

2n log(2p/γ) (for the square-root lasso, 2c is replaced with c). See Footnote 12.

gamma(real) is the ‘γ’ in the rigorous penalty level (default γ = 1/log(n); cluster-lasso
default γ = 1/log(nclust)). See Equation (11).

c(real) is the ‘c’ in the rigorous penalty level. The default is c(1.1). See Equation (11).

Sup-score test

supscore reports the sup-score test of statistical significance.

testonly reports only the sup-score test without lasso estimation.

ssgamma(real) is the test level for the conservative critical value for the sup-score test
(default = 0.05, i.e., 5% significance level).

ssnumsim(integer) controls the number of simulations for sup-score test multiplier boot-
strap. The default is 500, while 0 implies no simulation.

Predict syntax

predict
[
type

]
newvar

[
if
] [

in
] [

, xb residuals lasso ols
]

xb generate fitted values (default).

residuals generate residuals.

lasso use lasso coefficients for prediction (default is to use estimates posted in e(b)

matrix).

ols use OLS coefficients based on lasso-selected variables for prediction (default is to
use estimates posted in e(b) matrix).

7 Demonstrations

In this section, we demonstrate the use of lasso2, cvlasso and rlasso using one
cross-section example (in Section 7.1) and one time-series example (in Section 7.2).

7.1 Cross-section

For demonstration purposes, we consider the Boston Housing Dataset available on the
UCI Machine Learning Repository.23 The data set includes 506 observations and 14
predictors.24 The purpose of the analysis is to predict house prices using a set of

23. The dataset is available at https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
housing.data, or in CSV format via our website at http://statalasso.github.io/dta/housing.csv.

24. The following predictors are included: per capita crime rate (crim), proportion of residential land
zoned for lots over 25,000 sq.ft. (zn), proportion of non-retail business acres per town (indus),

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data
http://statalasso.github.io/dta/housing.csv

Ahrens, Hansen & Schaffer 31

census-level characteristics.

Estimation with lasso2

We first employ the lasso estimator:

. lasso2 medv crim-lstat

Knot ID Lambda s L1-Norm EBIC R-sq Entered/removed

1 1 6858.98553 1 0.00000 2250.74087 0.0000 Added _cons.
2 2 6249.65216 2 0.08440 2207.91748 0.0924 Added lstat.
3 3 5694.45029 3 0.28098 2166.62026 0.1737 Added rm.
4 10 2969.09110 4 2.90443 1902.66627 0.5156 Added ptratio.
5 20 1171.07071 5 4.79923 1738.09475 0.6544 Added b.
6 22 972.24348 6 5.15524 1727.95402 0.6654 Added chas.
7 26 670.12972 7 6.46233 1709.14648 0.6815 Added crim.
8 28 556.35346 8 6.94988 1705.73465 0.6875 Added dis.
9 30 461.89442 9 8.10548 1698.65787 0.6956 Added nox.

10 34 318.36591 10 13.72934 1679.28783 0.7106 Added zn.
11 39 199.94307 12 18.33494 1671.61672 0.7219 Added indus rad.
12 41 165.99625 13 20.10743 1669.76857 0.7263 Added tax.
13 47 94.98916 12 23.30144 1645.44345 0.7359 Removed indus.
14 67 14.77724 13 26.71618 1642.91756 0.7405 Added indus.
15 82 3.66043 14 27.44510 1648.83626 0.7406 Added age.

Use ´long´ option for full output.
Type e.g. ´lasso2, lic(ebic)´ to run the model selected by EBIC.

The above lasso2 output shows the following columns:

• Knot is the knot index. Knots are points at which predictors enter or leave the
model. The default output shows one line per knot. If the long option is specified,
one row per λr value is shown.

• ID shows the λr index, i.e., r. By default, lasso2 uses a descending sequence of
100 penalty levels.

• s is the number of predictors in the model.
• L1-Norm shows the `1-norm of coefficient estimates.
• The sixth column (here labelled EBIC) shows one out of four information criteria.

The ic(string) option controls which information criterion is displayed, where
string can be replaced with ‘aic’, ‘aicc’, ‘bic’, and ‘ebic’ (the default).

• R-sq shows the R2 value.
• The final column shows which predictors are entered or removed from the model

at each knot. The order in which predictors are entered into the model can be
interpreted as an indication of the relative predictive power of each predictor.

Since lambda(real) is not specified, lasso2 obtains the coefficient path for a default
list of λr values. The largest penalty level is 6858.99, in which case the model does

Charles River dummy variable (chas), nitric oxides concentration (parts per 10 million) (nox),
average number of rooms per dwelling (rm), proportion of owner-occupied units built prior to 1940
(age), weighted distances to five Boston employment centres (dis), index of accessibility to radial
highways (rad), full-value property-tax rate per $10,000 (tax), pupil-teacher ratio by town (pratio),
1000(Bk−0.63)2 where Bk is the proportion of blacks by town (b), % lower status of the population
(lstat), median value (medv).

32 lassopack

rm

chas

rad

lstat

ptratio

dis

-2
0

2
4

0 2 4 6 8
ln(Lambda)

(a) Coefficient path

20
40

60
80

10
0

0 2 4 6 8
lnlambda

MSPE - sd. error Mean-squared prediction error
MSPE + sd. error

(b) Mean squared prediction error

Figure 5: The left graph shows the coefficient path of the lasso for selected variables as
a function of ln(λ). The right graph shows the mean squared prediction error estimated
by cross-validation along with ± one standard error. The continuous and dashed vertical
lines correspond to lopt and lse, respectively.

only include the constant. Figure 5a shows the coefficient path of the lasso for selected
variables as a function of ln(λ).25

lasso2 supports model selection using information criteria. To this end, we use the
replay syntax in combination with the lic() option, which avoids that the full model
needs to be estimated again. The lic() option can also be specified in the first lasso2
call. In the following example, the replay syntax works similar to a post-estimation

25. Figure 5a was created using the following command:
. lasso2 medv crim-lstat, plotpath(lnlambda) plotopt(legend(off)) plotlabel

plotvar(rm chas rad lstat ptratio dis)

Ahrens, Hansen & Schaffer 33

command.

. lasso2, lic(ebic)

Use lambda=16.21799867742649 (selected by EBIC).

Selected Lasso Post-est OLS

crim -0.1028391 -0.1084133
zn 0.0433716 0.0458449

chas 2.6983218 2.7187164
nox -16.7712529 -17.3760262
rm 3.8375779 3.8015786
dis -1.4380341 -1.4927114
rad 0.2736598 0.2996085
tax -0.0106973 -0.0117780

ptratio -0.9373015 -0.9465246
b 0.0091412 0.0092908

lstat -0.5225124 -0.5225535

Partialled-out*

_cons 35.2705812 36.3411478

Two columns are shown in the output; one for the lasso estimator and one for post-
estimation OLS, which applies OLS to the model selected by the lasso.

34 lassopack

K-fold cross-validation with cvlasso

Next, we consider K-fold cross-validation.

. set seed 123

. cvlasso medv crim-lstat

K-fold cross-validation with 10 folds. Elastic net with alpha=1.
Fold 1 2 3 4 5 6 7 8 9 10

Lambda MSPE st. dev.

1 6858.9855 84.302552 5.7124688
2 6249.6522 77.022038 5.5626292
3 5694.4503 70.352232 5.3037622

(Output omitted.)
30 461.89442 27.034557 3.5821586
31 420.86099 26.695961 3.5812873
32 383.47286 26.365176 3.5552884 ^
33 349.40619 26.095202 3.5350981
34 318.36591 25.857426 3.51782

(Output omitted.)
62 23.529539 23.421433 3.1339813
63 21.43924 23.419627 3.131822
64 19.534637 23.418936 3.1298343 *
65 17.799234 23.419177 3.1280902
66 16.217999 23.419668 3.1266572

(Output omitted.)
98 .82616724 23.441147 3.1134727
99 .75277282 23.441321 3.1134124
100 .68589855 23.441481 3.1133575

* lopt = the lambda that minimizes MSPE.
Run model: cvlasso, lopt

^ lse = largest lambda for which MSPE is within one standard error of the minimal MSPE.
Run model: cvlasso, lse

The cvlasso output displays four columns: the index of λr (i.e., r), the value of λr,
the estimated mean squared prediction error, and the standard deviation of the mean
squared prediction error. The output indicates the value of λr that corresponds to the
lowest MSPE with an asterisk (*). We refer to this value as λ̂lopt. In addition, the

symbol ^ marks the largest value of λ that is within one standard error of λ̂lopt, which

we denote as λ̂lse.

The mean squared prediction is shown in Figure 5b, which was created using the
plotcv option. The graph shows the mean squared prediction error estimated by cross-
validation along with ± one standard error. The continuous and dashed vertical lines
correspond to λ̂lopt and λ̂lse, respectively.

To estimate the model corresponding to either λ̂lopt or λ̂lse, we use the lopt or lse
option, respectively. Similar to the lic() option of lasso2, lopt and lse can either
specified in the first cvlasso call or after estimation using the replay syntax as in this

Ahrens, Hansen & Schaffer 35

example:

. cvlasso, lopt
Estimate lasso with lambda=19.535 (lopt).

Selected Lasso Post-est OLS

crim -0.1016991 -0.1084133
zn 0.0428658 0.0458449

chas 2.6941511 2.7187164
nox -16.6475746 -17.3760262
rm 3.8449399 3.8015786
dis -1.4268524 -1.4927114
rad 0.2683532 0.2996085
tax -0.0104763 -0.0117780

ptratio -0.9354154 -0.9465246
b 0.0091106 0.0092908

lstat -0.5225040 -0.5225535

Partialled-out*

_cons 35.0516465 36.3411478

Rigorous penalization with rlasso

Lastly, we consider rlasso. The program rlasso runs an iterative algorithm to estimate
the penalty level and loadings. In contrast to lasso2 and cvlasso, it reports the
selected model directly.

. rlasso medv crim-lstat, supscore

Selected Lasso Post-est OLS

chas 0.6614716 3.3200252
rm 4.0224498 4.6522735

ptratio -0.6685443 -0.8582707
b 0.0036058 0.0101119

lstat -0.5009804 -0.5180622
_cons * 14.5986089 11.8535884

*Not penalized

Sup-score test H0: beta=0
CCK sup-score statistic 16.59 p-value= 0.000
CCK 5% critical value 3.18 (asympt bound)

The supscore option prompts the sup-score test of joint significance. The p-value is
obtained through multiplier bootstrap. The test statistic of 16.59 can also be compared
to the asymptotic 5% critical value (here 3.18).

7.2 Time-series data

A standard problem in time-series econometrics is to select an appropriate lag length. In
this sub-section, we show how lassopack can be employed for this purpose. We consider

36 lassopack

Stata’s built-in data set lutkepohl2.dta, which includes quarterly (log-differenced)
consumption (dln consump), investment (dln inv) and income (dln inc) series for
West Germany over the period 1960, Quarter 1 to 1982, Quarter 4. We demonstrate
both lag selection via information criteria and by h-step ahead rolling cross-validation.
We do not consider the rigorous penalization approach of rlasso due to the assumption
of independence, which seems too restrictive in the time-series context.

Information criteria

After importing the data, we run the most general model with up to 12 lags of dln consump,
dln inv and dln inc using lasso2 with lic(aicc) option.

. lasso2 dln_consump L(1/12).(dln_inv dln_inc dln_consump), lic(aicc) long

Knot ID Lambda s L1-Norm AICc R-sq Entered/removed

1 1 0.52531 1 0.00000 -714.43561 0.0000 Added _cons.

(Output omitted.)
11 0.20719 10 0.67593 -722.62355* 0.3078

(Output omitted.)
100 0.00005 37 4.92856 -665.31816 0.6719

*indicates minimum AICc.
Use lambda=.2071920751852477 (selected by AICC).

Selected Lasso Post-est OLS

dln_inv
L2. 0.0279780 0.0513004

dln_inc
L1. 0.0672531 0.1522251
L2. 0.1184912 0.1675746
L3. 0.0779780 0.1261940
L8. -0.1091959 -0.2481821

dln_consump
L2. 0.0259311 0.0935048
L3. 0.0765755 0.1405377
L10. 0.0833425 0.2320500
L11. -0.0891871 -0.1442602

Partialled-out*

_cons 0.0133270 0.0079518

The output consists of two parts. The second part of the output is prompted since
lic(aicc) is specified. lic(aicc) asks lasso2 to estimate the model selected by AICc,
which in this case corresponds to λ11 = 0.207.

h-step ahead rolling cross-validation

In the next step, we consider h-step ahead rolling cross-validation.

Ahrens, Hansen & Schaffer 37

.0
00

06
.0

00
08

.0
00

1
.0

00
12

.0
00

14
M

S
P

E

-10 -8 -6 -4 -2 0
ln(Lambda)

MSPE - sd. error Mean-squared prediction error
MSPE + sd. error

Figure 6: Cross-validation plot. The graph uses Stata’s built-in data set
lutkepohl2.dta and 1-step ahead rolling cross-validation with origin(50).

. cvlasso dln_consump L(1/12).(dln_inv dln_inc dln_consump), rolling
Rolling forecasting cross-validation with 1-step ahead forecasts. Elastic net with alpha=1.
Training from-to (validation point): 13-80 (81), 13-81 (82), 13-82 (83), 13-83 (84),
13-84 (85), 13-85 (86), 13-86 (87), 13-87 (88), 13-88 (89), 13-89 (> 90), 13-90 (91).

The output indicates how the data set is partitioned into training data and the
validation point. For example, the short-hand 13-80 (81) in the output above indi-
cates that observations 13 to 80 constitute the training data set in the first step of
cross-validation, and observation 81 is the validation point. The options fixedwindow,
h(integer) and origin(integer) can be used to control the partitioning of data into
training and validation data. h(integer) sets the parameter h. For example, h(2)

prompts 2-step ahead forecasts (the default is h(1)). fixedwindow ensures that the
training data set is of same size in each step. If origin(50) is specified, the first
training partition includes observations 13 to 50, as shown in the next example:

. cvlasso dln_consump L(1/12).(dln_inv dln_inc dln_consump), rolling origin(50) plotcv
Rolling forecasting cross-validation with 1-step ahead forecasts. Elastic net with alpha=1.
Training from-to (validation point): 13-50 (51), 13-51 (52), 13-52 (53), 13-53 (54),

(Output omitted.)
13-82 (83), 13-83 (84), 13-84 (85), 13-85 (86), 13-86 (87), 13-87 (88), 13-88 (89),
13-89 (90), 13-90 (91).

The option plotcv creates the graph of the estimated mean squared prediction in
Figure 6. To estimate the model corresponding to λ̂lse, we can as in the previous

38 lassopack

examples use the replay syntax:

. cvlasso, lse
Estimate lasso with lambda=.397 (lse).

Selected Lasso Post-est OLS

dln_inv
L2. 0.0071068 0.0481328

dln_inc
L2. 0.0558422 0.2083321
L3. 0.0253076 0.1479925

dln_consump
L3. 0.0260573 0.1079076
L11. -0.0299307 -0.1957719

Partialled-out*

_cons 0.0168736 0.0126810

We point out that care should be taken when setting the parameters of h-step
ahead rolling cross-validation. The default settings have no particular econometric
justification.

8 Monte Carlo Simulation

We have introduced three alternative approaches for setting the penalization parameters
in Sections 3-5. In this section, we present results of Monte Carlo simulations which
assess the performance of these approaches in terms of in-sample fit, out-of-sample
prediction, model selection and sparsity. To this end, we generate artificial data using
the process

yi = 1 +

p∑
j=1

βjxij + εi, εi ∼ N (0, σ2), i = 1, . . . , 2n, (20)

with n = 200. We report results for p = 100 and for the high-dimensional setting with
p = 220. The predictors xij are drawn from a multivariate normal distribution with
corr(xij , xir) = 0.9|j−r|. We vary the noise level σ between 0.5 and 5; specifically, we
consider σ = {0.5, 1, 2, 3, 5}. We define the parameters as βj = 1{j ≤ s} for j = 1, . . . , p
with s = 20, implying exact sparsity. This simple design allows us to gain insights into
the model selection performance in terms of false positive (the number of variables
falsely included) and false negative frequency (the number of variables falsely omitted)
when relevant and irrelevant regressors are correlated. All simulations use at least 1,000
iterations. We report additional Monte Carlo results in Appendix A, where we employ
a design in which coefficients alternate in sign.

Since the aim is to assess in-sample and out-of-sample performance, we generate 2n

Ahrens, Hansen & Schaffer 39

observations, and use the data i = 1, . . . , n as the estimation sample and the observations
i = n+ 1, . . . , 2n for assessing out-of-sample prediction performance. This allows us to
calculate the root mean squared error (RMSE) and root mean squared prediction error
(RMSPE) as

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi,n)2 and RMSPE =

√√√√ 1

n

2n∑
i=n+1

(yi − ŷi,n)2, (21)

where ŷi,n are the predictions from fitting the model to the first n observations.

Table 3 and 4 report results for the following estimation methods implemented in
lassopack: the lasso with λ selected by AIC, BIC, EBICξ and AICc (as implemented
in lasso2); the rigorous lasso and rigorous square-root lasso (implemented in rlasso),
both using the X-independent and X-dependent penalty choice; and lasso with 5-fold
cross-validation using the penalty level that minimizes the estimated mean squared
prediction error (implemented in cvlasso). In addition, we report post-estimation
OLS results.

For comparison, we also show results of stepwise regression (for p = 100 only) and the
oracle estimator. Stepwise regression starts from the full model and iteratively removes
regressors if the p-value is above a pre-defined threshold (10% in our case). Stepwise
regression is known to suffer from overfitting and pre-testing bias. However, it still serves
as a relevant reference point due to its connection with ad hoc model selection using
hypothesis testing and the general-to-specific approach. The oracle estimator is OLS
applied to the predictors included in the true model. Naturally, the oracle estimator
is expected to show the best performance, but is not feasible in practice since the true
model is not known.

We first summarize the main results for the case where p = 100; see Table 3. AIC
and stepwise regression exhibit the worst selection performance, with around 18-20
falsely included predictors on average. While AIC and stepwise regression achieve the
lowest RMSE (best in-sample fit), the out-of-sample prediction performance is among
the worst—a symptom of over-fitting. It is interesting to note that the RMSE of AIC
and stepwise regression are lower than the RMSE of the oracle estimator. The corrected
AIC improves upon the standard AIC in terms of bias and prediction performance.

Compared to AICc, the BIC-type information criteria show similar out-of-sample
prediction and better selection performance. While the EBIC performs only marginally
better than BIC in terms of false positives and bias, we expect the relative performance
of BIC and EBIC to shift in favour of EBIC as p increases relative to n. 5-fold CV
with the lasso behaves very similarly to the AICc across all measures. The rigorous
lasso, rigorous square-root lasso and EBIC exhibit overall the lowest false positive rates,
whereas rigorous methods yield slightly higher RMSE and RMSPE than IC and CV-
based methods. However, post-estimation OLS (shown in parentheses) applied to the
rigorous methods improves upon first-step results, indicating that post-estimation OLS
successfully addresses the shrinkage bias from rigorous penalization. The performance
difference between X-dependent and X-independent penalty choices are minimal overall.

40 lassopack

σ lasso2 cvlasso rlasso Step Oracle

AIC AICc BIC EBICξ lasso
√

lasso wise
xdep xdep

ŝ

.5 38.14 24.57 21.47 20.75 25.54 20.19 20.22 20.23 20.27 37.26 –
1 38.62 24.50 21.50 20.73 25.56 20.27 20.30 20.25 20.27 37.23 –
2 38.22 24.37 20.98 20.26 25.51 19.78 19.83 19.68 19.74 33.27 –
3 36.94 23.17 19.69 18.83 24.13 18.32 18.39 18.05 18.17 30.15 –
5 33.35 20.46 16.52 15.52 21.23 15.13 15.25 14.70 14.86 27.90 –

F
a
ls

e
p

o
s. .5 18.14 4.57 1.47 0.75 5.54 0.19 0.22 0.23 0.27 18.26 –

1 18.62 4.50 1.50 0.73 5.56 0.28 0.30 0.25 0.28 18.53 –
2 18.64 4.75 1.38 0.71 5.86 0.28 0.32 0.22 0.25 20.17 –
3 18.73 4.86 1.48 0.75 5.71 0.32 0.35 0.26 0.29 20.14 –
5 17.87 5.03 1.29 0.58 5.58 0.25 0.28 0.19 0.22 20.58 –

F
a
ls

e
n
e
g
. .5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 –

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 –
2 0.42 0.38 0.41 0.45 0.35 0.50 0.48 0.55 0.52 5.90 –
3 1.78 1.68 1.79 1.92 1.58 2.00 1.96 2.20 2.12 8.99 –
5 4.52 4.57 4.77 5.06 4.35 5.12 5.03 5.50 5.36 11.67 –

B
ia

s

.5 3.139
(4.155)

2.002
(2.208)

1.910
(1.952)

1.898
(1.894)

1.999
(2.265)

2.074
(1.835)

2.041
(1.838)

1.990
(1.842)

1.972
(1.846)

5.529
(–)

1.803
(–)

1 6.421
(8.459)

3.974
(4.374)

3.798
(3.891)

3.771
(3.756)

3.983
(4.522)

3.964
(3.670)

3.931
(3.674)

3.958
(3.663)

3.922
(3.667)

11.379
(–)

3.578
(–)

2 12.510
(16.563)

7.836
(8.741)

7.412
(7.601)

7.370
(7.402)

7.847
(9.015)

7.607
(7.277)

7.569
(7.281)

7.670
(7.283)

7.609
(7.272)

28.241
(–)

7.117
(–)

3 18.294
(24.274)

11.093
(12.427)

10.461
(10.913)

10.377
(10.641)

11.134
(12.828)

10.501
(10.542)

10.470
(10.530)

10.570
(10.633)

10.518
(10.572)

41.475
(–)

10.679
(–)

5 26.965
(36.638)

15.878
(18.423)

14.529
(15.558)

14.371
(15.326)

15.666
(18.617)

14.292
(15.337)

14.277
(15.271)

14.343
(15.582)

14.313
(15.442)

63.995
(–)

18.040
(–)

R
M

S
E

.5 0.433
(0.421)

0.466
(0.456)

0.479
(0.467)

0.484
(0.470)

0.466
(0.454)

0.546
(0.473)

0.536
(0.473)

0.522
(0.473)

0.517
(0.473)

0.403
(–)

0.474
(–)

1 0.862
(0.838)

0.930
(0.909)

0.955
(0.931)

0.967
(0.938)

0.931
(0.905)

1.041
(0.943)

1.031
(0.943)

1.042
(0.943)

1.030
(0.943)

0.803
(–)

0.945
(–)

2 1.724
(1.675)

1.856
(1.815)

1.912
(1.863)

1.935
(1.877)

1.859
(1.807)

2.057
(1.887)

2.042
(1.887)

2.082
(1.888)

2.059
(1.888)

1.620
(–)

1.891
(–)

3 2.589
(2.518)

2.785
(2.725)

2.871
(2.796)

2.914
(2.818)

2.791
(2.716)

3.080
(2.833)

3.059
(2.832)

3.123
(2.836)

3.089
(2.834)

2.437
(–)

2.836
(–)

5 4.356
(4.236)

4.659
(4.554)

4.819
(4.690)

4.904
(4.727)

4.678
(4.551)

5.146
(4.749)

5.113
(4.747)

5.220
(4.756)

5.165
(4.752)

4.054
(–)

4.730
(–)

R
M

S
P

E

.5 0.558
(0.589)

0.539
(0.548)

0.540
(0.536)

0.543
(0.533)

0.539
(0.550)

0.605
(0.529)

0.594
(0.529)

0.580
(0.529)

0.574
(0.529)

0.623
(–)

0.528
(–)

1 1.120
(1.181)

1.078
(1.096)

1.081
(1.073)

1.087
(1.065)

1.078
(1.100)

1.158
(1.060)

1.148
(1.060)

1.159
(1.059)

1.147
(1.060)

1.259
(–)

1.057
(–)

2 2.231
(2.355)

2.149
(2.189)

2.155
(2.139)

2.168
(2.125)

2.149
(2.199)

2.280
(2.115)

2.265
(2.115)

2.305
(2.115)

2.282
(2.114)

2.621
(–)

2.110
(–)

3 3.325
(3.509)

3.201
(3.263)

3.211
(3.191)

3.235
(3.170)

3.203
(3.274)

3.384
(3.158)

3.364
(3.158)

3.426
(3.160)

3.393
(3.159)

3.888
(–)

3.161
(–)

5 5.485
(5.781)

5.293
(5.407)

5.307
(5.271)

5.361
(5.241)

5.289
(5.412)

5.571
(5.223)

5.540
(5.224)

5.642
(5.227)

5.590
(5.225)

6.372
(–)

5.280
(–)

Notes: ŝ denotes the number of selected variables excluding the constant. ‘False pos.’ and ‘False neg.’ denote
the number of falsely included and falsely excluded variables, respectively. ‘Bias’ is the `1-norm bias defined

as
∑
j |β̂j − βj | for j = 1, . . . , p. ‘RMSE’ is the root mean squared error (a measure of in-sample fit) and

‘RMSPE’ is the root mean squared prediction error (a measure of out-of-sample prediction performance); see
equation (21). Post-estimation OLS results are shown in parentheses if applicable. cvlasso results are for
5-fold cross-validation. The oracle estimator applies OLS to all predictors in the true model (i.e., variables 1
to s). Thus, the false positive and false negative frequency is zero by design for the oracle. The number of
replications is 1,000.

Table 3: Monte Carlo simulation for an exactly sparse parameter vector with p = 100
and n = 200.

Ahrens, Hansen & Schaffer 41

σ lasso2 cvlasso rlasso Oracle

AIC AICc BIC EBICξ lasso
√

lasso
xdep xdep

ŝ

.5 164.38 26.29 21.58 20.58 27.16 20.15 20.17 20.19 20.22 –
1 178.68 26.03 21.53 20.59 27.05 20.24 20.26 20.21 20.24 –
2 187.55 25.95 31.54 20.14 26.61 19.83 19.87 19.70 19.76 –
3 191.44 24.64 92.26 18.48 25.65 18.14 18.20 17.88 17.98 –
5 195.18 23.37 177.00 15.21 23.02 15.05 15.14 14.57 14.73 –

F
a
ls

e
p

o
s. .5 144.38 6.29 1.58 0.58 7.16 0.15 0.17 0.19 0.22 –

1 158.91 6.03 1.54 0.59 7.06 0.24 0.26 0.21 0.24 –
2 169.13 6.34 12.00 0.57 6.97 0.29 0.31 0.22 0.26 –
3 173.49 6.37 74.26 0.51 7.30 0.22 0.23 0.16 0.20 –
5 177.29 7.90 159.41 0.47 7.40 0.21 0.25 0.15 0.18 –

F
a
ls

e
n
e
g
. .5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 –

1 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 –
2 1.58 0.39 0.46 0.43 0.37 0.46 0.45 0.53 0.50 –
3 2.05 1.74 2.00 2.04 1.65 2.07 2.04 2.28 2.21 –
5 2.12 4.53 2.41 5.26 4.38 5.16 5.11 5.58 5.45 –

B
ia

s

.5 19.205
(30.730)

2.019
(2.338)

1.913
(1.975)

1.904
(1.876)

2.014
(2.388)

2.099
(1.821)

2.070
(1.825)

2.001
(1.829)

1.982
(1.832)

1.793
(–)

1 53.073
(79.744)

4.029
(4.663)

3.827
(3.960)

3.807
(3.763)

4.030
(4.775)

4.007
(3.673)

3.978
(3.678)

4.002
(3.665)

3.965
(3.673)

3.590
(–)

2 133.674
(191.444)

7.980
(9.239)

14.932
(17.226)

7.512
(7.470)

7.901
(9.320)

7.751
(7.376)

7.716
(7.374)

7.827
(7.382)

7.766
(7.375)

7.190
(–)

3 220.488
(318.761)

11.341
(13.494)

95.127
(123.928)

10.370
(10.610)

11.071
(13.410)

10.539
(10.519)

10.508
(10.499)

10.629
(10.631)

10.571
(10.587)

10.813
(–)

5 409.487
(871.303)

18.294
(68.788)

365.813
(771.102)

14.339
(15.526)

15.709
(19.627)

14.299
(15.372)

14.283
(15.325)

14.367
(15.635)

14.331
(15.503)

18.060
(–)

R
M

S
E

.5 0.150
(0.105)

0.460
(0.441)

0.480
(0.461)

0.488
(0.467)

0.462
(0.439)

0.553
(0.471)

0.544
(0.470)

0.525
(0.470)

0.519
(0.470)

0.471
(–)

1 0.207
(0.134)

0.927
(0.888)

0.963
(0.926)

0.980
(0.939)

0.929
(0.884)

1.054
(0.944)

1.044
(0.944)

1.055
(0.945)

1.043
(0.944)

0.946
(–)

2 0.277
(0.157)

1.848
(1.770)

1.816
(1.739)

1.963
(1.876)

1.857
(1.767)

2.075
(1.885)

2.061
(1.885)

2.106
(1.887)

2.082
(1.886)

1.890
(–)

3 0.314
(0.150)

2.772
(2.656)

1.770
(1.646)

2.952
(2.817)

2.780
(2.643)

3.103
(2.832)

3.084
(2.832)

3.156
(2.835)

3.122
(2.834)

2.831
(–)

5 0.357
(0.122)

4.592
(4.395)

0.788
(0.567)

4.964
(4.714)

4.641
(4.415)

5.170
(4.735)

5.140
(4.733)

5.260
(4.743)

5.203
(4.739)

4.713
(–)

R
M

S
P

E

.5 0.875
(1.165)

0.541
(0.559)

0.544
(0.539)

0.549
(0.532)

0.542
(0.561)

0.614
(0.528)

0.604
(0.528)

0.584
(0.528)

0.578
(0.528)

0.527
(–)

1 2.079
(2.773)

1.083
(1.118)

1.088
(1.078)

1.097
(1.064)

1.084
(1.122)

1.169
(1.058)

1.159
(1.058)

1.170
(1.057)

1.157
(1.058)

1.056
(–)

2 4.765
(6.304)

2.159
(2.228)

2.320
(2.352)

2.190
(2.121)

2.158
(2.230)

2.296
(2.114)

2.282
(2.114)

2.327
(2.114)

2.303
(2.114)

2.109
(–)

3 7.683
(10.352)

3.232
(3.344)

5.010
(5.749)

3.280
(3.180)

3.227
(3.349)

3.414
(3.167)

3.396
(3.166)

3.466
(3.169)

3.432
(3.168)

3.174
(–)

5 13.782
(27.099)

5.369
(6.988)

12.799
(24.532)

5.422
(5.249)

5.315
(5.515)

5.593
(5.227)

5.565
(5.227)

5.678
(5.231)

5.625
(5.229)

5.285
(–)

Stepwise regression is not reported, as it is infeasible if p > n. See also notes in Table 3.

Table 4: Monte Carlo simulation for an exactly sparse parameter vector with p = 220
and n = 200.

42 lassopack

Method Call Seconds
p = 100 p = 220

Rigorous lasso rlasso y x 0.09 0.24
with X-dependent penalty rlasso y x, xdep 5.92 12.73

Rigorous square-root lasso rlasso y x, sqrt 0.39 0.74
with X-dependent penalty rlasso y x, sqrt xdep 3.34 7.03

Cross-validation cvlasso y x, nfolds(5) lopt 23.50 293.93
Information criteria lasso2 y x 3.06 44.06
Stepwise regression stepwise, pr(.1): reg y x 4.65 –

PC specification: Intel Core i5-6500 with 16GB RAM, Windows 7.

Table 5: Run time with p = 100 and p = 220.

We also present simulation results for the high-dimensional setting in Table 4. Specif-
ically, we consider p = 220 instead of p = 100, while keeping the estimation sample size
constant at n = 200. With on average between 164 and 195 included predictors, it is not
surprising that the AIC suffers from overfitting. The RMSPE of the AIC exceeds the
RMSE by a factor of 5 or more. In comparison, AICc and 5-fold cross-validation perform
better as model selectors, with a false positive frequency between 6 and 8 predictors.

Despite the large number of predictors to choose from, EBIC and rigorous methods
perform generally well in recovering the true structure. The false positive frequency is
below 1 across all noise levels, and the false negative rate is zero if σ is 1 or smaller.
While the BIC performs similarly to the EBIC for σ = 0.5 and σ = 1, its performance
resembles the poor performance of AIC for larger noise levels. The Monte Carlo results
in Table 4 highlight that EBIC and rigorous methods are well-suited for the high-
dimensional setting where p > n, while AIC and BIC are not appropriate.

The computational costs of each method are reported in Table 5. rlasso with X-
independent penalty is the fastest method considered. The run-time of lasso and square-
root lasso with p = 100 is 0.1s and 0.4s, respectively. The computational cost increased
only slightly if p is increased to p = 220. rlasso with X-dependent penalty simulates
the distribution of the maximum value of the score vector. This process increases the
computational cost of the rigorous lasso to 5.9s for p = 100 (12.7s for p = 220). With an
average run-time of 3.1 seconds, lasso2 is slightly faster than rlasso with X-dependent
penalty if p = 100, but slower in the high-dimensional set-up. Unsurprisingly, K-fold
cross-validation is the slowest method as it requires the model to be estimated K times
for a range of tuning parameters.

Ahrens, Hansen & Schaffer 43

9 Technical notes

9.1 Pathwise coordinate descent algorithms

lassopack implements the elastic net and square-root lasso using coordinate descent
algorithms. The algorithm—then referred to as “shooting”—was first proposed by Fu
(1998) for the lasso, and by Van der Kooij (2007) for the elastic net. Belloni et al. (2011)
and Belloni et al. (2014b) employ the coordinate descent for the square-root lasso, and
have kindly provided Matlab code.

Coordinate descent algorithms repeatedly cycle over predictors j = 1, ..., p and up-
date single coefficient estimates until convergence. Suppose the predictors are centered,
standardized to have unit variance and the penalty loadings are ψj = 1 for all j. In that
case, the update for coefficient j is obtained using univariate regression of the current
partial residuals (i.e., excluding the contribution of predictor j) against predictor j.
More precisely, the update for the elastic net is calculated as

β̃j ←
S
(∑n

i=1 xij(yi − ỹ
(j)
i), λα

)
1 + λ(1− α)

.

where β̃j denotes the current coefficient estimate, ỹ
(j)
i =

∑
` 6=j xi`β̃` is the predicted

value without the contribution of predictor j. Thus, since the predictors are standard-

ized,
∑
i xij(yi − ỹ

(j)
i) is the OLS estimate of regressing predictor j against the partial

residual (yi − ỹ(j)
i). The function S(a, b), referred to as soft-tresholding operator,

S(a, b) =

 a− b if a > 0 and b < |a|
a+ b if a < 0 and b < |a|
0 if b > |a|

sets some of the coefficients equal to zero. The coordinate descent algorithm is spelled
out for the square-root lasso in Belloni et al. (2014b, Supplementary Material).26

The algorithm requires an initial beta estimate for which the Ridge estimate is used.
If the coefficient path is obtained for a list of λ values, lasso2 starts from the largest λ
value and uses previous estimates as initial values (‘warm starts’). See Friedman et al.
(2007, 2010), and references therein, for further information.

9.2 Standardization

Since penalized regression methods are not invariant to scale, it is common practice to
standardize the regressors xij such that

∑
i x

2
ij = 1 before computing the estimation

results and then to un-standardize the coefficients after estimation. We refer to this
approach as pre-estimation standardization. An alternative is to standardize on the fly
by adapting the penalty loadings. The results are equivalent in theory. In the case

26. Alexandre Belloni provides MATLAB code that implements the pathwise coordinate descent for
the square-root lasso, which we have used for comparison.

44 lassopack

of the lasso, setting ψj = (
∑
i x

2
ij)

1/2 yields the same results as dividing the data by∑
i x

2
ij before estimation. Standardization on-the-fly is the default in lassopack as it

tends to be faster. Pre-estimation standardization can be employed using the prestd

option. The prestd option can lead to improved numerical precision or more stable
results in the case of difficult problems; the cost is (a typically small) computation
time required to standardize the data. The unitloadings option can be used if the
researcher does not want to standardize data. In case the pre-estimation-standardization
and standardization-on-the-fly results differ, the user can compare the values of the
penalized minimized objective function saved in e(pmse) (the penalized MSE, for the
elastic net) or e(prmse) (the penalized root MSE, for the sqrt-lasso).

9.3 Zero-penalization and partialling out

In many applications, theory suggests that specific predictors have an effect on the out-
come variable. Hence, it might be desirable to always include these predictors in the
model in order to improve finite sample performance. Typical examples are the inter-
cept, a time trend or any other predictor for which the researcher has prior knowledge.
lassopack offers two approaches for such situations:

• Zero-penalization: The notpen(varlist) option of lasso2 and cvlasso allow one
to set the penalty for specific predictors to zero, i.e., ψ` = 0 for some ` ∈ {1, . . . , p}.
Those variables are not subject to penalization and will always be included in the
model. rlasso supports zero-penalization through the pnotpen(varlist) option
which accommodates zero-penalization in the rigorous lasso penalty loadings; see
below.

• Partialling out: We can also apply the penalized regression method to the data
after the effect of certain regressors has been partialled out. Partialling out is
supported by lasso2, cvlasso and rlasso using partial(varlist) option. The
penalized regression does not yield estimates of the partialled out coefficients
directly. Instead, lassopack recovers the partialled-out coefficients by post-
estimation OLS.

It turns out that the two methods—zero-penalization and partialling out—are nu-
merically equivalent. Formally, suppose we do not want to subject predictors ` with
p̄ > ` ≥ p to penalization. The zero-penalization and partialled-out lasso estimates are
defined respectively as

β̂(λ) = arg min
1

n

n∑
i=1

yi − p̄∑
j=1

xijβj −
p∑

`=p̄+1

xi`β`

2

+
λ

n

p̄∑
j=1

ψj |βj | (22)

and β̃(λ) = arg min
1

n

n∑
i=1

ỹi − p̄∑
j=1

x̃ijβj

2

+
λ

n

p̄∑
j=1

ψj |βj | (23)

where ỹi = yi −
∑p
`=p̄+1 xi`δ̂y,` and x̃ij = xij −

∑p
`=p̄+1 xi`δ̂j,` are the residuals of

regressing y and the penalized regressors against the set of unpenalized regressors. The

Ahrens, Hansen & Schaffer 45

equivalence states that β̂j = β̃j for all j = 1, . . . , p̄. The result is spelled out in Yamada
(2017) for the lasso and ridge, but holds for the elastic net more generally.

Either the partial(varlist) option or the notpen(varlist) option can be used for
variables that should not be penalized by the lasso. The options are equivalent in
theory (see above), but numerical results can differ in practice because of the different
calculation methods used. Partialling-out variables can lead to improved numerical
precision or more stable results in the case of difficult problems compared to zero-
penalization, but may be slower in terms of computation time.

The estimation of penalty loadings in the rigorous lasso introduces an additional
complication that necessitates the rlasso-specific option pnotppen(varlist). The the-
ory for the rlasso penalty loadings is based on the penalized regressors after partialling
out the unpenalized variables. The pnotpen(varlist) guarantees that the penalty load-
ings for the penalized regressors are the same as if the unpenalized regressors had instead
first been partialled-out.

The fe fixed-effects option is equivalent to (but computationally faster and more ac-
curate than) specifying unpenalized panel-specific dummies. The fixed-effects (‘within’)
transformation also removes the constant as well as the fixed effects. The panel vari-
able used by the fe option is the panel variable set by xtset. If installed, the within
transformation uses the fast ftools package by Correia (2016).

The prestd option, as well as the notpen(varlist) and pnotpen(varlist) options,
can be used as simple checks for numerical stability by comparing results that should
be equivalent in theory. The values of the penalized minimized objective function saved
in e(pmse) for the elastic net and e(prmse) for the square-root lasso may also be used
for comparison.

9.4 Treatment of the constant

By default the constant, if present, is not penalized; this is equivalent to mean-centering
prior to estimation. The partial(varlist) option also partials out the constant (if
present). To partial out the constant only, we can specify partial(cons). Both
partial(varlist) and fe mean-center the data; the noconstant option is redundant
in this case and may not be specified with these options. If the noconstant option is
specified an intercept is not included in the model, but the estimated penalty loadings
are still estimated using mean-centered regressors (see the center option).

10 Acknowledgments

We thank Alexandre Belloni, who has provided MATLAB code for the square-root lasso,
and Sergio Correia for supporting us with the use of ftools. We also thank Christopher
F Baum, Jan Ditzen, Martin Spindler, as well as participants of the 2018 London Stata
Conference and the 2018 Swiss Stata Users Group meeting for many helpful comments
and suggestions. All remaining errors are our own.

46 lassopack

11 References
Ahrens, A., C. B. Hansen, and M. E. Schaffer. 2018. PDSLASSO: Stata mod-

ule for post-selection and post-regularization OLS or IV estimation and infer-
ence. Statistical Software Components, Boston College Department of Economics.
https://ideas.repec.org/c/boc/bocode/s458459.html.

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions
on Automatic Control 19(6): 716–723.

Arlot, S., and A. Celisse. 2010. A survey of cross-validation procedures for model
selection. Statist. Surv. 4: 40–79. https://doi.org/10.1214/09-SS054.

Athey, S. 2017. The Impact of Machine Learning on Economics.
https://www.nber.org/chapters/c14009.pdf.

Belloni, A., D. Chen, V. Chernozhukov, and C. Hansen. 2012. Sparse Models and Meth-
ods for Optimal Instruments With an Application to Eminent Domain. Econometrica
80(6): 2369–2429. http://dx.doi.org/10.3982/ECTA9626.

Belloni, A., and V. Chernozhukov. 2011. High Dimensional Sparse Econometric Models:
An Introduction. In Inverse Problems and High-Dimensional Estimation SE - 3, ed.
P. Alquier, E. Gautier, and G. Stoltz, 121–156. Lecture Notes in Statistics, Springer
Berlin Heidelberg.

. 2013. Least squares after model selection in high-dimensional sparse models.
Bernoulli 19(2): 521–547. http://dx.doi.org/10.3150/11-BEJ410.

Belloni, A., V. Chernozhukov, and C. Hansen. 2014a. Inference on treatment effects
after selection among high-dimensional controls. Review of Economic Studies 81:
608–650. https://doi.org/10.1093/restud/rdt044.

Belloni, A., V. Chernozhukov, C. Hansen, and D. Kozbur. 2016. Inference in High
Dimensional Panel Models with an Application to Gun Control. Journal of Business &
Economic Statistics 34(4): 590–605. https://doi.org/10.1080/07350015.2015.1102733.

Belloni, A., V. Chernozhukov, and L. Wang. 2011. Square-root lasso: pivotal re-
covery of sparse signals via conic programming. Biometrika 98(4): 791–806.
https://doi.org/10.1093/biomet/asr043.

. 2014b. Pivotal estimation via square-root Lasso in nonparametric regression.
The Annals of Statistics 42(2): 757–788. http://dx.doi.org/10.1214/14-AOS1204.

Bergmeir, C., R. J. Hyndman, and B. Koo. 2018. A note on the validity of cross-
validation for evaluating autoregressive time series prediction. Computational Statis-
tics & Data Analysis 120: 70–83. https://doi.org/10.1016/j.csda.2017.11.003.

Bickel, P. J., Y. Ritov, and A. B. Tsybakov. 2009. Simultaneous Analysis
of Lasso and Dantzig Selector. The Annals of Statistics 37(4): 1705–1732.
http:/doi.org/10.1214/08-AOS620.

Ahrens, Hansen & Schaffer 47

Buhlmann, P. 2013. Statistical significance in high-dimensional linear models. Bernoulli
19(4): 1212–1242. https://doi.org/10.3150/12-BEJSP11.

Bühlmann, P., and S. Van de Geer. 2011. Statistics for High-Dimensional Data. Berlin,
Heidelberg: Springer-Verlag.

Burman, P., E. Chow, and D. Nolan. 1994. A cross-validatory method for dependent
data. Biometrika 81(2): 351–358. http://dx.doi.org/10.1093/biomet/81.2.351.

Carrasco, M. 2012. A regularization approach to the many instruments problem. Journal
of Econometrics 170: 383–398. https://doi.org/10.1016/j.jeconom.2012.05.012.

Chen, J., and Z. Chen. 2008. Extended Bayesian information criteria for
model selection with large model spaces. Biometrika 95(3): 759–771. +
http://dx.doi.org/10.1093/biomet/asn034.

Chernozhukov, V., D. Chetverikov, and K. Kato. 2013. Gaussian approximations and
multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann.
Statist. 41(6): 2786–2819. https://doi.org/10.1214/13-AOS1161.

Chernozhukov, V., C. Hansen, and M. Spindler. 2015. Post-Selection
and Post-Regularization Inference in Linear Models with Many Con-
trols and Instruments. American Economic Review 105(5): 486–490.
https://doi.org/10.1257/aer.p20151022.

. 2016. High-Dimensional Metrics in R. arXiv preprint arXiv:1603.01700 .

Correia, S. 2016. FTOOLS: Stata module to provide alternatives to common Stata com-
mands optimized for large datasets. Statistical Software Components, Boston College
Department of Economics. https://ideas.repec.org/c/boc/bocode/s458213.html.

Dicker, L. H. 2016. Ridge regression and asymptotic minimax estimation over spheres
of growing dimension. Bernoulli 22(1): 1–37. https://doi.org/10.3150/14-BEJ609.

Dobriban, E., and S. Wager. 2018. High-dimensional asymptotics of prediction: Ridge
regression and classification. Annals of Statistics 46(1): 247–279.

Frank, l. E., and J. H. Friedman. 1993. A Statistical View of Some Chemometrics
Regression Tools. Technometrics 35(2): 109–135.

Friedman, J., T. Hastie, H. Höfling, and R. Tibshirani. 2007. Pathwise co-
ordinate optimization. The Annals of Applied Statistics 1(2): 302–332.
http://projecteuclid.org/euclid.aoas/1196438020.

Friedman, J., T. Hastie, and R. Tibshirani. 2010. Regularization Paths for Generalized
Linear Models via Coordinate Descent. Journal of Statistical Software 33(1): 1–22.
http://www.jstatsoft.org/v33/i01/.

Fu, W. J. 1998. Penalized Regressions: The Bridge Versus the Lasso. Journal of
Computational and Graphical Statistics 7(3): 397–416.

48 lassopack

Geisser, S. 1975. The Predictive Sample Reuse Method with Applications. Journal of
the American Statistical Association 70(350): 320–328.

Hansen, C., and D. Kozbur. 2014. Instrumental variables estimation with many weak
instruments using regularized JIVE. Journal of Econometrics 182(2): 290–308.

Hastie, T., R. Tibshirani, and J. Friedman. 2009. The Elements of Statistical Learning.
2nd ed. New York: Springer-Verlag.

Hastie, T., R. Tibshirani, and M. J. Wainwright. 2015. Statistical Learning with Spar-
sity: The Lasso and Generalizations. Monographs on Statistics & Applied Probability,
Boca Raton: CRC Press, Taylor & Francis.

Hoerl, A. E., and R. W. Kennard. 1970. Ridge Regression: Biased Estimation for
Nonorthogonal Problems. Technometrics 12(1): 55–67.

Hsu, D., S. M. Kakade, and T. Zhang. 2014. Random Design Analysis of
Ridge Regression. Foundations of Computational Mathematics 14(3): 569–600.
https://doi.org/10.1007/s10208-014-9192-1.

Huang, J., S. Ma, and C.-H. Zhang. 2008. Adaptive Lasso for Sparse
High-Dimensional Regression Models. Statistica Sinica 18(4): 1603–1618.
http://www.jstor.org/stable/24308572.

Hurvich, C. M., and C.-L. Tsai. 1989. Regression and time series model selection in small
samples. Biometrika 76(2): 297–307. http://dx.doi.org/10.1093/biomet/76.2.297.

Hyndman, Rob, J., and G. Athanasopoulos. 2018. Forecasting: Principles and Practice.
2nd ed. https://otexts.com/fpp2/.

Jing, B.-Y., Q.-M. Shao, and Q. Wang. 2003. Self-normalized Cramér-type large devia-
tions for independent random variables. The Annals of Probability 31(4): 2167–2215.
http://dx.doi.org/10.1214/aop/1068646382.

Kleinberg, J., H. Lakkaraju, J. Leskovec, J. Ludwig, and S. Mullainathan. 2018. Human
Decisions and Machine Predictions*. The Quarterly Journal of Economics 133(1):
237–293. http://dx.doi.org/10.1093/qje/qjx032.

Lockhart, R., J. Taylor, R. J. Tibshirani, and R. Tibshirani. 2014. A Significance Test for
the Lasso. Annals of Statistics 42(2): 413–468. https://doi.org/10.1214/13-AOS1175.

Meinshausen, N., and P. Bühlmann. 2006. High-dimensional graphs and vari-
able selection with the Lasso. The Annals of Statistics 34(3): 1436–1462.
https://doi.org/10.1214/009053606000000281.

Meinshausen, N., L. Meier, and P. Bühlmann. 2009. p-Values for High-Dimensional
Regression. Journal of the American Statistical Association 104(488): 1671–1681.

Mullainathan, S., and J. Spiess. 2017. Machine Learning: An Applied
Econometric Approach. Journal of Economic Perspectives 31(2): 87–106.
http://www.aeaweb.org/articles?id=10.1257/jep.31.2.87.

Ahrens, Hansen & Schaffer 49

Schwarz, G. 1978. Estimating the Dimension of a Model. The Annals of Statistics 6(2):
461–464.

Shao, J. 1993. Linear Model Selection by Cross-Validation. Journal of the American
Statistical Association 88(422): 486–494. http://www.jstor.org/stable/2290328.

. 1997. An asymptotic theory for linear model selection. Statistica Sinica 7:
221–264.

Stone, M. 1977. An Asymptotic Equivalence of Choice of Model by Cross-Validation
and Akaike’s Criterion. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 39(1): 44–47. https://www.jstor.org/stable/2984877.

Sugiura, N. 1978. Further analysts of the data by akaike’ s information criterion and the
finite corrections. Communications in Statistics - Theory and Methods 7(1): 13–26.
https://doi.org/10.1080/03610927808827599.

Tibshirani, R. 1996. Regression Shrinkage and Selection via the Lasso. Jour-
nal of the Royal Statistical Society. Series B (Methodological) 58(1): 267–288.
http://www.jstor.org/stable/2346178.

Tikhonov, A. N. 1963. On the solution of ill-posed problems and the method of regular-
ization. In Doklady Akademii Nauk, vol. 151, 501–504. Russian Academy of Sciences.

Varian, H. R. 2014. Big Data: New Tricks for Econometrics. The Journal of Economic
Perspectives 28(2): pp. 3–27. http://www.jstor.org/stable/23723482.

Wasserman, L., and K. Roeder. 2009. High-dimensional variable selection. Annals of
Statistics 37(5A): 2178–2201. http://dx.doi.org/10.1214/08-AOS646.

Weilenmann, B., I. Seidl, and T. Schulz. 2017. The socio-economic determinants of
urban sprawl between 1980 and 2010 in Switzerland. Landscape and Urban Planning
157: 468–482.

Yamada, H. 2017. The FrischWaughLovell theorem for the lasso and the ridge re-
gression. Communications in Statistics - Theory and Methods 46(21): 10897–10902.
http://dx.doi.org/10.1080/03610926.2016.1252403.

Yang, Y. 2005. Can the strengths of AIC and BIC be shared? A conflict between model
indentification and regression estimation. Biometrika 92(4): 937–950.

. 2006. Comparing learning methods for classification. Statistica Sinica 16(2):
635–657. https://www.jstor.org/stable/24307562.

Zhang, Y., R. Li, and C.-L. Tsai. 2010. Regularization Parameter Selections via General-
ized Information Criterion. Journal of the American Statistical Association 105(489):
312–323. https://doi.org/10.1198/jasa.2009.tm08013.

Zhao, P., and B. Yu. 2006. On Model Selection Consistency of
Lasso. Journal of Machine Learning Research 7: 2541–2563.
http://dl.acm.org/citation.cfm?id=1248547.1248637.

50 lassopack

Zou, H. 2006. The Adaptive Lasso and Its Oracle Properties. Journal of the American
Statistical Association 101(476): 1418–1429.

Zou, H., and T. Hastie. 2005. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society. Series B: Statistical Methodology 67(2):
301–320.

Zou, H., T. Hastie, and R. Tibshirani. 2007. On the “degrees of freedom” of the lasso.
Ann. Statist. 35(5): 2173–2192. https://doi.org/10.1214/009053607000000127.

Zou, H., and H. H. Zhang. 2009. On the adaptive elastic-net with a diverging number
of parameters. Ann. Statist. 37(4): 1733–1751. https://doi.org/10.1214/08-AOS625.

About the authors

Achim Ahrens is Post-doctoral Research Fellow at The Economic and Social Research Institute
in Dublin, Ireland.

Mark E. Schaffer is Professor of Econonomics in the School of Social Sciences at Heriot-Watt
University, Edinburgh, UK, and a Research Fellow at the Centre for Economic Policy Research
(CEPR), London and the Institute for the Study of Labour (IZA), Bonn.

Christian B. Hansen is the Wallace W. Booth Professor of Econometrics and Statistics at the

University of Chicago Booth School of Business.

Ahrens, Hansen & Schaffer 51

A Additional Monte Carlo results

In this supplementary section, we consider an additional design. Instead of defining βj
as either 0 or +1, we let the non-zero coefficients alternate between +1 and -1. That
is, we define the sparse parameter vector as βj = (−1)j .1{j ≤ s} for j = 1, . . . , p with
s = 20. All remaining parameters are as in Section 8, and we consider p = 100.

σ lasso2 cvlasso rlasso Step Oracle

AIC AICc BIC EBICξ lasso
√

lasso wise
xdep xdep

ŝ

.5 77.92 57.07 51.41 4.74 65.90 2.34 2.44 2.03 2.19 37.31 –
1 77.80 51.69 3.90 1.88 60.95 1.65 1.83 1.26 1.51 37.30 –
2 56.31 11.76 1.21 0.28 12.12 0.31 0.41 0.20 0.32 31.68 –
3 26.70 6.40 0.35 0.05 5.28 0.06 0.09 0.04 0.06 27.79 –
5 15.06 4.02 0.12 0.01 3.23 0.01 0.03 0.00 0.02 25.03 –

F
a
ls

e
p

o
s. .5 57.92 37.07 31.44 1.58 45.90 0.32 0.35 0.25 0.27 18.31 –

1 57.85 33.25 1.40 0.59 41.90 0.37 0.36 0.35 0.32 18.65 –
2 41.91 7.50 0.91 0.87 7.95 0.80 0.74 0.86 0.78 19.76 –
3 20.08 4.43 0.94 0.97 3.85 0.96 0.95 0.97 0.96 19.88 –
5 11.77 3.21 0.99 1.00 2.78 0.99 0.99 1.00 0.99 19.68 –

F
a
ls

e
n
e
g
. .5 0.00 0.00 0.03 16.80 0.00 17.98 17.91 18.20 18.07 0.00 –

1 0.05 1.56 17.45 18.46 0.95 18.61 18.47 18.91 18.71 0.35 –
2 5.59 15.71 19.19 19.77 15.76 19.75 19.67 19.84 19.74 7.08 –
3 13.29 17.88 19.79 19.96 18.26 19.96 19.94 19.97 19.96 11.08 –
5 16.45 18.82 19.95 20.00 19.07 19.99 19.99 20.00 19.99 13.65 –

R
M

S
E

.5 0.373
(0.359)

0.434
(0.386)

0.464
(0.399)

1.108
(1.063)

0.409
(0.372)

1.208
(1.108)

1.199
(1.105)

1.230
(1.119)

1.216
(1.112)

0.402
(–)

0.474
(–)

1 0.743
(0.715)

0.901
(0.807)

1.418
(1.375)

1.466
(1.429)

0.849
(0.769)

1.519
(1.429)

1.510
(1.420)

1.534
(1.452)

1.524
(1.436)

0.801
(–)

0.944
(–)

2 1.646
(1.577)

2.110
(2.041)

2.280
(2.255)

2.316
(2.307)

2.126
(2.051)

2.328
(2.302)

2.326
(2.294)

2.331
(2.312)

2.328
(2.300)

1.629
(–)

1.890
(–)

3 2.770
(2.690)

3.064
(3.003)

3.199
(3.188)

3.214
(3.212)

3.103
(3.043)

3.218
(3.210)

3.217
(3.207)

3.218
(3.213)

3.217
(3.210)

2.457
(–)

2.835
(–)

5 4.731
(4.636)

4.988
(4.923)

5.123
(5.117)

5.131
(5.131)

5.033
(4.968)

5.133
(5.130)

5.132
(5.128)

5.133
(5.132)

5.133
(5.129)

4.099
(–)

4.733
(–)

R
M

S
P

E

.5 0.638
(0.684)

0.622
(0.633)

0.638
(0.618)

1.143
(1.112)

0.615
(0.654)

1.226
(1.138)

1.218
(1.134)

1.247
(1.152)

1.234
(1.143)

0.623
(–)

0.527
(–)

1 1.279
(1.369)

1.260
(1.291)

1.468
(1.455)

1.500
(1.482)

1.245
(1.312)

1.542
(1.483)

1.535
(1.473)

1.555
(1.505)

1.546
(1.490)

1.258
(–)

1.057
(–)

2 2.436
(2.628)

2.297
(2.374)

2.318
(2.324)

2.336
(2.339)

2.299
(2.372)

2.342
(2.340)

2.341
(2.337)

2.344
(2.342)

2.342
(2.339)

2.595
(–)

2.107
(–)

3 3.378
(3.570)

3.234
(3.322)

3.237
(3.247)

3.240
(3.243)

3.233
(3.303)

3.241
(3.244)

3.241
(3.244)

3.241
(3.243)

3.241
(3.244)

3.821
(–)

3.163
(–)

5 5.341
(5.577)

5.187
(5.306)

5.162
(5.172)

5.161
(5.162)

5.176
(5.273)

5.161
(5.163)

5.161
(5.164)

5.161
(5.161)

5.161
(5.163)

6.245
(–)

5.285
(–)

See notes in Table 3.

Table 6: Monte Carlo simulation for exactly sparse parameter vector with alternating βj .

The results are reported in Table 6. Compared to the base specification in Section 8,
the model selection performance deteriorates drastically. The false negative rate is high
across all methods. When σ is equal to 2 or larger, BIC-type information criteria and
rigorous methods often select no variables, whereas AIC and stepwise regression tend
to overselect.

52 lassopack

On the other hand, out-of-sample prediction can still be satisfactory despite the poor
selection performance. For example, at σ = 2, the RMSPE of cross-validation is only
9.0% above the RMSPE of the oracle estimator (2.3 compared to 2.11), even though
only 4.2 predictors are correctly selected on average. The Monte Carlo results highlight
an important insight: model selection is generally a difficult task. Yet, satisfactory
prediction can be achieved without perfect model selection.

	lassopack: Model selection and prediction with regularized regression in Statato.44em.to.44em.Ahrens, Hansen & Schaffer

