
Śmiech, Sławomir; Papież, Monika; Fijorek, Kamil; Dąbrowski, Marek A.

Article

What drives food price volatility? Evidence based on a
generalized VAR approach applied to the food, financial
and energy markets

Economics: The Open-Access, Open-Assessment E-Journal

Provided in Cooperation with:
Kiel Institute for the World Economy – Leibniz Center for Research on Global Economic Challenges

Suggested Citation: Śmiech, Sławomir; Papież, Monika; Fijorek, Kamil; Dąbrowski, Marek A. (2019) :
What drives food price volatility? Evidence based on a generalized VAR approach applied to the
food, financial and energy markets, Economics: The Open-Access, Open-Assessment E-Journal, ISSN
1864-6042, Kiel Institute for the World Economy (IfW), Kiel, Vol. 13, Iss. 2019-14, pp. 1-32,
https://doi.org/10.5018/economics-ejournal.ja.2019-14

This Version is available at:
https://hdl.handle.net/10419/193189

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.5018/economics-ejournal.ja.2019-14%0A
https://hdl.handle.net/10419/193189
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

Vol. 13,  2019-14 | February 13, 2019 | http://dx.doi.org/10.5018/economics-ejournal.ja.2019-14 
 
 
 

What drives food price volatility? Evidence based 
on a generalized VAR approach applied to the food, 
financial and energy markets 

 
Sławomir Śmiech, Monika Papież, Kamil Fijorek, 
and Marek A. Dąbrowski 

 
 

Abstract 
The aim of this study is to investigate sources of food prices volatility. The analysis 
uses daily series for volatility of corn, soybean, wheat, rice, US dollar, crude oil, and 
SP500 futures spanning the period January 4, 2000 to April 1, 2017. The authors employ 
the generalized vector autoregressive framework in rolling sample approach in order to 
capture the time-varying nature of volatility spillovers. The results reveal that: volatility 
spillovers measures change over time; most of the volatility spillovers are observed within 
the two groups of markets: food markets and “non-food” markets; corn market is net 
volatility transmitter. 
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1 Introduction 

The 2007–2008 and 2010–2011 surges in food prices were not concentrated in a market for a 
single agricultural commodity but resulted from developments in the whole range of markets for 
commodities grown in different places. That is why supply-side factors could not have been the 
only reason for the price co-movement. Alternative explanations for food price upsurges have 
been put forward in the literature and include e.g.: financial speculation in commodity futures 
markets, global economic growth (increased demand), trade restrictions, macroeconomic shocks 
to money supply, the US exchange rate movements (Abbott et al., 2009, 2011; Gilbert, 2010; 
Roache, 2010), competition for land (Harvey and Pilgrim, 2011), countries’ aggressive 
stockpiling policies, and tightening relations between food prices and energy prices. 

In the literature two reasons of food price volatility are investigated most frequently.1 The 
first one is “finacialization” of commodity markets which results from the development of 
future market trading. Deregulation of commodity markets, initiated in the beginning of the 21st 
century, induced an increase in the inflow of capital to commodity futures (Christoffersen et al., 
2014). Crucial for co-movement of commodity futures is the large inflow of commodity index 
investment (Tang and Xiong, 2012). The prices that underlie agricultural commodity indices are 
more strongly correlated with the oil price than those commodities that are not included in the 
indices. The increase of correlation between futures prices of agricultural commodities and oil 
after 2004, as observed by Tang and Xiong (2012), stemmed from significant index investments 
which started to flow into commodity markets. The second most frequently investigated reason 
of increased food price volatility concerns the relation between food and energy prices. The 
relation is bidirectional. On the one hand, modern food production requires more and more 
energy, e.g. to power agricultural machinery, to heat greenhouses, to power irrigation systems, 
to produce fertilizers etc. On the other hand, some agricultural products are used as a source of 
energy (biofuels). In the United States corn is used as the main feedstock to produce ethanol. 
This has resulted in tighter competition for the cultivated area: the area used for biofuels (corn) 
production increased, as fuel ethanol production grew eight-fold from 233 trillion Btu in 2000 to 
1,938 trillion Btu in 2014 (https://www.eia.gov), and the land on which it was grown could not 
be used for other crops. 

The objective of the paper is to identify the main sources of food price volatility. Apart from 
developments in related food markets, the likely sources of food price volatility can include 
fluctuation in the US stock, energy and foreign exchange markets. We focus on the food prices 
volatility in the 21st century, i.e. the period when many developing economies – and among 
them food exporters – have built tighter links with the world economy. Moreover, this period is 
of particular interest because it has witnessed both tranquil times and financial turbulence, as the 
Great Moderation was disrupted by the global financial crisis in the late 2000s. 

_________________________ 

1 Another important reason, not covered in the study, include: supply variation and storage capacity (see, Tadasse et 
al., 2016; Chatterjee, 2018). 
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The study is based on daily series for volatility of futures prices of corn, soybean, wheat,2 
rice, the US dollar, crude oil and the SP500 spanning the period January 4, 2000–April 1, 2017. 
We base our analysis on forecast-error variance (FEV) decompositions obtained within a 
generalized vector autoregressive (VAR) framework, as proposed by Diebold and Yilmaz 
(2012). This framework allows us to estimate total, net, directional and pairwise volatility 
spillovers for markets considered. The generalized VAR is also used to obtain the impulse 
response functions that can be considered a complementary description of how price volatility 
in the US stock, energy and foreign exchange markets affects food price volatility. Both a 
whole-sample approach and a rolling-sample approach are used in order to capture the time-
varying nature of volatility spillovers. Bearing in mind that the number of parameters to be 
estimated in comparison to the number of observations is large, we use lasso estimation 
methods in a single iteration. 

The Diebold-Yilmaz approach is not the only possible approach to study relations among 
volatility of different markets. MGARCH models are the most popular alternative. There are 
two differences between these two approaches. First, in MGARCH models, it is possible to 
analyse conditional correlation as well as make inferences about pairwise relations between 
markets. Second, MGARCH models are typically heavily parametrized with number of 
parameters growing very fast with each additional variable. In consequence, computational 
difficulties in high dimensional cases grow equally fast. Even though more parsimonious 
parametrizations of MGARCH models are possible, they typically require stringent restrictions 
on the model structure. Hence, two dimensional models (VAR-GARCH or different MGARCH) 
were used to study volatility spillovers between food markets and SP500 (Mensi et al., 2013) 
and between oil markets and food markets (Mensi et al., 2014). The advantage of the Diebold-
Yilmaz approach is that models including more variables can be used and such a feature can be 
critical. For example, the omitted variable bias is less likely and there are no serious numerical 
difficulties when estimating VAR models. Moreover, the FEV decomposition obtained within 
the Diebold-Yilmaz approach, summarised in the connectedness table, has a quite natural 
interpretation and in fact conveys different, in comparison to MGARCH models, kind of 
information (for example it is possible to compare volatility transmitted and received). 

Our study is not the first one which examines the role of the stock and energy markets as 
drivers of food markets volatility (see, e.g., Diebold and Yilmaz, 2012; Chevallier and Ielpo, 
2013; Jebabli et al., 2014; Awartani et al., 2016; Grosche and Heckelei, 2016). The advantage of 
our approach, however, is that it is among the most general ones. 

Our contribution to the literature is visible in three aspects. First, we use a relatively large 
number of markets: the set we analyse in our study includes volatility of four main crops 
produced in the United States, which helps understand interrelations between them and 
volatility of the US stock, energy and foreign exchange markets. Second, we apply lasso 
estimation techniques and compare the results with those obtained with the ordinary least 
squares (OLS). The advantages of the lasso-based approach over the OLS-based approach 

_________________________ 

2 Christoffersen et al. (2014) show that corn, soybean, and wheat are among the most heavily traded commodity 
futures. In the period 2004–2013 there were more than 60 million transactions of soybeans and more than 34 million 
for corn. 
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become evident when the number of regressors is large.3 What is more, the lasso-based 
approach seems to be more sensitive to differences in the evolution of the total volatility 
spillover index in turbulent and tranquil times. Third, apart from using the spillover indices, 
we extend the analysis by applying such tools as forecast error variance decompositions and 
generalized impulse responses in order to uncover the direction and strength of volatility 
transmission. To illustrate the responses of food markets to different impulses we construct the 
heat plots. 

Our findings include four novel results. First, we find that volatility spillovers are observed 
mostly within the group of food markets and within the group of other markets and much less 
between these groups. Second, the susceptibility of food markets to volatility spillovers from 
“non-food” markets, i.e. the stock, energy and foreign exchange markets, is larger during crisis 
periods. Third, the market for corn seems to be the most important source of volatility within 
food markets, as it is found to be the net volatility transmitter in most of the analysed 
subperiods. One may conjecture that the reason for this is that a large part of corn output is used 
to produce biofuels, and that there is an indirect relation between the food and energy markets. 
Fourth, the price of rice is detached from the developments in other markets, i.e. the sources of 
its volatility can hardly be found outside the market for rice. 

The paper consists of the following sections. Section 2 presents the most important findings 
of the studies investigating volatility spillovers between the agricultural commodity, energy and 
financial markets. Section 3 describes the methodological approach, Section 4 presents the data, 
and Section 5 reports and comments on the empirical results. The paper ends with the 
conclusions. 

2 Literature review 

The two main methodological approaches are employed in the studies devoted to the issue of 
shocks transmission and volatility spillovers between energy markets, agricultural commodity 
markets (food markets) and financial markets (stock market). The first one, more frequently 
used, is based on different specifications of multivariate GARCH models (see, e.g., Zhang et al., 
2009; Serra et al., 2011; Trujillo-Barrera et al., 2012; Gardebroek and Hernandez, 2013; Creti et 
al., 2013; Mensi et al., 2014; Abdelradi and Serra, 2015a, b; Cabrera and Schulz, 2016; Hegerty, 
2016; Silvennoinen and Thorp, 2013, 2016). The second one applies the measures of volatility 
spillover proposed by Diebold and Yilmaz (2009) and Diebold and Yilmaz (2012) (see, e.g., 
Antonakakis et al., 2016; Batten, et al. 2015; Chevallier and Ielpo, 2013; Jebabli et al., 2014; 
Magkonis, and Tsouknidis, 2017; Awartani et al., 2016; Grosche and Heckelei, 2016; and Kang 
et al., 2017). 

Three main strands can be identified in the literature on the sources of food prices volatility. 
The first one focuses on relations between energy prices (including biofuel prices) volatility and 

_________________________ 

3 The issue is particularly important for large VAR models, when effectiveness of estimators seems to be crucial. It is 
well known, that when a number of parameters in the model is large in comparison to the number of observations, the 
variance of OLS estimator increases (see Greene, 2003, p. 49). 
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food prices volatility. The second one examines volatility spillovers between financial markets 
and commodity markets including both food and energy markets.4 The third one considers 
relations between volatility within the food markets. 

The results obtained within the first strand of literature suggest that in general volatility is 
transmitted from food markets to energy markets. Zhang et al. (2009) study price transmissions 
and volatility spillovers between weekly U.S. ethanol, corn, soybean, gasoline and oil prices and 
notice volatility transmissions from agricultural commodity prices to energy prices. In contrast, 
Trujillo-Barrera et al. (2012) show volatility transmission from crude oil to corn and ethanol 
markets and from corn market to ethanol market. Gardebroek and Hernandez (2013) show 
significant volatility spillovers from corn to ethanol prices but not in the opposite direction. 
Mensi et al. (2014) investigate volatility spillovers across international energy (i.e. WTI, Brent, 
heating, and gasoline) and cereal commodity markets (i.e. corn, barley, sorghum and wheat,) 
and find that the correlations between the energy and cereal commodity futures evolve through 
time and are highly volatile, particularly since the subprime mortgage crisis. Serra et al. (2011) 
analyse Brazilian agricultural markets and confirm that ethanol price volatility is affected by 
shocks in the oil and sugar markets. Cabrera and Schulz (2016) find no volatility transmission 
between food, energy and biodiesel markets in Germany. Abderladi and Serra (2015b) consider 
food and biofuel prices in Spain and find bidirectional and asymmetric volatility spillovers 
between biodiesel and refined sunflower oil prices. Tadasse et al. (2014) show that energy prices 
can trigger food price spikes and volatility. 

The results obtained in the second strand of literature reveal, in general, limited volatility 
transmission between food markets and financial markets (see, e.g., Silvennoinen and Thorp 
2013; Chevallier and Ielpo 2013; Awartani et al. 2016), which, however, changes over time. 
Volatility transmission increases during turbulent periods. Creti et al. (2013), Mensi et al. 
(2013), Silvennoinen and Thorp (2013), Diebold and Yilmaz (2012) show the strongest 
relationship between financial markets and food markets volatility during the global financial 
crisis. Jebabli et al. (2014) find that during the global financial crisis stock markets are a net 
transmitter of volatility shocks while a crude oil market is its net receiver. A stronger impact of 
financial market on food markets after the global financial crises is reported by Baldi et al. 
(2016). Kang et al. (2017) examine spillover effects among six commodity futures markets 
(gold, silver, WTI, corn, wheat, and rice) and find that both gold and silver are net volatility 
transmitters to other commodity markets, while the remaining four commodity futures (i.e. 
WTI, corn, wheat, and rice) are net receivers of volatility during the recent financial crises. 
Grosche and Heckelei (2016) reveal the strongest volatility spillover within the agricultural 
commodities in comparison to other markets. A more important role of financial markets in the 
commodity price formation process is found in Tadasse et al. (2014) and Babalos and Balcilar 
(2017). Using the quantile analysis Tadasse et al. (2014) demonstrated, however, that “financial 
crisis and speculation do not necessarily trigger volatility, in contrast to price spikes” (Tadasse 
et al., 2016, p. 127). Babalos and Balcilar (2017) reported, based on causality-in-quantiles 
approach, a substantial evidence of predictability of the variance of commodities market returns 
and originating from financial market returns. 
_________________________ 

4 In most cases, food markets are not treated separately, but are considered as one of the components of the 
commodity markets. 
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The third strand of literature is devoted to the analysis of volatility transmissions within the 
agricultural commodity markets and shows different roles of a particular commodity. Beckmann 
and Czudaj (2014) argue that potential speculation effects on the corn futures market may be 
contagious for the cotton and wheat futures markets. Gardebroek et al. (2016) reveal that the 
markets for wheat and corn are major sources of volatility that spills over the market for 
soybean. Hamadi et al. (2017) find significant bidirectional volatility spillovers between markets 
for corn, wheat, soybeans and soybean oil, although a stronger spillover effect is observed from 
soybeans and soybean oil markets to corn and wheat markets. 

3 Methodology 

Pesaran and Shin (1998), building on the work of Koop et al. (1996), introduced the generalized 
impulse response function (GIRF) and the generalized forecast error variance decomposition 
(GFEVD) for unrestricted vector autoregressive (VAR) and cointegrated VAR models. Unlike 
the conventional IRF and FEV decomposition, their approach does not require orthogonalization 
of shocks and is invariant to the ordering of the variables in VAR models. Since it is rarely 
possible to justify one particular ordering of variables under consideration, the methods 
promising to circumvent this restriction are of great interest to the scientific community. 

Diebold and Yilmaz (2009) introduced a volatility spillover measure based on the standard 
FEV decomposition and focused on total spillovers (from/to a particular market, to/from all other 
markets). Later Diebold and Yilmaz (2012), building on the work of Pesaran and Shin (1998), 
used the GFEVD to introduce a spillover measure which is invariant to the variable ordering.  

This study employs both the spillover indices as introduced by Diebold and Yilmaz (2012) 
and the GIRF analysis of Pesaran and Shin (1998). The spillover indices are constructed by 
performing a rolling-window generalized forecast error variance decompositions. This approach 
enables us to identify time-varying patterns. While the static GFEVD classifies the variables of 
the study into transmitters and receivers, the dynamic GFEVD may identify episodes when the 
role of transmitters and receivers of spillovers is interrupted or even reversed. The GIRFs are 
also calculated within the rolling-window approach.  

It is assumed that volatility is fixed within periods (in this case days), but can vary across 
periods. Following Alizadeh et al. (2002), daily high and low prices are used to estimate 
volatility.5 The proxy we use is the logarithm of the difference between the highest and lowest 
log price:6 

𝑟𝑟𝑟𝑟𝑟𝑡 = 𝑙𝑙 �𝑙𝑙�𝑚𝑚𝑚(𝑦𝑡)� − 𝑙𝑙�𝑚𝑚𝑚(𝑦𝑡)��,  (1) 
 
where t refers to a particular moment (day). 

_________________________ 

5 It seems to be the most common choice, however, there are some studies, e.g. Yarovaya et al. (2016), which use 
other proxy of volatility. 
6 The formula is related to a volatility proxy used by Demirer et al. (2018). The both formulas differ only by a 
constant value, and the correlation coefficient between the two measures is one. 
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Our empirical strategy includes inference both from the whole sample and from the rolling 
windows. Each time, we repeat the following steps. 

In the first step, the conventional VAR model is estimated. It takes the following form:7 
 

𝑦𝑡 = ∑ 𝐵𝑖𝑦𝑡−𝑖
𝑞
𝑖=1 + 𝜀𝑡     (2) 

 
where 𝑦𝑡 is an 𝑁 × 1 vector of endogenous variables (vector of log ranges of prices), 𝐵𝑖 are 
𝑁 × 𝑁  autoregressive coefficient matrices, and 𝜀𝑡~(0,Σ)  is a vector of independently and 
identically distributed disturbances. All VARs are estimated using the lasso regression proposed 
by Tibshirani (1996). The lasso is a shrinkage method for a linear regression. It minimizes the 
sum of squared errors, with a bound on the sum of the absolute values of individual regression 
coefficients. Particularly in the rolling-window approach estimation degrees of freedom are 
substantially limited, so the application of pruning and shrinkage is quite appealing (Diebold 
and Yilmaz, 2015). 

In the second step, total and directional spillover indices are obtained by generalized 
forecast error variance decompositions of the moving average representation of the VAR model. 
Variance decompositions allow for parsing forecast error variances of each variable into parts 
which are attributable to various system shocks. They allow for assessing the fraction of the H-
step-ahead error variance in forecasting one variable that is due to shocks to another variable. 
The moving average representation of the VAR is: 

 

𝑦𝑡 = ∑ 𝐴𝑗𝜀𝑡−𝑗∞
𝑗=1 ,     (3) 

 
where the 𝑁 × 𝑁 coefficient matrices 𝐴𝑗 obey the recursion of form 𝐴𝑗 = 𝐵1𝐴𝑗−1 + 𝐵2𝐴𝑗−2 +
⋯+ 𝐵𝑝𝐴𝑗−𝑝, with 0A  being the 𝑁 × 𝑁  identity matrix and 𝐴𝑗 = 0 for 𝑗 < 0. The H-step-ahead 
generalized forecast error variance decomposition invariant to the variable ordering is defined 
as:  

𝜃𝑖𝑖(𝐻) =
𝜎𝑗𝑗
−1  ∑ �𝑒𝑖

′𝐴ℎΣ𝑒𝑗�
2𝐻−1

ℎ=0

∑ �𝑒𝑖
′𝐴ℎΣ𝐴ℎ

′ 𝑒𝑖�𝐻−1
ℎ=0

     (4) 

 
for 𝑖, 𝑗 = 1,2, … ,𝑁 , where Σ  is the covariance matrix for the error vector 𝜀,𝜎𝑗𝑗  is the j-th 
diagonal element of Σ, and 𝑒𝑖  is the selection vector with one as the i-th element and zeros 
otherwise. Θ(H) is an 𝑁 × 𝑁 matrix, with elements 𝜃𝑖𝑖(𝐻),  where each entry  gives the 
contribution of variable j to the forecast error variance of variable i. The rows of Θ(H) need to 
be normalized, as under the generalized decomposition they do not sum to one. After 
normalization of Θ(H), the total spillover index is: 
  

𝑇𝑇(𝐻) =
∑  𝜃�𝑖𝑖(𝐻)𝑁
𝑖,𝑗=1,𝑖≠𝑗

𝑁
100%.     (5) 

 

_________________________ 

7 Equations (2) and (3) include intercepts. 
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The index represents the average contribution of spillovers of volatility shocks across all the 
markets considered to the total forecast error variance. 

Directional spillovers received by market i from all other markets j are defined as: 

𝐷𝐷𝑖←𝑗(𝐻) =
∑  𝜃�𝑖𝑖(𝐻)𝑁
𝑗=1,𝑖≠𝑗

𝑁
100%    (6) 

Analogously, directional volatility spillovers transmitted by market i to all other markets j are 
defined as: 

𝐷𝐷𝑖→𝑗(𝐻) =
∑  𝜃�𝑗𝑗(𝐻)𝑁
𝑗=1,𝑖≠𝑗

𝑁
100%    (7) 

The difference between directional volatility spillovers transmitted by market i to all other 
markets j (𝐷𝐷𝑖→𝑗(𝐻)) and directional spillovers received by market i from all other markets j 
(𝐷𝐷𝑖←𝑗(𝐻)) is defined as net volatility spillovers of market i. 

In the third step, GIRFs are calculated. An impulse response function depicts the time 
profile of the effect of shocks on the expected future values of variable in a dynamic system. 
The scaled generalized impulse response function is calculated as 𝐴𝑛 Σ 𝑒𝑗

�𝜎𝑗𝑗
,  and measures the 

effect of one standard error shock to the j-th VAR equation at time 𝑡 on expected values of y at 
time 𝑡 + 𝑛. In this equation Σ  is the variance matrix of the error vector 𝜀,𝜎𝑗𝑗 is the j-th diagonal 
element of Σ, and 𝑒𝑗 is the selection vector, with one as the j-th element and zeros otherwise. 

The GIRFs are calculated for a predefined time point (𝑛 = 1).8 In order to visualize GIRF 
results, the R package ‘superheat 0.1’ for generating extendable and customizable heatmaps 
developed by Barter and Yu (2017) is used. 

4 Data 

We examine the volatility spillovers between the US stock, energy, foreign exchange markets 
and food markets using daily data spanning the period from January 4, 2000 to April 1, 2017, 
which yields 4239 observations. In particular, we examine the S&P 500 index futures contract 
traded on the CME (SP500), the WTI crude oil futures contract traded on the NYMEX (WTI), 
the US dollar index futures contract traded on the ICE (USD), and the corn, soybean, wheat and 
rough rice futures contract traded on the CBOT (CORN, SOYBEAN, WHEAT, RICE). 
Following Tang and Xiong (2012), the US dollar index (USD) is used as a control variable, 
because it has an impact on the interaction between agricultural and energy commodities. The 
data are obtained from Bloomberg. Following Diebold and Yilmaz (2012), we calculate the log 
range volatility proxy (Eq. 1). Next we use the linear regression as the standard tool for doing 
seasonal monthly adjustments of the series. The models estimated with the daily data take the 
form: 𝑟𝑟𝑟𝑟𝑟𝑡 = 𝛼 + ∑ 𝛽𝑖𝐷𝑖𝑖11

𝑖=1 + 𝜀𝑡, where: 𝐷𝑖𝑖 are binary variables equalling 1 if “it” is the 

_________________________ 

8 The responses for lager n are irrelevant. 
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given month and zero otherwise. The residuals 𝜀𝑡 express the seasonal adjustment of monthly 
data and are used as daily volatility proxy in all further calculations.9 

Table 1 presents the summary statistics of the log range volatility and Figure 1 depicts seven 
series of log range volatility in the period between January 4, 2000 and April 1, 2017. Table 1 
reveals that volatility of USD and RICE is not normally distributed.10 In the first case, the 
violation of normality assumption results from large values observed in 2001 and 2003 (see 
Figure 1). In the second case, outliers can be observed in the period after 2008.  

5 Empirical results and discussion 

Empirical strategy applied in the study consist of several steps. First, the volatility spillover 
table for the entire sample is estimated. Next, rolling windows analysis is carried out. The 
aggregated volatility spillover measures (“from”, “to”, “net”) for each market are estimated. The 
aim of this step is to find markets that are net volatility transmitters or net volatility receivers in 
different windows. Then, the analysis moves on to the issue of sources of food prices volatility. 
Thus, some measures depicted in volatility spillover tables, which estimate the amount of 
volatility transmitted to food markets (from the stock, energy and foreign exchange markets, 
and food markets as well) are calculated. In particular, contributors to forecast error variance of  

Table 1: Descriptive statistics of log range volatility for seven assets 

 SP500 WTI USD CORN SOYBEAN WHEAT RICE 

Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Median -0.020 -0.018 0.012 -0.009 -0.018 -0.014 0.046 

Max 2.137 2.004 1.665 1.957 1.723 2.022 2.003 

Min -1.758 -1.497 -4.306 -2.012 -2.078 -2.125 -3.701 

Std. dev. 0.590 0.483 0.511 0.473 0.430 0.421 0.618 

Skewness 0.328 0.204 -0.766 0.089 0.231 0.174 -0.828 

Kurtosis 3.085 3.151 8.131 3.248 3.246 3.266 5.316 

_________________________ 

9 We checked two other specifications. First, we augmented the seasonal adjustment to include daily seasonality. 
Second, we used raw data, that is without any correction for seasonality. Regardless of seasonal adjustment adopted 
the evolution of total volatility spillover index is quite similar. The correlation between all the indices is very high, 
above 0.95. Daily seasonal effects are insignificant for the food markets, with the exception of rice market on which 
Monday effect is significant. For “non-food” markets, except for SP500, some daily seasonal effects are found. 
Overall, the results obtained for these alternative specifications are quite similar to those obtained under the baseline 
specification and are available upon request.  
10 The null of normality was tested with Jarque-Bera test and rejected for volatility of all the series. The approach 
adopted in the study, i.e. rolling window regressions, requires normality of residuals assumption, which is difficult to 
verify since the number of windows is large and the problem of multiple comparison arises. Because of this two 
reasons normality assumption is usually ignored (see e.g. Diebold Yilmaz, 2009, 2012). 
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Figure 1: Seasonally adjusted series of log range volatility: January 4, 2000–April 1, 2017 

 
 
 

food prices volatility are determined. Finally, the responses of food prices volatility to different 
shocks are studied within the VAR models with five lags that are estimated in rolling samples of 
250 daily observations (about one year). The parameters of the models are estimated using the 
lasso method. The results obtained for the OLS-based approach are presented in the Appendix. 

5.1 The full-sample results 

We calculate the connectedness table based on variance decomposition for the full sample using 
the lasso estimation. The results are reported in Table 2. Its ij-th entry denotes the estimated 
contributions to the forecast error variance of market i coming from innovations in market j. 
Therefore, the off-diagonal column sums (labeled “to others”) and row sums (labeled “from 
others”) are the “to” and “from” directional spillovers, respectively, and the “to minus from” 
differences are net directional volatility spillovers. The penultimate row in Table 2 reports the 
contribution of a volatility shock in a particular market to volatility observed in all other mar-
kets (stock, energy, foreign exchange and food). The volatility spillovers from all other markets 
to volatility in a given market is tabulated in the last column. The table of volatility spillovers 
may be viewed as the “input–output” decomposition of the total volatility spillover index. 
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Table 2: The direction of implied volatility spillovers (the lasso method) 
 

SP500 USD WTI CORN SOYBEAN 
WHEA

T 
RICE 

From 

Others 

SP500 89.4 4.8 3.9 0.6 0.4 0.6 0.3 10.6 

USD 5.9 87.6 3.8 0.8 1.0 0.5 0.5 12.4 

WTI 5.8 4.0 87.4 0.6 0.8 0.7 0.7 12.6 

CORN 0.5 0.7 0.6 68.0 14.1 15.6 0.5 32.0 

SOYBEAN 0.7 1.0 0.8 15.7 74.5 6.9 0.5 25.5 

WHEAT 0.6 0.7 0.6 16.3 6.4 74.8 0.6 25.2 

RICE 0.1 1.0 0.5 0.6 0.5 0.6 96.7 3.3 

To Others 13.7 12.1 10.1 34.5 23.3 24.8 3.1 17.4 

Net spillovers 3.1 -0.3 -2.5 2.5 -2.2 -0.4 -0.2   

Note: Total spillover index, 17.4%, is calculated as in Diebold and Yilmaz (2012). 

 
As Table 2 demonstrates, the percentage of other markets in the US stock market (SP500) 

forecast error variance decomposition is 10.6%. At the same time, the US stock market (SP500) 
transmits about 13.7% of volatility to other markets. The difference between the amount of 
volatility transmitted to other markets and the amount of volatility received by the stock market 
is 3.1%, which means that the stock market is a net volatility transmitter. It is worth noting that 
the stock market transmits only 1.9% of volatility to food markets and 11.7% to other markets 
and receives only 1.9% of volatility from food markets and 8.7% from other markets. This 
means that the connectedness between the stock market and food markets is more or less the 
same in both directions and weak if not negligible. 

Similar calculations for the energy market (WTI) and the foreign exchange market (USD) 
reveal that both markets are net volatility receivers with indices –0.3% and –2,5% respectively. 
The contribution of the energy market to the food markets volatility and “non-food” markets 
volatility is 2.5% and 7.7%, respectively, and the energy market receives 2.8% of volatility from 
the food markets and 9.8% from other markets. Similarly, the contribution of the foreign 
exchange market to food markets volatility and other markets volatility is 3.4% and 8.8%, 
respectively, while the foreign exchange market receives 2.8% of volatility from the food 
markets and 9.7% from other markets. 

Therefore, we may conclude that there exists some volatility spillovers from the stock, 
energy and foreign exchange markets to these markets, but not to the food (corn, soybean, wheat 
and rice) markets. We find that volatility spillovers between the stock, energy and foreign 
exchange markets and food markets are weak. Such a weak impact of the energy market on the 
food markets is also found by Awartani et al. (2016). 

When the food markets are taken into account, the corn market seems to be the most 
important, as it is the net volatility transmitter with net volatility spillover index 2.5%. The corn 
market transmits as much as 34.5% of volatility to other markets, however, most of this 
volatility (about 32.6%) is transmitted to other food markets (mainly the soybean and wheat 
markets). The corn market is also the main receiver of volatility (32%) which comes from the  
food markets (30.2%). Other food markets are net volatility receivers: the net volatility index is 
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–2.2%, –0.4% and –0.2% for the soybean, wheat, and rice markets, respectively. The rice 
market is specific in this respect, because it transmits about 3.1% of volatility to other markets 
and receives also only 3.3% of volatility from other markets. So, the rice market seems to 
belong neither to the food markets (which is surprising) nor to the “non-food” markets (which is 
natural). The different nature of the rice market can result from unique conditions required for 
rice production, which makes the problem of competition for land invalid, as no other crop can 
be grown on the same land that is used for rice. 

In order to check if our results are robust, we calculate the connectedness table based on 
variance decomposition for the full sample using the OLS estimation. The results of the 
direction of implied volatility spillovers are presented in Table 1A in the Appendix. The 
comparison of the two methods applied reveals that in the case of the lasso method there is less 
volatility transmission in the system. What is common for both approaches is that the same two 
markets – the stock and corn markets – are the only net volatility transmitters and the market for 
rice remains separated from the other markets. 

As another robustness check we analyse the connectedness table estimated for the system 
extended by adding the VIX index, following Basak and Pavlova (2016). The results are 
reported in Table 2A in the Appendix. The results of the direction of implied volatility 
spillovers show that only the connectedness of the stock market (SP500) with other market 
changes since volatility spillovers to that market are dominated by volatility of the VIX. The 
stock market receives 33.4% of volatility to other markets, out of which 27.7% spills over from 
the VIX. At the same time, the stock market transmits 11.0% of volatility to other markets. So, 
in this case the stock market becomes the net volatility receiver (–22.3%) and the VIX becomes 
the net volatility transmitter to all markets in the system (29.5%). The remaining elements of the 
connectedness table do not change significantly. 

It can be observed, however, that the food markets (the corn, soybean and wheat markets) 
and the “non-food” markets (the stock, energy and foreign exchange markets) constitute two 
separate clusters. The volatility transmission within such clusters is significantly larger than 
between clusters. 

5.2 The rolling windows results 

Total volatility spillover index 

Many changes took place in the food markets during the sample period, i.e. between 2000 and 
2017. Some of them affected the relations studied gradually, e.g. the increase in capital 
mobility, the rising importance of electronic trading and hedge funds, and a shift in the 
distribution of crops related to increased production of biofuels, while other changes, like surges 
in food prices in 2007–2008 and 2010–2011, exerted a sudden impact on the markets. This 
suggests that a dynamic approach should be used to analyse the relations. Following Diebold 
and Yilmaz (2012), we estimate our models using a rolling-window approach. Each window 
includes 250 days, approximately the number of working days in a calendar year. The 
underlying VAR model, estimated using the lasso method, has five lags, and the forecasting 
horizon is 10 days. 
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Figure 2: Dynamic total implied volatility spillover index for seven markets (the lasso method) 

 
Notes: This figure shows the total volatility spillover index over the sample period January 4, 2000 to April 1, 2017 
estimated with a rolling window of 250 days and calculated from the forecast error variance decompositions on 10-
step-ahead forecasts. The starting date of a window is on the horizontal axis. 

 
We divide the sample period into subperiods in order to assess the evolution of the total 

volatility spillover index. The results obtained by the lasso method are presented in Figure 2. 
The index is about 14% for the initial subperiods. The minimum values (about 8%) are obtained 
in subperiods starting in the third quarter of 2003. In the subsequent windows the total volatility 
spillover index increases substantially. For the period from 2007 to 2009, the values exceed 
25%. The largest volatility spillover index, almost 38%, is observed in the windows beginning  
in the first quarter of 2011, which coincide with crises in the food market. Then, the total 
volatility index decreases to about 20% in 2015, and next rises to about 26% in 2016. In the 
Appendix in Figure 1A the total volatility spillover index obtained with the lasso method is 
compared with the one estimated with the OLS method. Two conclusions can be drawn from 
this comparison. First, the total spillover index estimated with the OLS is larger (its value 
ranges from 17% to 43%) than the one obtained with the lasso method. Second, the difference 
between the two indices decreases during turmoil periods. This observation implies that lasso 
estimation is more appropriate to distinguish normal from extreme market conditions. 

 
Gross and net volatility spillovers 

Figure 3 illustrates the directional volatility spillovers from a given market to other markets 
which are calculated using the lasso method (corresponding to the “to others” row in Table 2).11  
  

_________________________ 

11 In order to compare the results of the lasso method with the results of the OLS method, Figure 2A in the Appendix 
shows the directional volatility spillovers from each of the seven markets to others which are calculated using the 
OLS method. 
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Figure 3: Directional volatility spillovers “to others” for seven markets (the lasso method) 

 
 

The results presented reveal different patterns of volatility transmitted by the food markets and 
the stock, energy and foreign exchange markets (SP500, WTI, USD). The volatility spillovers 
from the food markets to other markets display a cyclical behaviour. There are subperiods in 
which more (in comparison to other subperiods) volatility is transmitted (e.g. windows covering 
2009, 2011 or 2016) and subperiods in which less volatility is transmitted (2004, 2010, 2015). 
The rice market is specific, as it transmits much less volatility than any other market. In the case 
of the stock, energy and foreign exchange markets the situation is quite different. In the initial 
subperiods (up to 2007) little volatility is transmitted to other markets. Then, the volatility 
transmission increases significantly. Finally, for windows beginning in 2014 the amount of 
volatility transmitted decreases. 

Figure 4 presents the directional volatility spillovers from the other markets to a given 
market which are calculated using the lasso method (corresponding to the “from others” 
columnin Table 2).12 In general, the results are quite similar to those reported in Figure 3. Once 
again, there is a clear distinction between patterns of volatility received by the food markets (the 
corn, soybean and wheat markets) and the “non-food” markets (SP500, WTI, USD). What is 
  

_________________________ 

12 Figure 3A in the Appendix illustrates the directional volatility spillovers from other markets to a given market 
which are calculated using the OLS method. 
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Figure 4: Directional volatility spillovers “from others” for seven markets (the lasso method) 

 

Figure 5: Net volatility spillovers, seven markets (the lasso method) 
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more, the periods in which the largest amount of volatility is received by particular markets are 
similar to the ones obtained when the volatility is transmitted. Once more, the rice market 
receives much less volatility than other markets. 

Figure 5 presents net volatility spillovers (estimated using the lasso method) across markets 
corresponding to the difference between the amount of volatility transmitted by a single market 
and the amount of volatility received by this market.13 The results indicate that in the case of 
the stock, energy and foreign exchange markets, there are numerous subperiods in which a 
particular market is the net volatility transmitter in the system and numerous subperiods in 
which the same market is the net volatility receiver. Thus, it is not easy to indicate a single 
market that dominates other markets in terms of volatility. When food markets alone are taken 
into account, the situation is slightly different as the corn market is the net volatility transmitter 
for the entire period. In the case of other food markets, there are again periods in which a 
particular market is the net volatility transmitter and the net volatility receiver. 
 

Sources of food prices volatility  

The net volatility spillovers between pairs of markets in which one element belongs to the stock, 

energy and foreign exchange markets and the second element belongs to the food markets are 
estimated. The results are presented in Figure 6.14 In each case there are short periods when the 
food market dominates over other markets, i.e. it is the net volatility transmitter (negative values 
in Figure 6), and short periods of the opposite relation, i.e. the food market is the net receiver of 
volatility (positive values in Figure 6). The volume of net volatility spillovers, however, is low 
for most subperiods. This suggests that the relations between volatility in the stock, energy and 
foreign exchange markets and volatility in the food markets are not very strong. In this respect 
our results are similar to those reported in many other studies (see, e.g., Diebold and Yilmaz, 
2012; Chevallier and Ielpo, 2013; Jebabli et al., 2014; Awartani et al., 2016; Grosche and 
Heckelei, 2016). Moreover, this finding is in line with Irvin (2013), Aulerich et al. (2014) and 
Etienne et al. (2014) who found that the process of financialization did not contribute to an 
incidence of food prices bubbles. 

Net volatility spillovers within the food markets are presented in Figure 7.15 The corn 
market is the net volatility transmitter to the soybean and wheat markets. In this case the net 
volatility spillovers are positive and almost always above 1%. In many subperiods they are even 
stronger, above 4%. The corn market is also a net volatility transmitter to the rice market, 
although the index is on average smaller, less than 1%. The patterns of the net pairwise 
connectedness obtained for the remaining pairs are less clear-cut. There are many subperiods in 
which a particular food market is the net volatility transmitter and many in which the same  
 
_________________________ 

13 Figure 4A in the Appendix presents the rolling net volatility spillovers of the seven markets obtained with the OLS 
method. 
14 Figure 5A in the Appendix shows the pairwise net volatility spillovers between the US stock (SP500), energy 
(WTI) and foreign exchange (USD) markets and the food market obtained with the OLS method. 
15 Figure 6A in the Appendix illustrates net volatility spillovers within the food market obtained with the OLS 
method. 
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Figure 6: Pairwise net volatility spillovers from the US stock (SP500), energy (WTI) and foreign 
exchange (USD) markets to the food markets (the lasso method) 

 
 

market is the net volatility receiver. For example, the soybean market transmits more volatility 
to the wheat market in the period 2007–2011, while in the period 2012–2014 in most subperiods 
the relation is opposite. Both the soybean and wheat markets are net volatility receivers from the 
market for rice in 2009, when skyrocketing of the price of rice is observed. In the remaining 
subperiods the rice market is the net volatility receiver. 

The results of forecast error variance decompositions of each food market are presented in 
Figure 8.16 Different colours represent the share of volatility that comes from different markets. 
It can be noticed that for each food market the greatest share of the FEV comes from its own, 
specific volatility shock. To be more precise, no less than 50% of the FEV of volatility in a 
given food market is accounted for by its own shocks. 

_________________________ 

16 Figure 7A in the Appendix shows the forecast error variance decompositions of the food markets obtained with 
the OLS method. 
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Figure 7: Pairwise net volatility spillovers within the food markets (the lasso method) 

 
 

In the case of the corn market, a large proportion (about 20%, and in 2016 between 35% and 
40%) of the FEV is accounted for by shocks specific to the soybean and wheat markets. It is 
worth noticing that the soybean market seems to be responsible for a similar proportion of the 
FEV of the corn market in every subperiod, whereas the importance of the wheat market 
changes over time. The share of the wheat market in the FEV decomposition of volatility in the 
corn market ranges between several per cent in the subperiods covering 2005 and 2009 and 
about 20% between 2011–2014. The contribution of the rice market to volatility in the corn 
market, as well as the stock, energy and foreign exchange markets (SP500, WTI, USD), is 
negligible. 

In the case of the FEV decomposition of  volatility in the soybean and wheat markets, apart 
from the importance of their own shocks, the second most important factor is volatility in the 
corn market. The share of the corn market in the FEV exceeds 20% in many subperiods. The 
third most important factor is the wheat market for the soybean market and the soybean market 
for the wheat market. The share of one of these agricultural commodities in the FEV of the other 
ranges from 4 to 10%. Again, the role of stock, energy and foreign exchange markets is not 
significant. The FEV decomposition of volatility in the rice market demonstrates that no market  
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Figure 8: Forecast error variance decompositions of the food markets (the lasso method) 

 
transmits significant amount of volatility to the rice market. It is worth mentioning that around 
2011 the FEV of  volatility in the rice market is accounted for by other factors in about 20%. 

Apart from the volatility spillover indices, we intend to uncover the response of food 
volatility to shocks originating from the stock (SP500), energy (WTI) and foreign exchange 
(USD) markets and from the food markets. Thus, we calculate the generalized impulse response 
functions for all rolling windows and different horizons. Figure 9 presents, however, the 
response of food volatility to a one standard deviation shock at one-day horizon. The colours 
used represent the strength of response. The darker the blue colour, the more negative response 
of a variable is observed. On the other hand, the darker the red colour, the larger positive 
response of volatility to a shock received. The horizontal axis represents time. The response 
obtained for the first window (covering 250 observations from 2000) is depicted as the first on 
the left of the picture. The responses obtained in the last window (ending in April 2017) are on 
the right.  

The results illustrated in Figure 9 can be summarized with three observations.17 First, in 
most windows, food volatility increases as a result of shocks originating from other markets 
(warm colours dominate the heatplot). There are, however, subperiods in which the response of 
food volatility to other markets shocks are negligible or even negative (for example, the 
response of volatility in the corn market to the stock market (SP500) shock for windows 
_________________________ 

17 Figure 8A in the Appendix illustrates the response of the food markets to shocks originating from other markets 
obtained with the OLS method. The results are similar to the ones reported in the main text. 
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covering 2006, or the response of volatility in any food market to the energy market (WTI) 
shocks in the same subperiod). Second, the strongest, positive response of volatility in food 
markets is observed for shocks generated on other food markets (the soybean and wheat markets 
response to the corn market shocks, or the corn market responses to the wheat or soybean 
markets shocks). The rice market seems to depend only weakly on other food shocks, as the 
response of the rice market to other shocks is moderate. Third, the strongest response of 
volatility in food markets to shocks originating from the stock, energy and foreign exchange 
markets appear between 2007 and 2012. It suggests that during the global financial crisis and 
food crises food volatility was more sensitive to information coming from other markets and the 
responses of volatility in the food markets were more significant. 

Figure 9: Responses of the food markets to shocks originating from other markets (the lasso method) 
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6 Conclusion  

The objective of the study is to examine volatility spillovers in the food markets and the “non-
food” markets. Unlike in previous studies, we compare the volatility transmission within 
different food markets and between the food markets and the stock, energy and foreign 
exchange markets, which allows us to assess the importance of volatility in these markets in 
triggering volatility in the food markets. Our main findings can be summarized in the following 
way. 

The total volatility index has increased over time, which means that on average more 
volatility is transmitted between the markets. The largest values of the index are observed in two 
food crises (2008 and between 2011–2012). The results obtained for rolling directional spillover 
(from and to) reveal, however, a cyclical behaviour of the food markets and the increase of 
volatility spillover in the stock, energy and foreign exchange markets since 2007.  

Most volatility transmissions are observed among the same categories of markets. We 
identify two groups which are interrelated in terms of volatility spillovers, i.e. the US stock, 
energy and foreign exchange markets and the food markets (including corn, soybean and 
wheat). A typical food market transmits much more volatility to other food markets than to 
other markets. This can result from dissimilarity of the stock, energy, foreign exchange markets. 
Volatility of the market for rice does not seem to depend on developments in other markets and 
is not transmitted to other markets, with the exception of one episode, i.e. 2009, when the price 
of rice reached a record high and the volatility shocks spilled over soybean and wheat markets. 

The sources of the forecast error variance of food markets volatility vary for different food 
markets and for different subperiods. The corn market, however, seems to be the most important 
agricultural commodity, as it transmits a vast amount of volatility to other food markets. The 
corn market is the net volatility transmitter to the soybean and wheat markets and is the second 
most important source of volatility in these two markets, representing up to 20% of the FEV. 

The results of the generalized impulse response functions suggest similar conclusions. The 
strongest response of food markets volatility results from shocks originating from another food 
market (with the exception of the rice market). Much smaller, but still a positive response of the 
food markets volatility to the shocks in the “non-food” markets can be observed. Finally, food 
markets volatility was more sensitive to shocks from different markets during the global 
financial crisis and surges in food prices. 

The most general conclusion of the paper is that the role of the financial and energy markets 
in creating the food markets volatility is limited. In particular, volatility of energy prices appears 
to be insignificant for food prices. Interestingly, the corn market seems to be the most important 
food market, as it is the net volatility transmitter to the soybean, wheat and rice markets. Since 
the share of corn production used for biofuels (ethanol) has risen significantly during the 
analysed period, it can be concluded that the relations between energy and agricultural 
commodities markets have become tighter, although in an indirect way, i.e. via the market for 
corn. 

There are two potential policy implications of the results obtained. First, financialization 
seems to have limited impact on food markets volatility. Therefore, the policy-oriented at 
maintaining low volatility of food markets can potentially be effective and is not undermined by 
financial volatility (transmission of volatility from financial markets to food markets is 
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negligible). Second, since the corn market seems to be the most important source of volatility in 
food markets, policy should be focused on this market.  
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Appendix 

Table 1A: The direction of implied volatility spillovers (the OLS method). 

 
SP500 USD WTI CORN SOYBEAN WHEAT RICE 

From 
Others 

SP500 89.4 4.7 3.9 0.6 0.4 0.6 0.3 10.6 
USD 6.2 85.4 4.1 1.3 1.5 0.6 1.0 14.6 
WTI 6.3 4.5 86.1 0.6 1.0 0.6 0.9 13.9 
CORN 0.7 0.9 0.7 67.2 14.1 15.9 0.5 32.8 
SOYBEAN 0.9 1.1 0.8 15.6 74.1 7.0 0.5 25.9 
WHEAT 0.9 0.8 0.8 16.7 6.5 73.5 0.8 26.5 
RICE 0.2 1.3 0.5 0.8 0.6 0.6 96.1 3.9 
To Others 15.2 13.2 10.9 35.5 24.0 25.3 4.0 18.3 
Net spillovers 4.7 -1.4 -3.1 2.8 -1.9 -1.2 0.1   
 

Table 2A: The direction of implied volatility spillovers, VIX included (the lasso method). 

 SP500 VIX USD WTI CORN SOYBEAN WHEAT RICE 
From 

Others 
SP500 66.6 27.7 2.7 1.9 0.3 0.4 0.4 0.1 33.4 
VIX 3.9 95.1 0.4 0.1 0.0 0.2 0.1 0.2 4.9 
USD 3.2 1.9 88.0 3.2 1.0 1.5 0.4 0.8 12.0 
WTI 2.6 3.1 3.6 88.0 0.5 1.0 0.6 0.7 12.0 
CORN 0.3 0.5 0.7 0.5 67.5 14.1 15.8 0.6 32.5 
SOYBEAN 0.6 0.4 0.9 0.7 15.5 74.5 6.9 0.5 25.5 
WHEAT 0.4 0.5 0.6 0.6 16.6 6.5 74.0 0.7 26.0 
RICE 0.0 0.4 1.1 0.4 0.8 0.6 0.6 96.1 3.9 
To Others 11.0 34.4 9.9 7.4 34.7 24.2 24.8 3.6 18.8 
Net 
spillovers -22.3 29.5 -2.0 -4.6 2.3 -1.4 -1.2 -0.3 x 
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Figure 1A: Dynamic total implied volatility spillover index for seven asset classes (the lasso method and 
the OLS method) 

 

Figure 2A: Directional volatility spillovers,TO seven markets (the OLS method) 
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Figure 3A: Directional volatility spillovers, FROM seven markets (the OLS method) 

 
Figure 4A: Net volatility spillovers, seven markets (the OLS method) 
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Figure 5A: Pairwise net volatility spillovers from the US stock (SP500), energy (WTI) and foreign 
exchange (USD) markets to the food markets (the OLS methods) 
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Figure 6A: Pairwise net volatility spillovers within the food markets (the OLS method) 

 
Figure 7A: The forecast error variance decompositions (FEVD) of the food markets (the OLS method) 
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Figure 8A: The response of the food markets to shocks originating from other markets (the OLS method) 
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