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Abstract 
In this paper, the authors investigate the statistical properties of some cryptocurrencies by 
using three layers of analysis: alpha-stable distributions, Metcalfe’s law and the bubble 
behaviour through the LPPL modelling. The results show, in the medium to long-run, 
the validity of Metcalfe's law (the value of a network is proportional to the square of 
the number of connected users of the system) for the evaluation of cryptocurrencies; 
however, in the short-run, the validity of Metcalfe’s law for Bitcoin is questionable. As 
the results showed a potential for herding behaviour, the authors then used LPPL models 
to capture the behaviour of cryptocurrencies exchange rates during an endogenous bubble 
and to predict the most probable time of the regime switching. The main conclusion is that 
Metcalfe’s law may be valid in the long-run, however in the short-run, on various data 
regimes, its validity is highly debatable. 
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1. Introduction 

After 2008, when the pseudonymous Satoshi Nakamoto developed the Bitcoin (Nakamoto, 2008), 
an explosion of other cryptocurrencies begun, based on the blockchain technology. 

According to one of the major websites dealing with cryptocurrencies1, at the beginning of 
September 2018 the total market capitalization was around 180 billion USD, making the 
cryptocurrencies market extremely desirable within the global assets market. 

This new class of assets became interesting not only for traders, but also for the market regulators 
and academics. 

For instance, in 2018, the European Supervisory Authorities for securities, banking and insurance 
and pensions, released a statement warning, claiming that the “VCs (virtual currencies) such as 
bitcoin, are subject to extreme price volatility and have shown clear signs of a pricing bubble and 
consumers buying VCs should be aware that there is a high risk that they will lose a large amount, or 
even all, of the money invested”2.  

From the academic side, there are a lot of papers dealing with the subject of cryptocurrencies, 
especially in terms of their statistical properties and the risk modelling. For the purpose of this paper, 
we will refer only to the most recent papers dealing with three areas regarding the cryptocurrencies 
market: statistical properties of returns, valuation of cryptocurrencies and log-periodic power laws 
applied to cryptocurrencies. 

Regarding the statistical properties, Hu et al. (2018) carried out a survey dealing with some 
stylized facts about the cryptocurrencies market, showing that the time series of returns are 
characterized by large values of kurtosis and volatility. 

Zhang et al. (2018) highlighted also some statistical properties of the cryptocurrencies return: the 
presence of heavy tails, strong volatility clustering, leverage effects and the existence of a power-law 
correlation between price and volume.  

Chen et al. (2017) applied some classical statistical methods (ARIMA, GARCH and EGARCH 
modelling) to the CRIX indices family, allowing them to observe the volatility clustering phenomenon 
and the presence of fat tails.   

Another analysis of the CRIX index (Chen et al. (2017)) deals with a pricing model of derivatives 
for CRIX index and Bitcoin options, by using an affine jump diffusion model, SVCJ (Stochastic Volatility 
with Correlated Jumps) model. An important finding arising from Chen’s paper is that the jumps 
presented in the cryptocurrencies’ prices are an essential component.  

As for the second area, namely the valuation, there are several papers dealing with the Metcalfe’s 
law, who states that a network’s value is proportional to the square of the number of its users. 

Peterson (2017) used the Metcalfe’s law as a Model for Bitcoin’s value, by estimating a model of 
supply (number of bitcoins) and demand (number of bitcoin wallets) and concluding that the 
Metcalfe’s law is a very good fit for Bitcoin’s price. 

Wheatley et al. (2018) estimated the Metcalfe’s law for Bitcoin, proving the existence of a log-linear 
relationship between the market capitalization and a proxy for the number of network users (the 
number of unique addresses). 

If the Metcalfe’s law is valid for cryptocurrencies, then a significant correlation between the 
number of users and the market price should be present. If the correlation is also a causality (in one 
way or another), then there may be room for the occurrence of some herding behaviour: if the market 
is driven by expected future price increases, then more and more players will enter the market, 
causing the price to develop a bubble which will end eventually in a crash. 

                                                           
1 https://coinmarketcap.com/  
2 https://www.esma.europa.eu/sites/default/files/library/esma50-164-

1284_joint_esas_warning_on_virtual_currenciesl.pdf  

https://coinmarketcap.com/
https://www.esma.europa.eu/sites/default/files/library/esma50-164-1284_joint_esas_warning_on_virtual_currenciesl.pdf
https://www.esma.europa.eu/sites/default/files/library/esma50-164-1284_joint_esas_warning_on_virtual_currenciesl.pdf
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For example, the Bitcoin market has experienced several crashes during its lifetime, the first one 
being in 2012, due to a Ponzi fraud involving Bitcoin. Another crash occurred in 2014, when Mt. Gox, 
a Bitcoin exchange handling over 70% of all Bitcoin transactions worldwide, closed its website and 
exchange service, and filed for bankruptcy protection from creditors; the value of Bitcoin then 
dropped by 50 percent in just two days. 

The most recent collapse, at the end of 2017, occurred after the intention of the South Korean 
regulators to shut down the cryptocurrencies exchange market. 

As for the third area, LPPL (Log-Periodic Power Law) models are widely used to describe the 
behaviour of stock prices during an endogenous bubble and to predict the most probable time of the 
regime switching (see Johansen et al., 2000), as the aggregated behaviour of the investors is reflected 
in a log-periodic evolution of the trading price before the crash.  

As the industry of cryptocurrencies has grown exponentially over the past several years, there 
are many applications of the LPPL models to the study of this new market. 

Malhotra et al. (2013) investigated the evolution of Bitcoin exchange rates in 2013-2014, 
showing evidence of a super-exponential growth in Bitcoin exchange rates. 

MacDonell (2014) used the LPPL model to forecast the Bitcoin price crash that took place on 
December 4th, 2013, showing how the model can be a valuable tool for detecting bubble behaviour in 
digital currencies.  

Fry (2015) used the LPPL models to test the presence of a bubble in Bitcoin prices before the price 
crash of December 2013 and they concluded that LPPL models are a valuable tool for understanding 
the bubble behaviour in digital currencies. 

Wheatley et al. (2018) have also used a variant of the LPPL model to estimate the most probable 
time of the crash for the 2017 Bitcoin bubble. 

In this study we are solely focusing on applying three major statistical methods for studying the 
behaviour of cryptocurrencies market. 

First, we are using the alpha-stable distributions to emphasize the heavy-tails property of the 
distribution of cryptocurrencies daily log-returns. 

Second, we employ the generalized Metcalfe’s law for the most important cryptocurrency, the 
Bitcoin, in order to understand the relationship between the Bitcoin’s price, Bitcoin’s market 
capitalization and the number of network users, deriving from there the potential for herding 
behaviour. 

Third, we use the LPPL model to fit the bubble dynamics for the Bitcoin and for one major 
cryptocurrencies index, the CRIX index, showing the value of log-periodic power laws in anticipating 
the regime switching. 

In the light of the findings from the literature, our contribution to the research on the statistical 
analysis of the cryptocurrencies is mostly empirical.  

By using the alpha-stable distributions to emphasize the heavy-tails property of the distribution 
of cryptocurrencies daily log-returns, our results extend the findings from Zhang et al. (2018), where 
the presence of heavy tails for cryptocurrencies is highlighted by using the Hill method to estimate 
the tail index.  

By estimating the generalized Metcalfe’s law in order to understand the relationship between the 
Bitcoin’s price, our paper extends the results from Wheatley et al. (2018): precisely, we find reverse 
causality to Metcalfe’s law – with price causing users growth. 

As a consequence, the potential for herding behaviour is detected, we apply the LPPL models to 
detect the most probable time of regime switching, in case of the CRIX index and of the Bitcoin. 

The main conclusion of the paper is that the Metcalfe’s law may be valid in the long-run, however 
in the short-run, on various data regimes, its validity is highly debatable. 
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The rest of the paper is organized as follows: Section 2 details the methodology; Section 3 presents 
the dataset and the empirical results and Section 4 concludes. 

2. Methodology 

As previously mentioned, the methodology used in this paper has three layers: first, we study the 
statistical properties of the daily log-returns of the selected cryptocurrencies and we estimate the 
parameters of alpha-stable distributions, in order to derive their propensity for non-Gaussianity and 
heavy tails behaviour. 

Second, we investigate the validity of the Metcalfe’s law for the most popular cryptocurrency, 
Bitcoin, showing the existence of a potential for herding behaviour. 

Third, we apply the Log-Periodic Power Law models (Johansen et al., 2000) to identify the bubble 
regime in Bitcoin prices and in the evolution of the CRyptocurrency IndeX. 

2.1. Stable distributions 

In order to characterize the tail behaviour of the cryptocurrencies we fit the distribution of daily 
log-returns through the alpha-stable approach. A random variable X follows an alpha-stable 
distribution with parameters ),,,(   (Nolan, 2011) if exists γ>0, δ  R, such as X and γZ+δ have 

the same distribution, where Z is a random variable with the characteristic function: 
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In the above notations ]2.0(  is the stability index, controlling for probability in the tails (for 

Gaussian distribution 2= ), ]1,1[−  is the skewness parameter, ),0(  is the scale parameter 

and δ  R is the location parameter. 
The tail behaviour of the stable distributions is driven by the values of stability index  : small 

values are associated to higher probabilities in the tails of the distribution. 
In this paper we are using a regression-based method for estimating the parameters of an alpha-

stable distribution (Kogon and Williams, 1998). This method is implemented as a SAS macro in Pele 
(2014) and can be used to obtain estimates for the parameters of stable distributions (see the 
Appendix A). 
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2.2.  Metcalfe’s law 

In the 1980s, Robert Metcalfe, the co-inventor of Ethernet, stated what was called later the 
Metcalfe’s law (Gilder 1993): the value of a network is proportional to the square of the size of the 
number of connected users. 

Metcalfe’s law was validated in various contexts, by using social network data:  Zhang et al. 
(2015) proved the validity of the law for Facebook and Tencent (Chinese social network). Other 
researchers (Madureira et al., 2013, Van Hove, 2014, 2016, Metcalfe, 2013) have shown the validity 
of the law, mostly regarding internet networks. 

Peterson (2017) showed that the Metcalfe’s law can be used to explain the evolution of the 
Bitcoin transaction price, by using factors relating to supply (number of bitcoins) and demand 
(number of wallets). 

In this paper we are using the Metcalfe’s law version from Wheatley et al. (2018): 

t tC e u =                  (3) 

where: 

- tC  is the Bitcoin’s market capitalization at time t; 

- tu  is the Bitcoin’s number of unique addresses at time t. 

If the Metcalfe’s law is valid for Bitcoin, then the coefficient β=2; in this paper we are testing 
the equation (3) over the entire sample and by using a rolling window approach. 

In addition to the classical form of the Metcalfe’s law, we are testing the hypothesis that 
the Bitcoin’s price itself is driven by the Bitcoin’s network size, showing potential for some herding 
behaviour. 
Also, by using cointegration analysis and Granger causality, we infer that the expected price increase 
is a driver for more investors to join the Bitcoin network, which may lead in the end to a super-
exponential price growth, due to the herding behaviour of investors.  

2.3.  Log-periodic power laws (LPPL) 

According to the field theory (Goldenfeld, 1992), an imitative process can be described through its 

hazard rate h(t):   
dh

Ch
dt

= , where C>0, and δ+1>1 is the average number of interactions.  

Then ℎ(𝑡) = (
ℎ0

𝑡𝑐−𝑡
)
𝛼

, with 𝛼 =
1

𝛿−1
 and 𝑡𝑐 being the critical time, so the price dynamics prior to the 

crash should be ln
𝑝(𝑡)

𝑝(0)
= 𝑘 ∫ ℎ(𝑢)𝑑𝑢

𝑡

𝑡0
. 

As the crash probability should be compensated by larger price changes, prior to the stock market 
crash (Blanchard, 1979), the hazard rate could be expressed via the Ising model:

 '10 )ln(cos)()(B)(  +−−+− −− ttttBttth ccc . 
Thus, the trading price before the crash follows a log-periodic power law (Johansen et al., 2000):  

( ) ( ) ( )log {1 [ ln ]}c cE p t A B t t Ccos t t
 

   = + − + − +  ,      (4) 

where p(t) is the price at moment t, 𝑡𝑐 is the critical time (the most probable moment of the crash), 

and  ,,,, 10 BB are the parameters of the model which give its log-periodic feature. 

In order to have a proper specification of the model, there are several constrains applied to the 
parameters: A>0, B<0, 𝐶 ≠ 0, |𝐶| < 1, 0 < 𝛽 < 1, 𝜔 ∈ (0,∞)  and 𝜙 ∈ [0,2𝜋]. 
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In this paper, we are using the LPPL models to test the propensity for herding behaviour in the 
case of Bitcoin and the CRIX Index, following the methodology used in Fantazzini et al. (2016), who 
applied the LPPL modelling to Bitcoin exchange rates, finding evidence of explosive behaviour in the 
bitcoin-USD exchange rates during August – October 2012 and November, 2013 – February, 2014. 

3. Empirical results 

3.1. Dataset 

The dataset presented in the table below consists of daily cryptocurrency data (transaction count, 
on-chain transaction volume, value of created coins, price, market capitalization and exchange 
volume)3. One market index was also used for the analysis: Cryptocurrency Index4 as a reference for 
the cryptocurrencies market (Trimborn and Härdle, 2018). 

Table 1. Description of the dataset 

No. Symbol Cryptocurrency/ Index 
Number of daily 

observations 
Start date End date 

1 ANT Aragon 502 5/19/2017  10/2/2018  

2 BTC Bitcoin 1983 4/29/2013  10/2/2018  

3 DASH Dash 1691 2/15/2014  10/2/2018  

4 DCR Decred 965 2/11/2016  10/2/2018  

5 DGB Digibyte 1699 2/7/2014  10/2/2018  

6 DOGE Dogecoin 1752 12/16/2013  10/2/2018  

7 ETC Ethereum Classic 800 7/25/2016  10/2/2018  

8 ETH Ethereum 1152 8/8/2015  10/2/2018  

9 GNO Gnosis 519 5/2/2017  10/2/2018  

10 GNT Golem 683 11/19/2016  10/2/2018  

11 GOLD GoldCoin 2122 12/11/2012  10/2/2018  

12 ICN Iconomi 732 10/1/2016  10/2/2018  

13 LSK Lisk 909 4/7/2016  10/2/2018  

14 LTC Litecoin 1983 4/29/2013  10/2/2018  

15 MAID MaidSafeCoin 1618 4/29/2014  10/2/2018  

16 NEO NEO 753 9/10/2016  10/2/2018  

17 PIVX PIVX 962 2/14/2016  10/2/2018  

18 REP Augur 1071 10/28/2015  10/2/2018  

19 USDT Theter 590 2/20/2017  10/2/2018  

20 VTC Vertcoin 1716 1/21/2014  10/2/2018  

21 WAVES Waves 846 6/3/2016  9/26/2018  

22 XEM NEM 1280 4/2/2015  10/2/2018  

23 XLM Stellar 1519 8/6/2014  10/2/2018  

24 XMR Monero 1595 5/22/2014  10/2/2018  

25 XRP Ripple 1835 8/5/2013  8/13/2018  

26 XVG Verge 1438 10/26/2014  10/2/2018  

27 ZEC ZCash 703 10/30/2016  10/2/2018  

28 CRIX CRyptocurrency IndeX 1524 8/1/2014  10/2/2018  

                                                           
3 The source for these data is https://coinmarketcap.com . 
4 The CRyptocurrency IndeX is a benchmark for the crypto market. The CRIX is realtime computed by the 

Ladislaus von Bortkiewicz Chair of Statistics at Humboldt University Berlin, Germany. 

https://coinmarketcap.com/
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The dataset used in this paper deals only with cryptocurrencies for which at least 2 years of daily 
transaction data (at least 500 daily observations) were available at the moment of the data collection 
(October 2nd, 2018). For the purpose of data analysis, the statistical software SAS 9.3 was used. 

3.2. Estimating the parameters of an alpha - stable distribution for cryptocurrencies daily log-returns 

In order to fit the stable-distribution to the selected time series of daily log-returns

1log( ) log( )t t tr P P−= −  , a SAS macro (Pele 2014) was applied and the results are presented in Table 

2. 
 
Table 2. Parameters of the estimated alpha - stable distributions 

No. Symbol α 
95% half-

width  
β 

95% half-
width   

δ 
95% half-

width  
ϒ 

95% half-
width  

1 ANT 1.825 0.063 -0.066 0.015 0.081 0.029 0.047 0.037 

2 BTC 1.468 0.100 0.169 0.033 0.211 0.025 0.017 0.074 

3 DASH 1.494 0.073 -0.391 0.023 -0.195 0.142 0.030 0.053 

4 DCR 1.645 0.084 -0.528 0.158 -0.107 0.397 0.038 0.055 

5 DGB 1.620 0.056 -0.245 0.040 0.064 0.103 0.046 0.037 

6 DOGE 1.306 0.087 -0.338 0.050 -0.714 0.462 0.024 0.073 

7 ETC 1.501 0.089 -0.459 0.054 -0.164 0.255 0.031 0.064 

8 ETH 1.589 0.099 -0.457 0.077 0.081 0.273 0.030 0.067 

9 GNO 1.733 0.060 -0.030 0.065 -0.077 0.105 0.045 0.037 

10 GNT 1.772 0.061 -0.167 0.074 0.439 0.133 0.049 0.037 

11 GOLD 1.543 0.089 0.080 0.054 -0.048 0.100 0.003 0.063 

12 ICN 1.669 0.060 -0.167 0.085 0.204 0.164 0.052 0.039 

13 LSK 1.361 0.025 -0.302 0.068 -0.099 0.220 0.042 0.020 

14 LTC 1.336 0.081 -0.202 0.039 -0.384 0.252 0.020 0.066 

15 MAID 1.789 0.048 0.028 0.031 -0.079 0.043 0.038 0.029 

16 NEO 1.525 0.050 -0.417 0.045 0.058 0.146 0.045 0.035 

17 PIVX 1.630 0.076 -0.242 0.038 0.062 0.109 0.054 0.050 

18 REP 1.573 0.055 -0.125 0.045 0.076 0.109 0.037 0.037 

19 USDT 0.509 0.306 0.111 0.126 -0.003 0.034 0.001 0.680 

20 VTC 1.549 0.043 -0.325 0.030 -0.078 0.097 0.045 0.030 

21 WAVES 1.716 0.053 -0.015 0.027 0.128 0.046 0.042 0.033 

22 XEM 1.631 0.048 -0.208 0.053 0.053 0.117 0.040 0.032 

23 XLM 1.515 0.072 -0.279 0.055 -0.072 0.180 0.032 0.052 

24 XMR 1.701 0.068 -0.169 0.007 0.167 0.034 0.036 0.043 

25 XRP 1.323 0.072 -0.306 0.023 -0.534 0.243 0.023 0.059 

26 XVG 1.551 0.105 -0.177 0.076 -0.082 0.226 0.073 0.074 

27 ZEC 1.575 0.037 -0.082 0.037 0.107 0.077 0.039 0.025 

28 
CRIX 
Index 

1.490 0.109 0.254 0.103 0.427 0.169 0.015 0.080 
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Figure 1.  Distribution of the stability index α for log-returns distribution of the selected assets 

As depicted in Table 2 and Figure 1, in most of the cases, all the analysed cryptocurrencies exhibit 
large departures from normality, the values of the stability index α being significantly lower than 2, 
the value that corresponds to the Gaussian distribution.  

 

Figure 2.  Heatmap of scale parameter γ versus stability index α for selected assets 

Figure 2 shows the correlation between the scale parameters γ (the equivalent of the volatility in the 
classical approach) and the stability index α, controlling for the tail probability. Based on this 
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correspondence, we are able to cluster the selected cryptocurrencies based on their propensity to 
heavy-tails and the likelihood of high volatility. For example, the cryptocurrency Theter (USDT) has 
the lowest stability index α (large departure from normality), but the scale parameter is low, so USDT 
is placed in the orange zone. The closest to the normal distribution is Aragon (ANT), yet his scale 
parameter is around the sample average, so it is placed in the yellow zone. 

3.3. Metcalfe's law for Bitcoin 

In order to evaluate the applicability of the Metcalfe’s law for cryptocurrencies, we limit the 
research to the most known and traded cryptocurrency, the Bitcoin, also due to the availability of 
transaction and network data5. 

 

 
(a) 

 
(b) 

Figure 3.  (a) Bitcoin average price (USD) vs. Number of unique Bitcoin addresses used per day. 
(b) Bitcoin market capitalization (USD) vs. Number of unique addresses. 

                                                           
5 https://www.blockchain.com  
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As stated in the original formulation of the Metcalfe’s law, the value of the network should be 

proportional to the squared number of network users; however, in the case of cryptocurrencies, the 
actual number of users is unknown and we need to use a proxy for it, i.e. the number of unique 
addresses. 

Unique addresses in the Bitcoin ecosystem are the payment addresses that have a non-zero 
balance; this metric can be used as a proxy for the number of network users, although we cannot 
assume that the number of users is equal to the number of unique addresses.  The number of unique 
addresses is not constant over time: when fees are high, investors leave their cryptocurrencies in 
multiple addresses, because a consolidation into a single address will require a high cost. When fees 
are low, investors can consolidate their funds into a single address. 

As the Bitcoin network grows, the number of unique addresses will also grow over time, but when 
the market is going down, less unique addresses are in use as the number of transactions decreases, 
as seen in Figure 3. 

3.3.1. The Metcalfe’s law for the entire data sample 
 

In this section, we are estimating the generalized Metcalfe’s law, which is a log-linearization of the 
equation (3): 
  

log logt t tC u  = + + .              (5) 

where: 
 

- tC  is the Bitcoin’s market capitalization at time t; 

- tu  is the number of unique Bitcoin addresses used at time t. 

 
The estimation results for the equation (5) are shown below, using daily data for the period 
2010/08/24 – 2018/10/05. 
 

Table 3. Estimation results for the equation (5) 
Parameter Estimated value 

α 
 

1.856*** 
(0.146) 

β 
 

1.696*** 
(0.013) 

2

adjR  0.924 

Note: *** denotes statistical significance at 99% confidence level; standard errors in (). 
 
Although the slope of the equation (5) is β=1.696, below the theoretical value of 2, the model has a 

high explanatory power ( 2 0.924adjR = ), supporting the validity of the Metcalfe’s law for Bitcoin. 

The log-linear relationship between the Bitcoin’s market capitalization and the number of unique 
Bitcoin addresses used is illustrated in the figure below. 
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Figure 4. Generalised Metcalfe’s law for Bitcoin’s market capitalization, for the entire data sample 
 
From the validity of the Metcalfe’s law for Bitcoin one can infer the existence of a possible herding 

effect: as an increase of the number of users is reflected in an increase of the market capitalization, 
this may be explained by the fact that there is a mimetic effect among users, making the price to have 
an ascending trend.  

One insight into this direction can be found by estimating the generalized Metcalfe’s law for the 
Bitcoin’s price: 

log logt t tP u  = + + .                          (6) 

The estimation results of the equation (6) are shown below. 
 

Table 4. Estimation results for the equation (6) 
Parameter Estimated value 

α 
 

-12.040*** 
(0.143) 

β 
 

1.489*** 
(0.012) 

2

adjR  0.906 

Note: *** denotes statistical significance at 99% confidence level; standard errors in (). 
The sample covers the period 2010/08/24 – 2018/10/05. 

 
The results of the estimation show that there is strong log-linear relationship between the 

Bitcoin’s market price and the number of unique addresses, as a proxy for the number of Bitcoin’s 
network users (see also Figure 5); moreover, the price increase may be a direct effect of the 
increasing network size, through a possible mimetic behaviour. 
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Figure 5. Generalised Metcalfe’s law for Bitcoin’s price 

3.3.2. The Metcalfe’s law on rolling windows 
 
The validity of the Metcalfe’s law for Bitcoin’s market capitalization is questionable: as shown 

below, due to the different regimes, one will obtain very different parameter estimates by fitting the 
model on different sub-windows of the data. 

For w the length of a rolling window, we estimated the following model: 

log logt k k t tC u  = + +  ,        (7) 

where 1t {k , ...,k w} + + , }1,...,0{ +− wTk  and T the number of observations if the sample. 

The results are presented in the succession of graphs below. 
 

Figure 6 depicts the values of the Adjusted R-squared for various rolling windows; there are 
periods when the explanatory power of the model is close to, or higher than 90%, but there also 
situations when the number of network users has no explanatory power on the market capitalization 
of Bitcoin. 
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Figure 6. Adjusted R-squared for the Metcalfe’s law (equation 5), estimated on rolling windows of 

60, 90, 250 and 500 trading days 

  

  
Figure 7. The beta coefficient for the Metcalfe’s law (equation 5), estimated on rolling windows of 

60, 90, 250 and 500 trading days 
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Figure 7 shows the estimated values of the coefficient from the equation (5), which, according to 
the classical formulation of the Metcalfe’s law, should be equal to 2. However, there is a huge volatility 
in the evolution of this coefficient, its average values being significantly lower than 1, for the rolling 
windows of 60, 90 and 250 days and significantly lower than 2 for the 500 days rolling window. 

This analysis shows that there is clear pattern of inconsistency over time, questioning the validity 
of the Metcalfe’s law for Bitcoin, when considering different sub-windows of the data. 

3.3.3. Granger causality and cointegration between the Bitcoin’s price and the network size 
 
Granger causality and cointegration analysis has been previously applied to analyse the 

correlation of the Bitcoin price to macroeconomic indicators (see, for example, Zhu et al., 2017).  
Going deeper with the analysis, we have also performed a Granger causality test in order to detect 

the existence of the causal links between the Bitcoin’s price and the number of unique addresses. 

We consider the two-dimensional vector '(ln , ln )t t tY P u= , where Pt is the Bitcoin’s price and ut is 

the number of unique addresses. 
    As shown in Table 5, these time series are nonstationary (according to the Augmented Dickey 
Fuller – ADF test) and integrated of order one. 
 

Table 5. ADF test results at 99% confidence level 

Variables Prob. Conclusion 

log_p 0.386 non-stationarity 

log_u 0.041 non-stationarity 

Δ(log_p) 0.000 stationarity 

Δ(log_u) 0.000 stationarity 

 
Table 6 presents the result of Johansen test; as we can see, there are two cointegration equations at 
the significance level of 0.05. Thus, we can draw a conclusion that there exists a long-term dynamic 
equilibrium between the Bitcoin price and the Bitcoin’s network size. 
 

Table 6. Johansen cointegration test results 
Unrestricted Cointegration Rank Test (Trace) 

Hypothesized No. of CE(s) Eigenvalue 
Trace 

Statistic 
0.05 Critical value Prob.** 

Nonea 0.011 38.549 20.262 0.000 
At most 1a 0.004 10.621 9.165 0.026 

Note: Trace test indicates 2 cointegrating equations at the 0.05 level; a denotes rejection of the hypothesis at 
the 0.05 level; ** MacKinnon-Haug-Michelis (1999) p-values. 

 
As these time series are not stationary and both of them are integrated of order one, in order to test 
for Granger causality, the Toda-Yamamoto (1995) procedure was applied, by using the steps below: 

a. Test the two time-series to determine their order of integration. 
b. Let the m=1 the maximum order of integration for the group of the two time-series. 
c. Estimate a VAR model in level. 
d. Determine the appropriate maximum lag length (p) for the variables in the VAR, using the 

AIC, criterion. 
e. Check and correct for serial correlation in the residuals. 
f. Test for cointegration of the two time-series. 
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g. Estimate the VAR(p+m) model and test the Granger causality using the Block Exogeneity 
Wald Test. 
 

Table 7. VAR Granger Causality/Block Exogeneity Wald Tests 
Included observations: 

1468  
Dependent variable: LOG_P  

Excluded Chi-sq df Prob. 
LOG_U 13.343 5 0.020 

All 13.343 5 0.020 
Dependent variable: LOG_U  

Excluded Chi-sq df Prob. 
LOG_P 41.171 5 0.000 

All 41.171 5 0.000 

Note: the optimum number of lags (15) was chosen based on the lag length criteria from VAR specification. 

 
Based on the Granger causality tests, one can deduce the existence of a unidirectional causal 
relationship from the Bitcoin’s prices to the size of the network, expressed as the number of unique 
addresses. 
The temporal dependency can be captured via a Vector Autoregressive (VAR (p)) model, of the 

following form: 
1 1 ...t t p t p tY AY A Y − −= + + + , where '(ln , ln )t t tY P u= . 

Table 8. VAR (5) estimates 

  LOG_U LOG_P 

LOG_U(-1) 0.528*** 0.003 

 (-0.020) (-0.007) 

LOG_U(-2) 0.086*** 0.004 

 (-0.022) (-0.008) 

LOG_U(-3) 0.089*** -0.009 

 (-0.022) (-0.008) 

LOG_U(-4) 0.106*** -0.013 

 (-0.022) (-0.008) 

LOG_U(-5) 0.191*** 0.016*** 

 (-0.020) (-0.007) 

LOG_P(-1) 0.212*** 1.071*** 

 (-0.052) (-0.020) 

LOG_P(-2) -0.003 -0.100*** 

 (-0.076) (-0.029) 

LOG_P(-3) 
-

0.153*** -0.011 

 (-0.076) (-0.029) 

LOG_P(-4) 0.053 0.058 

 (-0.076) (-0.029) 

LOG_P(-5) 
-

0.110*** -0.019 

 (-0.052) (-0.020) 

Adj. R-squared 0.989 0.999 

Note: *** denotes significance at 99% confidence level; standard errors in (). 
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One can note from the above table with the VAR estimation results that the past realizations of the 
Bitcoin’s price can be used to forecast the future realizations of the network size. For example, if at 
time t-1 the Bitcoin’s price increases by 1%, then at time t one can expect a 0.212% increase of the 
number of unique addresses. 
 

 
Figure 8. Impulse Response Function for the estimated VAR model 

 
Moreover, the behaviour of the impulse response function offers an indication that a shock from 

the Bitcoin’s price have a positive effect on the network size, and the effect is permanent and 
significantly different from zero (see Figure 8). 

One can infer from this analysis that the expected price increase is a driver for more investors to 
join the Bitcoin network, which may lead in the end to a super-exponential price growth, due to a 
herding behaviour of investors. 

 

3.4. LPPL models 

In order to capture the bubble regime and to estimate the most probable time of the crash, the 
algorithm from Pele (2012), using price gyrations and peak detection was applied. 

3.4.1. Numerical results for Bitcoin 
 

In case of Bitcoin, the regime swithcing was recorded in December 2017, the exchange rate hitting a 
local maxima on December 19th, 2017. The initial sample for fitting LPPL model in the case of Bitcoin 
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for predicting the phase transition from December 2017 was 1 Jan 2016 – 30 Nov 2017 (700 daily 
observations). 

Starting from the last observation in the initial sample, we extended the sample using a rolling 
window with fixed lower limit, so we estimated at every step the LPPL model for 𝑡 ∈[1,T+k], k=1…17: 

; ;
[ln ( )] ( ) {1 cos[ ln( ) ]}k

k k k k kc k c k
E p t A B t t C t t   = + − + − + .                           (7) 

 
The best results of the LPPL models, in terms of minimzing the RMSE, are given below. 

 
Table 9. The best fit for Bitcoin’s LPPL model 

 Model 1 Model 3 Model 3 
Orbs 711 701 706 

A 9.768 9.328 9.489 
B -0.161 -0.08 -0.104 
C -0.062 0.085 0.076 
tc 0.494 0.588 0.552 
β 3.863 3.472 3.588 
ω -10361.29 -9103.55 -5960.18 
ϕ 6.28 5.585 4.83 

Start date 01-Jan-2016 01-Jan-2016 01-Jan-2016 
End date 11-Dec-2017 01-Dec-2017 06-Dec-2017 

RMSE 0.148 0.152 0.157 
AdjRSq 0.975 0.971 0.97 

Date of crash 12-Dec-2017 02-Dec-2017 07-Dec-2017 

 

As a result of the estimation, three models were kept, with the best Root Minimum Squared Error 
(RMSE).  The model with the minimum RMSE anticipated on December 11th 2017 an imminent crash 
for the next day, as seen in Figure 9. 

The other two selected models offer close predictions, for December 2nd 2017 and December 7th 2017. 
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Figure 9. LPPL fit for BTC (model with the minimum RMSE) 

 

3.2. Numerical results for the CRIX Index  

The local maxima for the CRIX index was recorded on January 7th 2018, this being the moment of 
the regime switching. 
The initial sample for fitting LPPL model in the case of the CRIX index for predicting the phase 
transition from January 2018 was 1 Jan 2016 – 15 Dec 2017 (716 daily observations). 

Starting from the last observation in the initial sample, we extended the sample by using a rolling 
window with fixed lower limit, so we estimated at every step the LPPL model for 𝑡 ∈[1,T+k], k=1…20: 

; ;
[ln ( )] ( ) {1 cos[ ln( ) ]}k

k k k k kc k c k
E p t A B t t C t t   = + − + − + .                        (8) 

 
The evolution of the CRIX index is depicted in the figure below. 
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Figure 10. The CRIX Index 

 
The best results of the LPPL models, in terms of minimzing the RMSE, are given in the table below. 
 

Table 10. The best fit for CRIX’s LPPL model 

 Model 1 Model 3 Model 3 
Obs 729 732 727 

A 12.393 12.373 12.383 
B -0.627 -0.603 -0.631 
C -0.007 -0.008 0.006 
tc 737 739 736 
β 0.344 0.349 0.342 
ω -10361.3 -9103.55 -5960.18 
ϕ 67211.29 58656.45 38870.71 

Start date 01-Jan-2016 01-Jan-2016 01-Jan-2016 
End date 30-Dec-2017 02-Jan-2018 28-Dec-2017 

RMSE 0.2406 0.2407 0.2408 
AdjRSq 0.9578 0.9587 0.9571 

Date of crash 07-Jan-2018 10-Jan-2018 06-Jan-2018 

  
The best fit for the CRIX index was given by the model estimated for the period January 1st 2016 – 

December 30th 2017, for which the estimated critical time was exactly the date of local maximum, 
January 7th 2018 (see Figure 11). 
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Figure 11. LPPL fit for the CRIX Index (the model with the minimum RMSE) 

 
  Conclusions 

 
Our paper deals with a new class of assets, digital currencies or cryptocurrencies, from the point 

of view of their statistical properties and the herding behaviour. 
One of the main findings is that daily cryptocurrencies log-returns exhibits large departures from 

normality, leaving room for high uncertainty levels, as shown the estimated stability indexes of stable 
distributions. 

Moreover, by analysing Bitcoin related data, we prove, in the medium to long-run, the validity of 
the Metcalfe's law (the value of a network is proportional to the square of the number of connected 
users of the system) for the evaluation of cryptocurrencies; however, in the short-run, the validity of 
the Metcalfe’s law for Bitcoin is questionable. 

This analysis shows that there is clear pattern of inconsistency over time, questioning the validity 
of the Metcalfe’s law for Bitcoin, when considering different sub-windows of the data. 

As there is a strong correlation between the size of the network and the market price of 
cryptocurrencies, this may be a sign for a mimetic behaviour of investors, who enter the market 
driven by high expected currency rates, which may lead the market into a super-exponential bubble 
regime. 

LPPL models could be useful in estimating the most probable time of the regime switching for an 
endogenous cryptocurrency bubble. 

By analysing the behaviour of the Bitcoin’s price and the CRIX index, we have proven that LPPL 
models can be a useful tool in recognizing and mapping out the behaviour of a developing bubble.  

This is a validation of the predictive power of LPPL models in detecting the imitative behaviour of 
investors in the cryptocurrencies market, our results being useful both from a theoretical point of 
view and from a business perspective. 
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At the same time, this validation of the LPPL models is another argument questioning the universal 
validity of the Metcalfe’s law for Bitcoin, when modelling the relationship between the price and the 
number of network users. 

The econometric method to determine causality is based on cointegration, which requires that the 
residuals between the linear regression of the log-price onto the log number of users should be 
stationary (integrated of order 0) – i.e., controlling for the long run Metcalfe law equilibrium, the 
relative movement of the two series cointegrated series will be stationary.  

This stationarity assumption contradicts/excludes the existence of LPPL bubbles as well as 
different market regimes observed within the price series, studied in part 3 – which are radically 
non-stationary. 

The main conclusion is that the Metcalfe’s law may be valid in the long-run, however in the short-
run, on various data regimes, its validity is highly debatable. 
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Appendix A – Estimating the parameters of an alpha-stable distribution 
 
A.1. Estimating the parameters of an alpha-stable distribution using McCulloch method 

 

McCulloch method (1986) involves the following steps for estimating the parameters of a 
)0;,,,( S random variable: 

- estimate   and  , using the quintiles of the empirical distribution (for more details, see   Racheva-

Iotova, 2010); 

 - define 
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= , where px  is the p-quintile of the empirical 

distribution, having thus ),(1   =  and ),(2   = or, by inversion, ),(1  vva=  and 

),(2  vva= . 

More, ),(),( 11   vvvv aa −==  and ),(),( 22   vvvv aa −−== . 

The functions )(1   and )(2   are tabulated for different values of  a  and b , so the estimates of 

and   can be obtained using a bi-linear interpolation.  

In a quite similar manner, the location parameter δ and the scale parameter γ can be estimated 
using the corresponding tabulated functions and the previous estimations for  and  . 

The code used in this paper for estimating the parameters of an alpha-stable distribution using 

McCulloch method can be found as the quantlet mc_culloch on the website www.quantlet.de.  

  
A.2. Estimating parameters of an alpha-stable distribution using the Kogon-Williams method 

 

In order to estimate the parameters of a stable distribution in parameterisation S1, the following 
algorithm can be applied (following Kogon and Williams, 1998 and Pele, 2014): 

Step 1. Use the initial estimates 0000 ,,,   from McCulloch method and normalize the sample: 

0

0



−
→

j

j

x
x ; 

Step 2. Estimate the regression model kkk wby  ++= 1 , with 9,..,0=k , )]](ˆRe[ln(ln[ kk uy −= ,

||ln kk uw = , ku k 1.01.0 += , 9,..,0=k , and )(ˆ   is the empirical characteristic function of the 

normalized sample. If b̂  and 1̂ are the estimates of the regression model, then the estimate of the 

scale parameter is )ˆ/ˆexp(ˆ
1  b= . 

Step 3. Estimate the regression model kkk vz  ++= 111 , with 9,..,0=k , )](ˆIm[ln( kk uz = ,

)2/ˆtan()1|ˆ(|ˆ
1

1ˆ

11
1  

−=
−

kkk uuw , ku k 1.01.0 += , 9,..,0=k . 

Step 4. The final estimates are the following: ))2/ˆtan(ˆˆˆ,ˆ,ˆ,ˆ(),,,( 111111111111  −= . 

 
The code used in this paper for estimating the parameters of an alpha-stable distribution using 

Kogon-Williams method can be found as the quantlet stab_reg_kw on the website www.quantlet.de.  

http://www.quantlet.de/
http://www.quantlet.de/


 

 

 

 

 

 

 

Please note: 

You are most sincerely encouraged to participate in the open assessment of this 
discussion paper. You can do so by either recommending the paper or by posting your 
comments. 

 

Please go to: 

http://www.economics-ejournal.org/economics/discussionpapers/2019-16 
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