
Ledoit, Olivier; Wolf, Michael

Working Paper

Robust performance hypothesis testing with smooth
functions of population moments

Working Paper, No. 305

Provided in Cooperation with:
Department of Economics, University of Zurich

Suggested Citation: Ledoit, Olivier; Wolf, Michael (2018) : Robust performance hypothesis testing
with smooth functions of population moments, Working Paper, No. 305, University of Zurich,
Department of Economics, Zurich,
https://doi.org/10.5167/uzh-157426

This Version is available at:
https://hdl.handle.net/10419/192914

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.5167/uzh-157426%0A
https://hdl.handle.net/10419/192914
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 
 

 
Working Paper No. 305 

 
 

Robust Performance Hypothesis Testing 
with Smooth Functions of Population Moments 

 
 
 
 

Olivier Ledoit and Michael Wolf 
 
 
 

October 2018 
 

 

 

 

 
 
 

University of Zurich 
 

Department of Economics 
 

 
 

Working Paper Series 
  

ISSN 1664-7041 (print) 
 ISSN 1664-705X (online) 

 
 

 
 

 
 

 

 



Robust Performance Hypothesis Testing

with Smooth Functions of Population Moments

Olivier Ledoit

Department of Economics

University of Zurich

CH-8032 Zurich, Switzerland

olivier.ledoit@econ.uzh.ch

Michael Wolf

Department of Economics

University of Zurich

CH-8032 Zurich, Switzerland

michael.wolf@econ.uzh.ch

October 2018

Abstract

Applied researchers often want to make inference for the difference of a given

performance measure for two investment strategies. In this paper, we consider the

class of performance measures that are smooth functions of population means of the

underlying returns; this class is very rich and contains many performance measures of

practical interest (such as the Sharpe ratio and the variance). Unfortunately, many of the

inference procedures that have been suggested previously in the applied literature make

unreasonable assumptions that do not apply to real-life return data, such as normality

and independence over time. We will discuss inference procedures that are asymptotically

valid under very general conditions, allowing for heavy tails and time dependence in the

return data. In particular, we will promote a studentized time series bootstrap procedure.

A simulation study demonstrates the improved finite-sample performance compared to

existing procedures. Applications to real data are also provided.

KEY WORDS: Bootstrap, HAC inference, kurtosis, Sharpe ratio, sknewness, variance.
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1 Introduction

Much applied financial research is concerned with the evaluation of investment strategies (such

as stocks, portfolios, mutual funds, hedge funds, and technical trading rules). The single most

relevant performance measure, arguably, is still the Sharpe ratio, introduced by Sharpe (1966).

There exist a host of other performance measures, too many to list them all in this paper.

For purposes of tractability, we shall restrict attention to performance measures that can be

expressed as smooth functions of population moments of the returns of a given investment

strategy. Note here that the returns can be raw returns or they can be returns in excess of

another strategy.

Allow us to use the Sharpe ratio as the perfect case in point: it is defined as the ratio

of the mean over the standard deviation of the returns of an investment strategy in excess

of the riskfree rate. As such, the Sharpe ratio can be expressed as a smooth function of two

population moments: the first and the second moment; see Example 2.1.

Other performance measures that fall in the class of smooth functions of population

moments are the variance, the mean, the skewness, and the kurtosis; see Examples 2.2–2.5.

The variance is a relevant performance measure for investment strategies that aim to

implement the global minimum variance (GMV) portfolio. Such strategies are becoming ever

more popular, among other reasons, because they do not require to estimate mean returns;

for example, see Jagannathan and Ma (2003), Elton et al. (2006), Kempf and Memmel (2006),

Garlappi et al. (2007), DeMiguel et al. (2009a), DeMiguel et al. (2009b), Frahm and Memmel

(2010), Güttler and Trübenbach (2011), Scherer (2011), and Candelon et al. (2012).

The mean is rarely used on its own by sophisticated finance practitioners, since it does not

account for the volatility (or risk) of an investment strategy. On the other hand, it is still a

widely-used performance measure in the mainstream financial media. It can also be considered

to be an appropriate performance measure for an investment strategy with (approximately)

known volatility, such as money market funds.

In addition, it has been shown that investors seek portfolios that exhibit high positive

skewness and low kurtosis; for example, see Harvey and Siddique (2000), Dittmar (2002),

Patton (2004), and Mitton and Vorkink (2007).

The general scenario that we shall consider is as follows. There are two investment

strategies under consideration and a particular performance measure has been chosen. Can it

be established statistically that one strategy outperforms the other? Crucially, in designing a

proper statistical inference procedure, one must account for two well-established stylized facts

of financial returns: heavy tails and dependence over time.

Unfortunately, many inference procedures that have been suggested in the finance literature

to compare two investment strategies with respect to a chosen performance measure are based

on the assumption that returns are normally distributed and independent over time. Perhaps

the most prominent example is the test for the equality of two Sharpe ratios suggested

by Jobson and Korkie (1981) and its corrected version by Memmel (2003). Such inference
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procedures are not reliable in the context of real-life financial data; see Section 4.

In this paper, we discuss inference procedures that are more generally valid, allowing

for heavy tails and dependence over time of the returns. One possibility is to use normal-

theory based on HAC standard errors. Such an approach works asymptotically but does not

always have satisfactory properties in finite samples. As an improved alternative, we suggest

a studentized time series bootstrap procedure. We would like to point out that much of this

paper is based on the earlier works of Ledoit and Wolf (2008, 2011).

2 The General Problem

We use notation going back to Jobson and Korkie (1981) and Memmel (2003). There are two

investment strategies i and n whose excess returns over a given benchmark at time t are rti and

rtn, respectively. The benchmark depends on the application at hand. The two most salient

cases are zero (resulting in raw returns) and the riskfree rate.

A total of T return pairs (r1i, r1n)
′, . . . , (rT i, rTn)

′ are observed. It is assumed that these

observations constitute a strictly stationary time series so that, in particular, the bivariate

return distribution does not change over time. This distribution has mean vector µ and

covariance matrix Σ given by

µ ..=

(
µi

µn

)
and Σ ..=

(
σ2
i σin

σin σ2
n

)
.

Crucially, we dot assume the distribution to be normal, nor do we assume that returns

rt ..= (rt1, rtn)
′ are independent over time.

The parameter of interest is

∆ ..= θi − θn , (2.1)

where θ is a given performance measure. Hence, θi is the performance measure for the first

strategy and θn is the performance measure for the second strategy.

We are interested in testing

H0 : ∆ = 0 vs. H1 : ∆ 6= 0 .

We consider the class of performance measures θ that can be expressed as a smooth function

of a finite number of population moments. In particular, for l = i, n, let

ν
(m)
l

..= E(rml )

denote the (uncentered) mth population moment of the returns of strategy l. Then, for l = i, n,

we assume that θl can be expressed as

θl = h
(
ν
(1)
l , . . . , ν

(M)
l

)
,

where M ≥ 1 is an integer and h : RM → R is a smooth function (in the sense of being one

time continuously differentiable).
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Example 2.1 (Sharpe ratio). In this case,

θl ..=
µl

σl
= h

(
ν
(1)
l , ν

(2)
l

)
,

where

h(a, b) ..=
a√

b− a2
.

Example 2.2 (Variance). As explained by Ledoit and Wolf (2011), it is advantageous to

consider the log-variance, instead of the variance itself, so that

θl ..= log(σ2
l ) = h

(
ν
(1)
l , ν

(2)
l

)
,

where

h(a, b) ..= log(b− a2) .

Example 2.3 (Mean). In this case,

θl ..= µl = h
(
ν
(1)
l

)
,

where

h(a) ..= a .

Example 2.4 (Skewness). In this case,

θl ..=
E
[
(rl − µl)

3
]

σ3
l

= h
(
ν
(1)
l , ν

(2)
l , ν

(3)
l

)
,

where

h(a, b, c) ..=
2a3 + c− 3ab

(b− a2)1.5
.

Example 2.5 (Kurtosis). In this case,

θl ..=
E
[
(rl − µl)

4
]

σ4
l

− 3 = h
(
ν
(1)
l , ν

(2)
l , ν

(3)
l , ν

(4)
l

)
,

where

h(a, b, c, d) ..=
−3a4 + d− 4ac+ 6a2b

(b− a2)2
− 3 .

(Note here the usual subtraction of three in the definition of the kurtosis, so that the kurtosis

of a normally-distributed random variable is zero.)

For l = i, n, let ν ′l
..= (ν

(1)
l , . . . , ν

(M)
l ). Furthermore, let ν ′ ..= (ν ′i, ν

′
n). Then the parameter

of interest ∆ in (2.1) can be written as

∆ ..= f(ν) = h(νi)− h(νn) = θi − θn ,

so that f : R2M → R is also a smooth function, defined as

f(a1, . . . , aM , b1, . . . , bM ) ..= h(a1, . . . , aM )− h(b1, . . . , bM ) . (2.2)
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For l = i, n, denote the (uncentered) mth sample moment of the observed returns by

ν̂
(m)
l

..=
1

T

T∑

t=1

rmtl .

Then the estimator of the parameter of interest, ∆, is given by

∆̂ ..= θ̂i − θ̂n , (2.3)

where

θ̂l ..= h
(
ν̂
(1)
l , . . . , ν̂

(M)
l

)
. (2.4)

For l = i, n, let ν̂ ′l
..= (ν̂

(1)
l , . . . , ν̂

(M)
l ). Furthermore, let ν̂ ′ ..= (ν̂ ′i, ν̂

′
n). Then the estimator

of ∆ can also be expressed as

∆̂ ..= f(ν̂) .

3 Solutions

We assume that √
T (ν̂ − ν)

d→ N(0,Ψ) , (3.1)

where Ψ is an unknown symmetric positive definite matrix of dimension 2M × 2M and the

symbol
d→ denotes convergence in distribution. This relation holds under mild regularity

conditions. For example, when the data are assumed to be independent and identically

distributed (i.i.d.), it is sufficient to have both E(r2M1i ) and E(r2M1n ) finite. For various sets

of sufficient conditions in the time series case, see White (2001), for example.

The delta method then implies that

√
T (∆̂−∆)

d→ N
(
0,∇′f(ν)Ψ∇f(ν)

)
, (3.2)

where the 2M × 1 vector-valued function ∇f(·) is the gradient of f(·).1

Therefore, if a consistent estimator Ψ̂ of Ψ is available, then an asymptotic standard error2

for ∆̂ is given by

s(∆̂) ..=

√
∇′f(ν̂)Ψ̂∇f(ν̂)

T
. (3.3)

Given the formula (2.2) for f(·), it holds that

∇′f(ν) =
(
∇′h(νi),−∇′h(νn)

)
.

We now give explicit formulas for the gradient ∇h(·) in Examples 2.1–2.5.

1The convergence result (3.2) requires that ∇f(ν) 6= 0; this assumption holds in all the examples that we

consider.
2In our terminology, “standard error” means the estimated standard deviation of an estimator rather than

the standard deviation itself.
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Example 3.1 (Example 2.1 continued: Sharpe ratio). In this case,

∇′h(a, b) =

(
b

(b− a2)1.5
,−1

2

a

(b− a2)1.5

)
.

Example 3.2 (Example 2.2 continued: Variance). In this case,

∇′h(a, b) =

(
− 2a

b− a2
,

1

b− a2

)
.

Example 3.3 (Example 2.3 continued: Mean). In this case,

∇h(a) = 1 .

Example 3.4 (Example 2.4 continued: Skewness). In this case,

∇′h(a, b, c) =

(−3b2 + 3ac

(b− a2)2.5
,
−3c+ 3ab

2(b− a2)2.5
,

1

(b− a2)1.5

)

Example 3.5 (Example 2.5 continued: Kurtosis). In this case,

∇′h(a, b, c, d) =

(
12ab2 − 12a2c+ 4ad− 4bc

(b− a2)3
,
−6a2b+ 8ac− 2d

(b− a2)3
,− 4a

(b− a2)2
,

1

(b− a2)2

)

3.1 HAC Inference

As is well known ((Andrews, 1991), the limiting covariance matrix in (3.1) is given by

Ψ ..= lim
T→∞

1

T

T∑

s=1

T∑

t=1

E[ysy
′
t],

where

y′t
..= (rti − ν

(1)
i , . . . , rMti − ν

(M)
i , rtn − ν(1)n , . . . , rMtn − ν(M)

n ) .

By change of variables, the limit can be alternatively expressed as

Ψ = lim
T→∞

ΨT , with ΨT
..=

T−1∑

j=−T+1

ΓT (j), where

ΓT (j) ..=

{
1
T

∑T
t=j+1 E[yty

′
t−j ] for j ≥ 0

1
T

∑T
t=−j+1 E[yt+jy

′
t] for j < 0

.

The standard method to come up with a consistent estimator Ψ̂ ..= Ψ̂T is to use

heteroskedasticity and autocorrelation robust (HAC) kernel estimation; for example, see

Andrews (1991) and Andrews and Monahan (1992). In practice, this involves choosing a real-

valued kernel function k(·) and a bandwidth ST . Apart from being a symmetric function,

the kernel k(·) typically satisfies the three conditions k(0) = 1, k(·) is continuous at 0, and

limx→∞ k(x) = 0. The kernel estimate for Ψ is then given by

Ψ̂ ..=
T

T − 2M

T−1∑

j=−T+1

k

(
j

ST

)
Γ̂T (j), where (3.4)
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Γ̂T (j) ..=

{
1
T

∑T
t=j+1 ŷtŷ

′
t−j for j ≥ 0

1
T

∑T
t=−j+1 ŷt+j ŷ

′
t for j < 0

,

where

ŷ′t
..= (rti − ν̂

(1)
i , . . . , rMti − ν̂

(M)
i , rtn − ν̂(1)n , . . . , rMtn − ν̂(M)

n ) .

The factor T/(T − 2M) in (3.4) is a small-sample degrees-of-freedom adjustment that is

introduced to offset the effect of the estimation of the 2M × 1 vector ν in the computation of

the Γ̂T (j), that is, the use of the ŷt rather than the yt.

An important feature of a kernel k(·) is its characteristic exponent 1 ≤ q ≤ ∞, determined

by the smoothness of the kernel at the origin. Note that the bigger q, the smaller is the

asymptotic bias of a kernel variance estimator; on the other hand, only kernels with q ≤ 2

yield estimates that are guaranteed to be positive semi-definite in finite samples. Most of

the commonly used kernels have q = 2, such as the Parzen, Tukey-Hanning, and Quadratic-

Spectral (QS) kernels, but exceptions do exist. For example, the Bartlett kernel has q = 1 and

the Truncated kernel has q = ∞. For a broader discussion on this issue, see Andrews (1991)

again.

Once a particular kernel k(·) has been chosen for application, one must pick the

bandwidth ST . Several automatic methods, based on various asymptotic optimality criteria,

are available to this end; for example, see Andrews (1991) and Newey and West (1994).

Finally, given the kernel estimator Ψ̂, the standard error s(∆̂) is obtained as in (3.3) and

then it is combined with the asymptotic normality (3.2) to make HAC inference as follows.

A two-sided p-value for the null hypothesis H0: ∆ = 0 is given by

p̂ ..= 2Φ

(
− |∆̂|
s(∆̂)

)
,

where Φ(·) denotes the c.d.f. of the standard normal distribution. Alternatively, a nominal

1− α two-sided confidence interval for ∆ is given by

∆̂± z1−α/2 s(∆̂) ,

where zλ denotes the λ quantile of the standard normal distribution, that is, Φ(zλ) = λ.

It is, however, well known that such HAC inference is often liberal when samples sizes are

small to moderate. This means hypothesis tests tend to reject a true null hypothesis too often

compared to the nominal significance level and confidence intervals tend to undercover; for

example, see Andrews (1991), Andrews and Monahan (1992), and Romano and Wolf (2006).

3.2 Bootstrap Inference

There is an extensive literature demonstrating the improved inference accuracy of the

studentized bootstrap over ‘standard’ inference based on asymptotic normality; for example,

see Hall (1992) for i.i.d. data and Lahiri (2003) for time series data. Very general results are
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available for parameters of interests that are smooth functions of means, covering our scenario

of interest (2.3)–(2.4).

Arguably, the regularity conditions used by Lahiri (2003, Section 6.5) in the time series

case are rather strong (and too strong for most financial applications); for example, they

assume 35 + δ finite moments (where δ is some small number) and certain restrictions on the

dependence structure.3 However, it should be pointed out that these conditions are sufficient

only to prove the very complex underlying mathematics but not necessary. Even when these

conditions do not hold, the studentized bootstrap typically continues to outperform ‘standard’

inference; see Section 4. To avoid any confusion, it should also be pointed that these strong

regularity conditions are only needed to prove the superiority of the studentized bootstrap;

proving first-order validity of the bootstrap inference does not really require stronger sufficient

conditions compared to ‘standard’ inference.

We propose to test H0: ∆ = 0 by inverting a bootstrap confidence interval. That is,

one constructs a two-sided bootstrap confidence interval with nominal level 1 − α for ∆. If

this interval does not contain zero, then H0 is rejected at nominal level α. The advantage

of this ‘indirect’ approach is that one can simply resample from the observed data. If one

wanted to carry out a ‘direct’ bootstrap test, one would have to resample from a probability

distribution that satisfies the constraint of the null hypothesis, that is, from some modified

data where the two (sample) performance measures are equal; for example, see Politis et al.

(1999, Section 1.8).

In particular, we propose to construct a symmetric studentized bootstrap confidence

interval. To this end, the two-sided distribution function of the studentized statistic is

approximated via the bootstrap as follows:

L
(
|∆̂−∆|
s(∆̂)

)
≈ L

(
|∆̂∗ − ∆̂|
s(∆̂∗)

)
. (3.5)

In this notation, ∆ is true difference between the two performance measures, ∆̂ is the estimated

difference computed from the original data, s(∆̂) is a standard error for ∆̂ (also computed from

the original data), ∆̂∗ is the estimated difference computed from bootstrap data, and s(∆̂∗)

is a standard error for ∆̂∗ (also computed from bootstrap data). Finally, L(X) denotes the

distribution of the random variable X.

Letting z∗|·|,λ denote a λ quantile of L(|∆̂∗−∆̂|/s(∆̂∗)), a bootstrap 1−α confidence interval

for ∆ is then given by

∆̂± z∗|·|,1−α s(∆̂) . (3.6)

The point is that when data are heavy-tailed or of time series nature, then z∗|·|,1−α will typically

be somewhat larger than z1−α/2 for small to moderate samples, resulting in more conservative

inference compared to the HAC procedures of Section 3.1.

3The conditions are too lengthy to be reproduced here.
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We are left to specify (i) how the bootstrap data are to be generated and (ii) how the

standard errors s(∆̂) and s(∆̂∗) are to be computed. To this end, it is useful to distinguish

between i.i.d. data and time series data. The first case, i.i.d. data, is included mainly for

completeness of the exposition. It is well known that financial returns are generally not i.i.d..

Even when the autocorrelation of the returns is negligible (which often happens with the stock

and mutual fund returns), there usually exists autocorrelation of the squared returns, that is,

volatility clustering. We therefore recommend to always use the bootstrap procedure for time

series data in practice.

3.2.1 I.I.D. Data

To generate bootstrap data, one simply uses Efron’s (1979) bootstrap, resampling individual

pairs from the observed pairs rt = (rti, rtn)
′, t = 1, . . . , T , with replacement. The standard

error s(∆̂) is computed as in (3.3). Since the data are i.i.d., one takes for Ψ̂ here simply

the sample covariance matrix of the vectors (rti, . . . , r
M
ti , rtn, . . . , r

M
tn )

′, t = 1, . . . , T . The

standard error s(∆̂∗) is computed in exactly the same fashion but from the bootstrap

data instead of the original data. To be more specific, denote the tth return pair of the

bootstrap sample by r∗t
..= (r∗ti, r

∗
tn)

′. Then one takes for Ψ̂∗ the sample covariance matrix

of the vectors (r∗ti, . . . , (r
∗
ti)

M , r∗tn, . . . , (r
∗
tn)

M )′, t = 1, . . . , T . Furthermore, the estimator

of ν ..= (ν
(1)
i , . . . , ν

(M)
i , ν

(1)
n , . . . , ν

(M)
n )′ based on the bootstrap data is denoted by ν̂∗ ..=

(ν
∗,(1)
i , . . . , ν

∗,(M)
i , ν

∗,(1)
n , . . . , ν

∗,(M)
n )′. Finally, the bootstrap standard error for ∆̂∗ is given by

s(∆̂∗) ..=

√
∇′f(ν̂∗)Ψ̂∗∇f(ν̂∗)

T
. (3.7)

3.2.2 Time Series Data

The application of the studentized bootstrap is somewhat more involved when the data are

of time series nature. To generate bootstrap data, we use the circular block bootstrap of

Politis and Romano (1992), resampling now blocks of pairs from the observed pairs rt ..=

(rti, rtn)
′, t = 1, . . . , T , with replacement.4 These blocks have a fixed size b ≥ 1. The standard

error s(∆̂) is computed as in (3.3). The estimator Ψ̂ is obtained via kernel estimation; in

particular we propose the prewhitened QS kernel of Andrews and Monahan (1992).5 The

standard error s(∆̂∗) is the ‘natural’ standard error computed from the bootstrap data, making

use of the special block dependence structure; see Götze and Künsch (1996) for details. To be

more specific, let m ..= ⌊n/b⌋, where ⌊·⌋ denotes the integer part. Again, the estimator of ν

based on the bootstrap data is denoted by ν̂∗. Then define

y∗t
..= (r∗ti − ν̂

∗,(1)
i , . . . , (r∗it)

M − ν̂
∗,(M)
i , r∗tn − ν̂∗,(1)n , . . . , (r∗nt)

M − ν̂∗,(M)
n )′ t = 1, . . . , T ,

4The motivation for using the circular block bootstrap instead of the moving blocks bootstrap of Künsch

(1989) is to avoid the ‘edge effects’ of the latter; see Romano and Wolf (2006, Section 4).
5We have found that the prewhitened Parzen kernel, which is defined analogously, yields very similar

performance.
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ζj ..=
1√
b

b∑

t=1

y∗(j−1)b+t j = 1, . . . ,m ,

and

Ψ̂∗ ..=
1

m

m∑

j=1

ζjζ
′
j .

With this more general definition6 of Ψ̂∗, the bootstrap standard error for ∆̂∗ is again given

by formula (3.7).

An application of the studentized circular block bootstrap requires a choice of the block

size b. To this end, we suggest to use a calibration method, a concept dating back to Loh (1987).

One can think of the actual coverage level 1 − λ of a block bootstrap confidence interval as

a function of the block size b, conditional on the underlying probability mechanism P that

generated the bivariate time series of returns, the nominal confidence level 1 − α, and the

sample size T . The idea is now to adjust the ‘input’ b in order to obtain the actual coverage

level close to the desired one. Hence, one can consider the block size calibration function

g : b → 1 − λ. If g(·) were known, one could construct an ‘optimal’ confidence interval by

finding b̃ that minimizes |g(b) − (1 − α)| and then use b̃ as the block size of the time series

bootstrap; note that |g(b)− (1− α)| = 0 may not always have a solution.

Of course, the function g(·) depends on the underlying probability mechanism P and is

therefore unknown. We now propose a bootstrap procedure to estimate it. The idea is that

in principle we could simulate g(·) if P were known by generating data of size T according

to P and by computing confidence intervals for ∆ for a number of different block sizes b. This

process is then repeated many times and for a given b, one estimates g(b) as the fraction of the

corresponding intervals that contain the true parameter. The method we propose is identical

except that P is replaced by an estimate P̂ and that the true parameter ∆ is replaced by the

‘pseudo’ parameter ∆̂.

Algorithm 3.1 (Choice of the Block Size).

1. Fit a semi-parametric model P̂ to the observed data (r1i, r1n)
′, . . . , (rT i, rTn)

′.

2. Fix a selection of reasonable block sizes b.

3. Generate K pseudo sequences (r∗1i, r
∗
1n)

′
k . . . , (r

∗
T i, r

∗
Tn)

′
k, k = 1, . . . ,K, according to P̂.

For each sequence, k = 1, . . . ,K, and for each b, compute a confidence interval CIk,b with

nominal level 1− α for ∆̂.

4. Compute ĝ(b) ..= #{∆̂ ∈ CIk,b}/K.

5. Find the value b̃ that minimizes |ĝ(b)− (1− α)|.

Of course, the question remains which semi-parametric model to fit to the observed return

data. When using monthly data, we recommend to simply use a VAR model in conjunction

6Note that for the special case b = 1, this definition simplifies to the sample covariance matrix of the bootstrap

data in the case of i.i.d. data.
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with time series bootstrapping the residuals.7 If the data are sampled at finer intervals, such

as daily data, one might want to use a bivariate GARCH model instead.

Next, one might ask what is a selection of reasonable block sizes? The answer is any

selection that contains a b with ĝ(b) very close to 1 − α. If nothing else, this can always be

determined by trial and error. In our experience, ĝ(·) is typically monotonically increasing in b.

So if one starts with blow = 1 and a bup ‘sufficiently’ large, one is left to specify some suitable

grid between those two values. In our experience, again, for a sample size of T = 120, the

choices blow = 1 and bup = 10 usually suffice. In that case, the final selection {1, 2, 4, 6, 8, 10}
should be fine, as ĝ(·) does not tend to decrease very fast in b.

Finally, how large should K be chosen in application to real data? The answer is as large as

possible, given the computational resources. K = 5, 000 will certainly suffice for all practical

purposes, whereas K = 1, 000 should be the lower limit.

Remark 3.1 (Computation of a p-value). As outlined above, a two-sided test for H0: ∆ = 0

at significance level α can be carried out by constructing a bootstrap confidence interval with

confidence level 1 − α. The test rejects if zero is not contained in the interval. At times, it

might be more desirable to obtain a p-value. In principle, such a p-value could be computed

by ‘trial and error’ as the smallest α for which the corresponding 1 − α confidence interval

does not contain zero. However, such a procedure is rather cumbersome. Fortunately, there

exists a shortcut that allows for an equivalent ‘direct’ computation of such a p-value. Denote

the original studentized test statistic by d, that is,

d ..=
|∆̂|
s(∆̂)

,

and denote the centered studentized statistic computed from the kth bootstrap sample by d̃∗,k,

k = 1, . . . ,K, that is,

d̃∗,k ..=
|∆̂∗,k − ∆̂|
s(∆̂∗,k)

,

where K is the number of bootstrap resamples. Then the p-value is computed as8

p̂ ..=
#{d̃∗,k ≥ d}+ 1

K + 1
. (3.8)

4 Simulation Study

The purpose of this section is to shed some light on the finite-sample performance of the various

procedures via some (necessarily limited) simulations. We do this for the two performance

7At this point we opt for the stationary bootstrap of Politis and Romano (1994), since it is quite insensitive

to the choice of the average block size. The motivation for time series bootstrapping the residuals is to account

for some possible ‘left over’ non-linear dependence not captured by the linear VAR model.
8The addition of 1 in both the numerator and the denominator of the fraction follows the recommendation

of Davison and Hinkley (1997, Section 4.2.1).
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measures of most interest: the Sharpe ratio and the variance. We compute empirical rejection

probabilities under the null, based on 5,000 simulations per scenario. The nominal levels

considered are α = 0.01, 0.5, 0.1. All bootstrap p-values are computed as in (3.8), employing

M = 499. The sample size is T = 120 always.9

4.1 Competing Procedures

The following procedures are included in the study:

• (JKM) The test of Jobson and Korkie (1981), using the corrected version of Memmel

(2003), when the performance measure is the Sharpe ratio.

• (F) The classic F -test for the equality of two variances when the performance measure

is the variance; for example, see Mood et al. (1974, Section IX.4.4).

• (HAC) The HAC test of Section 3.1 based on the QS kernel with automatic bandwidth

selection of Andrews (1991).

• (HACPW ) The HAC test of Section 3.1 based on the prewhitened QS kernel with

automatic bandwidth selection of Andrews and Monahan (1992).

• (Boot-IID) The bootstrap procedure of Section 3.2.1.

• (Boot-TS) The bootstrap procedure of Section 3.2.2. We use Algorithm 3.1 to choose

a data-dependent block size from the input block sizes b ∈ {1, 2, 4, 6, 8, 10}. The

semi-parametric model used is a VAR(1) model in conjunction with bootstrapping the

residuals. For the latter we employ the stationary bootstrap of Politis and Romano

(1994) with an average block size of 5.

4.2 Data Generating Processes

In all scenarios, we want the null hypothesis of equal performance measures to be true. This

is easiest achieved if the two marginal return processes are identical.

It is natural to start with i.i.d. bivariate normal data with equal mean 1 and equal variance 1.

The within-pair correlation is chosen as ρ = 0.5, which seems a reasonable number for many

applications. This DGP is denoted by Normal-IID.

We then relax the strict i.i.d. normal assumption in various dimensions.

First, we keep the i.i.d. assumption but allow for heavy tails. To this end, we use bivariate

t6 data, shifted to have equal mean 1 and standardized to have common variance 1. The

within-pair correlation is ρ = 0.5 again. This DGP is denoted by t6-IID. Next, we consider an

uncorrelated process but with correlations in the squared returns, as is typical for stock returns.

The standard way to model this is via a bivariate GARCH(1,1) model. In particular, we use

the bivariate diagonal-vech model dating back to Bollerslev et al. (1988). Let r̃ti ..= rti − µi,

r̃tn ..= rtn−µn, and denote by Ωt−1 the conditioning information available at time t− 1. Then

9For example, many empirical applications use ten years of monthly data.
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the diagonal-vech model is defined by

E(r̃ti|Ωt−1) = 0

E(r̃tn|Ωt−1) = 0

Cov(r̃tir̃tn|Ωt−1) =.. htin = cin + ain r̃(t−1)i r̃(t−1)n + bin h(t−1)in .

In other words, the conditional (co)variances depend only on their own lags and the lags of

the corresponding (cross)products. We use the following coefficient matrices:

C ..=

(
0.15 0.13

0.13 0.15

)
A ..=

(
0.075 0.050

0.050 0.075

)
B ..=

(
0.90 0.89

0.90 0.89

)

These matrices are inspired by the bivariate estimation results based on weekly returns on a

broad U.S. market index and a broad U.K. market index.10 However, all three diagonals are

forced to be equal to get identical individual return processes; see Ledoit et al. (2003, Table 2).

The first variant of the GARCH model uses i.i.d. bivariate standard normal innovations

to recursively generate the series r̃t ..= (r̃ti, r̃tn)
′. At the end, we add a global mean, that is,

rt ..= r̃t + µ, where µ is chosen as µ ..= (16.5/52, 16.5/52)′. Again this choice is inspired by

the previously mentioned estimation results, forcing µi = µn to get identical individual return

processes; see Ledoit et al. (2003, Table 1). This DGP is denoted by Normal-GARCH.

The second variant of the GARCH model uses i.i.d. bivariate t6 innovations instead

(standardized to have common variance equal to 1, and covariance equal to 0).11 Everything

else is equal. This DGP is denoted by t6-GARCH.

Finally, we also consider correlated processes. To this end, we return to the two i.i.d. DGPs

Normal-IID and t6-IID, respectively, but add some mild autocorrelation to the individual return

series via an AR(1) structure with AR coefficient φ = 0.2.12 This then corresponds to a VAR(1)

model with bivariate normal or (standardized) t6 innovations. The resulting two DGPs are

denoted by Normal-VAR and t6-VAR, respectively.

4.3 Results

The results when the performance measure is the Sharpe ratio are presented in Table 1 and

can be summarized as follows:

• JKM works well for i.i.d. bivariate normal data but is not robust against fat tails or time

series effects, where it becomes liberal.

10We use estimation results based on weekly returns, since generally there are very few GARCH effects at

monthly or longer return horizons. With weekly data, T = 120 corresponds to a data window of slightly over

two years.
11There is ample evidence that the innovations of GARCH processes tend to have tails heavier than the

normal distribution; for example, see Kuester et al. (2006) and the references therein.
12For example, a first-order autocorrelation around 0.2 is quite typical for monthly hedge fund returns.

13



• HAC inference, while asymptotically consistent, is often liberal in finite samples. This

finding is consistent with many previous studies; for example, see Romano and Wolf

(2006) and the references therein.

• Boot-IID works well for i.i.d. data but is liberal for time series data.

• Boot-TS works well both for i.i.d. and time series data.

The results when the performance measure is the variance are presented in Table 2 and can

be summarized as follows:

• F works well for i.i.d. bivariate normal data but is not robust against fat tails or time

series effects, where it becomes liberal.

• HAC inference, while asymptotically consistent, is often liberal in finite samples. This

finding is consistent with many previous studies; for example, see Romano and Wolf

(2006) and the references therein.

• Boot-IID works well for i.i.d. data but is liberal for time series data.

• Boot-TS works well both for i.i.d. and time series data.

Remark 4.1. We also included HAC and HACPW based on the (prewhitened) Parzen kernel

instead of the (prewhitened) QS kernel in the numerical work. The results were virtually

identical and are therefore not reported. Since the Parzen kernel has bounded support, whereas

the QS kernel does not, it is somewhat more convenient to implement.

5 Empirical Applications

As a brief illustration, we consider two applications to investment funds when the performance

measure is the Sharpe ratio. In each case, we want to test the null hypothesis of equality of

the Sharpe ratios of the two funds being compared.

The first application deals with mutual funds. The selected funds are Fidelity (FFIDX), a

‘large blend’ fund, and Fidelity Aggressive Growth (FDEGX), a ‘mid-cap growth’ fund. The

data were obtained from Yahoo! Finance.13

The second application deals with hedge funds. The selected funds are Coast Enhanced

Income and JMG Capital Partners. The data were obtained from the CISDM database; see

Romano et al. (2008, Section 9).

In both applications, we use monthly log returns in excess of the riskfree rate. The return

period is 01/1994 until 12/2003, so T = 120. Table 3 provides some relevant summary statistics.

Note that all returns are in percentages and that none of the statistics are annualized.

Table 4 presents the corresponding p-values of the five procedures considered in the

simulation study. Boot-TS uses a data-dependent choice of block size based on Algorithm 3.1.

The semi-parametric model is a VAR(1) model in conjunction with bootstrapping the residuals.

For the latter we employ the stationary bootstrap of Politis and Romano (1994) with an

13We use close prices adjusted for dividends and stock splits.
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average block size of 5. The nominal confidence level is 1 − α = 0.95 and the set of input

block sizes is {1, 2, 4, 6, 8, 10}. The two estimated calibration functions, based on K = 5, 000

pseudo sequences, are displayed in Figure 1. As a result, the estimated optimal block sizes are

b̃ = 4 for the mutual funds application and b̃ = 6 for the hedge funds application.

The bootstrap p-values are computed as in (3.8), employing M = 4, 999. In both

applications, JKM results in a rejection of the null at significance level α = 0.05, whereas

HAC, HACPW , and Boot-TS do not. Not surprisingly, given the noticeable autocorrelation of

hedge fund returns, the differences are more pronounced for the second application. Boot-IID

results in a rejection for the mutual funds data but not for the hedge fund data. But, as

discussed previously, we recommend to always use Boot-TS with financial return data.

6 Conclusion

Testing for the equality of a given performance measure of two investment strategies is an

important problem in applied financial research. In this paper, we have considered the class

of performance measures that can be expressed as a smooth functions of population means of

the underlying returns. This class is very rich and contains, among others, the Sharpe ratio,

the variance, the mean, the skewness, and the kurtosis. Unfortunately, many of the inference

procedures that have been suggested previously in the applied literature make unreasonable

assumptions that do not apply to real-life return data, such as normality and independence

over time. As was demonstrated in simulations and empirical applications, inference based on

such procedures is unreliable and can lead to erroneous findings.

We have discussed two alternative inference procedures that are asymptotically valid under

very general conditions, allowing for heavy tails and time dependence in the return data. HAC

inference uses kernel estimators to come up with consistent standard errors. The resulting

inference works well with large samples but is often liberal for small to moderate sample sizes.

In such applications, it is preferable to use a studentized time series bootstrap. Arguably, this

procedure is quite complex to implement, but corresponding programming codes are freely

available at econ.uzh.ch/faculty/wolf.html. These codes are for the Sharpe ratio and

for the variance as performance measures. But they can be quite easily adapted to other

performance measures (that fall in the class of smooth functions of population means).

Finally, both HAC inference and the studentized bootstrap procedure detailed in this paper

could be modified to make inference for (the difference of) various refinements to the Sharpe

ratio recently proposed in the literature—for example, see Ferruz and Vicente (2005) and

Israelsen (2003, 2005)—as well as many other performance measures, such as the Information

ratio, Jensen’s alpha, or the Treynor ratio, to name just a few. Some guidance on how to

do this when the performance measure is a regression coefficient—for example, in the case of

Jensen’s alpha—can be found in Romano and Wolf (2006).
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Table 1: Empirical rejection probabilities (in percent) for various data generating processes

(DGPs) and inference procedures; see Section 4 for a description. For each DGP, the null

hypothesis of equal Sharpe ratios is true and so the empirical rejection probabilities should

be compared to the nominal level of the test, given by α. We consider three values of α,

namely α = 1%, 5% and 10%. All empirical rejection probabilities are computed from 5,000

repetitions of the underlying DGP, and the same set of repetitions is shared by all inference

procedures.

DGP JKM HAC HACPW Boot-IID Boot-TS

Nominal level α = 1%

Normal-IID 1.2 1.2 1.2 1.1 1.0

t6-IID 3.5 1.9 2.1 1.4 1.3

Normal-GARCH 1.7 1.8 1.8 1.5 1.1

t6-GARCH 1.8 2.0 2.0 1.6 1.2

Normal-VAR 2.5 2.2 1.8 2.7 1.2

t6-VAR 6.4 2.6 2.2 1.8 1.1

Nominal level α = 5%

Normal-IID 5.0 5.3 5.4 4.9 4.8

t6-IID 10.7 6.7 6.9 5.2 5.0

Normal-GARCH 7.2 7.1 7.2 6.0 5.5

t6-GARCH 7.4 7.7 7.5 6.9 5.7

Normal-VAR 9.5 6.9 6.1 8.5 5.0

t6-VAR 14.5 7.9 7.3 7.3 5.1

Nominal level α = 10%

Normal-IID 10.3 10.3 10.7 10.1 9.6

t6-IID 17.9 12.4 12.5 10.3 9.9

Normal-GARCH 12.8 12.5 12.3 12.4 10.5

t6-GARCH 13.7 13.3 13.1 13.1 11.1

Normal-VAR 15.6 12.4 10.8 15.6 9.7

t6-VAR 22.5 13.3 12.0 13.3 9.8
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Table 2: Empirical rejection probabilities (in percent) for various data generating processes

(DGPs) and inference procedures; see Section 4 for a description. For each DGP, the null

hypothesis of equal variances is true and so the empirical rejection probabilities should be

compared to the nominal level of the test, given by α. We consider three values of α, namely

α = 1%, 5% and 10%. All empirical rejection probabilities are computed from 5,000 repetitions

of the underlying DGP, and the same set of repetitions is shared by all inference procedures.

DGP F HAC HACPW Boot-IID Boot-TS

Nominal level α = 1%

Normal-IID 0.2 1.2 1.4 0.9 0.9

t6-IID 4.2 1.5 1.7 0.8 0.8

Normal-GARCH 0.4 1.4 1.3 1.0 0.9

t6-GARCH 0.3 1.5 1.5 1.0 1.0

Normal-VAR 0.5 2.1 2.0 1.6 0.9

t6-VAR 3.8 2.1 2.0 1.1 1.0

Nominal level α = 5%

Normal-IID 2.4 6.1 6.1 5.1 4.9

t6-IID 11.5 6.8 7.0 4.9 4.7

Normal-GARCH 2.1 5.4 5.5 5.0 4.8

t6-GARCH 2.4 5.7 5.9 5.1 5.0

Normal-VAR 3.1 7.2 6.7 6.4 4.8

t6-VAR 10.9 6.9 6.5 5.3 4.9

Nominal level α = 10%

Normal-IID 5.9 11.3 11.1 10.2 9.8

t6-IID 18.3 11.4 10.4 10.1 9.7

Normal-GARCH 5.6 10.8 11.0 10.2 10.1

t6-GARCH 6.0 10.9 11.2 10.1 9.8

Normal-VAR 7.3 12.4 11.7 12.0 9.9

t6-VAR 17.8 12.4 12.0 10.2 10.0

20



Table 3: Summary sample statistics for monthly log returns in excess of the riskfree rate: mean,

standard deviation, Sharpe ratio, and first-order autocorrelation.

Fund r̄ s Ŝh φ̂

Fidelity 0.511 4.760 0.108 −0.010

Fidelity Agressive Growth 0.098 9.161 0.011 0.090

Coast Enhanced Income 0.245 0.168 1.461 0.152

JMG Capital Partners 1.228 1.211 1.014 0.435

Table 4: p-values (in percent) for various inference procedures; see Section 4 for a description.

The data set ‘Mutual Funds’ corresponds to the top two funds of Table 2; the data set ‘Hedge

funds’ corresponds to the bottom two funds of Table 2. All p-values are for the two-sided test

of equal Sharpe ratios.

Data JKM HAC HACPW Boot-IID Boot-TS

Mutual funds 3.9 6.3 6.7 4.4 9.2

Hedge funds 1.0 14.7 25.4 5.8 29.4
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Figure 1: Estimated calibration functions for the two empirical applications. The nominal

level is 1 − α = 0.95. The resulting estimated optimal block sizes are b̃ = 4 for the mutual

funds application and b̃ = 6 for the hedge funds application.
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