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Abstract

Behavioral heterogeneity arising from cognitive differences among economic agents

plays a fundamental role in the economy. To explain this heterogeneity, models of

iterative thinking assume that certain choices indicate higher cognitive effort. That

is, choices are used to infer the cognitive process behind the choices themselves. To

establish this link choice data is insufficient, thus an individually-measurable cor-

relate of cognitive effort is required. We argue that deliberation times provide this

missing link. We present a simple model of heterogeneous cognitive depth, incor-

porating stylized facts from the psychophysical literature, which makes predictions

on the relation between choices, cognitive effort, incentives, and deliberation times.

In an experimental test, the predicted relations are readily observed in the data,

but only when the features leading to iterative thinking are salient enough. Hence,

the predicted relations become a tool to uncover the limits of models of iterative

thinking.
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1



1 Introduction

Economic agents form different expectations and react differently even when confronted

with the same pieces of information, leading to substantial behavioral heterogeneity,

which in turn has long been recognized as a fundamental difficulty for economic theory

(e.g., Haltiwanger and Waldman, 1985; Kirman, 1992; Blundell and Stoker, 2005). A key

source of heterogeneity is the fact that cognitive capacities differ among individuals, as

does the motivation to exert cognitive effort. This observation has given rise to a rich the-

oretical literature, including level-k models (Stahl, 1993; Nagel, 1995; Stahl and Wilson,

1995; Ho et al., 1998) and models of cognitive hierarchies (Camerer et al., 2004). Such

models endow individuals with differing degrees of strategic sophistication or reason-

ing capabilities, and might hold the key to describe heterogeneity in observed behavior

(for a recent survey, see Crawford et al., 2013). In particular, they have proven invalu-

able to explain behavioral puzzles as overbidding in auctions (Crawford and Iriberri,

2007), overcommunication in sender-receiver games (Cai and Wang, 2006), coordina-

tion in market-entry games (Camerer et al., 2004), and why communication sometimes

improves coordination and sometimes hampers it (Ellingsen and Östling, 2010). More

recently, a small but growing literature in macroeconomics has started to incorporate

heterogeneity in cognitive depth and iterative thinking (Angeletos and Lian, 2017), lead-

ing to promising insights on the effects of monetary policy (Farhi and Werning, 2017)

or low interest rates (Garćıa-Schmidt and Woodford, 2018).

Existing models of heterogeneity in cognitive depth, however, face a fundamental

problem. So far, there is little direct evidence that heterogeneity in observed choices

actually corresponds to differences in depth of reasoning (level of thinking) or cognitive

effort. Most of the experimental literature has used observed choices to classify individ-

uals in different cognitive categories. Hence, the observation of a given choice is used to

infer the underlying path of reasoning or the thought processes that led to that choice,

creating an essentially circular argument. One problem with this approach is that the

same choice is always attributed to the same level, although it might very well be the

result of completely different decision rules. As a consequence, cognitive effort associ-

ated with a choice becomes a non-testable assumption, and the sources of heterogeneity

remain in the dark.

To establish that the source of observed behavioral heterogeneity is actually hetero-

geneity in cognitive effort and capacities, what is needed are individually measurable

correlates of cognitive effort beyond choice data. That is, instead of arbitrarily identi-

fying particular choices with particular levels of cognitive depth, one needs to provide a

direct measure of effort which allows to independently show that certain choices actu-

ally are the result of stronger cognitive effort. We argue that response times, or, more

properly in our context, deliberation times can be fruitfully used for this purpose.

2



In the present work, we provide a simple model linking cognitive sophistication to

choices and deliberation times, taking into account stylized facts from the psychophys-

iological literature on response times. The model rests on two key assumptions. The

first and more straightforward one is that the total deliberation time of an observed

choice is the sum of one-step decision times for a chain of binary hypothetical choices

as implicitly postulated in the literature on iterative thinking. That is, if arriving at a

choice through iterative thinking requires seven steps, deliberation time is the sum of

the decision times associated with the seven corresponding, intermediate decisions. The

second assumption is that the time required for each step is a decreasing function of the

distance to indifference, as captured by the potential gain of conducting an additional

step of reasoning. This assumption is based on a very well-established fact from the

literature in psychology and neuroscience, namely that the human ability to discrimi-

nate between two stimuli is a function of the difference between the respective stimuli.

With increasing difference the mean response time decreases, or in other words, deci-

sions closer to indifference (“harder” decisions) are found to be slower (Dashiell, 1937;

Mosteller and Nogee, 1951; Moyer and Landauer, 1967; Krajbich et al., 2014, 2015),

while “easier” decisions are faster.

The model provides empirically testable predictions on the measurable effects of

cognitive sophistication (or effort), both for choices and deliberation times, and also

regarding the effects of economic incentives on both the level of cognitive sophistication,

as inferred from choices, and the psychophysiological correlate embodied in deliberation

times. We test these predictions in an experiment employing two different games com-

monly used to study iterative thinking: the beauty contest game (or guessing game;

Nagel, 1995), which is the workhorse in that literature, and several variants of the 11-

20 money request game, recently introduced by Arad and Rubinstein (2012), in the

graphical version of Goeree et al. (2016). These variants all share the same best-reply

structure, but the payoff structures are manipulated in order to change the salience of

certain features which might encourage iterative thinking. The reason why we use the

latter game is that in some of the variants considered in Goeree et al. (2016), recon-

ciling observed behavior with a model of iterative thinking would require inordinately

high levels of sophistication, compared to those usually observed in the literature. This

provides a natural setting where deliberation times can discriminate whether observed

behavior actually corresponds to different levels of cognitive effort.

In the beauty contest game we find longer deliberation times for choices commonly

associated with more steps of reasoning, confirming the basic prediction of our model

that deliberation time is increasing in cognitive sophistication. That is, the beauty con-

test game serves as a basic validation of the relationship between cognitive effort and

deliberation times. In the 11-20 game, again we show that deliberation times are longer

for higher-level choices in situations where the payoff structure makes iterative reasoning

salient. However, when iterative thinking is less natural or when a conflict with alterna-
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tive decision rules (e.g., based on the salience of high payoffs) is likely, this systematic

relation between higher-level choices and deliberation times disappears. Rather, in this

case we find overall longer deliberation times, suggesting a conflict between compet-

ing decision rules. That is, features besides and beyond the best-reply structure matter.

More importantly, deliberation times serve as a test of whether iterative-thinking models

are appropriate to describe actual play in specific settings.

Our model also relates changes in the incentives to choices and deliberation times.

First, it predicts that a player conducts more steps of reasoning if the incentives, as

captured by the payoff differences in the underlying game, are systematically increased.

However, this does not imply that higher incentives necessarily imply longer deliberation

times. On the contrary, the second prediction of the model is that deliberation times

will be shorter for a given number of steps when the incentives are increased, because

decisions farther away from indifference require less deliberation. As a consequence, the

model can accommodate the observation of higher cognitive depth and (simultaneously)

shorter deliberation times. Turning to the data, by using implementations of the 11-20

game with different incentive levels, we find a systematic effect of incentives on the depth

of reasoning as predicted by the model. In the basic treatment where iterative thinking

is salient, we find both more higher-level choices and shorter deliberation times when

incentives are increased, in line with the prediction that higher incentives should decrease

the time required for each single step. More importantly, this demonstrates empirically

that higher incentives might reduce deliberation times, even though cognitive effort is

increased. This latter finding shows that incorporating the fact that easier decisions are

faster into models of cognitive depth is crucial. Otherwise, if decision times per step were

assumed to be independent of incentives, higher cognitive depth would go hand-in-hand

with longer deliberation times, contradicting the data.

Overall, this paper makes two contributions. First, we are the first to show that

heterogeneity in behavior can actually be traced back to heterogeneity in cognitive effort

by using direct correlates of the latter rather than exogenously identifying choices with

levels of effort. Second, the very same correlates show the limits of models of iterative

thinking and heterogeneity in cognitive depth. We show that, depending on the strategic

situation, behavioral heterogeneity might be mistaken for heterogeneity in cognitive

depth even though there are no actual differences in cognitive effort. Hence, one might

be led to draw wrong conclusions if models of iterative thinking are blindly applied

without an external way of testing for heterogeneity in cognitive depth. We show that

deliberation times can be used as a tool to discriminate among economic problems where

behavioral heterogeneity arises mainly from differences in cognitive depth, and hence

applying such models is justified, and other problems where extraneous or additional

elements are at the source of that heterogeneity, which then require further analysis.

The paper is structured as follows. Section 2 briefly relates our work to the literature.

Section 3 introduces the model and derives the predictions. Section 4 describes the
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experimental design. Sections 5 and 6 present the results of the experiment for the

beauty contest and the 11-20 games, respectively. Section 7 presents results on the

effect of incentives. Section 8 discusses and summarizes our findings. The Appendix

contains a number of additional observations and analyses.

2 Related Literature

There is a small but growing literature employing sources of evidence beyond choice data

which suggests that individuals follow step-wise reasoning processes in certain settings.

Bhatt and Camerer (2005) and Coricelli and Nagel (2009) show that reasoning in different

games, including the beauty contest game, correlates with neural activity in areas of the

brain associated with mentalizing (Theory of Mind network), building a notable bridge

between social neuroscience and game theory.1 Brañas-Garza et al. (2012), Carpenter

et al. (2013), and Gill and Prowse (2016) relate higher cognitive ability (as measured,

e.g., by the Cognitive Reflection Test or the Raven test) with more steps of reasoning

in the beauty contest game. Further, Fehr and Huck (2016) find that subjects whose

cognitive ability is below a certain threshold lack strategic awareness, that is, they

randomly choose numbers from the whole interval. Other works have relied on eye-

tracking measurements or click patterns recorded via MouseLab to obtain information

on search behavior, which is then used to make inferences regarding level-k reasoning

(Costa-Gomes et al., 2001; Crawford and Costa-Gomes, 2006; Polonio et al., 2015).

Notably, Lindner and Sutter (2013) found that under time pressure behavior in the 11-

20 game was closer to the Nash equilibrium, although the authors recommend caution

in interpreting the result. In contrast, Spiliopoulos et al. (2018) find no evidence for

Nash equilibrium play. Instead, subjects exhibit a shift to less complex decision rules

(requiring less elementary operations to execute) under time pressure in various 3 × 3

games; this shift is primarily driven by a significant increase in the proportion of level-1

players. In a repeated p-beauty contest Gill and Prowse (2018) show that subjects who

think for longer on average win more rounds and choose lower numbers closer to the

equilibrium.

Clearly, our work is also related to the growing literature employing response times

in economics. Examples include the studies of risky decision making by Wilcox (1993,

1994), the web-based studies of Rubinstein (2007, 2013), and recent studies as Achtziger

and Alós-Ferrer (2014) and Alós-Ferrer et al. (2016).2 To date, however, only a few

works in economics have explicitly incorporated response times in models of reason-

ing. Chabris et al. (2009) study the allocation of time across decision problems. Their

model is similar in spirit to ours in that it is motivated by the chronometric “closeness-

1Paradigms eliciting iterative thinking, and very specially “thinking about thinking,” fall squarely
within the domain of social neuroscience. See Alós-Ferrer (2018a) for details.

2For a recent discussion of the benefits, challenges, and desiderata of response time analysis in exper-
imental economics see Spiliopoulos and Ortmann (2018).

5



to-indifference” effect. In particular, they also model response time as a decreasing

function of differences in expected utility. However, in contrast to our model they focus

on binary intertemporal choices and do not consider iterative reasoning. They report

empirical evidence that choices among options whose expected utilities are closer require

more time, thus indicating an inverse relationship between response times and utility

differences. They argue in favor of the view that decision making is a cognitively costly

activity that allocates time according to cost-benefit principles.

Achtziger and Alós-Ferrer (2014) and Alós-Ferrer (2018b) consider a dual-process

model of response times in simple, binary decisions where different decision processes

interact in order to arrive at a choice. The emphasis of the model, however, is on the

effects of conflict and alignment among processes, that is, whether a particular decision

process or heuristic supports a more rationalistic one or rather leads the decision maker

astray. The predictions of the model help understand when errors, defined as deviations

from a normative, rationalistic process, are faster or slower than correct responses.

Alaoui and Penta (2016b) provided a model of iterative thinking where the depth

of reasoning is endogenously determined and results from a cost-benefit analysis. Re-

cently, Alaoui and Penta (2016c) have extended this model to incorporate deliberation

times, with the key assumption being that each additional step of reasoning increases

deliberation times. As in our model, total deliberation time for a given number of steps

of reasoning is the sum of the times required to attain the necessary unit of understand-

ing for each step. Hence their model also predicts (for sufficiently similar games) that

deliberation time is increasing in the depth of reasoning. They assume that the depth

of reasoning is determined by the “value of reasoning” and the “cost of reasoning.” The

former is linked to the payoff structure of the game, whereas the latter depends on the

complexity of the game. The value of reasoning has a maximum-gain representation

(Alaoui and Penta, 2016a), that is, it equals the highest possible payoff improvement

that an agent could obtain by using the “next step strategy” instead of the current one.

The key difference to our model is that we assume that deliberation time of a given step

is decreasing in the utility differences. In their model, a higher value of reasoning only

affects total deliberation times because it increases the probability of conducting another

step, but it does not affect the time required for a given step. Hence, for “equally com-

plex” games their model predicts longer deliberation times for larger incentives, because

the time required for a given step is constant.

Finally, our work sheds light on the recent literature exploring the limits of models

of iterative thinking, as the experiment of Goeree et al. (2016) mentioned above. It has

been pointed out that strategic sophistication, as captured by level-k models, might be

heavily dependent on the situation at hand. Hargreaves Heap et al. (2014) suggest that

even (allegedly-nonstrategic) level-0 behavior might depend on the strategic structure of

the game. In a repeated beauty contest, Gill and Prowse (2018) found that the level of

strategic reasoning also depends on the complexity of the situation in the previous round.
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Georganas et al. (2015) show that strategic sophistication can be largely persistent within

a given class of games but not necessarily across different classes of games. That is, the

congruence between level-k models and subjects’ actual decision processes may depend

on the context. Allred et al. (2016) complement this result showing that the implications

of available cognitive resources on strategic behavior are not persistent across classes of

games. These difficulties raise the question of whether models of iterative thinking can

be actually understood as procedural, that is, as describing how decisions are actually

arrived at, or rather as purely descriptive, outcome-based models. Further, if iterative

thinking cannot be taken as a persistent mode of behavior (across individuals and across

games), it becomes particularly important to identify what triggers its use and in which

situations it conflicts with other decision rules. Again, choice data alone is not sufficient

to answer these questions.

3 The Model

We model decision making as a process of iterative reasoning as put forward in the

literature on iterative thinking (Stahl, 1993; Nagel, 1995; Stahl and Wilson, 1995; Ho

et al., 1998). Our model yields testable predictions linking deliberation times to choices

and incentives in a specific class of strategic games.

Consider a symmetric, two-player game Γ = (π, S) with finite strategy space S and

payoff function π : S×S −→ R. Assume that for any s ∈ S there is a unique best-reply,

denoted by BR(s), that is, BR(s) is the unique maximizer of π(·, s). The best-reply

structure of Γ for a starting point s0 ∈ S is a sequence (s∗k)k∈N such that s∗0 = s0 and

s∗k = BR(s∗k−1
). Fix a best-reply structure (s∗k)k∈N with starting point s0. We model

a process of iterative thinking as a sequence of binary “choices,” where in each step a

player evaluates the current strategy s∗k−1
, reached after k− 1 steps of thinking, against

strategy s∗k by comparing π(s∗k−1
, s∗k−1

) against π(s∗k, s
∗
k−1

). In other words, the player

considers the case where his opponent has also conducted k− 1 steps of thinking, hence

uses strategy s∗k−1
, and then evaluates the potential gain from conducting an additional

step of thinking, that is π(s∗k, s
∗
k−1

)− π(s∗k−1
, s∗k−1

). Note that this last evaluation does

not necessarily involve conscious calculations, but should rather be understood as a proxy

that determines whether to engage in additional deliberation. For example, one way to

think about this is that this evaluation happens automatically and that the controlled

process of iterative thinking only takes over when the payoff is large enough.3 In addition,

we assume that each step of thinking comes with a cognitive cost. Specifically, the

cognitive cost associated with the kth step of thinking is given by an arbitrary function

ci(k) with ci : N+ −→ R+ assumed only to be weakly increasing (N denotes the set of

3This is, for instance, the approach taken in Benhabib and Bisin (2005), where controlled processes
intervene to inhibit automatic reactions only if the potential payoff exceeds a given threshold. Alaoui
and Penta (2016b) also follow this approach and argue that it circumvents the infinite-regress problem
where thinking about how to determine the value of reasoning is itself costly.
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natural numbers including the zero, and N+ the set of natural numbers without zero).

Thus the maximal number of steps of thinking player i is willing (or able) to conduct is

given by Ti = min{k ∈ N | π(s∗k+1
, s∗k) − π(s∗k, s

∗
k) < ci(k + 1)} if the set is nonempty,

and Ti = ∞ otherwise.

The depth of reasoning of player i, Ti, depends on both the cognitive cost and

the specifics of the payoff structure of the underlying game determining the gain of

an additional step of thinking. We now study how systematic changes in the payoff

structure affect the depth of reasoning in our model. For brevity, let us denote the

potential gain of the kth step of thinking by uk = π(s∗k, s
∗
k−1

)−π(s∗k−1
, s∗k−1

), and notice

that uk ≥ 0 by construction. Consider two symmetric, two-player games Γ = (π, S) and

Γ′ = (π′, S) with the same strategy space S and the same best reply structure (s∗k)k∈N

with starting point s0 ∈ S. We say that Γ′ has weakly (strictly) higher incentives

than Γ for step k if u′k ≥ uk (u′k > uk) where uk = π(s∗k, s
∗
k−1

) − π(s∗k−1
, s∗k−1

) and

u′k = π′(s∗k, s
∗
k−1

) − π′(s∗k−1
, s∗k−1

). Suppose Γ′ has weakly higher incentives than Γ for

every step k with k ≤ Ti, that is u′k ≥ uk for all k ≤ Ti. Then Γ′ induces weakly more

steps of reasoning for player i than Γ, since u′k ≥ uk ≥ ci(k) for all k ≤ Ti implies

T ′
i ≥ Ti.

Prediction 1. A player conducting k steps of reasoning weakly increases his depth of

reasoning if the incentives for all steps up to k are weakly higher.

Next, we link this simple model of iterative thinking to deliberation times via two

basic assumptions. First, we assume that the deliberation time for conducting k steps

of thinking is the sum of the deliberation times required for each step, as in Alaoui and

Penta (2016c). Second, we assume that the deliberation time for a given step of thinking

is larger the smaller the potential gain for that step, in accordance with well-established

chronometric effects (Dashiell, 1937; Moyer and Landauer, 1967; Chabris et al., 2009).

Assume player i requires a fixed amount of time, di ∈ R+, for choosing s∗0. Then the

deliberation time of player i for choosing strategy s∗k is given by

DTi(s
∗
k) = di +

k
∑

i=1

fi(ui) with fi : R+ −→ R++ strictly decreasing and positive.

We say that a strategy s requires more cognitive effort compared to s′, if it is the

result of more steps of reasoning, that is s = s∗k and s′ = s∗k′ with k > k′. In that case,

our model implies that DTi(s) > DTi(s
′) if s requires more cognitive effort than s′.

Prediction 2. For fixed incentives, deliberation time is increasing in cognitive effort.

This prediction is a straightforward consequence of viewing deliberation times as a

sum of binary-choice decision times, hence it is also a prediction of Alaoui and Penta

(2016c). The following prediction, however, hinges crucially on our assumption that

deliberation times per step are a decreasing function of incentives. Suppose Γ′ has
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strictly higher incentives than Γ for any step 0 < l ≤ k for some k. Then DT ′
i (s

∗
k) =

di +
∑k

i=1
fi(u

′
i) < di +

∑k
i=1

fi(ui) = DTi(s
∗
k) because f(u′l) < f(ul) for all 0 < l ≤ k.

Prediction 3. Deliberation time for a choice corresponding to k steps of thinking is

shorter (longer) if the incentives for all steps up to k are increased (decreased).

For a fixed number of steps of thinking our model predicts shorter deliberation times

for higher incentives, because a player requires less time for each step. This, however,

does not necessarily imply that one should observe shorter total deliberation times for

larger incentives, because under larger incentives subjects potentially conduct more steps

of thinking (Prediction 1), which in turn increases overall deliberation time. Thus, in

our model larger incentives have a two-fold effect with (weakly) more steps of reasoning

on the one hand and shorter deliberation times per step on the other hand.

Last, we remark that it is conceivable that individual differences in cognitive ability

affect deliberation times in different ways. In terms of our model, there are two main

effects. First, higher cognitive ability could translate into uniformly lower cognitive

costs of reasoning, ci. In that case, players with higher cognitive ability are likely to

conduct more steps of reasoning, because T ′
i ≥ Ti if ci(k) ≥ c′i(k) for all 0 < k ≤ Ti,

which would increase overall deliberation time. Second, higher cognitive ability could

also translate into shorter deliberation times per step, which would decrease overall

deliberation times. However, that does not mean that deliberation time for players with

high cognitive ability will generally be shorter (independently of the number of steps).

This is because higher cognitive ability might also result in more steps of reasoning

requiring additional deliberation time, so that the overall effect on deliberation times is

indeterminate.

4 Experimental Design

We use two games commonly employed to study cognitive sophistication, the classical

beauty contest game (Nagel, 1995) and the 11-20 money request game, a more recent

alternative that was explicitly designed to study level-k behavior (Arad and Rubinstein,

2012). We ask whether a higher level of reasoning is reflected in higher cognitive effort,

or in other words, whether there is a direct link between higher levels of reasoning and

deliberation times. We use different versions of the 11-20 game that vary the incentives

for iterative thinking leaving the underlying best-reply structure unaffected. This allows

us to study how choices and deliberation times react to systematic changes in the payoff

structure.

4.1 The Beauty Contest Game

The standard workhorse for the study of cognitive sophistication is the guessing game,

or p-beauty contest game (Nagel, 1995). We use a standard, one-shot, discrete beauty
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contest game with p = 2/3. In this game, a population of players has to simultaneously

guess an integer number between 0 and 100. The winner is the person whose guess is

closest to p times the average of all chosen numbers. The winner receives a fixed prize,

which is split equally among all winners in case of a tie. The beauty contest game is

a game with usually more than two players. Since we have formulated our model for

bilateral interactions, strictly speaking it cannot be directly applied to this situation.

However, in the beauty contest game a player’s payoff depends only on the average

number chosen by all other players and iterative thinking in this game is typically based

on beliefs about a representative agent. Our model can be immediately extended to cover

this class of games by viewing π(s, s′) as the payoff of strategy s when a representative

agent chooses s′, or, equivalently, when average behavior of the opponents corresponds

to s′.

In this game it is usually assumed that non-strategic (level-0) players pick a number

at random from the uniform distribution over {0, . . . , 100}, which yields an expected

average of 50. Hence, we assume that the starting point for iterative thinking is given

by s∗0 = 50. If all players choose s∗0, then the average of all numbers chosen is 50 and

hence the best reply to s∗0 is to choose s∗1 = 33, that is the integer closest to 2/3 times

50. Iterating, this defines the best-reply structure of the beauty contest game (s∗k) where

s∗k is the integer closest to (2/3)s∗k−1
.4 This game has two Nash equilibria at 0 and 1.

4.2 The 11-20 Game

The second part of our experiment focuses on variants of the 11-20 money request game,

that was introduced by Arad and Rubinstein (2012) as a two-player game specifically

well suited to study iterative reasoning. Alaoui and Penta (2016b) used the 11-20 game

to test their model of endogenous depth of reasoning. Goeree et al. (2016) introduced

a graphical version of the 11-20 game that allows to vary the payoff structure without

affecting the underlying best-reply structure of the game. We now describe a generalized

version of this graphical 11-20 game. In what follows, we will refer to this game (and

variants thereof) simply as “11-20 game.”

A9 A8 A7 A6 A5 A4 A3 A2 A1 20

9 8 7 6 5 4 3 2 1 0

Figure 1: Generalized 11-20 game.

4This delivers the path (50, 33, 22, 15, 10, 7, 5, 3, 2, 1, 1, . . .), which is close to that defined by (2/3)k50.
Of course, this is an approximation which ignores the impact of the player on the average, but is accurate
unless N is small.
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Consider ten boxes horizontally aligned and numbered from 9 (far left) to 0 (far

right) as depicted in Figure 1. Each box b ∈ {1, . . . , 9} contains an amount Ab < 20

and the rightmost box, b = 0, contains the highest amount of A0 = 20. There are two

players, i = 1, 2, and each has to choose a box bi ∈ {0, . . . , 9}. Each player receives the

amount Abi in the box he chose plus a bonus of R if he chose the box that is exactly one

to the left of his opponent’s box. That is, payoffs are given by

Πi(bi | b−i) =







Abi if bi 6= b−i + 1

Abi +R if bi = b−i + 1.

A feature of this game is that choosing box 0 is the salient and obvious candidate

for a non-strategic level-0 choice, because it awards the highest “sure payoff” of 20 that

can be obtained without any strategic considerations. Thus, the rightmost box 0 is a

natural anchor serving as a starting point for iterative thinking. If the bonus R is large

enough, that is, R > 20 − min{Ab|b = 1, . . . 9}, then the best-reply structure for the

salient starting point s∗0 = 0 is (s∗k)k with s∗k = k for k = 1, . . . , 9.5 In other words, for a

sufficiently large bonus the best reply is always to choose the box that is exactly one to

the left of your opponent (if there is such a box). In particular, the best-reply path is

independent of the specific payoff structure, as long as the conditions mentioned above

are fulfilled.

BASE 11 12 13 14 15 16 17 18 19 20

FLAT 17 17 17 17 17 17 17 17 17 20

EXTR 19 18 17 16 15 14 13 12 11 20

Figure 2: Payoff structure for the different variants with low cost.

We use the three versions of the 11-20 game shown in Figure 2.6 The sure payoffs

given by the amounts A0, . . . , A9 differ across versions, however, they are chosen in such

a way that the best-reply structure described above remains unchanged. In the baseline

version (BASE) the amounts are increasing from the left box to the rightmost box,

containing the highest amount of 20. BASE corresponds to the original version of Arad

and Rubinstein (2012) and to the baseline version of Goeree et al. (2016). In BASE

5Note that the best reply to an opponent choosing box 9 is to choose box 0, hence for k > 9 the
best-reply structure cycles repeatedly from 0 to 9. For simplicity, we abstract from this issue and focus
only on steps 1-9. Alaoui and Penta (2016b) use a slightly different payoff structure with an additional
bonus in case of a tie that breaks this best-reply cycle.

6For each of the three versions BASE, FLAT, and EXTR there is a unique mixed strategy Nash
equilibrium. For the low cost and low bonus versions those are given by

(
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there is a natural trade-off between the sure payoffs A1, . . . , A9 and the bonus, with each

incremental step of reasoning being equally costly in terms of sure payoff. We designed

the second version in order to remove the trade-off between higher steps of reasoning

and sure payoff. This flat-cost version (FLAT) is a modification of BASE where the

first iteration results in a cost, but after that all additional steps are identical and come

at no further cost in terms of sure payoff. Specifically, all boxes except the rightmost

box contain the same amount, which is by some fixed amount lower than the salient

amount of 20. Thus, choosing any box except the rightmost gives the same sure payoff

and, hence, after the first step any additional step is “costless.” FLAT could also be

viewed as a modification of Arad and Rubinstein’s (2012) costless-iterations version. The

extreme version (EXTR) was previously used in Goeree et al. (2016). In this version,

all amounts except for the highest one are rearranged to be decreasing from left to

right with the second highest amount in the leftmost box. Since the rightmost box still

contains the highest amount of 20, this rearrangement does not alter the underlying best-

reply structure. However, it crucially affects the cost in terms of sure payoff associated

with different levels of reasoning. Choosing box 1 is now disproportionately expensive,

and further increments come, in terms of sure payoff, at no cost but instead at a gain.

Moreover, this asymmetry potentially opens the door for alternative heuristics, such as

choosing the highest amount that still grants the possibility of a bonus, which in this

case would imply choosing the leftmost box.

We further varied these three versions of the 11-20 game along two additional dimen-

sions. First, for each treatment there was an additional “high-cost” version, where for

BASE and EXTR the amounts A1, . . . , A9 range from 2 to 20 in increments of 2 instead

of from 11 to 20 in increments of 1, and for FLAT all amounts other than 20 were set to

14 in the high-cost version instead of 17 (see Figure 3). Depending on the treatment, the

trade-off between bonus and sure payoff for an additional step of reasoning is decreased

or increased under high cost. Second, we varied the incentives to reason by changing

the size of the bonus for choosing the box exactly one to the left of the other player’s.

Specifically, in the additional high-bonus condition, subjects obtained R = 40 additional

points for the “correct” box, while in the low-bonus condition they only received R = 20

additional points.

BASE 2 4 6 8 10 12 14 16 18 20

FLAT 14 14 14 14 14 14 14 14 14 20

EXTR 18 16 14 12 10 8 6 4 2 20

Figure 3: Payoff structure for the different variants with high cost.
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4.3 Design and Procedures

A total of 128 subjects (79 female) participated in 4 experimental sessions with 32

subjects each. Participants were recruited from the student population of the University

of Cologne using ORSEE (Greiner, 2015), excluding students of psychology, economics,

and economics-related fields, as well as experienced subjects who already participated in

more than 10 experiments. The experiment was conducted at the Cologne Laboratory

for Economic Research (CLER) and was programmed in z-Tree (Fischbacher, 2007).

The experiment consisted of three parts during which subjects could earn points.

First, each subject played a series of different versions of the money request game.

Each treatment BASE, FLAT, and EXTR was played four times, once for each bonus-

cost combination. Second, subjects participated in a single beauty contest game with

p = (2/3). In the third part we collected several individual correlates intended to control

for cognitive ability, social value orientation, aversion to strategic uncertainty, swiftness,

and demographics. There was no feedback during the course of the experiment, that is,

subjects did not learn the choices of their opponents nor did they get any information

regarding their earnings until the very end of the experiment. All decisions were made

independently and at a subject’s individual pace. In particular, subjects never had

to wait for the decisions of another subject except for the very end of the experiment

(when all their decision had already been collected). At that point they had to wait

until everybody had completed the experiment so that outcomes and payoffs could be

realized.

We now describe each part of the experiment in detail. For the 11-20 games, we

randomly assigned the subjects within a session to one of four randomized sequences of

the games to control for order effects.7 Subjects were informed that for every game they

would be randomly matched with a new opponent to determine their payoff for that

round, hence preserving the one-shot character of the interaction. Each of the three

variants BASE, FLAT, and EXTR was played exactly four times, once for each possible

combination of cost (low/high) and bonus (low/high).

In the second part, subjects played a single beauty contest game with p = 2/3 among

all 32 participants in the session. The winner, that is, the subject whose guess was closest

to 2/3 times the average of all choices, received 500 points. In case of a tie, the rules

specified to split this amount equally among all winners.

In the final part of the experiment, participants answered a series of questions. First,

subjects completed an extended 7-item version of the CRT from Toplak et al. (2014),

which includes the three classical items from Frederick (2005).8 Subjects received 5

7The exact sequences are provided in the supplementary material (see Online Appendix). Besides
our main treatments the sequences contained a further treatment with four additional games discussed
in Appendix B.

8Subjects also answered the two additional items proposed by Primi et al. (2015), but our results
do not change if we use their extended CRT version or a combination of both instead. Other studies
(Cappelen et al., 2013; Gill and Prowse, 2016) have also used the Raven test as a proxy for cognitive
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points for each correct answer. Next, we elicited aversion to strategic uncertainty using

the method by Heinemann et al. (2009) with random groups of four. The task involves

measuring certainty equivalents, similarly to Holt and Laury’s (2002) multiple price list

method, for a situation where payoffs depend on the decision of another subject, that

is, strategic uncertainty. In ten situations subjects have to choose between different safe

amounts (5 to 50 points) and an option in which they earn 50 points if at least two

other members of their group have also chosen that option and zero points otherwise.

Subjects were randomly allocated into groups of four, and for each group one of the

decision situations was randomly selected for payment. Finally, we collected a measure

to control for differences in mechanical swiftness (Cappelen et al., 2013). To that end we

recorded the time needed to complete four simple demographic questions on gender, age,

field of study, and native language. This part was integrated into a larger questionnaire,

which also comprised questions regarding subjects’ understanding of the tasks, their

perception of its complexity, number of university semesters, left- or right-handedness,

average amount of money needed per month, and previous attendance of a lecture in

game theory.

To determine a subject’s earnings in the experiment the payoffs from each part were

added up and converted into euros at a rate of 0.25e for each 10 points (around $0.28

at the time of the experiment). In addition subjects received a show-up fee of 4e for an

average total renumeration of 15.67e. A session lasted on average 60 minutes including

instructions and payment.9

5 Results: Beauty Contest

We first analyze behavior and deliberation times in the beauty contest game. The left

panel of Figure 4 depicts the distribution of choices in this game. Of the 128 subjects

only two subjects chose a Nash Equilibrium strategy, 18 chose a number close to 33

(level-1), 9 chose a number close to 22 (level-2), 8 chose a number close to 15 (level-

3), and 7 subjects chose a number corresponding to higher levels. The target numbers

in our four sessions were 27, 28, 29 and 32 and the respective winning numbers were

28, 27, 30 and 32. Hence, the best-performing strategy (among the level-k strategies)

would have been the level-1 choice of 33. We classify all choices that are at a distance

of at most 2 from the level-k strategy as level-k (for k ≥ 1), and the remainder as

level-0.10 Given this classification, the average of all guesses by level-0 players is 54.98.

ability. Brañas-Garza et al. (2012) used the Raven test and the CRT by Frederick (2005) in a series of six
one-shot p-beauty games and found that CRT predicts lower choices (i.e. higher level), while performance
in the Raven test did not.

9The original instructions were in German. A translation of the instructions into English can be
found in the supplementary material (see Online Appendix).

10Classification of levels: Level 1 (31-35), Level 2 (20-24), Level 3 (13-17), Level 4 (8-12), Level 5
(7), Level 0 (rest). There were no choices in the range 1-6. Two subjects with very fast choices of 0
were excluded from the analysis. Our results are robust when those choices are included and classified
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Figure 4: Choices and deliberation times in the beauty contest game.

Notes: Left panel shows histogram of guesses (0-100). Right panel shows a scatter plot of guesses

(0-100) vs deliberation time for that guess (in s) and plots the result of a linear regression with

95% confidence interval.

Overall behavior is in line with previous results in the literature, that commonly observe

mostly one to three steps of reasoning and a significant amount of unclassified (random)

choices, usually thought of as level-0. The right panel of Figure 4 shows a scatter plot

of subjects’ guesses and the corresponding time taken for that choice. The slope of the

regression line suggests a negative correlation between deliberation times and “higher-

level” choices. That is, choices corresponding to more steps of reasoning required longer

deliberation times.

This observation is consistent with Prediction 2, that is, that deliberation time is

increasing in cognitive sophistication. We now test this prediction using a series of

three linear regressions with log-transformed deliberation times (log DT) as dependent

variable11 and controls for cognitive ability, individual differences in mechanical swiftness

(Cappelen et al., 2013), and gender. The results of those regressions are presented in

Table 1. The regressions show a significantly positive effect of higher-level choices on

deliberation time. That is, in line with Prediction 2, deliberation time is increasing in

the depth of reasoning. This result remains robust when we control for cognitive ability

(model 2), measured by the extended CRT, and when we add additional controls.12

Further, cognitive ability in itself has no effect on deliberation times. Recall that in our

model the overall effect of cognitive ability on deliberation time is indeterminate due to

two potentially countervailing effects.

Performance in the CRT was previously found to be correlated with level in the

beauty contest (Brañas-Garza et al., 2012). Conducting an additional linear regression

as level-0. Further, our results are unchanged for narrower classifications of levels, e.g. where only the
level-k strategy ±1 are classified as level-k.

11Deliberation times usually feature a skewed distribution with rare extreme observations, in particular
they are not normally distributed. We follow the standard approach in the literature and consider the
logarithm of that variable instead, which tends to be normally distributed.

12The control variables are defined as follows: CRTExtended (number of correct answers, 0-7), Swift-
ness (time needed to answer 3 demographic questions, in seconds), and Female (dummy).
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Table 1: Linear regressions on log DT for the beauty contest game.

log DT 1 2 3

Level 0.1348∗∗ 0.1342∗∗ 0.1289∗∗

(0.0538) (0.0563) (0.0561)
CRTExtended 0.0012 −0.0172

(0.0307) (0.0321)
Swiftness −0.3051

(0.4388)
Female −0.2440∗

(0.1396)
Constant 2.7865∗∗∗ 2.7823∗∗∗ 3.0965∗∗∗

(0.0754) (0.1328) (0.2315)

Adjusted R2 0.0405 0.0327 0.0449
F-test 6.2718∗∗ 3.1114∗∗ 2.4684∗∗

Observations 126 126 126

Notes: Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

with level as dependent variable on CRT, we find a significant and positive coefficient

for CRT (N = 126, β = 0.1483, p = 0.0017). Our results are in line with those previous

results in the literature, confirming that subjects with higher cognitive ability tend to

make higher-level guesses in the beauty contest game.

6 Results: 11-20 Games

Figure 5 displays the absolute choice frequencies across all instances of the 11-20 game.

Choices in BASE closely resemble the behavioral patterns found in Arad and Rubinstein

(2012) and Goeree et al. (2016), with most subjects selecting one of the three rightmost

boxes corresponding to levels 0 to 3. Behavior in FLAT is similar to that in BASE, with

most choices corresponding to not more than three steps of reasoning. Compared to

BASE, however, there is a larger fraction of level-0 choices in FLAT, which is consistent

with the first step being more costly in terms of sure payoff. In the EXTR variant

behavior is comparable to that observed in Goeree et al. (2016), and vastly different

from that observed in BASE and FLAT. A large fraction of subjects (between 38% and

62%) chose the rightmost box containing the salient amount of 20, but box 1 and 2 to

its left were chosen very rarely compared to BASE and FLAT. Instead, between 25%

and 33% of subjects chose one of the two leftmost boxes 8 and 9, which were almost

never chosen in the other two variants. Following an iterative-thinking interpretation,

these choices correspond (implausibly) to eight or nine steps of reasoning.13

13When playing against the empirical distribution of choices, the best-performing strategies for BASE,
FLAT, and EXTR would correspond to level 2, level 1, and level 1, respectively. Controlling for empirical
payoffs does not affect our results.
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Figure 5: Histograms of choices for each of the 11-20 games.

We now turn to the analysis of deliberation times. For this purpose, we start with

bird-eye regressions on the full data set, that is, including all decisions on all variants

of the 11-20 game. Table 2 shows GLS random-effects regressions with log DT as the

dependent variable including as observations all 12 choices in BASE, FLAT, and EXTR.

In all models we control for mechanical swiftness, gender, and the position within the

sequence of games (Period).14

The regressions confirm that there is a significant and positive relation between

deliberation times and depth of reasoning. That is, as predicted, choices associated with

more steps of thinking require more deliberation. This relation is unaffected when we

include the treatment dummies FLAT and EXTR (model 2), and when we control for

cognitive ability as measured by the number of correct answers in the (extended) CRT

(model 3). Also, the coefficient of the CRT is significant and positive, that is, subjects

scoring higher on the CRT take longer to make their decisions.

14Throughout the paper the standard variables for regressions are defined as follows: Level (0-9; a
choice of box k is classified as level k); FLAT and EXTR are treatment dummies; CRTExtended (0-7;
number of correct answers); Swiftness (time needed to answer 3 demographic questions normalized to
[0, 1]); Female (dummy); Period (1-16; controls for position in the sequence of games).
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Table 2: Random effects panel regressions on log DT for the 11-20 games.

log DT model 1 model 2 model 3

Level 0.0385∗∗∗ 0.0272∗∗∗ 0.0282∗∗∗

(0.0057) (0.0060) (0.0060)
FLAT −0.0309 −0.0308

(0.0337) (0.0338)
EXTR 0.1631∗∗∗ 0.1614∗∗∗

(0.0351) (0.0352)
CRTExtended 0.0572∗∗∗

(0.0165)
Swiftness 0.2607 0.2626 0.4155∗

(0.2406) (0.2407) (0.2335)
Female 0.0943 0.0932 0.1654∗∗

(0.0744) (0.0744) (0.0738)
Period −0.0884∗∗∗ −0.0889∗∗∗ −0.0889∗∗∗

(0.0030) (0.0030) (0.0030)
Constant 2.5943∗∗∗ 2.5788∗∗∗ 2.2628∗∗∗

(0.0928) (0.0944) (0.1284)

R2 (overall) 0.3056 0.3132 0.3417
Wald-Test 1299.4016∗∗∗ 1371.6146∗∗∗ 1385.4388∗∗∗

Observations 1536 1536 1536

Notes: Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Beyond this, we observe a significant positive coefficient of EXTR (which is robust

to controling for CRT performance), indicating that choices in EXTR generally required

longer deliberation times. The average deliberation time in EXTR was 12.6 seconds,

whereas the average deliberation time in BASE and FLAT was only 9.9 seconds. Pairwise

Wilcoxon signed rank (WSR) tests directly confirm that the average deliberation time

in EXTR was significantly higher compared to both BASE (N = 128, z = 4.678, p <

0.0001) and FLAT (N = 128, z = 4.375, p < 0.0001).

In the next step, we consider the three game variants BASE, FLAT, and EXTR

separately. To this end, we run separate regressions considering only the four choices

taken for each of the variants. Table 3 presents the results of these regressions, which

are also illustrated in Figure 6. In those and all following regressions we include controls

for cognitive ability, mechanical swiftness, gender, and the position within the sequence

of games.

The results confirm our previous findings, showing a positive significant relation

between deliberation times and higher-level choices in all three variants of the game.

This positive correlation can also be seen in Figure 6, where the solid regression lines

have a positive slope for all three variants. There is no effect of cognitive ability on

deliberation times in BASE, whereas we find a positive and significant effect in both

FLAT and EXTR.
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Table 3: Random effects panel regressions of log DT on level.

log DT BASE FLAT EXTR

Level 0.0449∗∗ 0.0532∗∗∗ 0.0277∗∗∗

(0.0182) (0.0152) (0.0079)
CRTExtended 0.0280 0.0628∗∗∗ 0.0848∗∗∗

(0.0186) (0.0186) (0.0207)
Swiftness 0.5335∗∗ 0.4919∗ 0.2254

(0.2632) (0.2617) (0.2925)
Female 0.1313 0.1883∗∗ 0.1926∗∗

(0.0834) (0.0830) (0.0925)
Period −0.0878∗∗∗ −0.0934∗∗∗ −0.0843∗∗∗

(0.0049) (0.0050) (0.0053)
Constant 2.3286∗∗∗ 2.1742∗∗∗ 2.3157∗∗∗

(0.1511) (0.1497) (0.1649)

R2 (overall) 0.3298 0.3621 0.3148
Wald-Test 352.7159∗∗∗ 378.8169∗∗∗ 300.5368∗∗∗

Observations 512 512 512

Notes: Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Models are restricted

to subsamples including only the four decisions in BASE, FLAT or EXTR, respectively.

Table 4: Random effects panel regressions of log DT with controls for the payoff struc-
ture.

log DT BASE FLAT EXTR

Level 0.0658∗∗∗ 0.0202 −0.0164
(0.0210) (0.0182) (0.0183)

Rightmost20 0.1634∗ −0.2356∗∗∗ −0.3438∗∗∗

(0.0835) (0.0728) (0.0991)
LeftmostBox 0.1010

(0.1201)
Constant 2.2255∗∗∗ 2.3138∗∗∗ 2.6161∗∗∗

(0.1605) (0.1534) (0.1881)

Controls Yes Yes Yes

R2 (overall) 0.3294 0.3785 0.3330
Wald-Test 360.2338∗∗∗ 394.5066∗∗∗ 317.7823∗∗∗

Observations 512 512 512

Notes: Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Models are restricted

to subsamples including only the four decisions in BASE, FLAT or EXTR, respectively. Omitted

controls are CRTExtended, Swiftness, Female, and Period.

In the next step, we investigate the robustness of the previous conclusion to specific

features of the game. First, note that (in all variants) a choice of the rightmost box is

appealing because it maximizes the sure payoff (20) and because it minimizes strategic

uncertainty, as it yields a guaranteed payoff independently of the choice of the other

player. This makes it a salient level-0 strategy. Hence, choices of the rightmost box are
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Figure 6: Choices and deliberation times in the 11-20 games.

Notes: Scatter plots of the average deliberation time per level (in s), per 11-20 game variant. The

solid (blue) lines shows the result of a linear regression of deliberation times on level. The dashed

(red) lines shows the same regression where the choices of the rightmost box were excluded. For

illustration purposes, choices with DTs that were more than two SEs away from the mean DT

of that level and levels with less than 10 observations are not depicted.

particularly fast, creating a confound. That is, even if there is no relation between the

imputed level of cognitive sophistication and deliberation times, if choosing the rightmost

box is particularly fast, the regressions might show a non-existing trend. To check for

this, we include a dummy indicating those choices, denoted Rightmost20. Further, in

EXTR a choice of the leftmost box could also be salient because it combines a high sure

payoff with a chance of getting the bonus. We thus include another dummy, denoted

LeftmostBox, into the regression for EXTR. The results of these regressions are shown

in Table 4 and illustrated in Figure 6 (dashed lines).

After controlling for choices of the rightmost box, in BASE we still observe a clear

positive relation between deliberation time and level. This is illustrated in Figure 6,

where the slope of the regression line is still positive even when the level-0 choices are

excluded (dashed line). In addition, the dummy itself is not significant. That is, our

conclusions for BASE are robust to controlling for imputed level-0 choices.

In game variant FLAT, however, the picture is quite different. Choices of the right-

most box are significantly faster, and this difference actually explains most of the effect

of level on deliberation times: level becomes insignificant when adding the dummy Right-

most20. This can be seen graphically in Figure 6, where the regression line becomes al-
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most flat when the level-0 choices are excluded (dashed line). Similarly, in game variant

EXTR we observe very fast level-0 choices, and no further relation between deliberation

times and level. Again, this can be seen graphically in the bottom panel of Figure 6,

where the regression line even tends to be downward sloping when the fast level-0 choices

are excluded (dashed line).

In summary, we find generally longer deliberation times for higher-level choices, which

is in line with Prediction 2, but this can only be seen as a full validation of iterative think-

ing models for game variant BASE. In this variant, increasing costs make the successive

steps associated with iterative thinking particularly salient, and indeed we observe the

strongest link between deliberation times and level, which is robust to controlling for

choices of the rightmost box containing the salient amount of 20. In contrast, for FLAT

and EXTR most of the effect is explained by fast level-0 choices.

In game variant FLAT the comparably large cost associated with the first step of

reasoning results in a large fraction of subjects choosing the rightmost box, and these

choices are faster. Beyond this observation, there is no evidence of iterative thinking as

revealed by response times. However, this observation should not be overemphasized,

because in this game variant choices corresponding to more than two steps of reasoning

are rare, and this might explain the absence of a relationship for higher-level choices.

This criticism does not affect game variant EXTR, where a large fraction of choices

corresponds to nine (imputed) steps of reasoning. In this variant, again level-0 choices

are significantly faster, but there is no evidence of a relation between imputed depth of

reasoning and deliberation times for higher-level choices. In particular, choices of the

leftmost box, while frequent, are not accompanied by longer deliberation times. This

result strongly suggests that iterative thinking might be less dominant in EXTR than

in BASE although they feature the same best-reply structure. A natural explanation

is that even though the best-reply structure would lead to the same steps of iterative

thinking, the actual payoffs make other features of the game salient, rendering models

of iterative thinking inappropriate for this game variant.

7 Effect of Incentives in the 11-20 Game

In this section we examine the effect of incentives on both choices and deliberation times

in the 11-20 game. For this purpose, we make use of the fact that for each 11-20 game

variant we also varied the payoff structure along two incentive dimensions, the cost of

an additional step and the bonus that could be received.
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7.1 Incentives and Choices

A higher bonus increases the value of reasoning for each step, uk.
15 Hence, according

to Prediction 1, if decisions arise from iterative thinking, we would expect the observed

level to be weakly higher for a high bonus compared to a low bonus for all treatments.

This is indeed the case for BASE and FLAT. In BASE, the average level is 1.7148 for the

high bonus versions, larger than the average of 1.5078 for a low bonus (WSR, N = 128,

z = 2.915, p = 0.0036). In FLAT, the average level is 1.5820 for the high bonus versions,

again larger than the average of 1.4648 for the low bonus versions (WSR, N = 128,

z = 2.713, p = 0.0067). However, for EXTR there is no significant difference between

the high bonus versions (average level 3.3047) and the low bonus ones (average 3.1248;

WSR,N = 128, z = 0.942, p = 0.3461), again casting doubt on whether decisions arise

from iterative thinking in this case.

Conversely, higher costs decrease the value of reasoning in all steps for BASE and

FLAT, and hence should correspond to weakly lower levels in these variants. In EXTR,

however, higher costs sharply lower u1, but all other values u2, . . . , u9 increase (slightly).

Hence, the overall effect of higher costs on level in EXTR is indeterminate. We do find

lower average levels under high costs compared to low costs for all three variants. The

difference is significant for FLAT (high cost, average level 1.2773; low cost, 1.7695; WSR

N = 128, z = −4.367, p < 0.0001) and EXTR (high cost, average level 2.8164; low cost,

3.7031; WSR, N = 128, z = −3.145, p = 0.0017), but fails to reach significance for

BASE (high cost, average level 1.5000; low cost, 1.7227; WSR, N = 128, z = −1.613,

p = 0.1068).

In summary, the changes in the average depth of reasoning resulting from our sys-

tematic changes in the payoff structure are in line with Prediction 1. To further examine

this conclusion while controlling for individual differences, we turn to a regression anal-

ysis. Table 5 shows the results of three random-effects Tobit regressions with level as

dependent variable, one for each game variant, using the size of the bonus and the size

of the increment (cost) as regressors. In addition, we control for subjects’ attitudes

towards strategic uncertainty (Heinemann et al., 2009) and previous knowledge of game

theory.16 The regressions confirm that higher costs led to less steps of reasoning in all

game variants (significantly negative coefficients for the high cost dummies). Regarding

bonus, there is a significant and positive effect of bonus, with more high-level choices for

a high bonus, confirming again the observation above. Unsurprisingly, we find no effect

of high bonus on level for EXTR. Contrary to the conclusion from the nonparametric

test, in FLAT we also find no effect of high bonus on level. In this game variant, however,

there is a high concentration of choices on levels 0 and 1 (over 60%), which may explain

15There is a strict increase for k = 1, . . . , 9. However, because of the structure of the 11-20 game, the
value of u10 is unchanged.

16The additional control variables are “StratUnc,” defined as the number of B choices in the strategic
uncertainty task (0-10), and “Gametheory,” which is a dummy taking the value 1 if the subject reported
having followed a course in game theory.

22



Table 5: Random effects Tobit regressions of level with controls for bonus and cost

Level BASE FLAT EXTR

HighBonus 0.2811∗∗ 0.2829 0.7425
(0.1295) (0.1943) (0.8704)

HighCost −0.2485∗ −0.8270∗∗∗ −3.0640∗∗∗

(0.1292) (0.1947) (0.8871)
StratUnc −0.0186 −0.0864 −0.0330

(0.0522) (0.0722) (0.3257)
Gametheory 0.1071 0.5795 4.2876

(0.4282) (0.5932) (2.6932)
CRTExtended −0.0474 −0.0968 −0.4359

(0.0642) (0.0892) (0.3992)
Female −0.3388 −0.7885∗∗ 0.6374

(0.2867) (0.3966) (1.8018)
Period −0.0185 −0.0334 −0.2085∗∗

(0.0137) (0.0209) (0.0954)
Constant 2.0234∗∗∗ 2.7137∗∗∗ 4.2326

(0.4745) (0.6579) (2.9572)

Log likelihood −892.1128 −897.4692 −803.4438
Wald-Test 13.2723∗ 30.3227∗∗∗ 21.3988∗∗∗

Observations 512 512 512

Notes: Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Models are restricted

to subsamples including only the four decisions in BASE, FLAT, or EXTR, respectively.

the absence of an effect of bonus on level. Hence, we ran an additional random-effects

probit regression (not reported here) on a binary variable that takes the value 1 if level

is larger or equal to 1 and 0 otherwise. A positive effect of bonus on this binary variable

would indicate that increasing the bonus leads to more choices corresponding to at least

one step of reasoning. Indeed, we find a significant positive effect of bonus on this binary

variable (N = 512, β = 0.4010, p = 0.0054).

7.2 Incentives and Deliberation Times

We now analyze the effect of a change in the incentives on deliberation times. Tables 6,

7, and 8 show the results of a series of random-effects GLS regressions of log DT on level

for BASE, FLAT, and EXTR, respectively. The crucial variables are the dummies for the

high bonus and high cost conditions, as well as the interactions of level with those. The

regressions also control for cognitive ability, swiftness, gender, and period. Additionally,

we also control for non-strategic choices by including a dummy for the rightmost box.

The reason is that, as shown in Section 6, level-0 choices are significantly faster. Being

non-strategic, these choices are unlikely to be affected by changes in incentives.
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Table 6: Random effects panel regressions of log DT with bonus and cost for BASE.

log DT 1 2 3 4

HighBonus −0.1141∗∗ −0.1150∗∗ −0.0275 −0.1151∗∗

(0.0469) (0.0462) (0.0680) (0.0462)
HighCost −0.0237 −0.0157 −0.0155 −0.0764

(0.0465) (0.0459) (0.0462) (0.0664)
Level 0.0659∗∗∗ 0.0932∗∗∗ 0.0510∗∗

(0.0210) (0.0265) (0.0241)
Level × HighBonus −0.0536∗

(0.0304)
Level × HighCost 0.0378

(0.0299)
Rightmost20 0.0096 0.1413∗ 0.1538∗ 0.1504∗

(0.0733) (0.0837) (0.0840) (0.0840)
Constant 2.5073∗∗∗ 2.3071∗∗∗ 2.2551∗∗∗ 2.3205∗∗∗

(0.1508) (0.1644) (0.1647) (0.1647)

Controls Yes Yes Yes Yes

R2 (overall) 0.3330 0.3353 0.3419 0.3351
WaldTest 350.9656∗∗∗ 370.6264∗∗∗ 369.8558∗∗∗ 372.8499∗∗∗

Observations 512 512 512 512

Notes: Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Models are restricted

to subsamples including only the four decisions in BASE. Omitted controls are CRTExtended,

Swiftness, Female, and Period.

The results for bonus and cost are also illustrated in Figure 7. Although the re-

gressions examine the effects of bonus and cost simultaneously for each game type, for

expositional clarity we discuss bonus and cost separately in the following two subsections.

7.2.1 Effect of the Bonus

Increasing the bonus has a twofold effect on deliberation times: First, it increases the

potential gain from an additional step of reasoning by 20 and thus increases the incentives

for the first nine steps. Hence, according to Prediction 3 deliberation times per step

should be shorter when the bonus is high. On the other hand, assuming that the cognitive

cost is unaffected by a change in the bonus, subjects should conduct more steps of

reasoning according to Prediction 1, which should increase overall deliberation time. As

a consequence, the aggregate effect on deliberation times is indeterminate. Controlling

for the size of the bonus and the interaction of level with bonus allows us to dissect these

two explanations.

For the BASE variants (Table 6), we find shorter deliberation times when the bonus

is high (model 1). This effect remains when we control for level (model 2), indicating

that the direct effect (shorter deliberation times per step) dominates the indirect one
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(increased deliberation time through increased number of steps). To check whether

the increase in deliberation time per level is indeed affected by the bonus, we include

the interaction of level with high bonus (model 3). The coefficient for the latter is

significantly negative, that is, when the bonus is high subjects require less additional

deliberation time per step, confirming Prediction 3. The top-left panel in Figure 7

illustrates this effect: the regression line becomes flatter when the bonus is high.

For the FLAT variants (Table 7), subjects overall deliberate longer in the high bonus

condition (model 1). This effect remains when we control for level in model 2. Although,

this effect becomes non-significant when we additionally control for the interaction of

level with bonus (model 3), we can see in the top-middle panel of Figure 7 that the

line for high bonus is shifted upwards. The slopes of the two lines are very similar, and

indeed, the interaction is not significant.

Finally, for the EXTR variants (Table 8) we find no evidence that bonus has any

systematic effect on deliberation times. This can also be seen from the top-right-hand

panel in Figure 7, where both regression lines are flat, even slightly downward sloping.

Summarizing, we find that increasing the bonus decreases deliberation times in BASE

(where iterative thinking is most salient), increases deliberation times in FLAT, and has

no effect on deliberation times in EXTR (where iterative thinking is not salient at all).

The decrease in BASE is a result of shorter deliberation times per step, as predicted

by our model, which explains why overall deliberation time decreases although observed

levels are higher. We note that this result would be incompatible with any model where

the deliberation time per step did not react to incentives.

7.2.2 Effect of the Costs

The predicted effect of an increase in cost depends on the specifics of the underlying

payoff structure and hence differs across treatments. In BASE, high cost again has a

twofold effect. First, the potential gain for conducting an additional step decreases by

1 for the first nine steps. Hence, according to Prediction 3 we would expect longer

deliberation times per step for high cost. However, the decrease in incentives is very

small compared to the one resulting from a change in the bonus, and hence this effect is

likely to be small as well. On the other hand, because high cost implies smaller payoff

differences, subjects potentially conduct less steps of reasoning (again assuming that

cognitive costs are unaffected), which in turn should decrease overall deliberation time.

Hence, the overall effect is undetermined, and the results for BASE (Table 6) show no

effect on deliberation time.

In FLAT, only the potential gain from the first step is lower for high cost, while

the remaining steps are unaffected. Hence, we expect longer deliberation times for the

first step. Again, the decrease in potential gain for the first step might lead to subjects

conducting less steps of reasoning, which in turn might decrease overall deliberation time.

The results for this game variant (Table 7) indicate longer deliberation times (model 1)
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Table 7: Random effects panel regressions of log DT with bonus and cost for FLAT.

log DT 1 2 3 4

HighBonus 0.1251∗∗∗ 0.1278∗∗∗ 0.0960 0.1258∗∗∗

(0.0465) (0.0465) (0.0608) (0.0465)
HighCost 0.1264∗∗∗ 0.1301∗∗∗ 0.1292∗∗∗ 0.0629

(0.0471) (0.0470) (0.0470) (0.0621)
Level 0.0253 0.0165 0.0093

(0.0180) (0.0211) (0.0203)
Level × HighBonus 0.0207

(0.0255)
Level × HighCost 0.0438∗

(0.0263)
Rightmost20 −0.2924∗∗∗ −0.2358∗∗∗ −0.2370∗∗∗ −0.2168∗∗∗

(0.0611) (0.0730) (0.0730) (0.0738)
Constant 2.2525∗∗∗ 2.1722∗∗∗ 2.1851∗∗∗ 2.1810∗∗∗

(0.1462) (0.1573) (0.1585) (0.1562)

Controls Yes Yes Yes Yes

R2 (overall) 0.3907 0.3918 0.3924 0.3962
WaldTest 419.8691∗∗∗ 423.6446∗∗∗ 424.6026∗∗∗ 426.0934∗∗∗

Observations 512 512 512 512

Notes: Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Models are restricted

to subsamples including only the four decisions in FLAT. Omitted controls are CRTExtended,

Swiftness, Female, and Period.

for high costs, although the effect on the depth of reasoning is negative. As in the case of

bonus, within our model this can be explained by a change in the time required for each

step of reasoning. To test for this change, we additionally control for the interaction of

level with high cost (model 4). The coefficient for the latter is significant and positive,

as predicted by our model and illustrated by the steeper slope of the solid line in the

mid-bottom panel of Figure 7. That is, deliberation times per step are higher for high

cost, which explains the overall increase in deliberation time in FLAT.

The payoff structure in EXTR does not allow for a clear-cut prediction for the effect

of high cost on deliberation times. The reason is that for high cost, the potential gain

for the first step decreases sharply, but the potential gain for all further steps increases

slightly. As a consequence, we would expect longer deliberation times for the first step,

and shorter deliberation times for all subsequent steps. It is unclear which of these

countervailing effects should dominate. The results (Table 8) show significantly positive

coefficients for high cost. However, as in the case of bonus we find no effect of level on

deliberation times and thus, perhaps not surprisingly, there is also no interaction effect

with cost. This can also be seen from the lower right-hand panel in Figure 7. The

regression lines are flat, and the line for high cost is shifted upwards. This effect is in
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Table 8: Random effects panel regressions of log DT with bonus and cost for EXTR.

log DT 1 2 3 4

HighBonus 0.0247 0.0222 −0.0367 0.0229
(0.0475) (0.0477) (0.0635) (0.0478)

HighCost 0.1535∗∗∗ 0.1542∗∗∗ 0.1557∗∗∗ 0.1192∗

(0.0482) (0.0482) (0.0483) (0.0642)
Level −0.0060 −0.0160 −0.0109

(0.0125) (0.0144) (0.0138)
Level × HighBonus 0.0178

(0.0126)
Level × HighCost 0.0106

(0.0128)
Rightmost20 −0.3208∗∗∗ −0.3566∗∗∗ −0.3673∗∗∗ −0.3522∗∗∗

(0.0597) (0.0958) (0.0961) (0.0960)
Constant 2.4673∗∗∗ 2.5075∗∗∗ 2.5451∗∗∗ 2.5246∗∗∗

(0.1628) (0.1833) (0.1841) (0.1845)

Controls Yes Yes Yes Yes

R2 (overall) 0.3419 0.3415 0.3450 0.3411
WaldTest 334.6085∗∗∗ 334.7270∗∗∗ 336.1415∗∗∗ 335.1723∗∗∗

Observations 512 512 512 512

Notes: Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Models are restricted

to subsamples including only the four decisions in EXTR. Omitted controls are CRTExtended,

Swiftness, Female, and Period.

contrast to the negative effect of high cost on the depth of reasoning, but unlike for

BASE and FLAT this cannot be explained by a change in deliberation times per step.

Summarizing, for the high cost condition we find overall longer deliberation times

in FLAT and EXTR, but not in BASE. The increase in FLAT is a result of longer

deliberation times per step, confirming Prediction 3. That is, our model can explain

why deliberation times in FLAT are increasing for high cost although observed choices

correspond to less steps of reasoning. Again, this effect would be incompatible with a

model where the time per step is constant.

8 Discussion

In this work, we have introduced a simple model linking cognitive sophistication (as

revealed by choices), incentives, and deliberation times, incorporating stylized facts from

the psychophysiological literature. We model the total deliberation time of an observed

choice as the sum of the deliberation times resulting from a sequence of hypothetical

binary decisions that model steps of reasoning. As an immediate consequence we obtain

the prediction that exerting higher cognitive effort, that is, conducting more steps of

reasoning implies longer deliberation times. They key assumption then builds on the
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Figure 7: Effect of bonus and cost in the 11-20 games.

Notes: The top panel plots a line with the coefficients obtained from model 3 in Tables 6, 7,

and 8 for high bonus (solid blue line) and low bonus (dashed red line), respectively. The bottom

panel plots a line with the coefficients obtained from model 4 in Tables 6, 7, and 8 for high cost

(solid blue line) and low cost (dashed red line), respectively.

closeness-to-indifference effect, that is, decisions take longer for smaller utility difference

between the options. We assume that deliberation time for a given step is a decreasing

function of the potential gain (or loss) of that step. This model provides empirically

testable predictions regarding the relation of deliberation times, cognitive sophistication

as revealed by choices, and incentives.

We then test the predictions of our model using experimental data. In the beauty

contest and the original version of the 11-20 money request game, choices attributed

to higher steps of reasoning lead to longer deliberation times. In this way, this work is

the first to provide direct evidence on the link between heterogeneity in cognitive effort

and behavioral heterogeneity. This link is strongest when the payoff structure of the

underlying game is such that iterative thinking is salient. However, for games without

a salient iterative structure, there is no clear relation between deliberation times and

cognitive effort. We conclude that the alleged link between behavioral heterogeneity

and cognitive depth is absent in these situations, and applying simple models of iterative

thinking is unwarranted. Our work hence also serves as a demonstration that deliberation

times can serve as a tool to identify economic problems where features beyond the best-

reply structure are crucial determinants of behavioral heterogeneity.
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We also show that cognitive depth reacts to monetary incentives. Our model predicts

that changes in the incentives that systematically vary the utility difference of a step of

reasoning should be reflected in changes in cognitive depth. These effects are found in the

data, with the caveat that the link between incentives, cognitive depth, and deliberation

times is less than straightforward. In particular, the well-known effects of closeness to

indifference imply that higher cognitive effort will be accompanied by shorter deliberation

times for a given step of reasoning, resulting in the apparent paradox of higher incentives

inducing more steps of reasoning which are implemented in a shorter total deliberation

time.

Our results also contribute to a related strand of literature that tries to better under-

stand when iterative thinking describes actual decision processes and what cues trigger

it. For example, Ivanov et al. (2009) show that level-k ceases to describe behavior well

when the best-reply structure is complex and alternative plausible rules of thumb exist.

Chong et al. (2016) show that incorporating a measure of saliency to derive level-0 be-

havior significantly improves model fit with respect to models where non-strategic agents

randomize uniformly. Shapiro et al. (2014) show that the predictive power of the model

can vary within a single game when different components of the payoff function are

emphasized, with a better fit as the game becomes closer to a standard beauty contest

and a worse fit as the pattern of levels of reasoning becomes less salient. This suggests

that level-k reasoning is one of many possible decision processes players may employ,

and which process ultimately determines the decision can depend on various features of

the decision situation. Our results for the different variants of the 11-20 money request

game confirm this view.

In conclusion, we provide the missing link between heterogeneity in observed eco-

nomic choices and imputed differences in cognitive depth and effort. At the same time,

our research shows that this link might only be easily observable in situations where

an iterative reasoning structure is salient enough. We provide a tool to identify situ-

ations where it is warranted to account for heterogeneity in behavior through a direct

application of iterative thinking models. This simple expansion of the economist’s tool-

box is a first step towards a more complete account of the determinants of behavioral

heterogeneity.

Appendix A Other Level-0 Specifications in the 11-20 Game

Arad and Rubinstein (2012) argue that choosing 20 in the 11-20 game is a natural anchor

for an iterative reasoning process. However, Hargreaves Heap et al. (2014) show that

level-0 behavior might depend on the payoff structure of the game. This might be less

problematic in our setting because a further appeal of the original 11-20 game, which

essentially corresponds to BASE, is that it is fairly robust to the level-0 specification.

Specifically, choosing 19 in the original 11-20 game, or box 1 in BASE, is the level-1
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strategy for a wide range of level-0 specifications. Still, this robustness depends on the

particular payoff structure of the game and hence might be different across the various

versions used in our experiment. In this subsection we explore the robustness of BASE,

FLAT and EXTR to the level-0 specification.

Let σ0 = (p0, . . . , p9) denote a level-0 specification that assigns probability pi to box i.

Recall that box 0 always contains the salient amount of 20. We want to study the range

of σ0 such that choosing box 1 is still the unique level-1 strategy, that is, BR(σ0) = {1}.

A necessary condition is that p0 > p0, where p0 = (20 − A1)/R, which is derived from

the condition that the expected payoff of box 1 exceeds that of box 0, i.e. A1+p0R > 20.

Table A.1 gives an overview over the values of p0 across BASE, FLAT and EXTR for

each combination of bonus and cost, and already provides a first intuition: the condition

is mild for BASE and FLAT, but not for EXTR.

Table A.1: Lower bounds on p0

BASE FLAT EXTR
bonus low high low high low high

low cost 5% 2.5% 15% 7.5% 45% 22.5%
high cost 10% 5% 30% 15% 90% 45%

The condition p > p0 is in general not sufficient. It is easy to show that, as long

as box 1 contains the second-highest sure amount, that is, A1 ≥ Aj for all j 6= 0, 1,

and p0 > p0, a sufficient condition is that no box j 6= 0 is assigned a probability larger

than p0. This holds in BASE as long as box 0 is most probable under σ0 (note that this

implies p0 > 10%, hence p0 > p0). Hence, choosing box 1 is the unique level-1 strategy in

BASE under fairly weak requirements, in particular even if σ0 is assumed to be uniform

randomization as usually assumed in games without a salient strategy (e.g. the beauty

contest game).17

For FLAT, the sufficient condition holds if box 0 is most likely under σ0 and p0 > p0

(similarly to BASE, this latter condition is void for high bonus and low cost). This is

a slightly stronger condition, because the lower bounds p0 are tighter. In particular, in

the extreme case of uniform randomization the level-1 strategy remains to choose box

1 only for high bonus and low cost, while it prescribes to stay with box 0 for the other

conditions. Overall, however, the requirement remains mild and amounts to assuming a

small degree of salience or box 0.

In Section 6 we assumed that the starting point in the 11-20 game for our model

of iterative thinking was to choose the rightmost box containing the salient amount of

20. As just illustrated, the best-reply structure in BASE and FLAT is robust for a

wide range of alternative level-0 specifications. Thus, even if, contrary to our level-0

17For high cost and low bonus, in the extreme case of uniform randomization choosing box 1 is a best
reply, but not a unique one, because it ties with choosing the rightmost box.
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assumption, the starting point does not assign probability one to choosing the rightmost

box, the best-reply structure and hence our results are unaffected as long as p0 is not

too small.

A different conclusion obtains for variant EXTR. The condition above is not sufficient

for this variant because box 1 contains the lowest sure amount, hence the probability

assigned to the rightmost box has to exceed the probability of any box j by more than

(Aj−A1)/R. This condition together with p0 > p0 is sufficient to make box 1 the unique

best response in EXTR. This is a relatively demanding condition, as is the lower bound

p > p0 in this case. In particular, choosing the leftmost box that grants the second

highest sure payoff is the level-1 strategy for a relatively wide range of specifications

that include uniform randomization. Hence, the best-reply structure of EXTR is less

robust to changes in the level-0 specification, and there is a clear alternative best-reply

structure where the leftmost box is the level-1 strategy.

To check for robustness in the case of EXTR we consider an alternative best-reply

structure by assuming that the level-0 specification is mixed and the best reply is to

choose the leftmost box, which we then classify as the level-1 strategy. The best reply to

that is to choose the rightmost box containing the salient amount of 20, now classified

as level 2. From there the best-reply structure follows the familiar pattern from right to

left. We repeated the complete analysis of EXTR in Sections 6 and 7 for this alternative

classification, and found no qualitative difference with the previous analysis.18 Hence,

we conclude that our results, presented in the previous section, cannot be explained by

differences in the robustness to the level-0 specification between treatments.

Appendix B A “Social Preference” Variant

The experiment included an additional treatment intended to test for an alternative

explanation of the frequent “high-level” choices of the two leftmost boxes in EXTR, as

previously observed by Goeree et al. (2016). By choosing the leftmost box in EXTR a

subject could obtain the second highest sure amount, while at the same time granting

her opponent the chance to receive the bonus. If a subject is motivated by some form

of other-regarding preferences, choosing the leftmost box might be attractive because

it grants somebody else the chance to get a bonus that is relative large in comparison

to the subject’s own sacrifice in terms of sure payoff. We thus included a treatment,

denoted SOCP, which was a variation of FLAT where the two rightmost boxes contain

both the salient amount of 20. Figure B.1 shows both the low and high cost version

of SOCP. Choosing the rightmost box guarantees the highest safe amount of 20, while

also, at least theoretically, granting the other player the chance to obtain the bonus by

selecting the second, inner box that also contains 20. On the other hand, a purely self-

18The alternative regressions are available upon request.
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SOCP 17 17 17 17 17 17 17 17 20 20

SOCP 14 14 14 14 14 14 14 14 20 20

Figure B.1: Payoff structure for SOCP in the low (top panel) and high (bottom panel)
cost version.
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Figure B.2: Frequency distribution of choices in the SOCP variant.

interested individual should not choose the rightmost box, since it is weakly dominated

by the inner 20 for all possible beliefs.

As a proxy for prosociality we measured the social value orientation (SVO) of each

subject using a computerized version (Crosetto et al., 2012) of the scale developed by

Murphy et al. (2011). We used a scaled version of their six primary items in which

subjects were asked to choose among different allocations of points between themselves

and a randomly selected partner. For the SVO task one of the six items was randomly

selected and paid out using a ring matching procedure, that is, each subject received

two payments of up to 25 points, one as a sender and one as a receiver. A higher SVO

score indicates that a subject is more prosocial.

In SOCP, 36 out of 128 subjects chose the rightmost box at least once. However, we

found no difference in SVO scores between subjects choosing the rightmost box at least

once and those who never chose it (Mann-Whitney-Wilcoxon test, N = 128, z = −1.068,

p = 0.2857), which speaks against the social-preference interpretation. Next, we consider

the relative frequency of choosing the rightmost box across all four instances of SOCP

per subject. We run a fractional logit regression for this relative frequency with the SVO

score as an independent variable. The coefficient of SVO is positive but not significant.

Summarizing, we find no evidence that the prosocial motive of granting the opponent

the chance to obtain a bonus is a driver of behavior in the 11-20 game.
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Online Appendix: Supplementary Material

Sequence of Games

To control for order effects we counterbalanced the order of the different 11-20 games

using the following four randomized sequences. We denote the low cost, low bonus

version of BASE, FLAT, EXTR, and SOCP by B, F, E, and S, respectively. Similarly

for X ∈ {B,F,E, S} we use the notation +X to indicate high cost, and X+ to indicate

high bonus, e.g. +B+ denotes BASE with high cost and high bonus.

Pseudo-randomized sequences of the 11-20 games used in the experiment.

Sequence 1 B F E S E+ B+ S+ F+ +F +S +B +E +S+ +E+ +F+ +B+

Sequence 2 +E +B +S +F +B+ +F+ +E+ +S+ S E F B F+ S+ B+ E+

Sequence 3 +F+ +S+ +B+ +E+ B+ F+ E+ S+ +S +E +F +B E B S F

Sequence 4 S+ E+ F+ B+ F S B E +E+ +B+ +S+ +F+ +B +F +E +S

Translated Instructions

These are the instructions given to subjects during the experiment. Instructions for each

part were presented separately on screen, at the beginning of each part. The original

instructions were in German. Text in brackets [...] was not displayed to subjects.

General Instructions

Welcome to this economic experiment. Thank you for supporting our research.

Please note the following rules:

1. From now on until the end of the experiment, you are not allowed to communicate

with each other.

2. If you have questions, please raise your hand and one of the instructors will answer

your question individually.

3. Please refrain from using any features of the computer that are not part of the

experiment.

The experiment consists of five parts and a questionnaire. The experiment involves

a series of decisions which will affect your payoff at the end of the experiment. In this

experiment you will earn points. At the end of the experiment the points you have earned

in each part will be added up and the sum will be exchanged into Euros according to

the following exchange rate:

10 points = 25 Eurocents.

Independently of your decisions, you will receive an additional 4 EUR for your par-

ticipation in the experiment.
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Part 1: [11-20 Games]

In this part you will make a series of 16 decisions. For each decision you will be ran-

domly paired with another participant in the experiment. You will not meet the same

participant more than once.

For each decision you will see 10 boxes in line on your screen. Each box contains a

certain amount of points.

You have to choose one of the boxes.

Each participant will receive the amount in the box he/she selected. In addition, a

participant may get a bonus if the selected box is exactly one to the left of the box

that the other participant chooses.

The amount of points contained in each box may change from one round to another

round. Below you can see an example for such a decision. Note that the amount con-

tained in each box as well as the size of the bonus in the experiment will differ from this

example. The size of the bonus and the amount of points contained in each box will be

displayed in the following way:

Possible bonus: 30 points

14 13 12 11 19 18 17 16 15 20

Part 2 [Beauty Contest Game]

In this part you and all other participants in this session will make one decision. You

and all other participants each have to choose an integer between 0 and 100.

The participant who chose the number closest to the target number wins. All other

participants do not win anything.

To determine the target number, the average of all chosen numbers will be computed

and multiplied by 2/3 (in words: two thirds).

Target number= (2/3) * (Average of the numbers chosen by all participants)

The participant who chose the number closest to the target number wins and receives

500 points.

In case there is a tie between two or more participants (because all their numbers

are equally close to the target number) the points are split equally among all winners.
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Part 3 [Cognitive Reflection Test]

In this part you are asked to answer a series of questions. For each question there is

exactly one correct answer.

If you answer the questions correctly, you can earn additional points.

In total you have to answer 9 questions.

For each correct answer you will receive 5 points.

Part 4 [Social Value Orientation]

In this part you have to make a series of decisions about allocating points between you

and another randomly selected participant.

Henceforth, we will refer to this randomly selected participant simply as the “other.”

In each of the following 6 decisions, you can choose how many points you would like

to allocate to yourself and how many points you would like to allocate to the other.

Please select for each decision exactly one of the 9 available allocations.

All amounts are displayed in points.

Please take all decisions seriously, since each of the 6 decisions has the same proba-

bility of being selected.

You can receive additional points in case a decision of another participant is selected,

where he has allocated points to you.

Part 5 [Strategic Uncertainty]

In this part you have to make 10 decisions for different decision situations. Each situation

is independent of the other.

In each situation you can decide between A and B. The amount of points you will

earn in this part depends on these decisions.

In this part, you and 3 other randomly selected participants will form a group.

There will be 10 decision situations displayed on your screen in a table. In each of

the situations you can choose between option A and option B. At the end of this part,

1 out of the 10 situations will be chosen randomly. Your payment will be according to

the situation picked and is determined as follows:

• If you choose option A, you will receive the sure payment given in the second

column.

• If you choose option B, your payment will depend on how many members of your

group (including yourself) chose B.

– If 3 or more out of the 4 members of your group chose B, you will receive 50

points.

– If 2 or less of the 4 members of your group chose B, you will receive 0 points.
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