
Kozbur, Damian

Working Paper

Testing-based forward model selection

Working Paper, No. 283

Provided in Cooperation with:
Department of Economics, University of Zurich

Suggested Citation: Kozbur, Damian (2018) : Testing-based forward model selection, Working Paper,
No. 283, University of Zurich, Department of Economics, Zurich,
https://doi.org/10.5167/uzh-151160

This Version is available at:
https://hdl.handle.net/10419/192892

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.5167/uzh-151160%0A
https://hdl.handle.net/10419/192892
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 
 
 

 
Working Paper No. 283 

 
 

Testing-Based Forward Model Selection 
 
 
 
 
 

Damian Kozbur 
 
 
 

First version: January 2015 
This version: April 2018 

 
 

 

 
 

 
 

University of Zurich 
 

Department of Economics 
 

 
 

Working Paper Series 
  

ISSN 1664-7041 (print) 
 ISSN 1664-705X (online) 

 
 

 
 

 
  
 
 
 
 
 
 



Testing-Based Forward Model Selection

Damian Kozbur

University of Zürich
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Abstract: This paper introduces and analyzes a procedure called Testing-Based For-

ward Model Selection (TBFMS) in linear regression problems. This procedure induc-

tively selects covariates that add predictive power into a working statistical model

before estimating a final regression. The criterion for deciding which covariate to in-

clude next and when to stop including covariates is derived from a profile of traditional

statistical hypothesis tests. This paper proves probabilistic bounds for prediction error

and the number of selected covariates, which depend on the quality of the tests. The

bounds are then specialized to a case with heteroskedastic data with tests derived from

Huber-Eicker-White standard errors. TBFMS performance is compared to Lasso and

Post-Lasso in simulation studies. TBFMS is then analyzed as a component into larger

post-model selection estimation problems for structural economic parameters. Finally,

TBFMS is used to illustrate an empirical application to estimating determinants of

economic growth.
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1. Introduction

This paper considers a procedure called Testing-Based Forward Model Selection (TBFMS)

for high-dimensional econometric problems, which are estimation problems characterized

by settings in which the number of observed characteristics per observation in the data

is large.1 High-dimensional econometrics is a leading area of current research because of

recent rapid growth in data availability and computing capacity coupled with the important

need to extract as much useful information from data in a way that allows precise and

rigorous testing of scientific hypotheses. Working within the flexibility of a high-dimensional

framework allows researchers to fully exploit richer data sets both in prediction problems

and in structural inference problems.

The primary settings of this paper are high-dimensional sparse linear regression models,

in which the number of covariates is allowed to exceed the sample size. A key challenge

with a high-dimensional data set is that estimation requires dimension reduction or regu-

larization to avoid statistical overfitting. One regularizing structure used often in the recent

econometrics and statistics literature is sparsity. A sparsity assumption imposes that the

regression function relating the outcome and the covariates can be approximated by a re-

gression of the outcome on a small, ex ante unknown subset of covariates. Under sparsity,

there are several consistent estimation procedures (further reviewed below) that work by

enforcing that the estimated regression function be sparse or small under an appropriate

norm.

An appealing class of techniques for high-dimensional regression problems are Greedy

algorithms. These are procedures that inductively select individual covariates into a working

model (i.e., a collection of covariates) until a stopping criterion is met. A linear regression

restricted to the final selected model is then estimated. A leading example is Simple Forward

Selection,2 which chooses the covariate that gives the highest increase of in-sample R-

squared above the previous working model. This class of techniques is widely used because

they are intuitive and simple to implement.

In practice, deciding which covariate gives the best additional predictive power is com-

1High-dimensional data may arise in several ways. The data may be intrinsically high-dimensional with

many characteristics per observation. Alternatively, even with a relatively small number of covariates, re-

searchers may still be obtain a large final set of potential covariates formed by interactions and transforma-

tions of underlying covariates.
2Simple Forward Selection is not standard nomenclature, but is used here in order to have a parallel

language with Testing-Based Forward Model Selection. The literature is varied and uses several names

including Forward Regression and Forward Stepwise Regression.
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plicated by the fact that outcomes are observed with noise or are partly idiosyncratic. For

example, in linear regression, a variable associated to a positive increment of in-sample

R-squared upon inclusion may not add any predictive power out-of-sample. Statistical hy-

pothesis tests offer one way to determine whether a variable of interest is likely to improve

out-of-sample predictions. Furthermore, in many econometric and statistical applications,

the classical assumption of independent and identically distributed data is not always appro-

priate. One example of this is the presence of heteroskedastic disturbances. In such settings,

higher R-squared resulting from inclusion of one variable relative to another need not be a

signal that the first variable is a better choice. More generally, model selection procedures

tailored to the classical assumptions may have inferior performance when applied to more

realistic data-generating processes.

The availability of hypothesis tests for diverse classes of problems and settings motivates

the introduction of a testing-based strategy. Mechanically, TBFMS begins with an empty

model. The procedure then tests whether any covariates provide additional predictive ca-

pability in the population. The selection stops when no tests return a significant covariate.

Selection into the model is then based on the largest value of an associated test statistic.

Though the prior literature has not analyzed greedy algorithms that explicitly incorpo-

rate hypothesis testing, there are several earlier analyses of Simple Forward Selection.3,4

[68] gives bounds on the performance and number of selected covariates under a β-min

condition which requires the minimum magnitude of non-zero coefficients to be suitably

bounded away from zero. [72] and [64] prove performance bounds for greedy algorithms

under a strong irrepresentability condition, which restricts the empirical covariance matrix

of the predictors. [27] prove bounds on the relative performance in population R-squared

of the a forward selection based model (relative to infeasible R-squared) when the num-

ber of variables allowed for selection is fixed. In addition to Simple Forward Selection,

there are several related procedures in which estimation is done in stages. These include

a method that is not strictly greedy called Forward-Backward Selection, which proceeds

similarly to Simple Forward Selection but allows previously selected covariates to be dis-

carded from the working model at certain steps (see [72]). Another related class of methods

are called boosting methods. Boosting methods inductively select covariates predictive of a

3A mechanical statement of TBFMS in a specific case with heteroskedastic data is given in [43], which

is a Papers and Proceedings publication by the current author and is not peer-reviewed. No derivations or

theoretical properties are stated or claimed there.
4TBFMS using different tests than proposed here is natively programmed in some statistical software,

including SPSS, but is not previously formally justified.
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linear combination of estimated residuals and the outcome at each step (among many other

references, see [17], see also [48] for additional results and applications in econometrics.)

As a preliminary, (before proceeding to the analysis of TBFMS), this paper proves new

bounds on the predictive performance and number of selected covariates for Simple For-

ward Selection. The conditions required here are weaker that those used in [72] and [64] and

impose no β-min restrictions or irrepresentability. The convergence rates here are most sim-

ilar to the analysis of a Forward-Backward Selection in [73], but require markedly different

analysis since there is no chance to correct “over-selection mistakes.”

The analysis of Simple Forward Selection lays the groundwork for deriving statistical per-

formance bounds for TBFMS. This paper derives performance bounds for TBFMS which

depend directly on the quality of the profile of tests considered, as measured by 5 constants

which characterize size and power. The abstract results for TBFMS are used to derive

asymptotic bounds for various sequences of data-generating processes. As an example, con-

crete tests for heteroskedastic data constructed from Huber-Eicker-White standard errors

are used to construct t-tests and explicit rates of convergence are calculated.

This paper complements an emerging branch of literature on sequential testing (see [31],

[45], [63], [28]). This literature considers hypothesis testing in stages, in which tests in later

stages can depend on testing outcomes in earlier stages. In various settings, properties like

family-wise error rates of proposed testing procedures can be controlled sequences of hy-

pothesis tests. In all cases, the authors note that the testing procedures are complementary

to forward model selection problems as they guide which variables should be selected and

offer principled stopping rules. The interest in the current paper lies primarily in the sta-

tistical properties and performance bounds of estimates and fits based on a selected model

from a greedy algorithm that leverages testing. Future work may potentially combine the

two types of problems.

There are many other sensible approaches to high-dimensional estimation and regulariza-

tion. An important and common approach to generic high-dimensional estimation problems

are the Lasso and Post-Lasso estimations. The Lasso minimizes a least squares criteria aug-

mented with a penalty proportional to the `1 norm of the coefficient vector. This approach

favors a model with good in-sample prediction while still placing high value on parsimony

(the structure of the objective sets many coefficients are set identically to zero). The Post-

Lasso refits based on a least squares objective function on the selected model. For theoretical

and simulation results about the performance of these two methods, see [29] [62], [35] [21]

[4], [5], [15], [19], [18] [20], [21], [36], [39], [40], [46], [47], [50], [56], [62], [65], [67], [70], [7],

[16], [7], among many more. The asymptotic estimation rates calculated for TBFMS here
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match those standard for Lasso and Post-Lasso.

After developing several theoretical bounds, a simulation study illustrates the relative

performance of TBFMS to Lasso and Post-Lasso regression. The simulation study shows

that there are data-generating processes under which forward selection outperforms Lasso

regression in terms of prediction and estimation error.

In economic applications, models learned using formal model selection are often used

in subsequent estimation steps with the final goal of learning a structural parameter of

interest. One example is the selection of instrumental variables for later use in a first-stage

regression (see [6], [34]). Another example is the selection of a conditioning set, to properly

control for omitted variables bias when there are many control variables (see [14], [66], [11],

[41]). In both cases, bounds about the quality of the selected model are used to derive results

about the quality of post-model selection estimation and guide subsequent inference. Such

applications require a model selection procedure with a hybrid objective: (1) produce a

good fit, and (2) return a sparse set of variables. This paper addresses both objectives, and

therefore provides adequately tight bounds using strictly forward selection for application

in causal post-estimation analysis.

Finally, TBFMS is illustrated in an economic application. The application revisits the

question studied by Acemoglu, Johnson and Robinson (see [1]) of learning the effect of

institution quality on aggregate economic output in a cross section of 64 countries. [1]

propose an instrumental variables strategy, using early European settler mortality rates as

an instrument for current quality of institutions as measured the extent of protection from

expropriation. They provide an argument concluding that the effect of institutions on output

can be identified using early settler mortality as an instrument, provided that geography

is properly controlled for. In their baseline specification, [1] address this by including a

variable equal to latitude. However, geography is a broad notion and can potentially mean

many different things; for example, temperature, yearly rainfall, terrain. As a compliment

to their analysis, the set of possible controls for geography is expanded to 16. Since 16 is

not vanishingly small relative to the sample size of 64, this example lies within the space

of high-dimensional estimation problems. The most relevant geographic controls are then

chosen using TBFMS. To be robust to model selection mistakes and not suffer classical

problems known to be associated with pretesting, three model selection steps are required

(see [12], [14]), each separately applying TBFMS. These are: (1) select those geographic

variables predictive of output; (2) select those geographic controls predictive of quality of

institution; (3) select those geographic controls predictive of European settler mortality.

Final estimates of the effects of institution quality on growth are generated with standard
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IV estimation applied using the union of selected controls in the three selection steps. The

findings about the effects of institutions on output are largely consistent with theirs when

model selection is used to determine the way to control for geography. Interestingly, this

provides further evidence supporting the robustness of the conclusions made in [1].

2. Precursor: Sharp Convergence Rates for Simple Forward Selection without

β-min or Irrepresentability Conditions

This section proves a precursory result about Simple Forward Selection which is new in the

high-dimensional econometrics and statistics literature despite the literature’s maturity. The

procedure is defined formally below and is similar to TBFMS, but uses a single threshold

rather than a profile of hypothesis tests in determining the selection of covariates. The

framework set out in this section is also helpful in terms of outlining minimal structure

needed to facilitate the method of analysis in the formal arguments that follow.5

2.1. Framework

A realization of data of sample size n is given by Dn = {(xi, yi)}ni=1 and is generated by

a joint distribution P. The data consists of a set of covariates xi ∈ Rp, as well as outcome

variables yi ∈ R for each observation i = 1, ..., n. The data satisfy

yi = x′iθ0 + εi

for some unknown parameter of interest θ0 ∈ Rp and unobserved disturbance terms εi ∈ R.

The parameter θ0 is sparse in the sense that the set of non-zero components of θ0, denoted

S0 = supp(θ0), has cardinality s0 < n.

Define a loss function `(θ)

`(θ) = En[(yi − x′iθ)2]

where En[ · ] = 1
n

∑n
i=1(·) denotes empirical expectation. Note that `(θ) depends on Dn,

but this dependence is suppressed from the notation. Define also

`(S) = min
θ:supp(θ)⊆S

`(θ).

5This section draws material from the draft [42], also written by the current author, which was originally

a separate project and posted on ArXiv, but is now merged into the current paper in preparation for the

publication process.
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The estimation strategy proceeds by first searching for a sparse subset Ŝ ⊆ {1, ..., p}, with

cardinality ŝ, that assumes a small value of `(S), followed by estimating θ0 with least squares

via

θ̂ ∈ arg min
θ:supp(θ)⊆Ŝ

`(θ).

This gives the construction of the estimates x′iθ̂ for i = 1, ..., n.

The set Ŝ is selected as follows. For any S define the incremental loss from the jth

covariate by

∆j`(S) = `(S ∪ {j})− `(S).

Consider the greedy algorithm, which inductively selects the jth covariate to enter a working

model if −∆j`(S) exceeds a threshold t:

−∆j`(S) > t

and ∆j`(S) > ∆k`(S) for each k 6= j. The threshold t is chosen by the user; it is the only

tuning parameter required. This procedure is summarized formally here:

Algorithm 1. Simple Forward Regression

Initialize. Set Ŝ = ∅
For 1 6 k 6 p

If −∆j`(S) > t for some j ∈ {1, ..., p} \ Ŝ
Set ĵ ∈ arg max {−∆j`(S) : −∆j`(S) > t}
Update Ŝ = Ŝ ∪ {ĵ}

Else

Break

Set θ̂ ∈ arg min
θ:supp(θ)⊂Ŝ `(θ).

2.2. Formal Analysis

In order to analyze Algorithm 1 and state the first theorem, a few more definitions are

convenient. Define the empirical Gram matrix G by G = En[xix
′
i]. Let ϕmin(s)(G) denote

the minimal s-sparse eigenvalues given by

ϕmin(s)(G) = min
S⊆{1,...,p}:|S|6s

λmin(GS)

where GS is the principal submatrix of G corresponding to the component set S. The

maximal sparse eigenvalues ϕmax(s)(G) are defined analogously. Let

cF(ŝ) = (ŝ+ s0)1/2ϕmin(ŝ+ s0)(G)−1
[
2‖En[εix

′
i]‖∞ + t1/2

]
.
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Finally, for each positive integer m, let

c′F(m) = 1 + 72× 1.7832 × ϕmin(m+ s0)(G)−5.

Theorem 1. Consider a data set Dn of fixed sample size n with parameter θ0. Suppose the

normalizations En[x2
ij ] = 1 hold for each j 6 p. Then under Algorithm 1 with threshold t,

En[(x′iθ0 − x′iθ̂)2]1/2 6 cF(ŝ).

In addition, for every integer m > 0 such that t1/2 > 2ϕmin(m+ s0)(G)−1‖En[xiεi]‖∞ and

m 6 |Ŝ \ S0|, it holds that

m 6 c′F(m)s0.

The above theorem calculates explicit finite sample constants bounding the prediction

error norm. The second statement is a tool for bounding the number of selected covariates.

In particular, setting m∗ = min{m : m > c′F(m)s0} implies that

ŝ 6 m∗ + s0

provided t1/2 > 2ϕmin(m∗ + s0)(G)−1‖En[xiεi]‖∞.

The theorem is proven in detail in the Appendix. The first statement of Theorem 1 is

proven through a combination of two techniques. The first technique creates an analogue

of the Basic Inequality from standard Lasso analysis6 that states that `(Ŝ ∪ S0) 6 `(θ0).

The second technique uses a Lemma from [27] which bounds `(Ŝ) − `(Ŝ ∪ S0) in terms of

s0, t, and the sparse eigenvalues of G. Together, these produce a bound for `(Ŝ)− `(θ0) that

translates to the statement in Theorem 1. The proof of the second statement of the theorem

involves bounding ŝ. In the analysis of Lasso-based estimation, bounds for ŝ are typically

derived with the aid of KKT conditions for the solution to the Lasso problem. Because

Simple Forward Regression is iterative, no such optimality conditions exist. Instead, the

proof leverages a pigeonhole principle which is motivated by the following reasoning. ŝ

being sufficiently large relative to s0 forces the existence of some subset S ⊆ Ŝ such that

λmin(GS)−1 is correspondingly large.7 This is possible because all covariates indexed in Ŝ

must exhibit some correlation to covariates indexed in S0. At the same time λmin(GS)−1

cannot exceed ϕmin(ŝ+ s0)(G)−1. The desired bounds controlling ŝ are then deduced.

6For Lasso estimation with penalty level λ, the Basic Inequality asserts that `(θ̂)+λ‖θ̂‖1 6 `(θ0)+λ‖θ0‖1.
7Formally, this pigeonhole principle is carried out by constructing an operator L∞(Rs0)→ L1(Rs0) which

depends on projections of covariates indexed in Ŝ onto covariates indexed in S0, and then lower bounding its

norm with the aid of Grothendieck’s inequality ([32], see for a review, [53]; see also the exact form described

in [33]; see the appendix for more details.)
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The statement in Theorem 1 gives finite sample bounds which are completely determin-

istic in the sense that they hold for every possible realization of the data. Furthermore,

the proof does not use the random nature of Dn at any step. As a result, the bounds are

very general, but it is helpful for interpretation to consider the convergence rates implied

by Theorem 1 under asymptotic conditions on Dn. Consider a sequence of random data

sets (Dn)n∈N generated by joint distributions {P = Pn}n∈N. For each n, the data again

satisfy yi = x′iθ0 + εi. In what follows, the parameters θ0, the thresholds t, distribution P,

the dimension p of xi, etc. can all change with n.

Condition 1 (Asymptotic Regularity). The sparsity satisfies s0 = o(n). There is a sequence

Kn for which s0 = o(Kn) and there is a bound ϕmin(Kn)(G)−1 = O(1) which holds with

probability 1−o(1). The normalizations En[x2
ij ] = 1 hold a.s. for every j 6 p. The threshold

satisfies a bound t = O(log p/n). In addition, t1/2 > 2ϕmin(Kn)(G)−1‖En[xiεi]‖∞ with

probability 1− o(1).

The rates assumed in Condition 3 reflect typical rates achieved under various possible

sets of low level conditions standard in the literature (ie. [6]). Condition 1 asserts three im-

portant statements. The first statement bounds the size of S0 and requires that the sparsity

level is small relative to the sample size. The second statement is a sparse eigenvalue con-

dition useful for proving results about high-dimensional techniques like Lasso. In standard

regression analysis where the number of covariates is small relative to the sample size, a

conventional assumption used in establishing desirable properties of conventional estima-

tors of θ is that G has full rank. In the high-dimensional setting, G will be singular if p > n

and may have an ill-behaved inverse even when p 6 n. However, good performance of many

high-dimensional estimators only requires good behavior of certain moduli of continuity of

G. There are multiple formalizations and moduli of continuity that can be considered here;

see [15]. This analysis focuses on a simple eigenvalue condition which was used in [6]. Con-

dition 2 could be shown to hold under more primitive conditions by adapting arguments

found in [7] which build upon results in [70] and [58]; see also [57]. Condition 2 is notably

weaker than previously used irrepresentability conditions. Irrepresentability conditions re-

quire that for certain sets S and k /∈ S, letting xiS be the subvector of xi with components

j ∈ S, that ‖En[xiSx
′
iS ]−1En[xiSx

′
ik]‖1 is strictly less than 1. The normalization En[x2

ij ] = 1

is used to keep exposition concise and can be relaxed (and, e.g., is relaxed in Theorem 5).

The final statement in Condition 1 is a regularization condition similar to regulariza-

tion conditions common in the analysis of Lasso. The condition, requires t1/2 to dominate
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a multiple of the ‖En[xiεi]‖∞. This condition is stronger than that typically encountered

with Lasso, because the multiple depends on on the sparse eigenvalues of G. To illustrate

why such a condition is useful, let x̌ij denote xij residualized away from previously selected

regressors and renormalized. Then even if En[xijεi] < t1/2, En[x̌ijεi] can exceed t1/2 result-

ing in more selections into the model. Nevertheless, using the multiple 2ϕmin(Kn)(G)−1

which stays bounded with n, is sufficient to ensure that ŝ does not grow faster than s0.

Furthermore, this requirement does not implicitly impose a β-min condition and does not

implicitly impose irrepresentability.

From a practical standpoint, Condition 1 does however implicitly require the user to

know more about the design of the data in choosing an appropriate t. Choosing feasible

thresholds which satisfy a similar condition to Condition 3 is considered in the next section

where TBFMS is developed.

Theorem 2. Consider a sequence of data sets Dn indexed by n with parameters θ0 and

threshold t which satisfy Condition 1. Suppose θ̂ is obtained by Algorithm 1. Then there are

bounds

En[(x′iθ0 − x′iθ̂)2]1/2 = O

(√
s0 log p

n

)
,

ŝ 6 O(s0).

which hold with probability 1− o(1) as n→∞.

More explicitly, the implied O constants and o sequence in bounds for Theorem 2 are

understood to depend only on the implied O constants and o sequences in Condition 1.

The theorem shows that Simple Forward Selection can obtain asymptotically the same

convergence rates (specifically
√
s0 log p/n for the quantities En[(x′iθ0 − x′iθ̂)2]1/2) as other

high-dimensional estimators like Lasso, provided an appropriate threshold t is used. In

addition, it selects a set with cardinality commensurate with s0.

Finally, two direct consequences of Theorem 2 are bounds on the deviations ‖θ̂−θ0‖1 and

‖θ̂ − θ0‖2 of θ̂ from underlying unknown parameter θ0. Theorem 3 above shows that devi-

ations of θ̂ from θ0 also achieve rates typically encountered in high-dimensional estimators

like Lasso.

Theorem 3. Consider a sequence of data sets Dn with parameters θ0 and thresholds t

which satisfy Condition 1. Suppose θ̂ is obtained by Algorithm 1. Then there are bounds

‖θ0 − θ̂‖2 = O

(√
s0 log p

n

)
and ‖θ0 − θ̂‖1 = O

(√
s2

0 log p

n

)
which hold with probability 1− o(1) as n→∞.
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3. Testing-Based Forward Model Selection

The previous section presented results on convergence rates Simple Forward Selection in

a very simple context. The results of Theorems 1 are useful in terms of developing intu-

ition and proof techniques for inductive variable selection algorithms. However, in terms

of practical implementation, Section 2 leaves the question of how to choose a threshold

unanswered. This section develops TBFMS in order to analyze feasible, data-driven ways

to decide which covariates to select, and when to stop selecting.

3.1. Framework

The basic framework for this section is similar. Again, the observed data is given by Dn =

(xi, yi)
n
i=1 is generated by P and satisfies yi = x′iθ0 + εi for a parameter θ0 which is sparse

with s0 non-zero components supported on S0. Define `(θ) and `(S) as before.

Define the expected loss function E : Rp → R by

E(θ) = E
[
En(yi − x′iθ)2

]
and note that E(θ) = E`(θ). Extend the definition of E to apply also as a map E : 2{1,...,p} →
R by E(S) = minθ:supp(θ)⊆S E(θ). Similarly to before, for any S define the incremental loss

from the jth covariate by

∆jE(S) = E(S ∪ {j})− E(S).

Within the class of greedy algorithms, it would be preferable to consider a greedy al-

gorithm which inductively selects the jth covariate to enter a working model if ∆jE(S) is

large and ∆jE(S) > ∆kE(S) for each k 6= j. However, because ∆jE(S) cannot generally be

directly observed from the data, the idea that follows is to make use of statistical tests to

gauge the magnitude of ∆jE(S). Consider a set of tests given by

TjSα ∈ {0, 1} associated to H0 : ∆jE(S) = 0 and level α > 0.

Assume that the tests reject (TjSα = 1) for large values of a test statistic WjS .

The model selection procedure is as follows. Start with an empty model (consisting

of no covariates). At each step, if the current model is Ŝ, select one covariate such that

T
jŜα

= 1, append it to Ŝ, and continue to the next step; if no covariates have T
jŜα

= 1, then

terminate the model selection procedure and return the current model. If at any juncture,

there are two indices j, k (or more) such that TjSα = TkSα = 1, the selection is made

according to the larger value of WjS ,WkS . Alternatively, additional tests TjkSα associated
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to H0 : ∆jE(S) > ∆kE(S) could be devised to break ties. The test statistic approach is

natural for breaking potential multi-way ties. To summarize, the algorithm for forward

selection given the hypothesis tests (TjSα,WjS) is now given formally.

Algorithm 2. Testing-Based Forward Model Selection

Initialize. Set Ŝ = ∅.

For 1 6 k 6 p:

If: T
jŜα

= 1 for some j /∈ Ŝ,

Set: ĵ ∈ arg max{W
jŜ

: T
jŜα

= 1},
Update: Ŝ = Ŝ ∪ {ĵ}.

Else: Break.

Set: θ̂ ∈ arg min
θ:supp(θ)⊂Ŝ En(yi − x′iθ)2.

3.2. Formal Analysis

This section formally states conditions on the hypothesis tests conditions on the data before

analyzing properties of Algorithm 1. These conditions are measures of the quality of the

given testing procedure and the regularity of the data.

Condition 2 (Hypothesis Tests). There is an integer Ktest > s0 and constants α, δtest, ctest,

c′test, c
′′
test > 0 such that each of the following conditions hold.

1. The tests have power in the sense that

P ({TjSα = 1 for every j, |S| 6 Ktest such that −∆jE(S) > ctest}) > 1− 1

3
δtest.

2. The tests control size in the sense that

P
(
{TjSα = 1 for some j, |S| 6 Ktest such that −∆jE(S) 6 c′test}

)
6 α+

1

3
δtest.

3. The tests are continuous in the sense that

P({WjS >WkS for each j, k, |S| 6 Ktest such that

TjSα = TkSα = 1 and −∆jE(S) > −c′′test∆kE(S)}) > 1− 1

3
δtest.

The constants ctest and c′test measure quantities related to the size and power of the tests

and provide a convenient language for subsequent discussion. The constant c′′test measures
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the extent to which the test statistics WjS reflect the actual magnitude of ∆jE(S). Note

again that the hypothesis tests considered should not necessarily be thought of as providing

a measure of statistical significance, but more precisely, they are simply a tool for model

selection which coincidentally have many properties in common with traditional hypothesis

tests.

Condition 3 (Regularity). Normalizations E[En[x2
ij ]] = 1 holds for all j. The residuals de-

compose into εi = εo
i +εa

i where E[En[εo
i

2]] <∞, E[En[εo
ixij ]] = 0 for all j, and E[En[εa

i
2]] 6

1
2ϕmin(Ktest)(E[G])−1c′test. Finally, (2 + 1.783× 72ϕmin(Ktest)(E[G])−5c′′test

−4)s0 < Ktest.

Condition 3 imposes regularity conditions for the class of models considered in the follow-

ing theorem. First, εi is decomposed into an orthogonal component εo
i and an approximation

component εa
i , each of which exhibits a different kind of regularity. The orthogonal compo-

nent is orthogonal to the covariates in the population. The approximation component need

not be orthogonal to the covariates, but its magnitude must be suitably controlled by the

sparse eigenvalues of E[G] and by the parameter c′test, which is a detection threshold for the

profile of hypothesis tests TjSα. This decomposition allows for approximately sparse models

similar to the framework of [6]. The fact that εa
i need not be orthogonal to the covariates

also allows this framework to overlay onto many problems in traditional nonparametric

econometrics.

Condition 3 also imposes conditions relating the sparse eigenvalues of E[G] with c′′test, s0,

and Ktest. Note that Ktest measures the size of the set S ⊂ {1, ..., p} over which the hy-

pothesis test perform well, as defined by Condition 2. Consequently, this condition requires

that the hypothesis tests TjSα perform sufficiently well over sets S, which must be larger

when E[G] has small eigenvalues or when s0 is large.

There are a few cases where Condition 3 can be simplified. Note that if p > n, even though

the empirical Gram matrix is necessarily rank deficient, the population Gram matrix may

be full rank. When E[G] is full rank, then the last statement of Condition 1 can be simplified

to (2 + 1.783×72λmin(E[G])−5c′′test
−4)s0 < Ktest. In addition, the condition on εa

i implicitly

imposes constraints on c′test and ϕmin(Ktest)(E[G])−1. When there is no approximation error,

this requirement is no longer needed.
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Let

cT = s0ϕmin(Ktest)(E[G])−1ctest

c′T = 2 + 1.783× 72ϕmin(Ktest)(E[G])−5c′′test
−4
∣∣∣

c′′T(ŝ) = ϕmax(s0 + ŝ)(G)1/2ϕmin(s0 + ŝ)(G)−1/2ŝ1/2 ‖En[xiεi]‖∞
+ 3ϕmax(s0 + ŝ )(G)ϕmin(ŝ+ s0)(G)−1/2)s

1/2
0 ctest

1/2ϕmin(Ktest)(E[G])−1.

Theorem 4. Consider Dn ∼ P for some fixed n and {TjSα,WjS} such that Conditions 2

and 3 hold. Suppose θ̂ is obtained by Algorithm 2. Then the bounds

E(Ŝ)− E(S0) 6 cT

ŝ 6 c′T s0

En[(x′iθ0 − x′iθ̂ )2] 6 c′′T(ŝ )

hold with probability at least 1− α− δtest.

Theorem 4 is proven in the Appendix. It provides finite sample bounds on the perfor-

mance of TBFMS. The outline for proving Theorem 4 is similar to that for proving Theorem

1. Theorem 4 works with the fact that −∆jE(S) > ctest upon selection on the event implied

by Condition 2 instead of the simpler −∆j`(S) > t. In contrast to the proof of Theorem 1,

the proof of Theorem 4 also addresses the possibility that if covariate j is selected ahead

of covariate k, it is not necessarily the case that −∆jE(S) > −∆kE(S). This is done by

making use of the continuity constant c′′test in Condition 2.

Theorem 4 can be used to derive asymptotic estimation rates by allowing the constants

to change with n. The next subsection provides an example to a linear model with het-

eroskedastic disturbances, where, under the stated regularity conditions, the prediction

error and estimation error attain the rate OP(s0 log p/n). These convergence rates therefore

match typical Lasso and Post-Lasso rates.

Note that the results aim to control the hybrid objective, described in the introduction, of

producing a good fit and returning a sparse set of variables. One useful implication of bounds

controlling both ŝ and En[(x′iθ0 − xiθ̂)2] is that the results can be applied to constructing

uniformly valid post-model selection inference procedures (see [14]), in which for some

applications, the prediction error bound alone is insufficient. Applications to inference are

discussed in Section 4.
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3.3. Example: Heteroskedastic Disturbances

This section gives an example of the use of Theorem 4 by illustrating an application of model

selection in the presence of heteroskedasticity in the disturbance terms εi. The conditions

required for the application of Theorem 4 are verified for a set of tests that are constructed

based on the Heteroskedasticity-Consistent standard described in [69].

For shorthand, write xijS to be the vector with components xik with k = j or k ∈ S. To

construct the tests, begin with the least squares estimate of the regression yi on xijS .

θ̂jS = En[xijSx
′
ijS ]−1En[x′ijSyi]

Define ε̂ijS = yi−x′ijS θ̂jS . One heteroskedasticity robust estimate of the sampling variance

of θ̂jS , proposed in [69], is given by the expression

V̂jS =
1

n
En[xijSx

′
ijS ]−1Ψε̂

jSEn[xijSx
′
ijS ]−1

where

Ψε̂
jS = En[ε̂ 2

ijSxijSx
′
ijS ].

Define the test statistics

WjS = [V̂jS ]
−1/2
jj

∣∣∣[θ̂jS ]j

∣∣∣ .
Reject H0 for large values of WjS defined relative to an appropriately chosen threshold. To

define the threshold, first let ηjS := (1 ,−β′jS)′ where βjS is the coefficient vector from the

least squares regression of {xij}ni=1 on {xik}ni=1,k∈S . Then define

τ̂jS =
‖η′jSDiag(Ψε̂

jS)1/2‖1√
η′jSΨε̂

jSηjS
.

The term τ̂jS will be helpful in addressing the fact that many different model selection

paths are possible under different realizations of the data under P.8 Not taking this fact

8There is an unfortunate misprint in a Papers and Proceedings version of this paper, [43], in which the

exponent 1/2 is missing from the term Diag(Ψε̂
jS). Note that [43] do not derive nor claim any theoretical

properties, and instead just state the term τ̂jS .
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into account can potentially lead to false discoveries. The next condition states precisely

the hypothesis tests TjSα.

Definition 1 (Hypothesis Tests for Heteroskedastic Disturbances). Let cτ > 1 and α > 0

be parameters. Assign

TjSα = 1 ⇐⇒ Wjs > cτ τ̂jSΦ−1(1− α/p).

The term Φ−1(1 − α/p) can be informally thought of as a Bonferroni correction term

that takes into account the fact that there are p potential covariates. The term cτ τ̂jS can

be informally thought of as a correction term that can account for the fact that the set S is

random and can have many potential realizations. The simulation study uses the settings

cτ = 1.01 and α = .05.

Condition 5 (Regularity for Data with Heteroskedasticity). Consider a sequence of data

sets Dn = {(xi, yi)}ni=1 ∼ P = Pn. The observations (xi, yi) are i.n.i.d. across i and

yi = x′iθ0 + εi for some θ0 with s0 = o(n). The residuals decompose into εi = εo
i + εa

i

such that a.s., E[εo
i |xi] = 0 and maxi |εa

i | = O(n−1/2). In addition, a.s., uniformly in

i and n, E[ε4
i |xi] are bounded above and E[ε2

i |xi] is bounded away from zero. The co-

variates satisfy maxj6p En[x12
ij ] = O(1) with probability 1 − o(1). There is a sequence

Kn, where s0 = o(Kn), and bounds ϕmin(Kn)(G)−1 = O(1), ϕmax(Kn)(G)−1 = O(1),

ϕmin(Kn)(En[(εixi)(εixi)
′])−1 = O(1), and max|S|6Kn,j /∈S ‖ηjS‖1 = O(1), which hold with

probability 1− o(1). The rate condition K4
n log3 p/n = o(1) holds.

Condition 5, as before, gives conditions on the sparse eigenvalues, this time applying to

both G and to En[(εixi)(εix
′
i)]. The requirement that ϕmin(Kn)(G)−1 stay bounded can be

relaxed, thought the cost is that the proof of Theorem 5 could not directly call upon The-

orem 4 (since c′′T involves a maximal sparse eigenvalue). In addition, Condition 5 assumes

a bound on ηjS that may be strong in some cases. Previous results in [64], [72] assume

the strict condition that maxj /∈S0
‖ηjS0‖1 < 1, which is the genuine irrepresentability con-

dition, in analysis of inductive variable selection algorithms. Here, the requirement < 1 is

replaced by the weaker requirement = O(1). Other authors, for instance [49], use condi-

tions analogous to max|S|6Kn,j /∈S ‖ηjS‖1 = O(1) in the context of learning high-dimensional
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graphs, and note that the relaxed requirement is satisfied by a much broader class of data-

generating processes. Analogous bounds on ‖ηjS‖1 were not required in Theorem 1, since

the proof of Theorem 1 does not leverage bounds relating ŴjS to the self-normalizeds sums

En[x′ijεi]/
√
En[x2

ijε
2
i ], j 6 p. Failure of the O(1) bound would lead only to slightly slower

convergence rates. Condition 5 also states regularity conditions on moments of εi and xi,

which are useful for proving laws of large numbers, central limit theorems, and moderate

deviation bounds (see [38]). Finally, the rate condition assumes bounds on the relative sizes

of s0, p, n since s0 < Kn.

Theorem 5. Consider a sequence of data sets Dn ∼ P = Pn which satisfies Condition

5. Suppose that cτ > 1 is fixed independent of n that α = o(1) with nα → ∞. Let θ̂ be

the estimate obtained from Algorithm 2 with tests defined by Definition 1. Then there are

bounds

En[(x′iθ0 − x′iθ̂)2]1/2 = O

(√
s0 log(p/α)

n

)
and ŝ = O(s0)

which hold with probability at least 1− α− o(1) as n→∞.

The theorem is proven in the appendix by appealing to Theorem 4.

Analogous results potentially hold for dependent data using HAC-type standard errors

(see [52], [3].) The required central limit results for such an application are beyond the

scope of this work, though using the moderate deviation results for dependent data of [24]

is a potential starting point. In addition, cluster-type standard errors for large-T -large-n

and fixed-T -large-n panels can be used by adapting arguments from [11].

Allowing α to be fixed is possible under more restrictive conditions on the approximation

error terms εa
i . Note that if p > n, then the rate log(p/α) becomes equivalent to simply

log(p).

As a final remark, note that there is a much simpler formulation for the hypothesis tests

that ignores the cτ τ̂jS terms. This results in the following definition.

Definition 2 (Simplified Hypothesis Tests for Heteroskedastic Disturbances). Let cτ > 1

and α > 0 be parameters. Assign

TjSα = 1 ⇐⇒ Wjs > Φ−1(1− α/p).
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These tests are based on a simple Bonferroni-type correction. Furthermore, though never

previously formally justified, TBFMS using the simpler tests is natively programmed in

some statistical software, including SPSS. It is unknown to the author at the time of this

writing whether the same convergence rates can be attained using the simpler tests. This

option is explored in some finite sample settings in the simulation study that follows. Ev-

idence from the simulation study suggests that this option performs better than the more

complex tests defined in Definition 1.

Another way to potentially lower the significance thresholds is to consider generalized

error rates. The conditions set forth in Condition 2 require control of a notion resembling

family-wise error rate uniformly over hypothesis tests H0 : ∆jE(S) for j 6 p and |S| < Ktest

for some integer Ktest. Other types of error rates like k-family wise error rate, false dis-

covery rate, or false discovery proportion are potentially possible as well. In particular, the

arguments in the proof of Theorem 4 would continue to be compatible with procedures that

controlled an appropriate notion of false discovery proportion. In order to keep exposition

concise, these extensions are not considered here.

3.4. TBFMS Simulation

The results in the previous sections suggest that estimation with TBFMS should produce

good results in large sample sizes. This section simulates several different data-generating

processes to evaluate the finite sample performance of TBFMS relative to select other

procedures commonly used in high-dimensional regression problems.

This simulation study draws samples from the data-generating processes in Table 1.

Simulations are conducted with parameter settings s0 = 6, b0 ∈ {−0.5, 0.5} , ρ0 ∈
{0, 0.5}, and n ∈ {100, 200, 300, 400, 500} according to the data-generating process displayed

in Table 1. The parameter s0 dictates the sparsity. The parameter b0 controls the nature

of the coefficient vector. When b0 = −0.5, the coefficients θ0j alternate sign in j, and

when b0 = 0.5, the coefficients are all positive. The two different settings for b0 create

different interplay between the Toeplitz correlation structure in the covariates and their

corresponding coefficients. The parameter ρ0 controls the presence of heteroskedasticity in

the disturbance terms εi. The terms εi are homoskedastic when ρ0 = 0 and heteroskedastic

otherwise. Finally, each setting of s0, b0, and ρ0 is simulated in sample sizes ranging between

100 and 500. The dimensionality is always taken to be double the sample size so that p = 2n.
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Table 1
TBFMS Simulation Design

Data: Dn = (yi, xi, zi)
n
i=1 iid

DGP: yi = xiθ0 + εi
p = dim(xi) = 2n, θ0j = bj−1

0 1j6s0
xij ∼ N(0, 1), with corr(xij , xik) = 0.5|j−k|

εi ∼ σiN(0, 1), σi = exp(ρ0
∑p
j=1 0.75(p−j)xij)

Settings: s0 = 6
b0 ∈ {−0.5, 0.5}
ρ0 ∈ {0, 0.5}
n ∈ {100, 200, 300, 400, 500}

This allows a visualization of the consistency properties of the displayed estimators in a

high-dimensional asymptotic frame. Alternative parameterizations, for example pinning

down the signal-to-noise ratio, are also interesting and possible, but are not displayed here

in favor of brevity. Each simulation design is replicated 1000 times.

The simulation study compares five different estimators. In addition to two TBFMS

estimators, two Lasso-based estimators and an infeasible estimator that knows the true

support S0 are presented.

1. TBFMS I. Implements Algorithm 2 with tests defined in Definition 1 with parame-

ters cτ = 1.01, α = .05.

2. TBFMS II. Implements Algorithm 2 with the simplified tests defined in Definition

2 with parameters cτ = 1.01, α = .05.

3. Lasso-CV. Uses the original formulation of Lasso, implemented using glmnet, with

penalty parameter chosen using 10-fold cross validation. θ̂ is the minimizer of the

Lasso objective function and is not refit on the selected model.

4. Post-Het-Lasso. Uses the implementation found in [6], which is designed specifically

to handle heteroskedastic disturbances. [6] requires two tuning parameters that are

directly analogous to cτ and α. These are set to cτ = 1.01 and α = .05. θ̂ is refit on

the selected model.

5. Oracle selects the model consisting of {j : [θ0]j 6= 0} and estimates a subsequent

least squares regression.
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The simulation results are presented in Figures 1−4. Each figure contains four plots that

track various measures of estimation quality for the five estimators for fixed s0, b0, and ρ0,

and for n varying along the horizontal axis. The upper left plots display the number of cor-

rectly identified covariates from S0, averaged over simulation replications. The upper right

plots display the total number of selected covariates, averaged over simulation replications.

The bottom left plots display the prediction error defined as En[(x′iθ0 − x′iθ̂)2]1/2, averaged

over simulation replications. The bottom right plots display estimation error defined as

‖θ̂2 − θ0‖2, averaged over simulation replications.

In the simulations results, there is no single feasible estimator that dominates in every

setting in terms of estimation error or prediction error. However, in all settings, Lasso-CV

selects the most covariates (both in absolute terms and in terms of the number of correctly

identified covariates), followed by TBFMS I, TBFMS II, and Post-Het-Lasso. There are in-

stead important instances when each estimator performs better. In both settings with posi-

tive coefficients (b0 = 0.5), Lasso-CV achieves the smallest estimation error with TBFMS I

and TBFMS II having slightly higher estimation error. In these settings, however, the pre-

diction error is smallest with TBFMS II. With alternative coefficients (b0 = −0.5), however,

TBFMS I and TBFMS II dominate Lasso-CV and Post-Het-Lasso on prediction error and

estimation error. This suggests that the performance of these estimators depends on the

configuration of the signal relative to the correlation structure of the covariates. Finally, the

relative difference in performance across estimators is larger in the presence of heteroskedas-

ticity. In the presence of heteroskedasticity, the Post-Het-Lasso exhibits faster improvement

in estimation error and prediction error with increasing n, though it is still dominated by

the other estimators. Note that each of the techniques, TBFMS I and Post-Het-Lasso, are

theoretically valid for sequences of data-generating processes with heteroskedasticity. In

addition, the properties of cross-validation with Lasso are only beginning to be understood

(see [26] for analysis of lasso with cross-validation). But it is clear from this simulation

study that Lasso-CV leads to selection of substantially more covariates to the extent that

the effects of heteroskedasticity on the performance of the estimator are still not fully clear.
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Fig 1. Simulation Results

This figure presents simulation results for the estimators TBFMS I, TBFMS II, Post-Het-Lasso, Lasso-CV,
and Oracle. The simulation design is described fully in Table 1. This figure presents estimates for the
settings

s0 = 6: High Sparsity

b0 = 0.5: Positive Coefficients

ρ0 = 0: Homoskedastic disturbances.

Plots are based on 1000 simulation replications for every n = 100, 200, 300, 400, 500 indexed on the
horizontal axis. The upper-left plot displays the number of correctly identified covariates from S0, averaged
over simulation replications. The upper-right plot displays the total number of selected covariates,
averaged over simulation replications. The bottom-left plot displays the prediction error defined as
En[(x′iθ0 − x′iθ̂)2]1/2, averaged over simulation replications. The bottom-right plot displays estimation error

defined as ‖θ̂2 − θ0‖2, averaged over simulation replications.
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Fig 2. Simulation Results

This figure presents simulation results for the estimators TBFMS I, TBFMS II, Post-Het-Lasso, Lasso-CV,
and Oracle. The simulation design is described fully in Table 1. This figure presents estimates for the
settings

s0 = 6: High Sparsity

b0 = 0.5: Positive Coefficients

ρ0 = 0.5: Heteroskedastic disturbances.

Plots are based on 1000 simulation replications for every n = 100, 200, 300, 400, 500 indexed on the
horizontal axis. The upper-left plot displays the number of correctly identified covariates from S0, averaged
over simulation replications. The upper-right plot displays the total number of selected covariates,
averaged over simulation replications. The bottom-left plot displays the prediction error defined as
En[(x′iθ0 − x′iθ̂)2]1/2, averaged over simulation replications. The bottom-right plot displays estimation error

defined as ‖θ̂2 − θ0‖2, averaged over simulation replications.
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Fig 3. Simulation Results

This figure presents simulation results for the estimators TBFMS I, TBFMS II, Post-Het-Lasso, Lasso-CV,
and Oracle. The simulation design is described fully in Table 1. This figure presents estimates for the
settings

s0 = 6: High Sparsity

b0 = −0.5: Alternating Coefficients

ρ0 = 0: Homoskedastic disturbances.

Plots are based on 1000 simulation replications for every n = 100, 200, 300, 400, 500 indexed on the
horizontal axis. The upper-left plot displays the number of correctly identified covariates from S0, averaged
over simulation replications. The upper-right plot displays the total number of selected covariates,
averaged over simulation replications. The bottom-left plot displays the prediction error defined as
En[(x′iθ0 − x′iθ̂)2]1/2, averaged over simulation replications. The bottom-right plot displays estimation error

defined as ‖θ̂2 − θ0‖2, averaged over simulation replications.
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Fig 4. Simulation Results

This figure presents simulation results for the estimators TBFMS I, TBFMS II, Post-Het-Lasso, Lasso-CV,
and Oracle. The simulation design is described fully in Table 1. This figure presents estimates for the
settings

s0 = 6: High Sparsity

b0 = −0.5: Alternating Coefficients

ρ0 = 0.5: Heteroskedastic disturbances.

Plots are based on 1000 simulation replications for every n = 100, 200, 300, 400, 500 indexed on the
horizontal axis. The upper-left plot displays the number of correctly identified covariates from S0, averaged
over simulation replications. The upper-right plot displays the total number of selected covariates,
averaged over simulation replications. The bottom-left plot displays the prediction error defined as
En[(x′iθ0 − x′iθ̂)2]1/2, averaged over simulation replications. The bottom-right plot displays estimation error

defined as ‖θ̂2 − θ0‖2, averaged over simulation replications.
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4. Applications to structural inference in high-dimensional models

This section describes the application of TBFMS to inference for structural parameters in

three commonly estimated economic problems.

A. The selection of instrumental variables for the estimation of the effect of an endoge-

nous variable on an outcome of interest from a large set of potential instruments.

B. The selection of conditioning covariates for the estimation of the effect of a covariate

of interest on an outcome from a large set of potential observable controls.

C. The selection of a conditioning set in the first stage of an instrumental variables

regression from a large set of potential observable controls.

The general pattern in each of the above three models is that they contain a low dimen-

sional parameter of interest and a high-dimensional nuisance parameter. In this sense they

share many qualities with semiparametric estimation problems. Early works on the infer-

ence for a single coefficient in a high-dimensional regression model include [14], [71], [10], [9],

[66], and [37], while early works for high-dimensional intrumental variables models include

[6] and [30]. More detailed review of these two particular strands of literature are provided

below. More general and more recent work in [25] develops theory for inference about a

relatively low-dimensional set of prespecified target parameters when machine learning is

used to estimate some features of the models specified by general moment conditions under

weak conditions.

In all of the cases mentioned above, the quality of subsequent inference depends crucially

on the quality of estimation of the various high-dimensional components that appear in the

course of decomposing the problem into reduced form components. As a result, TBFMS is a

good candidate for input into a larger structural estimation problem whenever it performs

favorably in the relevant high-dimensional estimation steps in that problem.

The theorems that follow prove asymptotic normality for estimates of structural pa-

rameters of interest when instruments or conditioning variables are selected using TBFMS

in an appropriate way. The formal results follow directly from the performance bounds

for TBFMS given in Theorem 5 in conjuction with high-level conditions for inference in

structural inference problms (see [14], [6], [25], [12] among others). Therefore, the main

contribution of this section is in showing with simulation that TBFMS performs favorably

relative to Lasso-based methods for some very simple data-generating processes. Subsec-

tions 4.1−4.2 briefly review estimation of Models A and B and provide theoretical justi-

fication for using TBFMS to estimate components of structural problems. Subsection 4.3

then conducts a simulation study to compare the finite sample performance of the use of
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TBFMS and alternative estimation strategies in models A and B. Alternative methods

include the two different implementations of Lasso considered in the previous section and

an infeasible benchmark that knows the most important covariates in advance.

Finally, Subsection 4.5 presents an empirical application that fits model C to a classic

data set of Acemoglu, Johnson, and Robinson.

4.1. Model A: Linear Instrumental Variables Model with High-Dimensional

Instruments

Instrumental variables are a commonly used technique in applied econometrics. These meth-

ods give an important tool for estimating structural effects, but they are often imprecise.

The precision of instrumental variables estimators can be improved by using many instru-

ments or by trying to approximate the optimal instruments as in [2], [22], and [51].

This section follows the development [6], who consider using Post-Lasso to estimate

optimal instruments. Using post-model selection methods to form first-stage predictions in

IV estimation is a practical approach to obtaining the efficiency gains from using optimal

instruments. The post-model selection approach simultaneously relieves the problems that

arise with many instruments. An implication of Theorem 5 is that TBFMS provides good

approximations to the optimal instruments when the total number of potential instruments

is large.

Consider data given by Dn = {(yi, xi, zi)}ni=1 ∼ Pn where yi ∈ R are outcome variables,

xi ∈ R are endogenous variables of interest, and zi ∈ Rp are instruments. Formally, the

class A of instrumental variables models is defined to contain joint distribution P (for all

n) such that

yi = β0xi + εi

xi = z′iθ
A
0 + ui

for some parameters β0 ∈ R, θA
0 ∈ Rp such that E[εi|zi] = E[ui|zi] = 0 but possibly

E[εiui] 6= 0.9

Consider estimation of the parameter of interest β0, the coefficient on the endogenous

regressor, using TBMS to select instruments. Assume that the first-stage follows a sparse

model with |support(θA
0 )| 6 s0 < n. More precisely, consider the following condition.

9Extending this class of models to allow approximate sparsity is trivial by decomposing ui = ua
i + uo

i , as

was done in Conditions 4 and 5. Then E[uo
i |zi] = 0 can replace the requirement E[ui|zi] = 0.
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The estimate β̂ of β0 is defined as follows. Obtain θ̂A from applying Algorithm 2 to

{(xi, zi)}ni=1 using the hypothesis tests in Definition 1. Set x̂i = z′iθ̂
A. Set

β̂ = Q̂−1En[x̂iyi] where Q̂ = En[xix̂i]

V̂ = Q̂−1Ω̂Q̂−1 where Ω̂ = En[x̂2
i ε̂

2
i ].

The quantity V̂ is used as an estimate of the variance of β̂. Under regularity con-

ditions, it will be close to the quantity V = Q−1ΩQ−1 with high probability where

Q = E[(ziπ0)2], Ω = E[(ziπ0)2ε2
i ]. The next theorem shows that the estimate β̂ is asymp-

totically Gaussian with variance V and V̂ is consistent for V.

Condition 6 (Regularity for Instrument Selection.) Pn ∈ A satisfy Condition 6 for

{(xi, zi)}ni=1 and Condition SM from [6].10

Theorem 6. Consider data sets Dn = {(yi, xi, zi)}ni=1 ∼ Pn. Uniformly over all sequences

Pn ∈ A for which Condition 6 holds, as n→∞,

n1/2V −1/2(β̂ − β0)→d N(0, 1) and V − V̂ →p 0.

This theorem verifies that the IV estimator formed with instruments selected by TBFMS

in a linear IV model is consistent and asymptotically normal. In addition, one can use the

result with V̂ defined above. Note that this inference will be valid uniformly over a large

class of data-generating processes that include cases in which perfect instrument selection

is impossible.

The conditions assumed in Condition 6 are fairly standard. The added conditions beyond

the assertion that Condition 6 holds for {(xi, zi)}ni=1 are a simplified version of Condition

SM from [6]. Outside of moment conditions, the main restriction is the assumption that

the parameter β0 would be strongly identified if ziπ0 could be observed. Coupled with the

sparse model, this condition implies that using a small number of the variables in zi is

10For ease of reference, Condition SM from [6] is reproduced here, adapted to present notation. It states

the following. E[En[(ziθ
A
0 )2]] is bounded and away from zero, uniformly in n. The conditional variance E[ε2i |zi]

is bounded a.s. uniformly from above and away from zero, uniformly in i and n. For some q > 2 and qε > 0,

uniformly in n, maxj6p E[En[|zijεi|3]] + E[En[|z′iθA0 |q|εi|2q]] + E[En[|z′iθA0 |1]] + E[En|εi|qε ]] + E[|xi|q] = O(1).

log(p) = o(n1/3). s0 log(max(p, n))n2/q−1 = o(1). s20 log2(max(p, n))/n = o(1). maxj6p En[z2ijε
2
i ] = OP(1).

Note that some of these conditions are redundant with Condition 5, but are nonetheless still stated for

completeness.
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sufficient to strongly identify β0, which rules out the case of weak-instruments as in [59]

and many-weak-instruments as in [23].11

4.2. Model B: Linear Model with High-Dimensional Control Variables

A different common strategy for identifying and estimating structural effects in economic

research is based on assuming that covariates of interest are as good as randomly assigned

conditional on observables. This leads to the practical problem researchers face of choosing

which observed control covariates to include in the model. The high-dimensional setting

provides a good formal framework for understanding data-dependent selection of control

covariates. This section considers using TBFMS to select a set of covariates to include in a

linear model from a large set of possible control variables.

The structure of the TBFMS procedure ensures that any coefficient that cannot be dis-

tinguished reliably from zero will be estimated to be exactly zero. Conversely, all estimated

coefficients that are not set to zero can be statistically differentiated from zero, accounting

for estimation noise. These properties complicate inference after model selection in sparse

models that may have a set of variables with small but non-zero coefficients. In this case,

use of TBFMS may result in excluding important conditioning covariates, which may lead

to non-negligible omitted variables bias of parameters of interest. This intuition is formally

developed in [54] and [44]. Offering solutions to this problem is the focus of a number of

recent papers; see, for example, [8]; [6]; [71], [10], [9], [66]; [37], and [13].12 In the previ-

ous references, Lasso and related shrinkage estimators were used in place of TBFMS. This

section considers one technique for valid post-model selection inference, the Post-Double

Selection technique ([14]), in conjunction with TBFMS.

Consider data given by Dn = {(yi, xi, wi)}ni=1 ∼ Pn where yi ∈ R are outcome variables,

xi ∈ R are variables of interest, and wi ∈ Rp are controls. Formally, the class B of linear

models is defined to contain joint distribution P (for any n) such that

yi = xiβ0 + w′iθ
B1
0 + εi

xi = w′iθ
B2
0 + ui

for some parameters β0 ∈ R, θB1
0 , θB2

0 ∈ Rp with E[εi|wi, xi] = 0 and E[ui|wi] = 0.13

Here, the impact of the policy/treatment variable xi on the outcome yi is measured by

the parameter β0 which is the target of inference. The variables wi are potentially impor-

11See also [34], who consider many-weak-instruments in a p > n setting.
12These citations are ordered by date of first appearance on arXiv.
13As was discussed in the case with model A, extending B to allow approximate sparsity is trivial.
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tant conditioning variables. Data are assumed independent but not necessarily identically

distributed across i. The confounding factors wi affect the policy variable via the function

w′iθ
B2
0 and the outcome variable via the function w′iθ

B1
0 . Both of the parameters θB1

0 and

θB2
0 are unknown.

Inference about β0 is impossible in this model without imposing further structure since

p > n elements in wi are allowed. The additional structure is added by assuming that

a sparsity condition applies to both θB1
0 and θB2

0 . Once these assumptions are in place,

the exogeneity of xi may be taken as given after controlling linearly for a relatively small

number, s0 < n, of the variables in wi whose identities are a priori unknown. Specifically,

impose the following restrictions.

Condition 7 (Regularity for Control Selection.) Pn ∈ B satisfy Condition 5 for {(xi, wi)}ni=1

and {(yi, wi)}ni=1 and Condition SM from [14].14

To estimate β0 in this environment, adopt the post-double-selection method of [9]. This

method proceeds by first substituting to obtain predictive relationships for the outcome yi

and the treatment xi in terms of only control variables:

yi = w′iθ
RF
0 + vi

xi = w′iθ
FS
0 + ui

with θFS
0 = θB2

0 and θRF
0 = θB1

0 + β0θ
B2
0 . Next use two variable selection steps. TBFMS is

applied to each of the above two equations to select one set of variables that are useful for

predicting yi and another set of variables useful for predicting xi. Once this is done, the

union of the selected sets will index the final set of control variables.

[9] develop and discuss the post-double-selection method in detail. They note that in-

cluding the union of the variables selected in each variable selection step helps address the

issue that model selection is inherently prone to errors unless stringent assumptions are

made. As noted by [44], the possibility of model selection mistakes precludes the possibility

of valid post-model-selection inference based on a single Lasso regression within a large

14For ease of reference, Condition SM from [14] is reproduced here, adapted only to fit in with present no-

tation. It states the following. For (y̆i, ε̆i) = (yi, vi) and for (y̆i, ε̆i) = (xi, ui) the following hold. E[En[|xi|q]] =

O(1), E[v2i |wi, ui] and c E[u2
i |wi] are a.s. bounded by a constant above and away from zero, uniformly in i and

n. E[En[|ε̆i|q]] + E[En[y̆2i ]] + maxj6 E[En[w2
ij y̆

2
i ]] + E[En[|w3

ij ε̆
3
i |]] + 1/E[En[w2

ij ]] = O(1). log(p) = o(n1/3).

maxj6p |(En − EEn)[wij2ε̆
2
i ]|+ |(En − EEn)[w2

ij y̆
2
i ]|+ maxi6n ‖wi‖2∞s0 log(max(p, n))/n = o(1) with proba-

bility 1− o(1). Note that some of these conditions are redundant with Condition 5, but are nonetheless still

stated for completeness
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class of interesting models. Using both model selection steps guards against such model

selection mistakes and guarantees that the variables excluded in both model selection steps

have a negligible contribution to omitted variables bias.

Formally, the estimate for β̂ is given as follows. Obtain θ̂FS from applying Algorithm

2 to {(xi, wi)}ni=1 using the hypothesis tests in Definition 1. Set ŜFS. Obtain θ̂RF from

applying Algorithm 2 to {(yi, wi)}ni=1 using the hypothesis tests in Definition 1. Set ŜRF.

Set Ŝ = ŜFS ∪ ŜRF. Set

(β̂, θ̂ B1

Ŝ
) = Q̂−1En[(xi, wiŜ)yi] where Q̂ = En[(xi, wiŜ)(xi, wiŜ)′].

V̂ = [Q̂−1Ω̂Q̂−1]11 where Ω̂ = En[ε̂2
i (xi, wiŜ)(xi, wiŜ)′]

and ε̂i = yi − β̂xi −w′iŜ θ̂
B1

Ŝ
. Therefore, β̂ is the OLS estimate obtained by regressing yi on

xi and w
iŜ

, and V̂ is the conventional heteroskedasticity-robust variance estimate. As in

the case of Model A, V̂ is an estimate of the variance of β̂. Let V = E[u2
i ]
−1E[u2

i v
2
i ]E[u2

i ]
−1.

The next theorem shows that β̂ is asymptotically Gaussian and that V̂ −V vanishes asymp-

totically in probability.

Theorem 7. Consider sequences of data sets Dn = {(yi, xi, wi)}ni=1 ∼ Pn. Uniformly over

all sequences Pn ∈ B for which Condition 7 holds, as n→∞,

n1/2V −1/2(β̂ − β0)→d N(0, 1) and V − V̂ →p 0.

This theorem verifies that the OLS estimator that regresses yi on xi and the union

of variables selected by TBFMS in the two stages described in Algorithm 4 is consis-

tent and asymptotically normal with asymptotic variance that can be estimated with a

heteroskedasticity-robust standard error estimator. Inference based on this result will be

valid uniformly over a large class of data-generating processes, which includes cases in which

perfect variable selection is impossible.

4.3. Post Model Selection Inference: Simulation Study

This section presents simulation evidence about the finite sample performance of inference

about structural parameters. The simulation study provides a comparison with Lasso-based

estimators as was done in the previous simulation study. The simulation design is divided

into two parts, corresponding to Models A and B discussed above. The data-generating

processes considered are given by Table 2.
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Table 2
Structural Estimation Simulation Design

Structural Estimation Model A: High-Dimensional Instruments.

Data: Dn = (yi, xi, zi)
n
i=1 iid

DGP: yi = xiβ0 + εi
xi = z′iθ

A
0 + ui

p = dim(zi) = 2n

θA0j = bj−1
0 1j6s0

zij ∼ N(0, 1), with corr(zij , zik) = 0.5|j−k|

(εi, ui) ∼ σiN
(

0,

(
1 0.5

0.5 1

))
σi = exp(ρ0

∑p
j=1 0.75(p−j)zij)

Settings: n ∈ {100, 500}
s0 = 6
b0 ∈ {−0.5, 0.5}
ρ0 ∈ {0, 1}

Target: β0 = 1

Structural Estimation Model B: High-Dimensional Controls.

Data: Dn = (yi, xi, wi)
n
i=1 iid

DGP: yi = xiβ0 + w′iθ
B1
0 + εi

xi = w′iθ
B2
0 + ui

p = dim(zi) = 2n

θB1
0j = bj−1

0 1j6s0
θB2
0j = sin(j)1j6s0
wij ∼ N(0, 1), with corr(wij , wik) = 0.5|j−k|

(εi, ui) ∼ σiN
(

0,

(
1 0
0 1

))
σi = exp(ρ0

∑p
j=1 0.75(p−j)zij)

Settings: n ∈ {100, 500}
s0 = 6
b0 ∈ {−0.5, 0.5}
ρ0 ∈ {0, 1}

Target: β0 = 1
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Five estimators are considered for estimating both Models A and B, and are named

TBFMS I, TBFMS II, Lasso-CV, Post-Het-Lasso, and Oracle, analogous to the simulation

study of Section 3. The estimators differ only in that they replace TBFMS I with a different

model selection technique in selecting covariates into the final estimated model as described

in the previous sections. The respective model selection techniques used to replace TBFMS

I in A and B are identical to those described in the simulation study of Section 3.

For each estimator and each simulation setting, the bias, the standard deviation of the

point estimates, coverage probability and the average interval length are computed over the

simulation replications. In the case of Model A, the number of times that no instruments

were selected is also tracked. In these cases, no estimator of β̂ is defined. The bias, standard

deviation, coverage, and interval length calculations are made on only the replications for

which at least one instrument was selected. Finally, final variance estimates V̂ for β̂ are

based on jackknife standard errors (more precisely, an approximation to jackknife standard

errors given in [60] are used for model A and HC3 standard errors [69] are used for model

B). Simulation results for Model A are shown in Table 3. Simulation results for Model B

are shown in Table 4.

The simulation results indicate that across the data-generating processes considered,

TBFMS I and TBFMS II generally achieve the good performance in terms of coverage

probabilities. In addition, their bias, standard deviation, and interval lengths closely resem-

ble the Oracle estimator. Note that in some simulations (most notably in Model B, Panel

A) there is a large difference in coverage probabilities between the TBFMS I and II esti-

mates and the Post-Het-Lasso estimate. Despite the fact that all the Post-Het-Lasso-based

confidence sets are asymptotically uniformly valid, even against model selection mistakes,

this example highlights the fact that finite sample model selection properties remain impor-

tant considerations. In this example, the signal-to-noise ratio in the first stage is low, which

is a setting in which detection of important variables is more difficult for Post-Het-Lasso

relative to TBFMS I and II. Interestingly, in this case, using the relaxed penalty level with

Lasso-CV does not help in terms of coverage probability.
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Table 3
Model A Simulation Results: Instrument Selection

n = 100 n = 500∣∣∣ Bias StDev Length Cover Bias StDev Length Cover

A. ρ0 = 0: Homoskedastic, s0 = 6: High Sparsity, b0 = −0.5: Alternating Sign

TBFMS I 0.002 0.070 0.265 0.931 -0.002 0.030 0.111 0.934
TBFMS II -0.004 0.067 0.252 0.925 -0.003 0.030 0.110 0.933
Post-Het-Lasso 0.003 0.073 0.281 0.944 -0.001 0.033 0.123 0.927
Lasso-CV -0.035 0.066 0.240 0.873 -0.016 0.030 0.108 0.877
Oracle -0.003 0.066 0.249 0.935 -0.002 0.030 0.110 0.933

B. ρ0 = 0.5: Heteroskedastic, s0 = 6: High Sparsity, b0 = −0.5: Alternating Sign

TBFMS I -0.010 0.107 0.411 0.929 0.000 0.054 0.212 0.954
TBFMS II -0.022 0.104 0.387 0.913 -0.006 0.050 0.195 0.940
Post-Het-Lasso -0.057 0.069 0.264 0.750 -0.003 0.050 0.202 0.957
Lasso-CV -0.150 0.146 0.387 0.586 -0.072 0.073 0.193 0.613
Oracle -0.066 0.105 0.397 0.867 -0.015 0.049 0.187 0.929

C. ρ0 = 0: Homoskedastic, s0 = 6: High Sparsity, b0 = 0.5: Positive Sign

TBFMS I -0.004 0.038 0.150 0.947 0.000 0.017 0.066 0.956
TBFMS II -0.005 0.038 0.148 0.945 0.000 0.017 0.066 0.955
Post-Het-Lasso -0.002 0.042 0.164 0.942 0.001 0.017 0.068 0.952
Lasso-CV -0.010 0.037 0.146 0.934 -0.002 0.017 0.066 0.949
Oracle -0.004 0.037 0.148 0.946 0.001 0.017 0.066 0.954

D. ρ0 = 0.5: Heteroskedastic, s0 = 6: High Sparsity, b0 = 0.5: Positive Sign

TBFMS I -0.011 0.068 0.247 0.926 -0.002 0.030 0.116 0.941
TBFMS II -0.014 0.067 0.240 0.916 -0.003 0.030 0.115 0.942
Post-Het-Lasso -0.025 0.054 0.202 0.880 -0.000 0.030 0.118 0.954
Lasso-CV -0.074 0.089 0.287 0.742 -0.022 0.035 0.114 0.845
Oracle -0.026 0.065 0.240 0.913 -0.004 0.030 0.114 0.942

Simulation results for estimation in Model A. Simulations are conducted according to the design described
in Table 2 with s0 = 6, b0 ∈ {−0.5, 0.5}, ρ0 ∈ {0, 0.5}, and n ∈ {100, 500}. Estimates are presented for the
five estimators, TBFMS I, TBFMS II, Post-Het-Lasso, Lasso-CV, and Oracle described in the text. The
first column in each panel shows bias of the respective estimates for β0. The second column in each panel
shows the standard deviation of the respective estimates for β0. The third column in each panel shows
actual coverage probabilities of the respective 95% confidence intervals for β0. The fourth column in each
panel shows length of confidence intervals for β0. The fifth column in each panel shows the total number of
times across replications that no instruments were selected. Figures are based on 1000 simulation
replications.

The quantities in this table are calculated over replications where at least 1 instrument was selected.
TBFMS I and II each selected 0 instruments 5 times in Panel A, n = 100; 129 times in Panel B, n = 100; 7
times in Panel B, n = 500; 5 times in Panel D n = 100. Post-Het-Lasso selected 0 instruments 54 times in
Panel A, n = 100; 992 times in Panel B, n = 100; 167 times in Panel B, n = 500; 708 times in Panel C,
n = 100; 8 times in Panel C, n = 500; and 47 times in Panel D, n = 100. Lasso-CV selected 0 instruments
45 times in Panel B, n = 100; 1 time in Panel B, n = 500; 5 times in Panel D, n = 100.
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Table 4
Model B Simulation Results: Control Selection in Linear Model

n = 100 n = 500∣∣∣ Bias StDev Length Cover Bias StDev Length Cover

A. ρ0 = 0: Homoskedastic, s0 = 6: High Sparsity, b0 = −0.5: Alternating Sign

TBFMS I -0.052 0.114 0.377 0.845 -0.018 0.055 0.180 0.882
TBFMS II 0.006 0.108 0.429 0.949 0.002 0.045 0.179 0.957
Post-Het-Lasso -0.190 0.056 0.211 0.067 -0.192 0.024 0.094 0.000
Lasso-CV -0.193 0.054 0.215 0.069 -0.192 0.024 0.094 0.000
Oracle 0.006 0.099 0.419 0.958 0.001 0.044 0.178 0.955

B. ρ0 = 0.5: Heteroskedastic, s0 = 6: High Sparsity, b0 = −0.5: Alternating Sign

TBFMS I 0.015 0.324 1.044 0.888 -0.002 0.246 0.772 0.910
TBFMS II -0.010 0.367 1.225 0.885 0.001 0.263 0.817 0.909
Post-Het-Lasso -0.124 0.185 0.559 0.694 -0.105 0.156 0.430 0.630
Lasso-CV -0.133 0.209 0.640 0.713 -0.106 0.157 0.430 0.630
Oracle -0.014 0.391 1.340 0.886 0.005 0.265 0.830 0.911

C. ρ0 = 0: Homoskedastic, s0 = 6: High Sparsity, b0 = 0.5: Positive Sign

TBFMS I -0.022 0.119 0.380 0.865 -0.038 0.061 0.182 0.785
TBFMS II -0.003 0.118 0.430 0.913 0.000 0.045 0.179 0.954
Post-Het-Lasso -0.085 0.061 0.233 0.682 -0.087 0.026 0.102 0.092
Lasso-CV -0.083 0.060 0.233 0.690 -0.087 0.026 0.102 0.092
Oracle -0.002 0.104 0.419 0.944 -0.001 0.045 0.178 0.956

D. ρ0 = 0.5: Heteroskedastic, s0 = 6: High Sparsity, b0 = 0.5: Positive Sign

TBFMS I 0.020 0.343 1.045 0.865 0.011 0.234 0.767 0.897
TBFMS II 0.026 0.376 1.226 0.877 0.003 0.248 0.817 0.905
Post-Het-Lasso -0.138 0.216 0.595 0.668 -0.047 0.136 0.424 0.861
Lasso-CV -0.037 0.202 0.633 0.904 -0.047 0.136 0.424 0.861
Oracle 0.025 0.396 1.341 0.898 0.007 0.251 0.829 0.908

Simulation results for estimation in Model B. Simulations are conducted according to the design described
in Table 2 with s0 = 6, b0 ∈ {−0.5, 0.5}, ρ0 ∈ {0, 0.5}, and n ∈ {100, 500}. Estimates are presented for the
five estimators, TBFMS I, TBFMS II, Post-Het-Lasso, Lasso-CV, and Oracle described in the text. The
first column in each panel shows bias of the respective estimates for β0. The second column in each panel
shows standard deviation of the respective estimates for β0. The third column in each panel shows actual
coverage probabilities of the respective 95% confidence intervals for β0. The fourth column in each panel
shows length of confidence intervals for β0. Figures are based on 1000 simulation replications.
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4.4. Empirical Illustration: Estimating the Effects of Institutions on

Economic Output

In order to illustrate the use of TBFMS to help answer an empirical economic question,

this section revisits the problem of estimating the effect of institution quality on aggregate

economic output considered by Acemoglu, Johnson, and Robinson in [1]. A similar exercise

on this data using Lasso-based methods was performed in [12].

To estimate the effect of institutions on output, it is necessary to address the fact that

both (1) better institutions can lead to higher output; and (2) higher output can also lead to

the development of better institutions. Because institutions and output levels both poten-

tially affect each other, a simple correlation or regression analysis will not recover the causal

quantity of interest. [1] introduce an instrumental variable strategy, using early European

settler mortality as an instrument for institution quality. The validity of this instrument

requires first a relevance assumption that early settler mortality is predictive of quality of

current institutions. [1] argue that settlers set up lasting institutions in places where they

were more likely to establish long-term settlements. They cite several references document-

ing the fact that Europeans were acutely aware of mortality rates in their colonies. They

also note that the institutions set up by early European settlers tend to be highly persistent.

These arguments make the relevance assumption likely to hold. The exclusion restriction

assumption is justified in [1] by the argument that GDP, while persistent, is unlikely to be

strongly influenced by mortality rates centuries ago, except through institutions.

In their paper, [1] note that their IV strategy will be invalid if there are other factors that

are highly persistent and related to the development of institutions within a country and to

the country’s GDP. The primary candidate for such a factor discussed in [1] is geography.

In this exercise, take as given the fact that after controlling adequately for geography, it is

possible to use their instrument strategy to correctly identify the effect of institutions on

output. The outstanding problem then becomes the question of how, exactly, to adequately

control for geography. [1] controlled for the distance from the equator in their baseline

specification. They also considered specifications with continent dummies; see Table 4 in

[1].

In principle, there are many ways to construct control variables related to a broad notion

such as geography. These may include variables based on temperature, yearly rainfall, or

terrain. In order to deal with the ambiguity of the definition of geography, construct a large

set of different geographic variables. The strategy is to use TBFMS to choose from among

the many variables and perform a subsequent IV analysis. Let wi be a country level variable
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with components consisting of the dummy variables for Africa, Asia, North America, and

South America plus the variables latitude, latitude2, latitude3, (latitude− .08)+, (latitude−
.16)+, (latitude − .24)+, ((latitude − .08)+)2, ((latitude − .16)+)2, ((latitude − .24)+)2,

((latitude − .08)+)3, ((latitude − .16)+)3, ((latitude − .24)+)3 where latitude denotes the

distance of a country from the equator normalized to be between 0 and 1, which is the same

set of controls as in [12]. Consider the model:

log(GDP per capitai) = Protection from Expropriationiθ0 + w′iβ0 + εi.

Here, “Protection from Expropriation” is the same as was used in [1]: a measure of the

strength of individual property rights that is used as a proxy for the strength of institu-

tions. The data here uses the same set of 64 country-level observations as in [1]. When the

set of control variables for geography, wi, is flexible enough, it is guaranteed that nothing

can be learned about the effect of interest, θ, because of lack of statistical precision. [1] do

not encounter such a problem because they assume the effect of geography is adequately

captured by one variable. Using TBFMS gives a complementary analysis that chooses con-

trols from among the constructed set of geographic variables.

Formally, cast the estimation over a model as belonging to the class C which is charac-

terized as follows. Consider data given by Dn = {(yi, xi, zi, wi)}ni=1 ∼ Pn where yi ∈ R is

outcome variable, xi ∈ R is an endogenous variable of interest, zi ∈ R is an instrument,

and wi ∈ Rp are controls. Define the class C of linear models to contain joint distribution

P (for all n) such that

yi = xiβ0 + w′iθ
C1
0 + εi

xi = z′iπ0 + w′iθ
C2
0 + ui

zi = w′iθ
C3
0 + vi

for parameters β0, π0 ∈ R, θC1
0 , θC2

0 , θC3
0 ∈ Rp and E[εi|zi] = 0.

Specializing to the current application, the fully expanded set of structural equations is

given by the following three relations.

log(GDP per capitai) = Protection from Expropriationiθ0 + w′iβ0 + εi

Protection from Expropriationi = Settler Mortalityiπ01 + w′iΠ02 + vi

Settler Mortalityi = w′iγ0 + ui.
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These yields three reduced form equations relating the structural variables to the controls.

log(GDP per capitai) = w′iβ0 + ε̃i

Protection from Expropriationi = w′iΠ̃02 + ṽi

Settler Mortalityi = w′iγ0 + ui.

Select all geographic variables according to three steps. Let S1 be the selected covariates

from running TBFMS over the data log(GDP per capitai) on wi. Let S2 be the selected

covariates from running TBFMS over Protection from Expropriationi on, wi. Let S3 be

the selected covariates from running TBFMS over Settler Mortalityi on wi. The final set of

selected controls is given by Ŝ = S1∪S2∪S3. Valid estimation and inference of the structural

parameter, θ, can then proceed by conventional IV estimation. As was the case in Models

A and B, formal validity of this procedure can be justified uniformly over sequences of data

sets generated from Model C (see [12] for example). The three model selection steps ensure

that the final estimates are robust to classical concerns about pre-test biases.

Table 5 presents estimates. Each column presents first stage coefficients and final struc-

tural coefficients using a different method for estimating the model. Heteroskedasticity-

robust standard errors are shown in paranthesis. The first column of the table labeled

“Latitude” gives baseline results that control linearly for latitude, which corresponds to the

findings of [1], suggesting a strong positive effect of improved institutions on output with

a reasonably strong first stage. The second column controls for all 16 of the constructed

geography variables. This yields a visibly imprecise estimate of the effect of interest. This

is expected, since the number of control variables, 16, is large enough relative to the sample

size, 64, to prohibit precise estimation. The last column of Table 5, labeled “Forward Selec-

tion,” controls for the union of the set of variables selected by running testing-based forward

selection on each of the three reduced form equations, using heteroskedasticity-consistent

standard errors and significance thresholds as described in Section 5. The last column is

simply the IV estimate of the structural equation with the Africa dummy and the selected

latitude spline term as the control variables. Interestingly, the results are qualitatively sim-

ilar to the baseline results though the first stage is somewhat weaker and the estimated

structural effect is slightly smaller.
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Table 5
Estimates: Effect of Institutions on Economic Growth

Latitude All Controls TBFMS

First Stage -0.537 -0.211 -0.380
(0.153) (0.217) (0.176)

Structural Estimate 0.969 0.984 0.835
(0.231) (0.821) (0.335)

Selected variables: 1Africa, (latitude− .16)1latitude>.16

*Note. The first two columns in this table (Latitude and All Controls) correspond to the first two columns
in Table 5 of [12]. The exact quantities estimated in [12] are slighly different despite using identical data
for the following reasons. Matlab and Stata differ in terms of coefficient estimates because of different
regularization schemes and tolerances for nearly singular matrices (which also depend on the ordering of
the variables). This difference is most relevant for the All Controls column. In order to facilitate
replication, all of the quantities in this table have now been produced within a single statistical software,
Matlab. The replication file is available from the author.

5. Conclusion

This paper has considered TBFMS for high-dimensional sparse linear regression problems.

The procedure is shown to achieve estimation rates matching those of Lasso and Post-Lasso

under a broad class of data-generating processes. In simulation studies, the method performs

well in terms of prediction and as an input into larger structural inference problems.
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Appendix A: Proof of Theorem 1

Proof. The proof of Theorem 1 is divided into seven steps. Step 1 shows the first statement

of Theorem 1. Step 2 defines a useful normalization of the selected covariates. Step 3

establishes certain bounds on the average correlation between selected covariates. Steps

4-6 show that if ŝ is too high, then there must exist subsets of the selected covariates

over which the average correlation must exceed what is permitted by assumption on the

sparse eigenvalues of the empirical Gram matrix G. Step 7 concludes by pulling together

the previous six steps.

Step 1

This first section of the proof provides a bound on En[(x′iθ0 − x′iθ̂)2] which depends on ŝ

thereby proving the first statement of Theorem 1. First note that `(Ŝ) = `(Ŝ∪S0)+[`(Ŝ)−
`(Ŝ ∪ S0)]. Note that `(Ŝ) = `(θ̂) and `(Ŝ ∪ S0) 6 `(θ0). In addition, by Lemma 3.3 of [27],

`(Ŝ)− `(Ŝ ∪ S0) 6 ϕmin(ŝ+ s0)(G)−1
∑

j∈S0\Ŝ

(−∆j`(Ŝ)) 6 s0tϕmin(ŝ+ s0)(G)−1.

This gives

`(θ̂) 6 `(θ0) + s0tϕmin(ŝ+ s0)(G)−1.

Expanding the above two quadratics in `(·) gives

En[(x′iθ0 − x′iθ̂)2] 6 |2En[εix
′
i(θ̂ − θ0)]|+ s0tϕmin(ŝ+ s0)(G)−1

6 2‖En[εix
′
i]‖∞‖θ0 − θ̂‖1 + s0tϕmin(ŝ+ s0)(G)−1

To bound ‖θ0 − θ̂‖1:

‖θ0 − θ̂‖1 6
√
ŝ+ s0‖θ0 − θ̂‖2

6
√
ŝ+ s0ϕmin(ŝ+ s0)(G)−1En[(x′iθ0 − x′iθ̂)2]1/2.

Combining the above bounds and dividing by En[(x′iθ0 − x′iθ̂)2]1/2 gives

En[(x′iθ − x′iθ̂)2]1/2 6 2‖En[εix
′
i]‖∞

√
ŝ+ s0ϕmin(ŝ+ s0)(G)−1

+
s0tϕmin(ŝ+ s0)(G)−1

En[(x′iθ0 − x′iθ̂)2]1/2
.
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Finally, either En[(x′iθ0 − x′iθ̂)2]1/2 6
√
s0tϕmin(ŝ+ s0)(G)−1, in which case the first state-

ment of Theorem 1 holds, or alternatively En[(x′iθ0 − x′iθ̂)2]1/2 >
√
s0tϕmin(ŝ+ s0)(G)−1,

in which case

En[(x′iθ − x′iθ̂)2]1/2 6 2‖En[εix
′
i]‖∞

√
ŝ+ s0ϕmin(ŝ+ s0)(G)−1

+
√
s0tϕmin(ŝ+ s0)(G)−1

and the first statement of Theorem 1 follows.

Step 2

This section of the proof defines true and false covariates, introduces a convenient or-

thogonalization of all selected covariates, and associates to each false selected covariate a

parameter γ̃j on which the analysis is based.

Let xj = [x1j , ..., xnj ]
′ be the vector in Rn with components xij stacked vertically. Sim-

ilarly, define ε = [ε1, ..., εn]′ and y = [y1, ..., yn]′. Let vk ∈ Rn, k = 1, ..., s0 denote true

covariates which are defined as the the vectors xj for j ∈ S0. Define false covariates simply

as those which do not belong to S0.

Consider any point in time in the the Simple Forward Selection algorithm when there

are m false covariates selected into the model. These falsely selected covariates are denoted

w1, ..., wm, each in Rn, ordered according to the order they were selected.

The true covariates are also ordered according to the order they are selected into the

model. Any true covariates unselected after the m false covariate selection are temporarily

ordered arbitrarily at the end of the list. Let Mk be projection in Rn onto the space

orthogonal to span({v1, ..., vk}). Let

ṽk =
Mk−1vk

(v′kMk−1vk)1/2
for k = 1, ..., s0.

In addition, set

ε̃ =
Ms0ε

(ε′Ms0ε)
1/2

.

Let Ṽtemp = [ṽ1, ..., ṽs0 ], ordered according to the temporary order. Note that there is

θ̃ ∈ Rs0 and θ̃ε̃ ∈ R such that

Ṽtempθ̃temp + θ̃ε̃ε̃ = y.

At this time, reorder the true covariates. Let k̂ denote the index of the final true covariate

selected into the model when the m-th false covariate is selected. The variables ṽ1, ..., ṽk̂
maintain their original order. The unselected true covariates ṽ

k̂+1
, ..., ṽs0 are reordered in
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such a way that under the new ordering, θ̃k,temp > θ̃l,temp whenever l > k. Also define

Ṽ = [ṽ1, ..., ṽs0 ] consistent with the new ordering. Redefine θ̃ by Ṽ θ̃ + θ̃ε̃ε̃ = y so that it

is also consistent with the new ordering. Note that no new orthogonalization needs to be

done.

For any set S, Let QS be projection onto the space orthogonal to span({xj , j ∈ S}).
For each selected covariate, wj , set Spre-wj to be the set of (both true and false) covariates

selected prior to wj . Define

w̃j = cjQSpre-wj
wj

where the normalization constants cj are defined in the next paragraph.

Each w̃j can be decomposed into components w̃j = r̃j + ũj with r̃j ∈ span(Ṽ ) and

ũj ∈ span(Ṽ )⊥. The normalizations cj introduced above are then chosen so that ũ′j ũj = 1.

Associates to each false covariate w̃j , a vector γ̃j ∈ Rs0 , defined as the solution in Rs0 to

the following equation

Ṽ γ̃j = r̃j .

Set γ̃jε̃ = ε̃′w̃j . Assume without loss of generality that each component of θ̃ is positive

(since otherwise, the true covariates can just be multiplied by −1.) Also assume without

loss of generality that γ̃′j θ̃ > 0.

Step 3

This section provides upper bounds on quantities related to the γ̃j defined above. The idea

guiding the argument in the next sections is that if too many covariates wj are selected,

then on average they must be correlated with each other since they must be correlated to

y. For a discussion of partial transitivity of correlation, see [61]. If the covariates are highly

correlated amongst themselves, then ϕmin(m + s0)(G)−1 must be very high. As a result,

the sparse eigenvalues of G can be used to upper bound the number of selections. Average

correlations between covariates are tracked with the aid of the quantities γ̃j .

Divide the set of false covariates into two sets A1 and A2 where

A1 =

{
j : |γ̃jε̃| 6

t1/2n1/2

(2ε′Ms0ε)
1/2

}
, A2 =

{
j : |γ̃jε̃| >

t1/2n1/2

(2ε′Ms0ε)
1/2

}
.

Sections 3 - 5 of the proof bound the number of elements in A1. Section 6 of the proof

bounds the number of elements in A2.

Suppose the set A1 contains m1 total false selections. Collect these false selections into

W̃ = [w̃j1 , ..., w̃jm1
]. Set R̃ = [r̃j1 , ..., r̃jm1

], Ũ = [ũj1 , ..., ũjm1
]. Decompose W̃ = R̃ + Ũ .
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Then W̃ ′W̃ = R̃′R̃ + Ũ ′Ũ . Since diag(Ũ ′Ũ) = I, it follows that the average inner product

between the ũj , given by ρ̄:

ρ̄ =
1

m1(m1 − 1)

∑
j 6=l∈A1

ũ′j ũl,

must be bounded below by

ρ̄ > − 1

m1 − 1

due to the positive definiteness of Ũ ′Ũ . This implies an upper bound on the average off-

diagonal term in R̃′R̃ since W̃ ′W̃ is a diagonal matrix. Since ṽk are orthonormal, the sum

of all the elements of R̃′R̃ is given by ‖
∑

j∈A1
γ̃j‖22. Since ‖

∑
j∈A1

γ̃j‖22 =
∑

j∈A1
‖γ̃′j‖22 +∑

j 6=l∈A1
γ̃′j γ̃l and since W̃ ′W̃ is a diagonal matrix, it must be the case that

1

m1(m1 − 1)

∑
j 6=l∈A1

γ̃′j γ̃l = −ρ̄.

Therefore,

ρ̄ =
1

m1(m1 − 1)

∥∥∥ ∑
j∈A1

γ̃j

∥∥∥2

2
−
∑
j∈A1

‖γ̃j‖22

 6
1

m1 − 1
.

This implies that ∥∥∥ ∑
j∈A1

γ̃j

∥∥∥2

2
6 m1 +

∑
j∈A1

‖γ̃j‖22.

Next, bound maxj∈A1 ‖γ̃j‖22. Note ‖γ̃j‖22 = ‖r̃j‖22 since Ṽ is orthonormal. Note that

‖ũj‖22/‖w̃j‖22 = 1/‖w̃j‖22 is lower bounded by ϕmin(m + s0)(G). This follows from the fact

that you can associate ‖ũj/cj‖22 to an element of a the inverse covariance matrix for wj and

previously selected covariates. Therefore, ‖r̃j‖22 = ‖w̃j‖22 − 1 6 ϕmin(m + s0)(G)−1 − 1. It

follows that

max
j∈A1

‖γ̃j‖22 6 ϕmin(m+ s0)(G)−1 − 1.

This then implies that ∥∥∥ ∑
j∈A1

γ̃j

∥∥∥2

2
6 m1ϕmin(m+ s0)(G)−1.

The same argument as above also shows that for any choice ej ∈ {−1, 1} of signs, it is

always the case that ∥∥∥ ∑
j∈A1

ej γ̃j

∥∥∥2

2
6 m1ϕmin(m+ s0)(G)−1.

(In more detail, take W̃e = [w̃j1ej1 , ..., w̃jm1
ejm1

], etc. and rerun the same argument.)
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Step 4

Next search for a particular choice of signs {ej}j∈A1 which give a lower bound proportional

to m1
2/s0 on the above term. Note that this will imply an upper bound on m1. For each

k = 1, ..., s0, let A1k be the set which contains those j ∈ A1 such that wj is selected before

vk, but not before any other true covariate. Note that the sets A
1(k̂+2)

, ..., A1(s0+1) are set

empty if k̂ < s0. Also, empty sums are set to zero. Define the following two matrices:

Γ =



∑
j∈A11

γ̃j1
∑

j∈A11

γ̃j2 ...
∑

j∈A11

γ̃js0

0
∑

j∈A12

γ̃j2 ...
∑

j∈A12

γ̃js0

...
...

. . .
...

0 0 ...
∑

j∈A1s0

γ̃js0


, B =



θ̃1
θ̃1

θ̃2
θ̃1

...
θ̃s0
θ̃1

θ̃2
θ̃1

θ̃2
θ̃2

...
θ̃s0
θ̃2

...
...

. . .
...

θ̃s0
θ̃1

θ̃s0
θ̃2

...
θ̃s0
θ̃s0



Note that the kth row of Γ is equal to
∑

j∈A1k
γ̃k since the orthogonalization process had

enforced γ̃jl = 0 for each l < k. Therefore, the diagonal elements of the product ΓB satisfy

the equality

[ΓB]k,k =
∑
j∈Ak

γ̃′j θ̃/θ̃k.

Let C1, C2 be constants such that

γ̃′j θ̃/θ̃k > C1

for j ∈ A1k, and

θ̃k/θ̃l > C2

for l > k. These key constants are calculated explicitly in Section 5 of the proof. They imply

that

[ΓB]k,k > C1|A1k| and tr(ΓB) > C1m1.

Further observe that whenever θ̃k > C2θ̃l for each k, l > k, assuming without loss of

generality that C2 6 1, that (B + C−1
2 I) is positive semidefinite. This can checked by

constructing auxiliary random variables who have covariance matrix B+C−1
2 I: inductively

build a covariance matrix where the (k+ 1)th random variable has θ̃k/θ̃k−1 covariance with

the kth random variable. Then B + C−1
2 I has a positive definite symmetric matrix square
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root so let D2 = B+C−1
2 I. Therefore, B = (D+C

−1/2
2 I)(D−C−1/2

2 I). Note that the rows

(and columns) of D each have norm 6 1 +C−1
2 and therefore B decomposes into a product

B = E′F where the rows of E,F have norms bounded by 1 + C−1
2 + C

−1/2
2 . Therefore, let

C3 = 1 + C−1
2 + C

−1/2
2 .

Consider the set

Gs0 = {Z ∈ Rs0×s0 : Zij = X ′iYj for some Xi, Yj ∈ Rs0 , ‖Xi‖2, ‖Yj‖2 6 1}

and observe that B̄ := C3
−1B ∈ Gs0 . Then this observation allows the use of Grothendieck’s

inequality (using the exact form described in [33]) which gives

max
Z∈Gs0

tr(ΓZ) 6 KR
G‖Γ′‖∞→1.

Here, KR
G is an absolute constant which is known to be less than 1.783. It does not depend

on s0. Therefore, C1m 6 tr(ΓB) = C3tr(ΓB̄) 6 maxZ∈Gs0 tr(ΓZ) 6 KR
G‖Γ′‖∞→1, which

implies (
KR
G

)−1
C3
−1C1m1 6 ‖Γ′‖∞→1.

Therefore, there is ν ∈ {−1, 1}s0 such that ‖ν ′Γ‖1 >
(
KR
G

)−1
C3
−1C1m1. For this particular

choice of ν, it follows that

‖ν ′Γ‖2 > s
−1/2
0

(
KR
G

)−1
C3
−1C1m1.

Then by definition of Γ, ‖ν ′Γ‖22 = ‖
∑s0

k=1

∑
j∈A1k

νkγ̃j‖22. In Section 3, it was noted that

‖
∑m1

j=1 ej γ̃j‖22 6 m1ϕmin(m + s0)(G)−1 for any choice of signs ej ∈ {−1, 1}m1 . It follows

that

s−1
0

(
KR
G

)−2
C3
−2C2

1m
2
1 6 m1ϕmin(m+ s0)(G)−1

which yields the conclusion

m1 6 ϕmin(m+ s0)(G)−1C−2
1 C3

2
(
KR
G

)2
s0.

Step 5

It is left to calculate C1, C2 which lower bound γ̃′j θ̃/θ̃k for j ∈ A1k and θ̃k/θ̃l for l > k. A

simple derivation can be made to show that the incremental decrease in empirical loss from

the jth false selection is

−∆j`(Spre-wj ) =
1

n
y′w̃j(w̃

′
jw̃j)

−1w̃′jy =
1

n

1

w̃′jw̃j
(θ̃′γ̃j + θ̃′ε̃γ̃jε̃)

2
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Note the slight abuse of notation in −∆j(Spre-wj ) signifying change in loss under inclusion

of wj rather than xj . Next,

(θ̃′γ̃j + θ̃′ε̃γ̃jε̃)
2 6 2(θ̃′γ̃j)

2 + 2(θ̃′ε̃γ̃jε̃)
2

Since θ̃ε̃ = (ε′Ms0ε)
1/2, w̃′jw̃j > 1, and j ∈ A1 it follows that

1

n

1

w̃′jw̃j
(θ̃′ε̃γ̃jε̃)

2 6
1

n

1

w̃′jw̃j
θ̃2
ε̃

(
t1/2n1/2

2(ε′Ms0ε)
1/2

)2

6
t

4
.

This implies
1

2
(−∆j`(Spre-wj )) 6

1

n

1

w̃′jw̃j
(θ̃′γ̃j)

2 +
t

4
.

By the condition that the false j is selected, it holds that −∆j`(Spre-wj ) > t and so
1
4(−∆j`(Spre-wj )) >

t
4 which implies that

1

2
(−∆j`(Spre-wj ))−

t

4
>

1

4
(−∆j`(Spre-wj )).

Finally, this yields that
1

nw̃′jw̃j
(γ̃′j θ̃)

2 >
1

4
(−∆j`(Spre-wj )).

By the fact that wj was selected ahead of vk it holds that

−∆j`(Spre-wj ) > −∆k`(Spre-wj ).

Therefore, further bound the righthand side. Let z̃k be the projection of ṽk onto the space

orthogonal to all previously selected (true and false) covariates. Then

−∆k`(Spre-wj ) >
1

n
z̃′kz̃kθ̃

2
k.

Furthermore, z̃′kz̃k > ϕmin(m+ s0)(G)2. This is seen by noting that z̃k results in the com-

position of two projections onto a span of covariates of size bounded by m+ s0.

This gives
1

nw̃′jw̃j
(γ̃′j θ̃)

2 >
1

4

1

n
ϕmin(m+ s0)(G)2θ̃2

k.

Using the fact that w̃′jw̃j > 1 implies that

(γ̃′j θ̃)
2/θ̃2

k >
1

4
ϕmin(m+ s0)(G)2.

Now suppose no true variables remain when j is selected, then w̃′jw̃j = ũ′j ũj = 1. Therefore,
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−∆j`(Spre-wj ) =
1

n
γ̃2
jε̃θ̃

2
ε̃ > t

Note that θ̃ is given by θ̃ε̃ = ε̃′y = ε′Ms0y/(ε
′Ms0ε)

1/2 = (ε′Ms0ε)
1/2. Therefore,

γ̃2
jε̃ > t

n

ε′Ms0ε
.

This implies that j ∈ A2. Therefore, set C1 = 1
2ϕmin(m+ s0)(G).

Next, construct C2. For each selected true covariate, vk, set Spre-vk to be the set of (both

true and false) covariates selected prior to vk. Note that

θ̃2
k = −∆k`({v1, ..., vk−1}) > −∆k`(Spre-vk)

since {v1, ..., vk−1} ⊆ Spre−vk . In addition, if vk is selected before vl (or vl is not selected),

then

−∆k`(Spre-vk) > −∆l`(Spre-vk) > z̃′lz̃lθ̃
2
l > ϕmin(ŝ+ s0)(G)2θ̃2

l .

Therefore, taking

C2 = ϕmin(m+ s0)(G)

implies that θ̃k/ θ̃l > C2 for any l > k.

Step 6

In this section, the number of elements of A2 is bounded. Recall that the criteria for j ∈ A2

is that |γ̃jε̃| > t1/2n1/2

(2ε′Ms0ε)
1/2 . Note also that γ̃jε̃ is found by the coefficient in the expression

γ̃jε̃ = ε̃′w̃j = ε′
1

(ε′Ms0ε)
1/2

Ms0w̃j

Next, let H be the matrix H = [v1, ..., vs0 , w1, ..., wm]. Note that

1

(ε′Ms0ε)
1/2

Ms0w̃j ∈ span(H)

Which implies that the above expression is unchanged when premultiplied by

H(H ′H)−1H ′. Therefore,

γ̃jε̃ = ε′H(H ′H)−1H ′
1

(ε′Ms0ε)
1/2

Ms0w̃j .
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Let µj be the +1 for each j ∈ A2 such that γ̃jε̃ > 0 and −1 for each j ∈ A2 such that

γ̃jε̃ < 0. By the fact that j ∈ A2, γ̃jε̃µj >
t1/2n1/2

(2ε′Ms0 )1/2
, summing over j ∈ A2 gives

∑
j∈A2

ε′H(H ′H)−1H ′
1

(ε′Ms0ε)
1/2

Ms0w̃jµj > m2
t1/2n1/2

(2ε′Ms0ε)
1/2

This implies that∥∥∥(H ′H)−1H ′
1

(ε′Ms0ε)
1/2

∑
j∈A2

Ms0w̃jµj

∥∥∥
1
‖ε′H‖∞ > m2

t1/2n1/2

(2ε′Ms0ε)
1/2

Which further implies that

√
m+ s0

∥∥∥(H ′H)−1H ′
1

(ε′Ms0ε)
1/2

∑
j∈A2

Ms0w̃jµj

∥∥∥
2
‖ε′H‖∞ > m2

t1/2n1/2

(2ε′Ms0ε)
1/2

Next, further upper bound the ‖ · ‖2 term on the left side above by

∥∥∥(H ′H)−1H ′
1

(ε′Ms0ε)
1/2

∑
j∈A2

Ms0w̃jµj

∥∥∥
2

6
n−1/2

(ε′Ms0ε)
1/2

ϕmin(s0 +m)(G)−1/2‖Ms0

∑
j∈A2

w̃jµj‖2

next, by the fact that Ms0 is a projection (hence non-expansive) and w̃j are mutually

orthogonal,

6
n−1/2

(ε′Ms0ε)
1/2

ϕmin(s0 +m)(G)−1/2

√∑
j∈A2

‖w̃jµj‖22.

In Section 3, it was shown that maxj ‖w̃j‖22 6 ϕmin(s0 + m)(G)−1. Therefore, putting the

above inequalities together,

n−1/2

(ε′Ms0ε)
1/2

√
m+ s0ϕmin(m+ s0)(G)−1√m2‖ε′H‖∞ > m2

t1/2n1/2

(2ε′Ms0ε)
1/2

.

This implies that

m2 <
1

n

2

t
(ε′Ms0ε)(m+ s0)

‖ε′H‖2∞
ε′Ms0ε

ϕmin(m+ s0)(G)−2

6 2(m+ s0)
‖En[xiεi]‖2∞

t
ϕmin(m+ s0)(G)−2.

Under the assumed condition that t1/2 > 2‖En[xiεi]‖∞ϕmin(m+ s0)(G)−1, it follows that

m2 6
1

2
(m+ s0).

By substituting m = m1 +m2 gives m2 6 m1 + s0.
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Step 7

This section concludes the proof of the second statement of the theorem by bringing together

all of the facts proven in Steps 3-6. Combining m1 6 ϕmin(m + s0)(G)−1C−2
1 C3

2
(
KR
G

)2
s0

and m2 6 m1 + s0 gives

m 6
[
2ϕmin(m+ s0)(G)−1C−2

1 C3
2KR

G
2

+ 1
]
s0.

In addition,

C1 =
1

2
ϕmin(m+ s0)(G),

C2 = ϕmin(m+ s0)(G),

C3 = (1 + ϕmin(m+ s0)(G)−1/2 + ϕmin(m+ s0)(G)−1),

and KR
G < 1.783. Therefore,

m 6
[
1 + 8× 1.7832 × ϕmin(m+ s0)(G)−3

× (1 + ϕmin(m+ s0)(G)−1/2 + ϕmin(m+ s0)(G)−1)2
]
s0.

Since C2
3 6 9ϕmin(s0 + m)(G)−2, the expression above can be simplified at the expense

of a slightly less tight constant, so that

m 6 [1 + 72× 1.7832 × ϕmin(m+ s0)(G)−5]s0.

Since this bound holds for each positive integer m of wrong selections, this concludes the

proof of Theorem 1.

Appendix B: Proof of Theorems 2 and 3

Theorem 2 follows by applying Theorem 1 in the following way. If ŝ grows faster than s0,

then there is m < ŝ such that s0 < m < Kn and m/s0 exceeds c′F(Kn) = O(1), giving a

contradiction. The first statement of the theorem follows from applying the bound on ŝ.

Theorem 3 follows by ‖θ0− θ̂‖1 6
√
ŝ+ s0‖θ0− θ̂‖2 6

√
ŝ+ s0ϕmin(ŝ+ s0)(G)−1En[(x′iθ0−

x′iθ̂)
2]1/2.

Appendix C: Proof of Theorem 4

Proof. The proof of Theorem 4 is similar to the proof of Theorem 1. The quantities ∆jE(S)

replace ∆j`(S). The constants C1 and C2 depend on ctest, c
′
test, c

′′
test instead of t. The steps

that follow mirror those taken in the proof of Theorem 1.



Damian Kozbur/Testing-Based Forward Model Selection 54

Step 1.

Let T be the event described by Condition 2. Then by assumption, P(T) > 1−α−3δtest/3 =

1− α− δtest. The rest of the proof works on the event T.

Suppose that Algorithm 1 terminates before Ktest− s0 steps. Note that on T, Algorithm

1 terminates at a step with −∆jE(Ŝ) 6 ctest for every j /∈ Ŝ. By application of the results

of [27], Lemma 3.3, which relate the increase in R2 from inclusion of a set of regressors

to the increase in R2 from inclusion of each regressor from the set separately, noting that

|S0 \ Ŝ| 6 s0 yields

|E(S0)− E(Ŝ)| 6 ϕmin(Ktest)(E[G])−1
∑

j∈S0\Ŝ

−∆jE(S) 6 s0ctestϕmin(Ktest)(E[G])−1.

Step 2.

Repeat the construction in Step 2 of the proof of Theorem 1. The inner product on

Rn is replaced by the standard inner product on L2(Ω;Rn) where Ω is an underlying

probability space. For example, 〈xj , xk〉L2(Ω;Rn) = E[En[xijxik]]. This yields parameters

θ̃, γ̃j ∈ Rs0 and θ̃ε̃, γ̃jε̃ ∈ R as well as an implied profile of operators {M(L2(Ω;Rn))
k }s0k=1 and

{Q(L2(Ω;Rn))
S }S⊆{1,...,p} on L2(Ω;Rn).

Step 3.

Divide the set of false covariates into three sets A1, A2, and A3 where

A1 =

{
j < Ktest − s0 : |γ̃jε̃| 6

c′test
1/2

(2〈ε,Ms0ε〉L2(Ω;Rn))
1/2

}

A2 =

{
j < Ktest − s0 : |γ̃jε̃| >

c′test
1/2

(2〈ε,Ms0ε〉L2(Ω;Rn))
1/2

}
A3 = {j : j > Ktest − s0} .

By arguments identical to Step 3 in the proof of Theorem 1, for any ej ∈ {−1,+1},∥∥∥ ∑
j∈A1

ej γ̃j

∥∥∥2

2
6 |A1|ϕmin(Ktest)(E[G])−1.
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Step 4.

Let C1 be such that θ̃′γ̃j/θ̃k > C1 for j ∈ A1k. Let C2 be such that θ̃k/θ̃l > C2 for l > k.

Let C3 = 1 + C−1
2 + C

−1/2
2 . By arguments identical to Step 4 in the proof of Theorem 1,

|A1| 6 ϕmin(Ktest)(E[G])−1C−2
1 C2

3 (KR
G)2s0.

Step 5.

This section calculates bounds C1 and C2 needed in Step 4 immediately above. Proceeding

as in Step 5 of the proof of Theorem 1, note that

−∆jE(Spre-wj ) = 〈y, w̃j〉(〈w̃j , w̃j〉)−1〈w̃j , y〉.

This allows calculation of C1 and C2 in Theorem 3 to proceed in a similar manner as in

Theorem 1. The statement ∆k`(Spre-wj ) > t is replaced by

∆kE(Spre-wj ) > c′test

for j selected. Similarly, the statement ∆j`(Spre-wj ) > ∆k`(Spre-wj ) is replaced by

∆jE(Spre-wj ) > c′′test∆kE(Spre-wj ).

Using similar reasoning

θ̃′γ̃j/θ̃k >
1

2
ϕmin(Ktest)(E[G])c′′test = C1

and

θ̃k/θ̃l > ϕmin(Ktest)(E[G])c′′test = C2.

Step 6.

By similar arguments as in Step 6 in the proof of Theorem 1, |A1 ∪A2| 6 2|A1|+ s0. Note

that relative to Theorem 1, some care must be taken to define what is meant by H. H is a

vector of elements of L2(Ω;Rn) and H ′ is a vector of elements of the dual space L2(Ω;Rn)∗.
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Step 7.

By identical arguments as in Step 7 in the proof of Theorem 1,

|A1 ∪A2| 6
[
2ϕmin(Ktest)(E[G])−1C−2

1 C3
2KR

G
2

+ 1
]
s0.

Using the values for C1 and C2 in Step 5,

|A1 ∪A2| 6 [1 + 72× 1.7832 × ϕmin(Ktest)(E[G])−5c′′test
−4

]s0.

Finally, if Ktest − s0 is larger than [1 + 72× 1.7832 × ϕmin(Ktest)(E[G])−5c′′test
−4]s0, then it

must follow that |A3| = 0. Then ŝ 6 |A1 ∪A2|+ s0, and from this the result follows.

Step 8.

This step proves the third statement of Theorem 4. For any S define θ∗S to be the mini-

mizer of E(S). For any S define also dS = θ∗S − θ∗S0
. Finally, let δ0 = θ0 − θ∗S0

. Note that

E(S)−E(S0) = d′SE[G]dS . By the earlier steps, d′
Ŝ

E[G]d
Ŝ
6 s0ctestϕmin(Ktest)(E[G])−1. But

d′
Ŝ

E[G]d
Ŝ
> ϕmin(Ktest)(E[G])‖d

Ŝ
‖22. So ‖d

Ŝ
‖2 6

√
s0ctestϕmin(Ktest)(E[G])−1. In addition,

δ0 is bounded by

‖δ0‖2 = ‖E[G]−1E[En[xix
′
iθ0 + εi]]− θ0‖2 = ‖E[En[x′iS0

εi]‖2

6 s
1/2
0 max

j
|E[En[xijε

a
i ]]| 6

1

2

√
s0ctestϕmin(Ktest)(E[G])−1

where the last bound comes from Cauchy-Schwarz (passing to E[En[x2
ij ]]

1/2E[En[εa2
i ]]1/2)

along with the assumed condition on εa
i and the fact that c′test 6 ctest. Next,

θ̂ = G−1

Ŝ
En[x

iŜ
(x′
iŜ
θ∗
Ŝ

+ εi − x′iŜ∪S0
d
Ŝ

+ x′iS0
δ0)]

= θ∗
Ŝ

+G−1

Ŝ
En
[
x
iŜ
εi
]

+G−1

Ŝ
En
[
x
iŜ
x′
iŜ∪S0

(−d
Ŝ

+ δ0)
]

⇒ ‖θ̂ − θ∗
Ŝ
‖2 6 ϕmin(ŝ)(G)−1/2

∥∥En[x
iŜ
εi]
∥∥

2
+
∥∥∥G−1

Ŝ
En
[
x
iŜ
x
iŜ∪S0

(−d
Ŝ

+ δ0)
]∥∥∥

2

6 ϕmin(ŝ)(G)−1/2ŝ1/2‖En[xiεi]‖∞
+ ϕmin(ŝ)(G)−1/2ϕmax(ŝ+ s0)(G)1/2(‖d

Ŝ
‖2 + ‖δ0‖2).
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Finally,

(En[(x′iθ̂ − x′iθ0)2])1/2 6 ϕmax(s0 + ŝ )(G)1/2‖θ̂ − θ0‖2
6 ϕmax(s0 + ŝ )(G)1/2(‖θ̂ − θ∗

Ŝ
‖2 + ‖δ0‖2 + ‖d

Ŝ
‖2)

6 ϕmax(s0 + ŝ)(G)1/2ϕmin(s0 + ŝ)(G)−1/2ŝ1/2 ‖En[xiεi]‖∞

+ ϕmax(s0 + ŝ )(G)1/2(
3

2
+

3

2
ϕmax(s0 + ŝ )(G)1/2ϕmin(ŝ+ s0)(G)−1/2)

×
√
s0ctestϕmin(Ktest)(E[G])−1

6 ϕmax(s0 + ŝ)(G)1/2ϕmin(s0 + ŝ)(G)−1/2ŝ1/2 ‖En[xiεi]‖∞
+ 3ϕmax(s0 + ŝ )(G)ϕmin(ŝ+ s0)(G)−1/2)

√
s0ctestϕmin(Ktest)(E[G])−1.

Appendix D: Proof of Theorem 5

Step 1.

This section sets up basic notation and outlines the proof. The strategy is to apply The-

orem 4 using the conditional distribution Px on for Dn, conditional on x. The uncon-

ditional result is then shown to follow. Let Ex(S) = E[`(S)|x]. In addition, let θ
∗|x
jS =

(xjQSxj)
−1E[xjQS(xθ0 + εa)|x].

Next let

ẐjS = V̂
−1/2
jS ([θ̂jS ]j − [θ

∗|x
jS ]j).

Let tα = Φ−1(1− α/p). Let A be the event given by

A =

{
|ẐjS | 6

(
1 + cτ

2

)
τ̂jStα for all j, |S| < Kn

}
.

Note that

∆jEx(S) = [θ
∗|x
jS ]2jAjS

for AjS defined by AjS = [G−1
jS ]jj .

The next three steps calculate the extent to which the event A implies that the tests

have power, control size, and exhibit continuity. Step 2 performs a power calculation. Step

3 performs a size calculation, and Step 4 performs a continuity calculation for the test

statistics.
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Step 2.

This section calculates power properties. Suppose that

−∆jEx(S) > AjSV̂jS(cτ + 1)2τ̂2
jSt

2
α.

Then on A, and for |S| < Kn,

[θ
∗|x
jS ]2jAjS > AjSV̂jS(cτ + 1)2τ̂2

jSt
2
α

|[θ∗|xjS ]j | > V̂
1/2
jS (cτ + 1)τ̂jStα

|[θ̂jS ]j | > V̂
1/2
jS (cτ + 1)τ̂jStα − |[θ∗|xjS ]j − [θ̂jS ]j |

|[θ̂jS ]j | > V̂
1/2
jS (cτ + 1)τ̂jStα − V̂ 1/2

jS

(
1 + cτ

2

)
τ̂jStα

|[θ̂jS ]j | > V̂
1/2
jS cτ τ̂jStα

which implies TjSα = 1.

Step 3.

This step performs a size calculation. By construction, if TjSα = 1 then |V̂ −1/2
jS [θ̂jS ]j | >

cτ τ̂jStα, which is equivalent to

|[θ̂jS ]j | > cτ τ̂jStαV̂
1/2
jS .

On A, for |S| < Kn, note that

|[θ̂jS ]j − [θ
∗|x
jS ]j | 6 V̂

1/2
jS

(
1 + cτ

2

)
τ̂jStα.

Then TjSα = 1⇒

|[θ∗|xjS ]j | >cτ τ̂jStαV̂ 1/2
jS − V̂

1/2
jS

(
1 + cτ

2

)
τ̂jStα

= V̂
1/2
jS τ̂jStα

(
cτ − 1

2

)
Then

−∆jEx(S) > AjSV̂jS τ̂
2
jSt

2
α

(
cτ − 1

2

)2

.
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Step 4.

This section calculates continuity properties of the tests. Suppose that TjSα = TkSα = 1,

and that WjS 6 WkS . Note that WjS 6 WkS implies V̂
−1/2
jS |[θ̂jS ]j | 6 V̂

−1/2
kS |[θ̂kS ]k|. Then

on A, and for |S| < Kn,

V̂
−1/2
jS |[θ∗|xjS ]j | −

(
1 + cτ

2

)
τ̂jStα 6 V̂

−1/2
kS |[θ∗|xkS ]k|+

(
1 + cτ

2

)
τ̂kStα

V̂
−1/2
jS |[θ∗|xjS ]j | 6 V̂

−1/2
kS |[θ∗|xkS ]k|+ 2

(
1 + cτ

2

)
τ̂kStα

V̂
−1/2
jS A

−1/2
jS (−∆jEx(S))1/2 6 V̂

−1/2
kS A

−1/2
kS (−∆kEx(S))1/2 + 2

(
1 + cτ

2

)
τ̂kStα

Using the fact that −∆kEx(S) > AkSV̂kS
(

1−cτ
2

)2
τ̂2
kSt

2
α derived in Step 2 and the fact that

TkSα = 1, gives that
(

1+cτ
2

)
τ̂kStα 6 V̂

−1/2
kS A

−1/2
kS (−∆kEx(S))1/2

(
1+cτ
cτ−1

)
.

Then

V̂
−1/2
jS A

−1/2
jS (−∆jEx(S))1/2 6 V̂

−1/2
kS A

−1/2
kS (−∆kEx(S))1/2 + 2V̂

−1/2
kS A

−1/2
kS (−∆kEx(S))1/2

(
1 + cτ
cτ − 1

)
.

This gives

−∆jEx(S) 6
V̂jSAjS

V̂kSAkS

(
1 + 2

1 + cτ
cτ − 1

)2

(−∆kEx(S))

Step 5

This step summarizes Steps 2-4 and outlines the next steps. By Steps 2-4, the following

implications are valid on A for all j, |S| < Kn:

1. TjSα = 1 if −∆jEx(S) > AjSV̂jS(cτ + 1)2τ̂2
jSt

2
α.

2. −∆jEx(S) > AjSV̂jS
(

1−cτ
2

)2
τ̂2
jSt

2
α if TjSα = 1.

3. −∆jEx(S) 6 V̂jSAjS

V̂kSAkS

(
1 + 21+cτ

cτ−1

)2
(−∆kEx(S)) if TjSα = TkSα = 1, WjS 6WkS .

Next define a sequence of sets X = Xn which will be shown to have the property that

both P(x ∈ X)→ 1 and
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PX(A) = inf
x∈X

P(A|x)→ 1.

In addition, there will be constants c̃test, c̃
′
test, c

′′
test > 0 which are independent of n and

the realization of x, such that for ctest = 1
n c̃test, c

′
test = 1

n c̃
′
test and for the set B defined by

B =



1. AjSV̂jS(cτ + 1)2τ̂2
jSt

2
α 6 ctest

2. AjSV̂jS
(

1−cτ
2

)2
τ̂2
jSt

2
α > c′test |S| < Kn

3.
AjS V̂jS

AkS V̂kS

(
1 + 2 cτ−1

cτ+1

)2
> c′′test

it holds that PX(B)→ 1.

Define sets X = Xn as follows.

X = X1 ∩ X2 ∩ X3 ∩ X4

X1 = {x : maxj6p En[x12
ij ] = O(1)}

X2 = {x : ϕmin(Kn)(G)−1 = O(1)}
X3 = {x : ‖ηjS‖1 = O(1)}
X4 = {x : P(ϕmin(Kn)(En[ε2

ixix
′
i])
−1 = O(1)|x) = 1− o(1)}

Note that P(X1),P(X2),P(X3) → 1 by assumption. In addition, failure of

P(X4) → 1 would contradict the unconditional statement in Condition 5 that

P(ϕmin(Kn)(En[ε2
ixix

′
i])
−1 = O(1)) = 1− o(1). Therefore, P(X)→ 1.

Next, Step 6 proves that PX(A)→ 1 and Step 7 proves that PX(B)→ 1. Note that these

steps allow the aplication of Theorem 4 conditionally on x. Step 8 uses this fact, and then

concludes the proof by showing that θ0 is bounded to θ
∗|x
S0

.
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Step 6.

Note that

ẐjS = V̂
−1/2
jS ([θ̂jS ]j − [θ

∗|x
jS ]j)

= V̂
−1/2
jS (x′jQSxj)

−1x′jQS(ε− E[ε|x])

= ((x′jQSxj)
−1En[ε̂2

ijS [QSxjS ]2i ](x
′
jQSxj)

−1)−1(x′jQSxj)
−1x′jQS(ε− E[ε|x])

= En[ε̂2
ijS [QSxjS ]2i ]

−1x′jQS(ε− E[ε|x])

= En[ε̂2
ijS(η′jSxijS)2]−1η′jSxjS(ε− E[ε|x]).

= En[ε̂2
ijS(η′jSxijS)2]−1η′jSxjS(εo + εa − E[εa|x]).

Let ε̈ = εo + εa − E[εa|x].

Define the Regularization Event by

R =

 |
∑n

i=1 xikε̈i|√∑n
i=1 x

2
ikε̈

2
i

6 tα for every k 6 p


In addition, define the Variability Domination Event by

V =

{
n∑
i=1

x2
ikε̈

2
i 6

(
1 + cτ

2

)2 n∑
i=1

x2
ikε̂

2
ijS for every k ∈ jS, for every |S| < Kn

}

The definition of the Regularization Event and the Variability Domination Event are

useful since

R ∩ V⇒ A.

To see this, note that on R, the following inequality holds for any conformable vector ν:

 n∑
i=1

∑
k∈jS

νkxikε̈i

2

6

tα ∑
k∈jS
|νk|

√√√√ n∑
i=1

x2
ikε̈

2
i

2
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Furthermore, on V, the previous expression can be further bounded by

6

(
1 + cτ

2

)2
tα ∑

k∈jS
|νk|

√√√√ n∑
i=1

x2
ikε̂

2
ijS

2

=

(
1 + cτ

2

)2

(
tα
∑

k∈jS |νk|
√∑n

i=1 x
2
ikε̂

2
ijS

)2

∑n
i=1

(∑
k∈jS νkxik

)2
ε̂2
ijS

n∑
i=1

∑
k∈jS

νkxik

2

ε̂2
ijS

=

(
1 + cτ

2

)2

t2α
‖ν ′Diag(Ψε̂

jS)1/2‖21
ν ′Ψε̂

jSν

n∑
i=1

∑
k∈jS

νkxik

2

ε̂2
ijS .

Specializing to the case that ν = ηjS , and using τ̂jS =
‖ν′Diag(Ψε̂jS)1/2‖1√

ν′Ψε̂jSν
gives that

|ẐjS | 6
1 + cτ

2
τ̂jStα on R ∩ V.

It is therefore sufficient to prove that R and V have probability→ 1 under PX. PX(R)→ 1

follows immediately from the moderate deviation bounds for self-normalized sums given in

[38]. For details on the application of this result, see [6].

Therefore, it is only left to show that PX(V)→ 1. Define εijS = yi−x′ijSθ
∗|x
jS . Furthermore,

define ξijS through the decomposition εijS = ε̈i + ξijS . Let εjS and ξjS be the respective

stacked versions. Let c̃τ = ((1 + cτ )/2)2.

Then

c̃τ

n∑
i=1

x2
ikε̂

2
ijS = c̃τ

[
n∑
i=1

x2
ik(ε̂

2
ijS − ε2

ijS) +

n∑
i=1

x2
ikε̈

2
i + 2

n∑
i=1

x2
ikε̈iξijS +

n∑
i=1

x2
ikξ

2
ijS

]

> c̃τ

[
n∑
i=1

x2
ik(ε̂

2
ijS − ε2

ijS) +
n∑
i=1

x2
ikε̈

2
i + 2

n∑
i=1

x2
ikε̈iξijS

]

=

n∑
i=1

x2
ikε̈

2
i

+ c̃τ

n∑
i=1

x2
ik(ε̂

2
ijS − ε2

ijS) +
(c̃τ − 1)

2

n∑
i=1

x2
ikε̈

2
i

+ 2c̃τ

n∑
i=1

x2
ikε̈iξijS +

(c̃τ − 1)

2

n∑
i=1

x2
ikε̈

2
i .
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Define the two events

V′ =

{
c̃τEn[x2

ik(ε̂
2
ijS − ε2

ijS)] +
(c̃τ − 1)

2
En[x2

ikε̈
2
i ] > 0 for all j, k 6 p, |S| < Kn

}

V′′ =

{
2c̃τEn[x2

ikε̈iξijS ] +
(c̃τ − 1)

2
En[x2

ikε̈
2
i ] > 0 for all j, k 6 p, |S| < Kn

}
Therefore V′ ∩ V′′ ⇒ V.

Note that En[x2
ikε̈

2
i ] > 1

2En[x2
ikε

2
i ] − En[x2

ikE[εa
i |x]] > 1

2En[x2
ikε

2
i ] −

maxi6n E[εa2
i |x]1/2En[x4

ik]
1/2. This is bounded below with PX → 1 by a positive con-

stant independent of n. Therefore, to show that PX(V′) → 1, PX(V′′) → 1, it suffices to

show En[x2
ik(ε̂

2
ijS − ε2

ijS)] and En[x2
ikε̈iξijS ] respectively are suitably smaller order.

First consider En[x2
ik(ε̂

2
ijS − ε2

ijS)]. It is convenient to bound the slightly more general

sum En[xikxil(ε̂
2
ijS − ε2

ijS)], since this will show up again in Step 8.

En[xikxil(ε̂
2
ijS − ε2

ijS)] = 2En
[
xikxilεijSx

′
ijS(θ

∗|x
jS − θ̂jS)

]
+ En

[
xikxil(x

′
ijS(θ

∗|x
jS − θ̂jS))2

]
6 2‖En[xikxilεijSx

′
ijS ]‖2‖θ∗|xjS − θ̂jS‖2 + λmaxEn[xikxilxijSx

′
ijS ]‖θ∗|xjS − θ̂jS)‖22

Standard reasoning gives that ‖θ∗|xjS − θ̂jS‖2 6 ϕmin(Kn)(G)−1/2
√
Kn‖EnxijSεijS‖∞. There-

fore, the bound continues

6 2‖En[xikxilεijSx
′
ijS ]‖2ϕmin(Kn)(G)−1/2

√
Kn‖EnxijSεijS‖∞

+λmaxEn[xikxilxijSx
′
ijS ]ϕmin(Kn)(G)−1Kn‖EnxijSεijS‖2∞.

Note that λmaxEn[xikxilxijSx
′
ijS ] 6 Kn maxj6p En[x4

ij ].

6 2‖En[xikxilεijSx
′
ijS ]‖2ϕmin(Kn)(G)−1/2

√
Kn‖EnxijSεijS‖∞

+K2
n max
j6p

En[x4
ij ]ϕmin(Kn)(G)−1‖EnxijSεijS‖2∞

An application of Cauchy-Schwarz to the top line gives

6 2
√
Kn max

j
En[x4

ik]
1/2 max

j,S
En[ε2

ijSx
2
ij ]

1/2ϕmin(Kn)(G)−1/2
√
Kn‖EnxijSεijS‖∞

+K2
n max
j6p

En[x4
ij ]ϕmin(Kn)(G)−1‖EnxijSεijS‖2∞

Next, ‖EnxijSεijS‖∞ and En[ε2
ijSx

2
ij ]

1/2 are bounded using εijS = εi − E[εi|x] + ξijS . Note

that by construction ‖En[xijSξijS ]‖∞ = 0. Then

‖En[xijSεijS ]‖∞ 6 ‖En[xiεi]‖∞ + ‖En[xiE[εa
i |x]‖∞
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6 ‖En[xiεi]‖∞ + max
j6p

En[x2
ij ]

1/2En[E[εa
i |x]2]1/2 = O(

√
log p/n)

with PX → 1. Next,

En[ε2
ijSx

2
ij ] 6 3En[ε2

ix
2
ij ] + 3En[E[εa2

i |x]x2
ij ] + 3En[ξ2

ijSx
2
ij ]

6 3En[ε2
ix

2
ij ] + 3En[x2

ij ] max
i6n

E[εa2
i |x] + 3En[ξ4

ijS ]1/2En[x4
ij ]

1/2

Next,
(
En[ξ4

ijS ]
)1/2

6 O(1)s2
0 on X1∩X3. To see this, note ξjS = QjSxθ0 =

∑s0
l=1 QjSxlθ0,l =∑s0

l=1 ηl,(jS)xljS = η̃jSxS0∪jS for some new linear combination η̃jS . Note that ‖η̃jS‖1 6

s0O(1). Then
(
En[ξ4

ijS ]
)1/4

6 ‖η̃jS‖1 maxk6p En[x4
ik]

1/4 from which the bound follows.

Next consider En[x2
ikε̈iξijS ]. Consider two cases. In Case 1,

En[x4
ikξ

2
ijS ]1/2 6

1

2c̃τ

(c̃τ − 1)

2

En[x2
ikε̈

2
i ]

En[ε̈2
i ]

1/2
.

In this case, 2c̃τEn[x2
ikε̈iξijS ] 6 En[x4

ikξ
2
ijS ]1/2En[ε̈2

i ]
1/2 6 c̃τ−1

2 , and the requirement of V′′

for k, j, S holds.

For Case 2, suppose the alternative that En[x4
ikx

2
ijS ] > 1

2c̃τ

(c̃τ−1)
2

En[x2ik ε̈
2
i ]

En[ε̈2i ]
1/2 holds. Then

E[En[x4
ikξ

2
ijS ε̈

2
i ]|x] is bounded away from zero by conditions on E[ε2

i |x] and maxi |εa
i |. In

addition, E[En[|xik|6|ξijS |3|ε̈i|3]|x] 6 maxi E[|ε̈i|3|x]En[|xik|6|ξijS |3] 6 O(1)En[|xik|6|ξijS |3].

This term is further bounded by

O(1)En[x12
ik ]1/2En[|ξijS |6]1/2

Using the same reasoning as bounding En[ξ4
ijS ] earlier, it follows that En[|ξijS |6]1/2 =

O(1)s3
0. In addition, En[x12

ik ] = O(1). As a result, for those k, j, S which fall in Case 2,

the self-normalized sum

= max
j,k,S∈Case 2

√
n|En[x2

ikξijS ε̈i]|√
En[x4

ikξ
2
ijS ε̈

2
i ]

is O(log(pKn)) with probability 1 − o(1) provided
√

log(pKn) = o(n1/6/(s3
0)1/3).

This holds under the assumed rate conditions. Then maxj,k,S |En[x2
ikξijS ε̈i]| is

bounded by 1√
n
O(log(pKn) maxj,k,S

√
En[x4

ikξ
2
ijS ε̈

2
i ]. Furthermore, En[x4

ikξ
2
ijS ε̈

2
i ] 6

En[x8
ikξ

4
ijS ]1/2En[ε̈4

i ]
1/2 6 (En[x12

ik ]2/3En[ξ12
ijS ]1/3)1/2En[ε̈4

i ]
1/2 6 O(1)s2

0En[ε̈4
i ]

1/2. Note that

En[ε̈4
i ]

1/2 6 O(1) with PX → 1. Together, these give that maxj,k,S En[x2
ikε̈iξijS ] = o(1) with

PX → 1. Finally, PX(V)→ 1.
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Step 7.

This step shows that PX(B)→ 1. First, AjS depend only on x and are bounded above and

below by constants which do not depend on n on X from the assumption on the sparse

eigenvalues of G. For bounding τ̂jS above and away from zero, since 1 6 ‖ηjS‖1, ‖ηjS‖2 6

O(1) on X, it is sufficient to show that the eigenvalues of Ψε̂
jS = En[xijSx

′
ijS ε̂

2
ijS ] remain

bounded above and away from zero and that the diagonal terms of Ψε̂
jS remain bounded

above and away from zero. Note that by arguments in last step (Step 6), it was shown

that En[xikxil(ε̂ijS − εijS)] = O(
√

log p/n) with PX → 1. Therefore, ‖En[xijSx
′
ijS ε̂

2
ijS ] −

En[xijSx
′
ijSε

2
ijS ]‖F = O(Kn

√
log p/n ) with PX → 1. Here, F is the Frobenius norm. By the

assumed rate condition, the above quantity therefore vanishes with PX → 1.

Next,

En[xijSx
′
ijSε

2
ijS ] = En[xijSx

′
ijSε

2
i ] + 2En[xijSx

′
ijSεi(ξijS + E[εa

i |x])]

+En[xijSx
′
ijS(ξijS + E[εa

i |x])2]

The first term above, En[xijSx
′
ijSε

2
i ], has eigenvalues bounded away from zero for all j, S

with PX → 1. The third term above, En[xijSx
′
ijS(ξijS + E[εa

i |x])2] is positive semidefinite

by construction. The second term above has Frobenius norm tending to zero for all j, S

with PX → 1. This, in conjunction with the fact that the eigenvalues of En[xijSx
′
ijS ε̂ijS ]

are bounded above and away from zero with PX → 1 shows that the eigenvalues of

Ψε̂
jS = En[xijSx

′
ijS ε̂

2
ijS ] are bounded above and away from zero with PX → 1. Finally,

for bounding V̂jS , it is sufficient to show that maxk6p En[ε2
i (η
′
jSxijS)2] be bounded above.

This follows immediately from E[ε4
i |x] being uniformly bounded and maxj,S ‖ηjS‖1 = O(1)

and maxk6p En[x4
ik] = O(1). These imply that PX(B)→ 1.

Step 8

The previous steps show that Theorem 4 can be applied conditionally on x. Note that

renormalizing the covariates to satisfy En[x2
ij ] = 1 does not affect Ex(S) and therefore

does not affect the conclusion of Step 5. Moreover, on X, renormalizing does not effect

boundedness of sparse eigenvalues of G. Therefore, by application of Theorem 4,

PX
(
En[(x′iθ

|x
0 − xiθ̂)

2]1/2 6 O(
√
s0 log p/n)

)
→ 1.

To show Theorem 5, it is left to show that

PX
(
En[(x′iθ

|x
0 − xiθ0)2]1/2 6 O(

√
s0 log p/n)

)
→ 1.



Damian Kozbur/Testing-Based Forward Model Selection 66

This follows from from assumptions on εa Note that

θ
|x
0 − θ0 = (x′S0

xS0)−1x′S0
E[εa|x].

As a result,

‖θ0 − θ|x0 ‖2 6 ϕmin(s0)(G)−1/2‖En[xis0E[εa
i |x]]‖2

6 ϕmin(s0)(G)−1/2√s0‖En[xijE[εa
i |x]]‖∞.

By the assumed rate conditions and by maxi E[εa
i ] = O(n−1/2), the bound follows.

Appendix E: Proof of Theorems 7 and 8

Proof. Theorem 7 follows by applying Theorem 4 in [6]. Theorem 8 follows by applying

Theorem 2 of [14].

Appendix F: Additional computation details

Computation of the simulation studies and empirical example are performed using the

software Matlab R2015a. The simulation study uses in addition the package Glmnet for

Matlab ([55]). Replication files as well as detailed instructions are available from the author.


	Introduction
	Precursor: Sharp Convergence Rates for Simple Forward Selection without -min or Irrepresentability Conditions
	Framework
	Formal Analysis

	Testing-Based Forward Model Selection
	Framework
	Formal Analysis
	Example: Heteroskedastic Disturbances
	TBFMS Simulation

	Applications to structural inference in high-dimensional models
	Model A: Linear Instrumental Variables Model with High-Dimensional Instruments
	Model B: Linear Model with High-Dimensional Control Variables
	Post Model Selection Inference: Simulation Study
	Empirical Illustration: Estimating the Effects of Institutions on Economic Output

	Conclusion
	References
	Proof of Theorem 1
	Proof of Theorems 2 and 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorems 7 and 8
	Additional computation details

