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Abstract

Conditional heteroskedasticity can be exploited to identify the structural vector

autoregressions (SVAR) but the implications for inference on structural impulse responses

have not been investigated in detail yet. We consider the conditionally heteroskedastic

SVAR-GARCH model and propose a bootstrap-based inference procedure on structural

impulse responses. We compare the finite-sample properties of our bootstrap method with

those of two competing bootstrap methods via extensive Monte Carlo simulations. We also

present a three-step estimation procedure of the parameters of the SVAR-GARCH model

that promises numerical stability even in scenarios with small sample sizes and/or large

dimensions.

KEY WORDS: Bootstrap; conditional heteroskedasticity; multivariate GARCH;

structural impulse responses; structural vector autoregression.
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1 Introduction

Identifying the structural vector autoregressive (SVAR) model is typically one of the crucial

issues in structural impulse response analysis. The existing literature offers a plethora of

different identification strategies; see Kilian and Lütkepohl (2017) for an excellent overview. A

recent strand of this literature exploits the presence of conditional heteroskedasticity for the

identification of the SVAR model; see e.g., Normandin and Phaneuf (2004), Lanne et al. (2010),

Bouakez and Normandin (2010) and Herwartz and Lütkepohl (2014).

The presence of conditional heteroskedasticity entails that the standard assumption of an

independent and identically distributed (i.i.d.) error process is no longer valid and needs to

be replaced by weaker assumptions on the error process, such as weak stationarity and serial

uncorrelatedness; see e.g., Lütkepohl and Milunovich (2016, p.242). Unfortunately, the deviation

from the common i.i.d. assumption invalidates inference on structural impulse responses which

is based on standard residual-based bootstrap methods; see e.g., the methods of Runkle (1987),

Kilian (1998a) and Kilian (1998b). Thus, confidence intervals that are based on these bootstrap

methods may lead to wrong conclusions.

Brüggemann et al. (2016) consider a conditionally heteroskedastic VAR model. However,

the asymptotic validity of their proposed moving-block bootstrap method is only proven

for structural impulse responses that are identified via an recursive ordering approach; see

Brüggemann et al. (2016, p.75). As of yet, it is unknown whether the validity of this moving-block

bootstrap also holds when the SVAR is identified by conditional heteroskedasticity. Moreover,

it turns out that there is no study that analyzes in detail the implications of identifying the

SVAR by conditional heteroskedasticity for inference on structural impulse responses.

This paper takes up the just mentioned issue, that is, the construction of confidence intervals

for the structural impulse responses in a conditionally heteroskedastic framework. We consider

a conditionally heteroskedastic SVAR model where the conditional heteroskedasticity is driven

by a multivariate generalized autoregressive conditional heteroskedastic (GARCH) process, that

is, the SVAR-GARCH model.

The contribution of this paper is twofold. First, we propose a new three-step estimation

procedure of the parameters of the SVAR-GARCH model. The proposed estimation procedure

exhibits numerical stability even in scenarios with small sample sizes and/or large dimensional

parameter spaces. In contrast, the existing estimation procedures, see e.g., Bouakez et al.

(2013, 2014) and Lütkepohl and Milunovich (2016), are prone to suffer from convergence

problems in these delicate scenarios because an integral part of these estimation procedures is

the Newton-type optimization of a likelihood function.

Second, we propose a bootstrap-based inference procedure for the structural impulse

responses in the SVAR-GARCH model. The proposed bootstrap procedure is based on

resampling (with replacement) of the devolatized residuals and incorporates the specific

GARCH structure of the conditional heteroskedasticity. In addition, we conduct a Monte

Carlo experiment to compare the finite-sample properties of our proposed method with the
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finite-sample properties of the bootstrap methods of Runkle (1987) and Brüggemann et al.

(2016).

The remainder of the paper is organized as follows. Section 2 reviews the SVAR-GARCH

model and presents details about the estimation procedure. Section 3 proposes a new bootstrap

method to obtain the bootstrap sampling distribution of the estimator of the structural impulse

response. Section 4 describes the competing bootstrap methods. Section 5 describes the

Monte Carlo experiment and presents the empirical results. Section 6 concludes. The Appendix

provides additional details about the estimation procedure, boxplots describing the finite-sample

properties of the various bootstrap methods and figures.

2 The Model

2.1 Some Preliminaries

Let {yt : t ∈ Z} be an m-dimensional stochastic process following a reduced-form VAR(p) model

A(L)yt = ν + ut , (1)

where yt ..= (y1,t, . . . , ym,t), A(L) ..= Im −
∑p

i=1AiL
i is a matrix polynomial in the backshift

operator L, the Ai are m×m coefficient matrices, Im is the m×m identity matrix and ν ∈ Rm

is a deterministic intercept. The reduced-form error process {ut : t ∈ Z} is weak white noise,

that is,

E [ut] = 0, E
[
utu
′
t

]
= Σu and E

[
utu
′
t+h

]
= 0 , (2)

for h 6= 0 and Σu ∈ Rm×m is positive definite1. Note that the common independence assumption

for the reduced-form process {ut : t ∈ Z} is replaced by the weaker assumption of zero serial

correlation. Moreover, it is assumed that the VAR coefficient matrices A1, . . . , Ap satisfy the

following stability condition

det (A(z)) 6= 0 for all z ∈ C with |z| ≤ 1 .

The stable reduced-form VAR(p) process in (1) exhibits an equivalent Wold vector moving

average (VMA) representation

yt = µ+ Ψ(L)ut ,

where µ ..= A(1)−1ν denotes the unconditional expectation of yt, Ψ(L) ..=
∑∞

i=0 ΨiL
i is an

(infinite) matrix polynomial in L and the Ψi matrices are determined via Ψ(z) = A(z)−1. In

particular, Ψ0 = Im and Ψs =
∑p

j=1 Ψs−jAj for s ∈ N>0.

1Following Francq and Räıssi (2007), a VAR process (1) with (strictly stationary and ergodic) weak white

noise is called a weak VAR(p) model.
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The structural VAR (SVAR) corresponding to (1) is given by

B(L)yt = B0ν +B0ut , (3)

where B(L) ..= B0A(L) and B0 ∈ Rm×m is a nonsingular linear mapping that transforms

the reduced-form error ut into the (instantaneously uncorrelated) structural error εt, that is,

εt ..= B0ut; see e.g., Kilian (2013). Thus, the structural error process {εt : t ∈ Z} satisfies

E [εt] = 0, E
[
εtε
′
t

]
= Σε and E

[
εtε
′
t+h

]
= 0 , (4)

for h 6= 0 and Σε ∈ Rm×m is diagonal and positive definite.

When the process {ut : t ∈ Z}, and hence also the process {εt : t ∈ Z}, is conditionally

heteroskedastic, it may be possible to identify B0 (or equivalently B−1
0 ) without imposing

additional identifying assumptions; see e.g., Lütkepohl and Netšunajev (2017) and the references

therein. In the present paper, we assume that the reduced-form process {ut : t ∈ Z} is given by

a conditionally heteroskedastic multivariate GARCH process. More specifically, it is assumed

that {ut : t ∈ Z} follows a Generalized Orthogonal GARCH (GO-GARCH) model à la van der

Weide (2002); the details are provided in the next section.

2.2 GO-GARCH Model

The assumption of a GO-GARCH model à la van der Weide (2002) implies that {ut : t ∈ Z}
can be represented as a nonsingular linear transformation of a process {εt : t ∈ Z} consisting of

m conditionally uncorrelated univariate GARCH(1,1) processes, that is,

ut = B−1
0 εt (5)

= B−1
0 H

1/2
t et , (6)

where Ht
..= diag(σ2

t,1, . . . , σ
2
t,m), the diagonal elements of Ht evolve according to the following

univariate GARCH(1,1) specification2

σ2
t,i = (1− αi − βi) + αiε

2
t−1,i + βiσ

2
t−1,i, αi, βi ≥ 0, αi + βi < 1 , (7)

and {et : t ∈ Z} is a sequence of i.i.d. random vectors with mutually independent components

et,i, i = 1, . . . ,m, having mean zero and unit variance, that is, E[et] = 0 and E[ete
′
t] = Im.

The structural error process {εt : t ∈ Z}, consisting of conditionally uncorrelated GARCH(1,1)

processes, is a martingale difference sequence and conditionally heteroskedastic with diagonal

conditional variance matrix Ht. Moreover, the process satisfies

E[εt] = 0, E[εtε
′
t] = Im and E[εtε

′
t+h] = 0 , (8)

for all h 6= 0. The unconditional variance of εt is restricted to the identity matrix because of

the normalization of the intercept in (7). This corresponds to the so-called B-normalization of

2See Bollerslev (1986) for more details about the univariate GARCH(p,q) process.
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SVAR models; see e.g. Lütkepohl (2005, Section 9.1). As is evident from (8), {εt : t ∈ Z} is

weakly stationary.

The reduced-form error process {ut : t ∈ Z} is a nonsingular nonlinear transformation of the

structural error process (which consists of separate GARCH(1,1) processes). Hence, the reduced-

form error process is also a martingale difference sequence and conditionally heteroskedastic

with non-diagonal conditional variance matrix B−1
0 HtB

−1′
0 . The unconditional first and second

moments are given by

E[ut] = 0, E[utu
′
t] = B−1

0 B−1′
0 and E[utu

′
t+h] = 0 , (9)

for all h 6= 0. Hence, {ut : t ∈ Z} is weakly stationary3. Moreover, (9) confirms that the

assumption of a GO-GARCH model for {ut : t ∈ Z} agrees with the assumption of weak white

noise in Section 2.1.

As noted by van der Weide (2002), the GO-GARCH model is nested in the more general

BEKK model of Engle and Kroner (1995). Therefore, Theorem 2.4 of Boussama et al. (2011,

p.2336), which concerns the properties of BEKK models, establishes strict stationarity and

ergodicity of {ut : t ∈ Z} under the parameter restrictions in (7) and the following two additional

assumptions: (i) the joint distribution of e1 is absolutely continuous with respect to the Lebesque

measure on Rm and (ii) the point zero is in the interior of the support of the joint distribution

of e1.

2.3 Identification

Structural impulse responses are as such partial derivatives ∂yt,i/∂εt−h,j , i, j ∈ {1, . . . ,m} ,
h ∈ N, and hence elements of the coefficient matrices ΨhB

−1
0 in the structural vector moving

average (VMA) representation of {yt : t ∈ Z}, that is,

yt = µ+

+∞∑
i=1

ΨiB
−1
0 εt−i , (10)

where µ = A(1)−1ν and εt = H
1/2
t et. A meaningful structural impulse response analysis requires

an identification result that makes the two factors in B−1
0 εt, and hence the partial derivative

∂yt,i/∂εt−h,j , (at least) locally unique.

Proposition 3 of Milunovich (2014, p.7) implies that, if there are at least r ≥ m − 1

nontrivial GARCH processes4 in the m-dimensional structural error process, the structural

VMA representation is unique apart from column permutations and sign changes of B−1
0 and

the components of εt. Thus, every structural VMA representation of {yt : t ∈ Z} that can be

3Alternatively, the weak stationarity of {ut : t ∈ Z} follows from the weak stationarity of {εt : t ∈ Z} and the

fact that ut = B−1
0 εt, t ∈ Z.

4 A nontrivial GARCH process exhibits a time-varying conditional variance, that is, the conditional variance

equation satisfies α̃ > 0 ∨ β̃ > 0, where α̃ and β̃ denote the parameters of the ARCH and the GARCH part,

respectively.
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written as

yt = µ+
+∞∑
i=1

ΨiB̆
−1
0 ε∗t−i , (11)

where B̆−1
0

..= B−1
0 DP and ε∗t

..= P ′D−1εt for some diagonal matrix D ..= diag(d1, . . . , dm) with

di ∈ {−1, 1} and some permutation matrix P ∈ Rm×m is observationally equivalent to the

representation in (10). The set of observationally equivalent structural VMA representations

can be characterized by

E
(
B−1

0

)
..=
{
B̆−1

0 ∈ Rm×m | B̆−1
0 = B−1

0 DP
}
, (12)

for all matrices D and P (as defined above). In other words, the set E
(
B−1

0

)
consists of all

matrices B̆−1
0 that are obtained by permutations and sign changes of the columns of B−1

0 .

Moreover, note that ε∗t = P ′D−1εt = P ′D−1H
1/2
t et (for some D and P ) implies that the vectors

of GARCH parameters α ..= (α1, . . . , αm)′ and β ..= (β1, . . . , βm)′ are also locally identified

because the pre-multiplication with P ′D−1 only affects the ordering of the GARCH processes.

The reordered GARCH parameter vectors that correspond to B̆−1
0 are denoted by ᾰ ..= P ′D−1α

and β̆ ..= P ′D−1β, respectively.

Remark 2.1. As outlined above, the number of nontrivial GARCH components r in εt is

critical for the local identification of B−1
0 , yet unknown in any practical application. Fortunately,

Lanne and Saikkonen (2007) and Lütkepohl and Milunovich (2016) provide statistical tests to

test the null hypothesis of r = r0 nontrivial GARCH components in εt versus the two-sided

alternative, that is, H0 : r = r0 versus H1 : r 6= r0. �

2.4 Estimation

2.4.1 Motivation

The model parameters are the reduced-form VAR parameters ν,A1, . . . , Ap, the transformation

matrix B−1
0 and the GARCH parameters α and β. The literature proposes different estimation

procedures. Bouakez et al. (2013, 2014) use a two-step procedure, that is, in the first step,

the VAR parameters ν,A1, . . . , Ap are estimated by multivariate least squares (LS) and in the

second step, the parameters associated with the GO-GARCH model, that is, B−1
0 , α, β, are

estimated by quasi-maximum likelihood (QML). Lütkepohl and Milunovich (2016) estimate

the model parameters by a QML procedure that is to a large extent based on the procedure

outlined in Lanne and Saikkonen (2007, p.64–65).

An integral part of both estimation procedures is the numerical optimization of a likelihood

function. Hence, in scenarios with small sample sizes and/or large dimensions, both methods can

be prone to numerical convergence problems5. Numerical instability is particularly problematic

5Hwang and Pereira (2006) report serious convergence problems of the QML estimator of a GARCH(1,1)

process in small sample sizes, and hence recommend to use at least 500 observations to estimate the model

parameters (by QML). The GO-GARCH model is a multivariate GARCH model and is expected to also suffer

from convergence problems in small sample sizes.
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in applications where the estimation procedure has to be repeatedly applied, such as bootstrap-

based inference. As a result, we propose a (partially) novel estimation procedure which is

numerically stable even in the delicate scenarios mentioned above.

We propose a three-step estimation procedure. The first step consists of the estimation of

the reduced-form VAR parameters ν,A1, . . . , Ap by standard LS. The second step consists of

the estimation of the parameter matrix B−1
0 using the method of moment (MM) estimation

procedure of GO-GARCH models proposed in Boswijk and van der Weide (2011). The

computation of the MM estimator of Boswijk and van der Weide does not involve any Newton-

type optimization of an objective function but involves only iterated matrix rotations, and

hence the procedure does not suffer from numerical convergence problems regardless of the

available sample size and the dimension. The third step consists of the estimation of the vectors

of GARCH parameters α and β using the least-squares estimator of Preminger and Storti

(2017) component-wise. The estimator of Preminger and Storti does involve Newton-type

optimization but simulation results (not reported here) suggest that, in small sample scenarios,

the least-squares estimator exhibits superior convergence properties compared to the standard

QML estimator of GARCH models. Moreover, the simulation results of Preminger and Storti

(2017) show that their least-squares estimator is competitive in terms of the root-mean-squared

error.

Remark 2.2. Kristensen and Linton (2006) proposes a closed-form estimator of the

GARCH(1,1) model which is based on the corresponding ARMA(1,1) representation. The

proposed closed-from estimator is attractive from a computational point of view, but the finite-

sample properties are by far inferior to the properties of the QML estimator; see Kristensen

and Linton (2006, p.334). �

Remark 2.3. For simplicity, it is assumed that the true lag order p ∈ N of the VAR is known.

In a practical application the true lag order is usually unknown and has to be determined from

the data; see e.g. Lütkepohl (2005, Chapter 4). In that case, the first estimation step consists

of the estimation of ν,A1, . . . , Ap̂, where p̂ denotes the estimated lag order. �

2.4.2 Three-Step Estimation Procedure

Estimation of the model parameters ν,A1, . . . , Ap, B
−1
0 , α and β in three steps.

(i) Estimation of ν,A1, . . . , Ap:

Using the original series {y−p+1, . . . , y0, y1, . . . , yT }, estimate the VAR coefficients

ν,A1, . . . , Ap by standard multivariate LS; see e.g. Lütkepohl (2005, Section 3) for

details. Denote the LS estimators by ν̂, Â1, . . . , Âp. Next, obtain the corresponding

residuals {û1, . . . , ûT } according to

ût ..= yt − v̂ − Â1yt−1 − . . .− Âpyt−p , t = 1, . . . , T .

7



(ii) Estimation of B−1
0 :

Using the residuals {û1, . . . , ûT } from the first step, estimate B−1
0 by the method of

moment procedure proposed in Boswijk and van der Weide (2011); see Appendix A for

details. Denote the resulting MM estimator by B̂−1
0 . Next, obtain the structural residuals

{ε̂1, . . . , ε̂T } according to

ε̂t ..= (B̂−1
0 )−1ût , t = 1, . . . , T .

(iii) Estimation of α, β:

Using the structural residuals {ε̂1, . . . , ε̂T } from the second step, estimate the GARCH

parameters α and β by the component-wise application of the least squares estimator

of Preminger and Storti (2017); see Appendix B for details. Denote the corresponding

estimators by α̂ ..= (α̂1, . . . , α̂m)′ and β̂ ..= (β̂1, . . . , β̂m)′, respectively.

The outlined three-step estimation procedure produces estimators of all parameters of the

model, that is, ν̂, Â1, . . . , Âp, B̂
−1
0 , α̂, β̂. However, the estimation of the model parameters per se

is only an intermediate step, as the objects of interest are the structural impulse responses.

It is well-known that the standard plug-in estimator of the (i, j)-th structural impulse

response at propagation horizon h ∈ N is a non-linear function of the VAR slope estimators

Â1, . . . , Âp and the matrix B̂−1
0 . However, the matrix B̂−1

0 may be replaced with an equivalent

matrix
ˆ̆
B−1

0 ∈ E(B̂−1
0 ) by the researcher; see e.g. Lütkepohl and Milunovich (2016, p.243) for

a discussion of this issue. Thus, the estimator of the (i, j)-th structural impulse response at

propagation horizon h is given by

Θ̂ij,h
..= fij,h

(
Â1, . . . , Âp,

ˆ̆
B−1

0

)
. (13)

2.4.3 Consistency of the Structural Impulse Response Estimator

The estimator Θ̂ij,h is a continuous function of Â1, . . . , Âp and
ˆ̆
B−1

0 for every i, j ∈ {1, . . . ,m}
and h ∈ N. Thus, by the continuous mapping theorem, the consistency of the estimators

Â1, . . . , Âp and
ˆ̆
B−1

0 is sufficient for the consistency of Θ̂ij,h.

Proposition 1 of Francq and Räıssi (2007, p.458) establishes the strong consistency of the

LS estimators ν̂, Â1, . . . , Âp of the parameters of a stable VAR(p) model under the assumption

of a strictly stationary and ergodic reduced-form error process {ut : t ∈ Z}. The GO-GARCH

model is strictly stationary and ergodic under mild regularity conditions (see Section 2.2) and

hence, under these regularity conditions, it holds that

vec(ν̂, Â1, . . . , Âp)
a.s.→ vec(ν,A1, . . . , Ap) as T →∞ , (14)

where
a.s.→ denotes almost sure convergence.

The MM estimator
ˆ̆
B−1

0 is based on the reduced-form residuals from the first estimation

step, that is, {û1, . . . ûT }, and not based on the unknown true errors {u1, . . . uT }. However, the

convergence (14) implies that ût
a.s.→ ut and Proposition 1 of Francq and Räıssi (2007, p.458)
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yields that Σ̂u
..= T−1

∑T
t=1 ûtû

′
t
a.s.→ Σu. As a consequence, the sample moments underlying

the estimator
ˆ̆
B−1

0 converge in probability to the identical population values as the estimator

that is based on {u1, . . . uT }. Thus, based on Theorem 1 in Boswijk and van der Weide (2011,

p.122), the consistency of
ˆ̆
B−1

0 is established under the following additional assumptions on the

process {εt : t ∈ Z}:

• E[ε4
t,i] < +∞, i = 1, . . . ,m.

• For some s ∈ N, the autocorrelations ρik ..= Corr(ε2
t,i, ε

2
t−k,i) satisfy

max
1≤k≤s

min
1<i≤j≤m

|ρik − ρjk| > 0 .

Remark 2.4. Boswijk and van der Weide (2011) consider a setup that allows for other more

general specifications of the conditional heteroskedasticity than the GO-GARCH model. For

that reason, their proof of consistency is based on a more extensive set of assumptions than the

one above. However, it is straightforward to see that the assumption of a GO-GARCH model

allows to narrow the set of required assumptions to establish consistency of the estimator. �

Remark 2.5. A necessary and sufficient condition for a finite fourth moment of a GARCH(1,1)

process is found in He and Teräsvirta (1999, p.827). Alternatively, for the special case of

et,i
i.i.d.∼ N (0, 1), a simpler (necessary and sufficient) condition for E[ε4

t,i] < +∞ is found in

Bollerslev (1986, p.311). �

The importance of the finite fourth moment assumption for the consistency of the structural

impulse response estimator (13) is analyzed by means of a simulation-based root mean squared

error (RMSE) analysis. More specifically, three different data generating processes (DGPs) are

considered from which two DGPs satisfy all assumptions required for consistency (DGP-1a

and DGP-1b) and one DGP that violates the finite fourth moment assumption (DGP-1c); see

Section 5.1 for more details. The results for Θ̂11,h, h ∈ {0, . . . , 12}, are found in Appendix D.

The analysis highlights the importance of the assumption of E[ε4
t,i] < +∞. For the two DGPs

with E[ε4
t,i] < +∞, the RMSE of the structural impulse response estimator is strictly decreasing

in the sample size and, for very large sample sizes, close to zero at all propagation horizons h.

In contrast, for the DGP that violates the assumption E[ε4
t,i] < +∞, the RMSE of the estimator

is only weakly decreasing. Moreover, for small propagation horizons h ∈ {0, 1, 2, 3}, the RMSE

is substantially away from zero even for a very large sample size of T = 5, 000.

3 Inference for Structural Impulse Responses

3.1 Motivation

We are interested in constructing a marginal bootstrap percentile confidence interval à la Hall

(1992) for the structural impulse response Θij,h at propagation horizon h ∈ {0, . . . ,H}. Such a
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percentile confidence interval for Θij,h with a nominal coverage probability of (1− α) ∈ (0, 1) is

given by

CIh,(1−α)
..=
[
Θ̂ij,h − q∗h,(1−α/2); Θ̂ij,h − q∗h,α/2

]
, (15)

where q∗h,(1−α/2) and q∗h,(α/2) are the (1−α/2)- and (α/2)-quantiles, respectively, of the bootstrap

sampling distribution (at propagation horizon h). Evidently, the confidence interval CIh,(1−α)

is derived under the usual bootstrap analogy, that is, the bootstrap sampling distribution

approximates the unknown true sampling distribution

L
(

Θ̂∗ij,h − Θ̂ij,h | y−p+1, . . . , y0, y1, . . . , yT

)
≈ L

(
Θ̂ij,h −Θij,h

)
, (16)

where L(X) denotes the distribution of a random variable X and Θ̂∗ij,h denotes the estimator

computed based on artificial bootstrap data
{
y∗−p+1, . . . , y

∗
0, y
∗
1, . . . , y

∗
T

}
. Hence, a bootstrap

procedure that satisfies (16) is expected to produce a confidence interval CIh,(1−α) that exhibits

an actual coverage probability that is close to the nominal coverage probability (1− α), and

therefore provides valid inference.

The deviation from i.i.d. reduced-form errors by specifying the reduced-form error process

as a conditionally heteroskedastic GO-GARCH model (see Section 2.2) entails that standard

bootstrap procedures, such as the procedures of Runkle (1987), Kilian (1998a) and Kilian

(1998b), may not result in a valid percentile confidence interval for Θij,h, even for very large

sample sizes. The reason being that these bootstrap procedures are based on resampling with

replacement from the empirical distribution of the reduced-form residuals, and hence the validity

of these procedures essentially relies on the underlying assumption of i.i.d. reduced-form errors.

Brüggemann et al. (2016) investigate, among other things, inference for structural impulse

responses in VAR models with conditional heteroskedasticity of unknown form and propose a

residual-based moving block bootstrap procedure in the spirit of Künsch (1989). However, the

authors prove the validity of their proposed moving block bootstrap only for structural impulse

responses which are identified via a standard recursive ordering approach6; see Corollary 5.2

of Brüggemann et al. (2016, p.75). Thus, their theoretical result does not directly apply to

structural impulse responses that are identified via the conditional heteroskedasticity of the

GO-GARCH model. The same concern applies to the results of the extensive Monte Carlo study

of Brüggemann et al. (2016). Moreover, we are not aware of a study that provides theoretical

or simulation-based results that are applicable in the present framework where the structural

impulse responses are identified via the conditional heteroskedasticity in the error process.

We propose a nonparametric bootstrap procedure that explicitly incorporates the GO-

GARCH structure of the reduced-form error process. In this way, the corresponding artificial

bootstrap data resembles the data generated from the true model, and hence the resulting

bootstrap sampling distribution is supposed to approximate the true sampling distribution,

at least for large sample sizes. Moreover, the proposed bootstrap procedure can be viewed as

6This means that B−1
0 is given as the lower-triangular Cholesky decomposition of Σu.
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a multivariate generalization of the bootstrap procedure for the univariate ARMA-GARCH

model outlined in Shimizu (2010, p.68–70).

The proposed bootstrap procedure is straightforward to implement, as it only requires the

availability of the following quantities: (i) the estimators of the model parameters, that is,

ν̂, Â1, . . . , Âp,
ˆ̆
B−1

0 , ˆ̆α and
ˆ̆
β; (ii) the corresponding series of residuals {û1, . . . , ûT }; and (iii) the

pre-sample of the original data {y−p+1, . . . , y0}.

3.2 Residual Bootstrap

The following bootstrap algorithm, subsequently referred to as the residual bootstrap, produces

the marginal percentile interval at each propagation horizon h ∈ {0, . . . ,H}.

a) For each component i = 1, . . . ,m, compute the estimated conditional variances according

to

σ̂2
t,i

..= (1− ˆ̆αi − ˆ̆
βi) + ˆ̆αiε̂

2
t−1,i +

ˆ̆
βiσ̂

2
t−1,i, t = 1, . . . , T ,

where the starting values are ε̂2
0,i

..= σ̂2
0,i = (1 − ˆ̆αi − ˆ̆

βi). Next, obtain the estimated

conditional variance matrices Ĥt
..= diag(σ̂2

t,1, . . . , σ̂
2
t,m), t = 1, . . . , T .

b) Compute the devolatized residuals êt ..= Ĥ
−1/2
t

ˆ̆
B0ût, t = 1, . . . , T . Next, center and

rescale the devolatized residuals according to

ĕt ..= Σ̂−1/2
e

(
êt − ¯̂e

)
, t = 1, . . . , T ,

where ¯̂e ..= T−1
∑T

t=1 êt and Σ̂e
..= T−1

∑T
t=1(êt − ¯̂e)(êt − ¯̂e)′.

c) For each component i = 1, . . . ,m, generate the univariate bootstrap sample
{
ε̂∗1,i, . . . , ε̂

∗
T,i

}
according to

ε̂∗t,i
..= σ̂∗t,iê

∗
t,i

σ̂∗2t,i
..= (1− ˆ̆αi − ˆ̆

βi) + ˆ̆αiε̂
∗2
t−1,i +

ˆ̆
βiσ̂
∗2
t−1,i ,

where ê∗t,i is a random draw with replacement from the (univariate) empirical distribution

of {ĕt,i}Tt=1. The starting values are ε̂∗20,i
..= σ̂∗20,i = (1− ˆ̆αi − ˆ̆

βi). Next, obtain the series of

bootstrap residuals {û∗1, . . . , û∗T } via u∗t
..=

ˆ̆
B−1

0 ε̂∗t , t = 1, . . . , T .

d) Generate the bootstrap sample {y∗1, . . . , y∗T } according to

y∗t
..= ν̂ + Â1y

∗
t−1 + . . .+ Âpy

∗
t−p + u∗t , t = 1, . . . , T ,

where the starting values are equal to the pre-sample of the original series {y−p+1, . . . , y0}.
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e) Compute the estimators ν̂∗, Â∗1, . . . , Â
∗
p and B̂−1∗

0 based on
{
y∗−p+1, . . . , y

∗
0, y
∗
1, . . . , y

∗
T

}
.

Replace B̂−1∗
0 with an equivalent matrix

ˆ̆
B−1∗

0 which satisfies

ˆ̆
B−1∗

0 ∈ arg min
B∈E(B̂−1∗

0 )

∥∥∥B − ˆ̆
B−1

0

∥∥∥
F
,

where ‖·‖F denotes the Frobenius norm; see Remark 3.1 for a comment. Next, compute

the bootstrap impulse response Θ̂∗ij,h
..= fij,h

(
Â∗1, . . . , Â

∗
p,

ˆ̆
B−1∗

0

)
.

f) Repeat steps b) to d) B times and obtain the empirical bootstrap sampling distribution{
Θ̂∗ij,h,b − Θ̂ij,h

}B
b=1

for each propagation horizon h ∈ {0, . . . ,H}. Determine the marginal

percentile intervals by [
Θ̂ij,h − q̃∗h,(1−α/2); Θ̂ij,h − q̃∗h,α/2

]
,

where q̃∗h,(1−α/2) and q̃∗h,α/2 are the empirical (1− α/2)- and (α/2)-quantiles, respectively,

of
{

Θ̂∗ij,h,b − Θ̂ij,h

}B
b=1

.

Remark 3.1. The replacement of B̂−1∗
0 with

ˆ̆
B−1∗

0 in step e) of the residual bootstrap ensures

that the bootstrap structural impulse response estimator Θ̂∗ij,h is computed based on the

particular matrix
ˆ̆
B−1∗

0 ∈ E(B̂−1∗
0 ) that is closest to the matrix

ˆ̆
B−1

0 which is at the basis

of the structural impulse response estimator Θ̂ij,h. In this way, the particular bootstrap

VMA representation (characterized by
ˆ̆
B−1∗

0 ) is selected that is most similar to the VMA

representation characterized by
ˆ̆
B−1

0 . �

We also consider a modified version of the residual bootstrap procedure. The modified

version, subsequently referred to as the symmetrized residual bootstrap, is obtained by the

following modification in step c): ê∗t,i is a random draw with replacement from the empirical

distribution of the symmetrized series {ẽ1,i, . . . , ẽ2T,i} ..= {±ĕ1,i, . . . ,±ĕT,i} of length 2T instead

of the empirical distribution of {ĕ1,i, . . . , ĕT,i} as in the residual bootstrap; see Appendix C for

details.

The modification serves the purpose to ensure that the empirical skewness of {ẽ1,i, . . . , ẽ2T,i}
is zero. Furthermore, note that the first and the second empirical moment of {ẽ1,i, . . . , ẽ2T,i} is

equal to zero and one, respectively, due to the preceding centering and rescaling in step b). Thus,

in scenarios where the true distribution of et,i is symmetric around zero (e.g. et,i ∼ N (0, 1)),

and hence exhibits a skewness of zero7, the empirical distribution of {ẽ1,i, . . . , ẽ2T,i} matches

not only the first and the second moment but also the skewness of the true distribution of et,i.

Eventually, this modification results in improved finite-sample properties of the corresponding

confidence intervals in these scenarios.

7Here, we tacitly assume that E[e3t,i] < +∞.
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4 Competing Methods

In order to assess the finite-sample performance of the residual bootstrap and the symmetrized

residual bootstrap, we compare their finite-sample properties with two competing procedures:

(i) the standard i.i.d. bootstrap originally proposed by Runkle (1987) and (ii) the moving-block

bootstrap proposed in Brüggemann et al. (2016). In the following, the two competing procedures

are briefly outlined.

4.1 I.i.d. Bootstrap

a) Generate the bootstrap sample {y∗1, . . . , y∗T } according to

y∗t
..= ν̂ + Â1y

∗
t−1 + . . .+ Âpy

∗
t−p + ũ∗t , t = 1, . . . , T ,

where ũ∗t is a random draw with replacement from the empirical distribution of the

centered and rescaled (reduced-form) residuals8. The starting values are equal to the

pre-sample of the original series {y−p+1, . . . , y0}.

b) identical to step e) of the residual bootstrap.

c) identical to step f) of the residual bootstrap.

4.2 Moving-Block Bootstrap

a) Choose a block length l < T and let N ..= dT/le denote the number of blocks. Define

Bi,l ..= (ûi+1, . . . , ûi+l) , i = 0, . . . , T − l and let i1, . . . , iN be i.i.d. random variables

uniformly distributed on the set {0, 1, . . . , T − l}. Obtain {û∗1, . . . , û∗T } by laying blocks

Bi1,l, . . . , BiN ,l end-to-end together and discard the last Nl − T observations.

b) Center {û∗1, . . . , û∗T } according to

ŭ∗jl+s
..= û∗jl+s −

1

T − l + 1

T−l∑
r=0

ûs+r , t = 1, . . . , T , (17)

for s = 1, 2, . . . , l and j = 0, 1, 2, . . . , N − 1.

c) Generate the bootstrap sample {y∗1, . . . , y∗T } according to

y∗t
..= ν̂ + Â1y

∗
t−1 + . . .+ Âpy

∗
t−p + ŭ∗t , t = 1, . . . , T ,

where the starting values are equal to the pre-sample of the original series {y−p+1, . . . , y0}.

d) identical to step e) of the residual bootstrap.

e) identical to step f) of the residual bootstrap.

8The centering and rescaling is carried out as suggested in Stine (1987).
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In the Monte Carlo simulations, the block lengths are given by l ∈ {10, 20, 50, 75, 200} for

sample sizes T ∈ {100, 250, 500, 1000, 5000}. For T ∈ {500, 5000}, the block lengths are as in

Brüggemann et al. (2016). The sample sizes T ∈ {100, 250, 1000} are not considered in their

study, and hence the block lengths are found via interpolation.

5 Monte Carlo Simulation

5.1 Data Generating Processes

We consider the following bivariate model from Brüggemann et al. (2016), that is,

DGP-1 yt = A1yt−1 +A2yt−2 +B−1
0 εt , (18)

where

A1
..=

(
0.40 0.60

−0.10 1.20

)
, A2

..=

(
−0.20 0.00

−0.20 −0.10

)
and B−1

0
..=

(
1.00 0.00

0.50
√

0.75

)
.

The moduli of the roots of the characteristic polynomial of the VAR are given by 1.08, 2.78,

and 5.98, which implies moderate persistence of the process {yt : t ∈ Z}. The following set of

different GARCH(1, 1) specifications for the two components of {εt : t ∈ Z} are considered

a) (α1, β1)′ = (0.10, 0.80)′; (α2, β2)′ = (0.20, 0.65)′,

b) (α1, β1)′ = (0.10, 0.80)′; (α2, β2)′ = (0.085, 0.90)′,

c) (α1, β1)′ = (0.095, 0.90)′; (α2, β2)′ = (0.25, 0.65)′,

where the specific variants of DGP-1 will be denoted by DGP-1i, i ∈ {a, b, c}, depending on

the specific choice of the GARCH specification.

The following two univariate distributions for the (mutually independent) components of

the i.i.d. process {et : t ∈ Z} are considered:

• et,i ∼ N (0, 1), standard normal distribution.

• et,i ∼ 3
5 t5, t-distribution with 5 degrees of freedom, scaled to have variance 1.

Under DGP-1a, the persistence of the GARCH processes, measured by αi + βi, is given

by 0.90 and 0.85, respectively which implies only moderate persistence. For both considered

distributions of et,i, DGP1a implies a consistent estimator Θ̂ij,h of the structural impulse

responses. Under DGP-1b, the persistence is given by 0.90 and 0.985, respectively. Similarly

to DGP-1a, DGP-1b implies a consistent estimator Θ̂ij,h for both distributions of et,i. Under

DGP-1c, the persistence of the GARCH processes is given by 0.995 and 0.90, respectively. The

first component of εt does not have a finite fourth moment (for both distributions of et,i) and

hence the assumptions underlying the consistency of Θ̂ij,h are violated. Hence, this DGP is

included to investigate the sensitivity of the bootstrap procedure from deviations of the finite

fourth moment assumption.
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5.2 Simulation Parameters and Performance Evaluation

Data samples of length T ∈ {100, 250, 500, 1000, 5000} are generated and the maximum

propagation horizon is H = 12. The nominal confidence level of the marginal confidence

bands is 90%. The number of bootstrap replications is B = 1000 throughout and the number of

Monte Carlo replications is 1000. The finite-sample performance of the confidence intervals is

evaluated by the empirical coverage rate and the empirical length. In particular, the empirical

empirical coverage rate is computed in the usual way as

ECij,h ..=
1

1000

1000∑
m=1

1{Θij,h∈ CIij,h,m} ,

where CIij,h denotes the marginal confidence interval for Θij,h and 1{A} denotes the indicator

function of an event A. The empirical length is computed as

Lij,h ..=
1

1000

1000∑
m=1

(uij,h,m − lij,h,m) ,

where uij,h,m denotes the upper bound of the marginal confidence interval for Θij,h and lij,h,m

denotes the corresponding lower bound.

5.3 Results

The boxplots summarizing the performance of the four different bootstrap methods across

different scenarios are found in Appendices E, F and G. The tables with the simulation results

(empirical coverage rates and empirical lengths) are available from the authors upon request.

The main conclusions are as follows:

• Under DGP-1a with et,i ∼ N (0, 1) and T = 100, the empirical coverage rates of the

confidence intervals based on the residual bootstrap exhibit a large dispersion among

propagation horizons h and impulse responses ranging from 63.60% to 96.90%. Yet,

increasing the sample size T results in a substantial reduction in the coverage bias and

its dispersion. For T = 5000, the range of the coverage rates of the confidence intervals is

given by 86.90% to 96.00%. Heavy-tailed GARCH errors, that is, et,i ∼ 3
5 t5, increase the

coverage bias of the residual bootstrap especially for T ∈ {1000, 5000}.

The higher persistence in the GARCH process of εt,2 in DGP-1b has an overall negative

effect on the coverages rates of the intervals based on the residual bootstrap, but the

negative effect is more pronounced for impulse responses where the shock occurs in the

second variable, that is, Θ12,h and Θ22,h. For T = 100 and et,i ∼ N (0, 1), the coverage

rates range from 36.90% to 93.50%. The negative coverage bias of the residual bootstrap

is decreasing in the sample size T but even with T = 5000 the range of the coverage

rates is 77.10% to 96.40%. The heavy-tailed GARCH errors (et,i ∼ 3
5 t5) result in larger

coverage biases for all sample sizes, where the negative effect is more pronounced than

under the less persistent DGP-1a.
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The non-finite fourth moment of εt,1 in DGP-1c has also an overall negative effect on

the coverage rates of the residual bootstrap. The strongest effect is on the intervals for

Θ11,0 and Θ11,1. For T = 100 and et,i ∼ N (0, 1), the coverage rates for Θ11,0 and Θ11,1

are 4.40% and 27.80%, respectively, whereas the remaining coverage rates range from

61.00% to 95.30%. The effect of an increase in the sample size T is ambiguous; increasing

the sample size to T ∈ {250, 500} results in a overall reduction of the coverage bias of the

confidence intervals, but after that, a further increase to T ∈ {1000, 5000} results either

in nearly no improvement or even in a deterioration of the performance (compared to the

T = 500 scenario). Similarly to DGP-1a and DGP-1b, heavy-tailed GARCH errors result

in an increase in the coverage bias.

• Overall, the symmetrized residual bootstrap exhibits a very similar performance as

the residual bootstrap. Hence, the symmetrized residual bootstrap is not capable

of systematically outperforming the residual bootstrap, although both considered

distributions of et,i are symmetric around zero.

• Under DGP-1a with et,i ∼ N (0, 1) and T = 100, similar to the residual bootstrap, the

empirical coverage rates of the confidence intervals based on the i.i.d. bootstrap exhibit

a large dispersion among propagation horizons h and impulse responses ranging from

63.40% to 96.70%. Increasing the sample size T results in higher empirical coverage

rates of the intervals based on the i.i.d. bootstrap. For T = 5000, the coverages rates

range between 79.80% and 99.30%, however, the majority of confidence intervals exhibit

coverages rates above the nominal level of 90%. The effect of heavy-tailed GARCH errors

is drastic; the confidence intervals for 42 (out of 52) impulse responses exhibit a lower

coverage rate with T = 5000 than with T = 100.

Under DGP-1b, the performance of the i.i.d. bootstrap is basically similar to DGP-1a

except that the dispersion of the coverage rates among the propagation horizons and the

structural impulse responses is more pronounced. For T = 100 and et,i ∼ N (0, 1), the

coverage rates range between 36.30% and 92.40% and with T = 5000, the range is still

given by 62.90% to 100.00%. The effect of heavy-tailed GARCH errors is again disastrous.

Even for the very large sample size T = 5000, the coverage rates of the intervals based on

the i.i.d bootstrap vary between 32.00% and 79.20%.

The violation of the finite fourth moment assumption (DGP-1c) exhibits an overall

negative effect on the confidence intervals based on the i.i.d. bootstrap. Similar to the

residual bootstrap, the intervals for Θ11,0 and Θ11,1 are the most affected with coverage

rates of 3.3% and 30.50% for T = 100 and et,i ∼ N (0, 1). Moreover, the behavior of the

coverage rates depending on the sample size is erratic; for some impulse responses the

coverage rate of the corresponding interval is increasing in the sample size and for others

the coverage rate is indeed decreasing in the sample size. Heavy-tailed GARCH errors

result in an overall performance that is decreasing with the sample size T .
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• Under DGP-1a with et,i ∼ N (0, 1) and T = 100, the empirical coverage rates of the

confidence intervals based on the moving block bootstrap also exhibit a large dispersion

among propagation horizons h and impulse responses ranging from 61.00% to 92.00%.

The overall coverage bias is decreasing for sample sizes T ∈ {250, 500, 1000} but a further

increase to T = 5000 exhibits an ambiguous effect on the coverage rates of the moving

block bootstrap. For T = 5000, the range of the coverage rates is given by 76.70% to

89.90%. Heavy-tailed GARCH errors result in a downward shift of the coverage rates of

the confidence intervals based on the moving block bootstrap; for T = 5000, the coverage

rates vary between 70.00% and 87.00%.

The higher persistence of DGP-1b results in higher coverage biases and more dispersion. For

T = 100 and et,i ∼ N (0, 1), the coverage rates of the intervals based on the moving-block

bootstrap are between 38.40% and 89.30%. Similar to DGP-1a, the overall performance

continuously improves only for T ∈ {250, 500, 1000}. For T = 5000, the coverage rates

range between 75.50% and 89.10%. Heavy-tailed GARCH errors increase the bias and

the dispersion of the intervals based on the moving block bootstrap.

Under DGP-1c, the violation of the finite fourth moment assumption exhibits an overall

negative effect on the intervals based on the moving block bootstrap. Similar to the

residual and the i.i.d. bootstrap, the intervals for Θ11,0 and Θ11,1 are the most affected

with coverage rates of 2.70% and 26.20%, respectively for T = 100 and et,i ∼ N (0, 1).

The effect of an increasing sample size is ambiguous and depends on the particular

impulse response under consideration. For T = 5000, the range of the coverage rates is

51.10% to 87.90%. Again, the heavy-tailed GARCH errors result in a deterioration of the

performance of the confidence intervals based on the moving block bootstrap.

• The confidence intervals based on the residual bootstrap exhibits the smallest absolute

deviation from the nominal level in 1188 out of the 1560 scenarios. The intervals based

on the i.i.d. bootstrap and the moving block bootstrap exhibit the smallest absolute

deviation in only 199/1560 and 173/1560 scenarios, respectively9. Hence, the residual

bootstrap exhibits the best overall performance in terms of the coverage bias.

• For the small sample size T = 100, neither of the bootstrap methods is capable of reliably

producing a bootstrap sampling distribution that constitutes a good approximation of the

true sampling distribution. Hence, the resulting confidence intervals eventually understate

the actual estimation uncertainty; see Appendix H for an analysis of the bootstrap

sampling distributions as a function of the sample size.

• The results of the Monte Carlo simulations confirm the result from Brüggemann et al.

(2016) that the presence of heteroskedasticity substantially increases the estimation

uncertainty.

9The symmetrized residual bootstrap is omitted in this comparison because it is a modification of the residual

bootstrap.
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6 Conclusion

A recent strand of the literature exploits conditional heteroskedasticity to identify the structural

vector autoregressions. However, the implications for inference on structural impulse responses

have not been investigated in the literature yet.

In this paper, we have considered the conditionally heteroskedastic SVAR-GARCH model.

We have proposed (i) an estimation procedure of the model parameters that offers numerical

stability even in small sample and/or high dimension scenarios and (ii) a bootstrap procedure

to construct marginal percentile confidence intervals for structural impulse responses.

By means of a Monte Carlo simulation, we have compared the finite-sample properties of

our proposed bootstrap method to those of two benchmarking methods: the i.i.d. bootstrap of

Runkle (1987) and the moving block bootstrap of Brüggemann et al. (2016). The confidence

intervals based on our proposed bootstrap method exhibits the best overall performance.

Nevertheless, the intervals may understate the estimation uncertainty by a substantial amount

especially in small samples.
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A Method-of-Moment Estimator of GO-GARCH Models

The following algorithm describes the computation of the method of moment estimator B̂−1
0

outlined in Boswijk and van der Weide (2011) based on the series of reduced-form residuals

{û1, . . . , ûT }.

1. Based on {û1, . . . , ûT }, estimate the unconditional variance matrix Σ̂u
..= T−1

∑T
t=1 ûtû

′
t

and obtain its symmetric square root Ŝ. Next, compute the standardized series st ..= Ŝ−1ût,

t = 1, . . . , T .

2. Obtain the matrix-valued series St ..= sts
′
t − Im, t = 1, . . . , T , and the sample auto-

covariance matrices Γ̂(k) ..= T−1
∑T

t=1 StSt−k, k = 1, . . . , k̃. Next, obtain the sample

auto-correlation matrices

Φ̂(k) ..= Γ̂(0)−1/2Γ̂(k)Γ̂(0)−1/2 , k = 1, . . . , k̃ ,

where Γ̂(0)−1/2 denotes the symmetric square root of Γ̂(0)−1. Next, obtain the symmetrized

sample auto-correlation matrices Φ̃(k) ..= 1
2(Φ̂(k) + Φ̂(k)′), k = 1, . . . , k̃.

3. The estimator Û is then obtained by minimizing the following objective function

S(U) ..=

k̃∑
k=1

tr
(
U ′Φ̃(k)U − diag(U ′Φ̃(k)U)

)′
× tr

(
U ′Φ̃(k)U − diag(U ′Φ̃(k)U)

)
,

over all orthogonal matrices U , where tr(·) denotes the trace operator. The solution to the

minimization problem is obtained via the F-G algorithm of Flury and Gautschi (1986).

4. Compute the estimator B̂−1
0

..= ŜÛ .

B Least-Squares Estimator of Univariate GARCH(1,1) Models

The following algorithm describes the computation of the least-squares estimator (α̂i, β̂i)
′

outlined in Preminger and Storti (2017) of the i-th GARCH process based on the series of

structural errors {ε̂1,i, . . . , ε̂T,i}.

1. Using the univariate series {ε̂1,i, . . . , ε̂T,i}, estimate the GARCH parameters (αi, βi)
′ via

the quasi-maximum tail-trimmed likelihood (QMTTL) estimator of Hill (2015, p.7); see

Remark B.1. Obtain the corresponding devolatized residuals êt,i ..= ε̂1,i/σ̂t,i, t = 1, . . . , T ,

where σ̂t,i denotes the estimate based on the QMTTL estimator. Next, compute

ĉT ..=
1

T

T∑
t=1

log
(
ê2
t,i

)
.
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2. The least-squares estimator (α̂i, β̂i) of Preminger and Storti (2017) is then obtained by

minimizing the following objective function

QT (α̃, β̃; ĉT ) ..=
1

T

T∑
t=1

(
log(ε̂2

t,i)− ĉT − log(σ̂2
t,i(α̃, β̃))

)2
,

that is, (α̂i, β̂i) ..= arg min
(α̃,β̃)′∈Θ

QT (α̃, β̃; ĉT ).

Remark B.1. Preminger and Storti (2017) use the standard quasi-maximum likelihood

estimator (α̂QML
i , β̂QML

i )′ in the first step instead of the QMTTL estimator of Hill (2015).

We replaced the standard QML estimator with the QMTTL estimator of Hill (2015) because the

aforementioned estimator enjoys improved convergence properties in small samples compared

to the standard QML estimator.

C Symmetrized Residual Bootstrap

a) identical to the residual bootstrap.

b) identical to the residual bootstrap.

c) For each component i = 1, . . . ,m, generate the univariate bootstrap sample
{
ε̂∗1,i, . . . , ε̂

∗
T,i

}
according to

ε̂∗t,i = σ̂∗t,iê
∗
t,i

σ̂∗2t,i = (1− ˆ̆αi − ˆ̆
βi) + ˆ̆αiε̂

∗2
t−1,i +

ˆ̆
βiσ̂
∗2
t−1,i ,

where ê∗t,i is a random draw with replacement from the univariate empirical distribution

of the symmetrized series {ẽ1,i, . . . , ẽ2T,i} ..= {±ĕ1,i, . . . ,±ĕT,i} of length 2T . The starting

values are ε̂∗20,i = σ̂∗20,i = (1 − ˆ̆αi − ˆ̆
βi). Next, obtain the series of bootstrap residuals

{û∗1, . . . , û∗T } via u∗t =
ˆ̆
B−1

0 ε̂∗t , t = 1, . . . , T .

d) identical to the residual bootstrap.

e) identical to the residual bootstrap.

f) identical to the residual bootstrap.
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Figure D.1: Root mean squared error (RMSE) of Θ̂11,h for propagation horizons h ∈ {0, . . . , 12}
with T ∈ {100, 250, 500, 1000, 5000} based on 10,000 Monte Carlo repetitions.
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Figure E.1: Boxplots of the empirical coverages across all impulse responses and all propagation

horizons (52 parameter constellations in total) of nominal 90% marginal confidence intervals for

T ∈ {100, 250, 500, 1000, 5000}. The first row corresponds to et,i
i.i.d.∼ N (0, 1) and the second

row corresponds to et,i
i.i.d.∼ 3

5 t5.
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Figure E.2: Boxplots of the empirical lengths across all impulse responses and all propagation

horizons (52 parameter constellations in total) of nominal 90% marginal confidence intervals for

T ∈ {100, 250, 500, 1000, 5000}. The first row corresponds to et,i
i.i.d.∼ N (0, 1) and the second

row corresponds to et,i
i.i.d.∼ 3

5 t5.
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Figure F.1: Boxplots of the empirical coverages across all impulse responses and all propagation

horizons (52 parameter constellations in total) of nominal 90% marginal confidence intervals for

T ∈ {100, 250, 500, 1000, 5000}. The first row corresponds to et,i
i.i.d.∼ N (0, 1) and the second

row corresponds to et,i
i.i.d.∼ 3

5 t5.
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Figure F.2: Boxplots of the empirical lengths across all impulse responses and all propagation

horizons (52 parameter constellations in total) of nominal 90% marginal confidence intervals for

T ∈ {100, 250, 500, 1000, 5000}. The first row corresponds to et,i
i.i.d.∼ N (0, 1) and the second

row corresponds to et,i
i.i.d.∼ 3

5 t5.
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Figure G.1: Boxplots of the empirical coverages across all impulse responses and all propagation

horizons (52 parameter constellations in total) of nominal 90% marginal confidence intervals for

T ∈ {100, 250, 500, 1000, 5000}. The first row corresponds to et,i
i.i.d.∼ N (0, 1) and the second

row corresponds to et,i
i.i.d.∼ 3

5 t5.
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Figure G.2: Boxplots of the empirical lengths across all impulse responses and all propagation

horizons (52 parameter constellations in total) of nominal 90% marginal confidence intervals for

T ∈ {100, 250, 500, 1000, 5000}. The first row corresponds to et,i
i.i.d.∼ N (0, 1) and the second

row corresponds to et,i
i.i.d.∼ 3

5 t5.
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Figure H.1: The simulated density of the sampling distribution Θ̂11,3 −Θ11,3 (solid line) versus

the simulated density of the bootstrap sampling distribution Θ̂∗11,3 − Θ̂11,3 (dashed line) using

the residual bootstrap. Both densities are estimated with the Epanechnikov kernel and based

on 2’000 simulated observations. The first column corresponds to DGP-1a, the second column

to DGP-1b and the third column to DGP-1c.
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Figure H.2: The simulated density of the sampling distribution Θ̂11,3 −Θ11,3 (solid line) versus

the simulated density of the bootstrap sampling distribution Θ̂∗11,3 − Θ̂11,3 (dashed line) using

the symmetrized residual bootstrap. Both densities are estimated with the Epanechnikov kernel

and based on 2’000 simulated observations. The first column corresponds to DGP-1a, the

second column to DGP-1b and the third column to DGP-1c.
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Figure H.3: The simulated density of the sampling distribution Θ̂11,3 −Θ11,3 (solid line) versus

the simulated density of the bootstrap sampling distribution Θ̂∗11,3 − Θ̂11,3 (dashed line) using

the i.i.d. bootstrap. Both densities are estimated with the Epanechnikov kernel and based on

2’000 simulated observations. The first column corresponds to DGP-1a, the second column to

DGP-1b and the third column to DGP-1c.
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Figure H.4: The simulated density of the sampling distribution Θ̂11,3 −Θ11,3 (solid line) versus

the simulated density of the bootstrap sampling distribution Θ̂∗11,3 − Θ̂11,3 (dashed line) using

the moving block bootstrap. Both densities are estimated with the Epanechnikov kernel and

based on 2’000 simulated observations. The first column corresponds to DGP-1a, the second

column to DGP-1b and the third column to DGP-1c.
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