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Voluntary Disclosure in Unfair Contests*
Christian Ewerhart† Julia Grünseis‡

February 13, 2018

Abstract This paper studies incentives for the interim voluntary disclosure of ver-

ifiable information in probabilistic all-pay contests. Considered are unfair contests,

i.e., contests in which, subject to activity conditions, one player (the favorite) is in-

terim always more likely to win than the other player (the underdog). A condition

is identified that ensures that a given contest is unfair regardless of disclosure deci-

sions. Under this condition, full revelation is the unique perfect Bayesian equilibrium

outcome of the contest with pre-play communication. This is so because the weakest

type of the underdog will try to moderate the favorite, while the strongest type of

the favorite will try to discourage the underdog– so that the contest unravels. We

also show that self-disclosure may, with positive probability, provoke unintended re-

actions, i.e., “dominant”or “defiant”behavior. Moreover, while individually rational

for the marginal type, the unraveling may be strictly Pareto inferior from an ex-ante

perspective. Our main conclusion is just the opposite of the corresponding finding for

the deterministic all-pay auction. The proofs employ lattice-theoretic methods and

an improved version of Jensen’s inequality.
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1. Introduction

The economics literature has a long tradition of studying incentives for the voluntary

disclosure of private information. Seminal contributions by Grossman (1981) and

Milgrom (1981) considered markets with quality uncertainty in which buyers derive

their beliefs from verifiable information. In this type of environment, a product that

is not certified will be perceived to be of average quality only. Therefore, in the

absence of countervailing forces or alternative channels of communication, a seller

would find it optimal to disclose any verifiable information that provides evidence

of above-average quality. But since this is anticipated by the buyers, the perceived

quality of uncertified products will decline further. As a result, there is an unraveling

process that may ultimately force all sellers to disclose their private information.

Since its inception, this disclosure principle has been gradually refined and extended

through a large number of contributions.1

However, all-pay contests do not satisfy existing conditions suffi cient for the dis-

closure principle in the strong form, according to which any perfect Bayesian (or

sequential) equilibrium entails full revelation.2 The purpose of the present paper is

it to extend the strong-form disclosure principle to a large class of probabilistic con-

tests. Clearly, there are forces that favor disclosure in contests. After all, if a player

is relatively strong, then there should be, at least in some cases, a strict benefit from

letting the weaker opponent know about this. Indeed, with the information revealed,

the contest should become more lopsided, which would make it easier for the stronger

player to win. Conversely, a relatively weak player might want to inform the oppo-

1See, for instance, Verrecchia (1983), Dye (1985), Okuno-Fujiwara et al. (1990), Seidman and
Winter (1997), Benoît and Dubra (2006), Giovannoni and Seidman (2007), Van Zandt and Vives
(2007), and Hagenbach et al. (2014). Surveys of the literature can be found in Milgrom (2008) and
Dranove and Jin (2010).

2The main complication is that best-response mappings are not monotone in a contest. Cf. Denter
et al. (2014) and Kovenock et al. (2015). For an introduction to the burgeoning literature on all-pay
contests, see Konrad (2009).
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nent that the battle will be excessively unequal, thereby inducing the stronger player

to choose a more moderate strategy.3 While these effects (especially the first) might

look familiar, their significance for the scope of the disclosure principle has apparently

been overlooked so far.

In this paper, we extend the standard model of a probabilistic contest (Rosen,

1986; Dixit, 1987) by allowing for pre-play communication of verifiable information

(Okuno-Fujiwara et al., 1990; Van Zandt and Vives, 2007; Hagenbach et al., 2014).

The contestants are assumed to differ in their marginal cost of effort, which is pri-

vate information to them. However, at a stage preceding the contest, any player

may interim, i.e., subsequent to having observed her type, choose to disclose that

information to her opponent. The focus of the present paper lies on contests that

are unfair in the sense that there is one player that, subject to activity, is interim

always strictly more likely to win than the other player.4 We identify a condition

that guarantees that the contest stage ensuing the pre-play exchange of information

is unfair regardless of players’disclosure decisions. As will be discussed, this condition

is consistent with both asymmetric technologies (e.g., O’Keeffe et al., 1984; Meyer,

1992; Feess et al., 2008; Epstein et al., 2013; Franke et al., 2014) and heterogeneous

type distributions (e.g., Amann and Leininger, 1996; Maskin and Riley, 2000).

In this type of framework, we evaluate the incentives of individual types of each

player to voluntarily disclose their private information. Moreover, we characterize the

unique perfect Bayesian equilibrium outcome of the resulting two-stage game. Our

3Real-world examples of such disclosure include, for instance, weapon tests (Beardsley and Asal,
2009), witness intimidation (Maynard, 1994), bragging (Alfano and Robinson, 2014), and acts of
supplication (Pedrick, 1982; van Kleef et al., 2006). It is conceded that in some of these examples,
misrepresentation may be possible to some degree, and that verifiability may be costly to some extent.
However, since the incentives that we identify are all strict, this does not generally invalidate our
analysis.

4The focus on unfair contests is motivated by the fact, established below, that the strong-form
disclosure principle may fail in ex-ante symmetric contests.
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main result says that, provided that the contest stage is unfair in the sense discussed

above, the only outcome of the revelation game consistent with the assumption of

perfect Bayesian rationality is the one in which all the privately held information

is unfolded prior to the contest. Thus, we find general conditions under which the

strong-form disclosure principle applies to a standard contest setting.

Figure 1. Best-response curves in an asymmetric contest of complete information.

The analysis revisits Dixit’s (1987, p. 893) observation that, in an asymmetric con-

test of complete information, the player more likely to win, the so-called favorite, has

a best-response function that is locally strictly increasing at the equilibrium, whereas

the player less likely to win, the so-called underdog, has a best-response function that

is locally strictly declining at the equilibrium. For example, in Figure 1, at the equi-

librium (x◦1, x
◦
2), player 1’s best-response function β1 ≡ β1(x2) is strictly increasing,

while player 2’s best-response function β2 ≡ β2(x1) is strictly declining. We extend

Dixit’s (1987) observation to a setting with incomplete information. Thus, also in

our setting, there will be a favorite whose best-response mapping is locally strictly

increasing at the equilibrium, and an underdog whose best-response mapping is lo-

cally strictly declining at the equilibrium. There is, however, an important difference.

4



Specifically, with incomplete information, strategy spaces are multi-dimensional lat-

tices, reflecting the fact that each type of a given player may choose a different effort

level.

While the proof of the unraveling result is not entirely straightforward, there is

a simple story. Specifically, in view of the high effort level to be expected from an

uninformed favorite, the weakest type of the underdog will have a strict incentive

to self-disclose, so as to moderate the favorite. But given that this is anticipated,

any silent types of the underdog will be confronted with an even higher effort of the

favorite. The weakest of those remaining types will therefore choose to disclose her

type, and so on. Thus, there is an unraveling of the underdog’s side. However, in the

resulting contest with one-sided incomplete information, the unraveling continues on

the side of the favorite. Indeed, the respective strongest type of the favorite has a

strict incentive to self-disclose, so as to discourage the underdog. In the end, there is

necessarily full revelation of all private information.

A central part of our analysis examines the monotone comparative statics of the

contest stage with respect to changes in the information structure. For this, we draw

on intuitions suggested by recent work on parameterized games of strategic hetero-

geneity (Monaco and Sabarwal, 2016). Quite notably, however, existing conditions do

not apply to our model.5 To clarify this point, we construct two examples in which a

player’s self-disclosure may trigger, respectively, a “dominant”or “defiant”reaction

that runs squarely against the player’s intention to moderate or discourage the op-

ponent.6 These examples show that the relevant comparative statics of the Bayesian

equilibrium is, in general, monotone for one player only. In contrast, Monaco and

5Similarly, standard methods such as total differentiation or variational inequalities fail to yield
any useful results.

6A conceptual discussion of dominance and defiance, with numerous examples from politics and
history, can be found in Caygill (2013).
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Sabarwal’s (2016, Th. 5) conditions, like any of the conditions in the literature that

we are aware of, imply the monotone comparative statics of the entire equilibrium

profile. Thus, we indeed cannot make use of existing methods. Instead, we develop a

novel argument that will be outlined in the body of the paper.7

Finally, we compare full revelation with a benchmark outcome in which players do

not have the option to disclose their private information. This benchmark outcome

will be referred to as mandatory concealment. For a somewhat more structured envi-

ronment with one-sided incomplete information and an unbiased lottery technology,

we show that the unraveling is ex-ante strictly undesirable for a privately informed

underdog. In other words, full revelation obtains in this case just because the un-

derdog has ex ante no means of committing herself to not revealing her type. The

proof of this result relies on an improved version of Jensen’s inequality, which in

turn is derived using the theory of moment spaces (Dresher, 1953). We then go on

and show that, depending on parameters, the unraveling may even lead to a strictly

Pareto inferior outcome. We call this outcome the “disclosure trap.”However, such

possibilities are clearly not universal, i.e., there are examples in which a privately

informed contestant will appreciate disclosure not only interim, i.e., when being of

the marginal type, but also from an ex-ante perspective.

While noise and private information are essential in applications, probabilistic

contests of incomplete information have been studied since the early 90’s only.8 The

general framework with one-sided and two-sided private valuations was introduced by

Hurley and Shogren (1998a, 1998b). Wärneryd (2003) made the intriguing observa-

7Even though the comparative statics is a central element of our analysis, additional arguments
are needed to put a definite sign on the type-specific incentives for disclosure. These additional
arguments will likewise be outlined in the body of the paper.

8Indeed, Rosen (1986, fn. 7) still complained that “few analytical results”were available. Early
papers considering probabilistic contests with incomplete information include Linster (1993) and
Baik and Shogren (1995), among others.
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tion that, in a set-up with one-sided incomplete information about a common valua-

tion, the uninformed player is more likely to win than the informed player. Malueg

and Yates (2004) analyzed a symmetric two-player Tullock contest with two equally

likely, but possibly correlated types. Schoonbeek and Winkel (2006) pointed out

that, in a contest of one-sided incomplete information, individual types may remain

inactive. For a large class of probabilistic incomplete-information contests, including

those considered in the present paper, Einy et al. (2015) established existence of a

Bayesian equilibrium, while Ewerhart and Quartieri (under review) proved existence

of a unique Bayesian equilibrium.

The present paper falls into the recent and quickly expanding literature concerned

with the disclosure of verifiable information in contests.9 Research in this literature

has tended to focus on either ex-ante voluntary disclosure, optimal disclosure poli-

cies, or interim voluntary disclosure.10 Ex-ante voluntary disclosure in probabilistic

contests has been studied by Denter et al. (2014), in particular. Assuming a proba-

bilistic contest technology with one-sided incomplete information, they showed that a

“laissez-faire”policy regarding the informed player’s ex-ante disclosure decision leads

to lower expected lobbying expenditures than a policy of mandatory disclosure.11 The

second topic, optimal disclosure policies in contests, has recently seen a strong devel-

opment. In particular, effort-maximizing disclosure policies have been characterized

9Another form of pre-play communication, not considered in the present paper, is the signaling
of unverifiable information. See, e.g., Katsenos (2010), Slantchev (2010), Fu et al. (2013), Heijnen
and Schoonbeek (2017), and Yildirim (2017).
10Numerous additional research questions, related to learning, feedback, and motivation, for ex-

ample, arise in the analysis of dynamic contests of incomplete information. Such research questions
have been dealt with in papers by Clark (1997), Yildirim (2005), Krähmer (2007), Münster (2009),
Zhang and Wang (2009), Aoyagi (2010), Ederer (2010), and Goltsman and Mukherjee (2011), for
instance.
11Relatedly, Wu and Zheng (2017) considered a symmetric two-player lottery contest with two

equally likely, independently drawn types for each player. In this framework, they showed that
ex-ante disclosure decisions are fully revealing if and only if the two possible type realizations are
suffi ciently close to each other.
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by Zhang and Zhou (2016) and Serena (2017) for probabilistic technologies, and by

Fu et al. (2014) and Chen et al. (2017) for deterministic technologies.12 The present

analysis is concerned, however, with the third topic, i.e., the interim voluntary dis-

closure in contests. As far as we know, there is only one paper that has dealt with

this issue on a comparable level of generality.13 Specifically, Kovenock et al. (2015)

showed that, regardless of whether valuations are private or common, the interim

information sharing game followed by an all-pay auction admits a perfect Bayesian

equilibrium in which no player ever shares her private information. The present analy-

sis is complementary to that of Kovenock et al. (2015) in the sense that, instead of

the all-pay auction, we consider a probabilistic contest. Overall, the review of the lit-

erature suggests that the specific research question pursued in the present paper, viz.

the analysis of incentives for the interim voluntary disclosure of hard information in

ex-ante asymmetric contests with probabilistic technologies and two-sided incomplete

information, has not been addressed in prior work.

The remainder of this paper is structured as follows. Section 2 introduces the set-

up. The main result is stated in Section 3. Section 4 discusses contestants’incentives

for interim voluntary disclosure. In Section 5, we provide examples for nonmonotone

reactions to self-disclosure. A commitment problem is discussed in Section 6. Section

7 concludes. Appendix A contains auxiliary results, while all proofs of the results of

this paper have been relegated to Appendix B.

12In a similar vein, Einy et al. (2017) studied the value of public information in Tullock contests
with nonlinear costs. Optimal disclosure policies have been extensively analyzed also in models
of population uncertainty. See Münster (2006), Myerson and Wärneryd (2006), Lim and Matros
(2009), Fu et al. (2011), Feng and Lu (2016), and Fu et al. (2016), among others.
13However, Epstein and Mealem (2013) considered a lottery contest with one-sided incomplete

information, and characterized the perfect Bayesian equilibrium outcome in the case of two possible
type realizations. In fact, Epstein and Mealem (2013) considered also an extension with more than
two types, yet they did not characterize the perfect Bayesian equilibrium outcome in that case.
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2. Set-up

Following the general framework of Okuno-Fujiwara et al. (1990),14 the dynamic game

to be considered is composed of two consecutive stages, referred to in the sequel as

revelation stage and contest stage. These stages will be separately described below,

following the backward order of the subsequent analysis.

2.1 The contest stage

Two players (or teams), referred to as contestants i = 1, 2, exert costly efforts so as to

increase their respective probability of winning a given prize that is commonly valued

at V > 0. Contestant i’s effort (or bid) is denoted by xi ≥ 0. It is assumed that

player i’s payoff may be written as

Πi(x1, x2; ci) = pi(x1, x2)V − cixi, (1)

where pi(x1, x2) denotes i’s probability of winning, and ci > 0 contestant i’s marginal

cost of effort. Without loss of generality, the value of the prize will be normalized to

V = 1. Following Rosen (1986), we will assume that

pi(x1, x2) =


γih(xi)

γ1h(x1) + γ2h(x2)
if x1 + x2 > 0

γi/(γ1 + γ2) if x1 + x2 = 0,
(2)

where γ1 > 0 and γ2 > 0 are parameters, while h : R+ → R+ is a continuous function

that is twice continuously differentiable at positive bid levels, with h(0) = 0, h′ > 0,

and h′′ ≤ 0.15 It will also be assumed that the curvature of the production function

14See also the extensions by Van Zandt and Vives (2007) and Hagenbach et al. (2014).
15Our assumption of a concave production function is motivated by the fact that the existence and

uniqueness of Bayesian equilibrium in probabilistic contests with incomplete information has been
studied, up to this point, predominantly for this case, so that relaxing that assumption would take
us away from the main focus of this paper. In contrast, the extension to player-specific production
functions is easily feasible, yet does not yield additional insights.
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h, i.e., ρ ≡ ρ(h) = inf{ρ ≥ 1 |hρ convex} is well-defined.16

This set-up includes, as an important special case, the example of the biased

Tullock contest (Tullock, 1975; Leininger, 1993; Clark and Riis, 1998), where the

production function is given by h(z) = hTUL(z; r) ≡ zr for an arbitrary parameter

r ∈ (0, 1]. In the Tullock case, ρ(hTUL) = 1/r. The lottery contest corresponds to the

case r = 1, and hence ρ = 1.

Each player i ∈ {1, 2} is privately informed about her marginal cost ci. It is

commonly known, however, that player i’s type is drawn ex-ante, independently across

players, from a given probability distribution over the finite set Ci = {c1i , ..., cKii },

where Ki ≥ 1. The ex-ante probability of type cki is denoted by q
k
i ≡ qi(c

k
i ), for

k = 1, ..., Ki, where probabilities sum up to one, i.e., q1i + ...+ qKii = 1. Without loss

of generality, we assume that all possible type realizations have a positive probability,

i.e., qki > 0 for any i ∈ {1, 2} and any k ∈ {1, ..., Ki}. Moreover, types will be ordered

such that

ci ≡ c1i < ... < cKii ≡ ci (i ∈ {1, 2}). (3)

Thus, ci denotes the most effi cient, or strongest type of player i, whereas ci denotes

the least effi cient, or weakest type of player i.17

A bid schedule for player i ∈ {1, 2} is an arbitrary function ξi : Ci → R+. Denote

by Xi the set of i’s bid schedules. A pair of bid schedules ξ
∗ = (ξ∗1, ξ

∗
2) ∈ X1 × X2

is a Bayesian equilibrium if, for any type ci ∈ Ci of any player i ∈ {1, 2}, the effort
16The curvature ρ(h) corresponds to the smallest ρ for which the production function h is ρ-convex

(cf., e.g., Anderson and Renault, 2003). For general background on generalized concavity, see Caplin
and Nalebuff (1991a, 1991b).
17Our set-up is isomorphic to a model in which costs are commonly known but valuations are

private information for the contestants (e.g., Hurley and Shogren, 1998b). This can be seen by
normalizing payoff functions in the agent-normal form of the Bayesian contest game. Further,
we conjecture that our results extend to the case of continuous type spaces (Fey, 2008; Ryvkin,
2010; Wasser, 2013a, 2013b; Ewerhart, 2014), yet we also suspect that the technical complications
necessary would not be rewarded by additional insights.
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level xi = ξ∗i (ci) maximizes type ci’s expected payoff Ecj [Πi(xi, ξ
∗
j(cj); ci)], where

Ecj [.] denotes the expectation over the realizations of cj ∈ Cj, with j 6= i. Following

Schoonbeek and Winkel (2006), a type ci ∈ Ci that chooses an equilibrium effort

ξ∗i (ci) > 0 (ξ∗i (ci) = 0) will be called active (inactive). The discontinuity of the payoff

functions at the origin implies that, at any Bayesian equilibrium, both players are

necessarily active with positive probability.18 By the same token, at least one player

will have to be active with probability one. We will make use of the following existing

result.

Lemma 1. The contest stage has a unique Bayesian Nash equilibrium.19

Proof. See Appendix B. �

In the special cases of complete and one-sided incomplete information, the following

notation will be used. When it is commonly known that, for i ∈ {1, 2}, player i’s

type is ci = c◦i for some c
◦
i ∈ Ci, then i’s equilibrium strategy will be written as

x◦i = x◦i (c
◦
1, c
◦
2). Further, when it is commonly known that player i’s type is ci = c#i

for some c#i ∈ Ci, while player j’s type, with j 6= i, is uncertain, then equilibrium

strategies will be written as x#i = x#i (c#i ) for player i and as ξ#j = ξ#j (.; c#i ) for player

j, so that ξ#j (cj; c
#
i ) is type cj’s equilibrium effort.

2.2 The revelation stage

At a stage preceding the contest, players are given the opportunity to simultane-

ously and independently disclose their marginal costs of effort to their respective

18To see this, suppose that one player is always inactive. Then, any suffi ciently small positive bid
is a better response than the zero bid, but any positive bid is suboptimal. Hence, there is no best
response if one player is always inactive.
19Lemma 1 extends to mixed strategies. Indeed, since each player is active with positive proba-

bility, and payoffs functions are own-bid l.s.c. at the origin, expected payoffs against the opponent’s
equilibrium strategy are strictly concave over R+, so that it is suboptimal to randomize strictly.
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opponent.20 Following the Bayesian persuasion approach, it is assumed that private

information cannot be misrepresented (in the sense of providing evidence for being

of another type). Further, the decision to self-disclose does not lead to any direct

costs.21 Let Si ⊆ Ci denote the set of types of player i ∈ {1, 2} that choose to disclose

their private information.

A belief about player i is a mapping µi : Ci → [0, 1] such that
∑Ki

k=1 µi(c
k
i ) = 1. We

denote by ∆(Ci) the set of all beliefs about i. Beliefs are updated in response to the

observation of verifiable information. Consequently, there are three basic scenarios

for each contestant i ∈ {1, 2}.

(i) Suppose first that player i discloses ci ∈ Ci. Then, player i is believed to be of

type ci with probability one, i.e., µi(ci) = 1.

(ii) Next, suppose that player i does not disclose her type, and that player i’s decision

to not disclose is a possibility on the equilibrium path, i.e., Ci\Si 6= ∅. Then, ci is

expected to be in the set-theoretic complement of Si. Hence, by Bayes’rule,

µi(ci) =

 qi(ci)/
∑

c′i∈Ci\Si
qi(c

′
i) if ci ∈ Ci\Si

0 if ci ∈ Si.
(4)

(iii) Finally, suppose that player i does not disclose her type, and that i’s decision to

not disclose is an off-equilibrium event, i.e., Ci\Si = ∅. Then, the belief about player

i may be specified as an arbitrary probability distribution µi = µ0i over Ci.
22

20Thus, the revelation stage offers a binary decision for each type. However, our main result
continues to hold provided that contestants’ message correspondences each contain an evidence
base (Hagenbach et al., 2014). For example, the disclosure decision may alternatively establish an
upper bound for the favorite’s cost parameter and a lower bound for the underdog’s cost parameter,
respectively.
21Introducing costs for disclosing information would not change our conclusions, provided those

are not too large compared to the benefits of self-disclosure identified below.
22Off-equilibrium beliefs in the fully revealing perfect Bayesian equilibrium will be specified below

by giving full weight to the respective worst-case type (Seidman and Winter, 1997; Hagenbach et
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Since the Bayesian equilibrium at the contest stage is unique, the expected contin-

uation payoff for any type ci ∈ Ci with i ∈ {1, 2} from the contest stage is well-defined

for any given pair of beliefs (µ1, µ2) ∈ ∆(C1)×∆(C2) such that µi(ci) > 0. A perfect

Bayesian equilibrium, in reduced form, of the contest with pre-play communication

is therefore composed of sets S1 ⊆ C1 and S2 ⊆ C2 of revealing types, and off-

equilibrium beliefs µ0i ∈ ∆(Ci) for any i ∈ {1, 2} with Si = Ci, such that (i) for each

type ci ∈ Si, the expected continuation payoff from self-disclosure weakly exceeds any

expected payoff that ci could realize from not disclosing and subsequently choosing

an arbitrary bid xi ≥ 0, and such that (ii) for each type ci ∈ Ci\Si, the expected con-

tinuation payoff from non-disclosure weakly exceeds the expected continuation payoff

from self-disclosure.23

3. The unraveling theorem

3.1 Unfair contests

A probabilistic contest of either complete or incomplete information will be called

unfair when there is one player that is active with probability one and that, provided

that the other player is also active with probability one, is interim always more likely

to win than the other player.

To formulate conditions on the primitives of the model that ensure that a contest

is unfair regardless of disclosure decisions, we introduce the following parameters. To

start with, let the ratio σ = c2/c1 denote player 1’s lowest relative resolve, where the

al., 2014). In the present setting, the worst-case type of the favorite is the least effi cient type, c1,
whereas the worst-case type of the underdog is the most effi cient type, c2. See also the discussion
following Theorem 1.
23Type-dependent signal spaces and continuous strategy sets preclude a direct reference to the

standard definition of a perfect Bayesian equilibrium in a multi-stage game with observable actions
(Fudenberg and Tirole, 1991, p. 331). Otherwise, however, the definition is standard. Note also that
we restrict attention to pure strategies at the revelation stage. This is for expositional reasons only.
Our main result (Theorem 1 below) holds likewise when players may use randomized strategies at
the revelation stage.
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terminology is adapted from Hurley and Shogren (1998a, 1998b). E.g., if player 1

is interim always more effi cient than player 2, then σ strictly exceeds one and corre-

sponds to the worst-case cost advantage of player 1 compared to player 2. Second,

we will denote by πi =
√
ci/ci the predictability of player i’s marginal cost, where

i ∈ {1, 2}. Thus, a predictability equal to one (strictly lower than one) for a player

corresponds to complete information (incomplete information) about her type. Fi-

nally, the parameter γ = γ2/γ1 will be referred to as the net bias of the contest

technology. For example, a net bias equal to one (strictly below one, strictly above

one) corresponds to a contest technology that is unbiased (biased against player 2,

biased against player 1).

The following assumption will be imposed throughout the analysis.

Assumption 1. γ < γ∗(π1, π2, σ, ρ) ≡ π1+2π2−2
2−π1 · σ̂(σ, ρ), where

σ̂(σ, ρ) =

 σ if σ ≤ 1

σ1/ρ if σ > 1.
(5)

Intuitively, with Assumption 1 in place, player 1 is in a quite strong position relative

to player 2. As will be shown below, this implies that the contest, even though of

incomplete information, is structurally similar to the complete-information contest

considered by Dixit (1987). We also remark that the specific form of the inequality

has been derived from the proof of Lemma 2 below and thus constitutes a suffi cient

but not necessary condition for the contest to be unfair.24

The comparative statics of γ∗ is straightforward. Indeed, it can be readily ver-

ified that, when positive, γ∗(π1, π2, σ, ρ) is strictly increasing in each of the three

parameters π1, π2, and σ, as well as monotone declining in ρ. Thus, the assumption

24For a discussion of what happens when Assumption 1 is dropped, see the end of this section.
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of unfairness is more likely to hold when the net bias discriminates more strongly

against player 2, when marginal costs are more predictable, when player 1’s lowest

relative resolve is larger, or when the production function has a lower curvature. In

particular, the comparative statics with respect to π1, π2, and σ should convince the

reader that, if Assumption 1 holds for a given contest, changes to the information

structure caused by pre-play disclosure decisions can never invalidate Assumption 1.25

One can also check that the case of a biased contest with ex-ante symmetric type

distributions (i.e., c1 = c2 ≤ c1 = c2), as discussed, e.g., by Drugov and Ryvkin

(2017), is consistent with Assumption 1.26 In particular, in the limit case of complete

information and symmetric costs (i.e., c1 = c1 = c2 = c2), Assumption 1 just says

that the contest technology is biased against player 2 (i.e., γ2 < γ1).

Returning to the general case, we make the following observation that is crucial

for our analysis.

Lemma 2. (Underdog and favorite)

Suppose that Assumption 1 holds. Then, (i) all types of player 1 are active; and

(ii), provided that all types of player 2 are active as well, p1(ξ
∗
1(c1), ξ

∗
2(c2)) >

1
2
>

p2(ξ
∗
1(c1), ξ

∗
2(c2)) for any c1 ∈ C1 and c2 ∈ C2.

Proof. See Appendix B. �

Thus, Assumption 1 implies that player 1 is active with probability one. Moreover,

provided that player 2 is likewise active with probability one, player 1 is interim,

i.e., for any realization of types c1 and c2, more likely to win than player 2.27 In

25This point will be discussed more formally in the proof of Lemma 2 below.
26Indeed, in this case, γ∗ = (3π−2)π2

2−π , with π ≡ π1 = π2 =
√
σ. For example, for π = 0.8, we get

γ∗ = 0.21.
27The activity of all types of player 2 is actually needed. Intuitively, an inactive type of player 2

may lower the marginal incentives of player 1, and may thereby invalidate the conclusion of Lemma
2(ii).
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other words, Assumption 1 ensures that the contest stage is unfair regardless of the

disclosure decisions taken by the contestants at the revelation stage. Lemma 2 is

proven by the combination of several inequalities, all of which are derived from the

first-order conditions necessary for players’bid schedules to be in equilibrium. Given

this result, we henceforth will refer to player 1 as the favorite and to player 2 as the

underdog.

3.2 Main result

We will use the term full revelation to characterize the perfect Bayesian equilibrium,

or the perfect Bayesian equilibrium outcome, in which all types disclose their private

information. The main result of the present paper is the following.

Theorem 1. (Disclosure principle)

Suppose that Assumption 1 holds. Then, full revelation is the unique perfect Bayesian

equilibrium outcome in the incomplete-information contest with pre-play communica-

tion.

Proof. See Appendix B. �

Theorem 1 states that the strong-form disclosure principle applies to any contest that

satisfies Assumption 1. Note that no activity conditions have been imposed. This is

noteworthy because, in general, corner solutions are known to be consistent with the

existence of a perfect Bayesian equilibrium with no revelation of private information

(Okuno-Fujiwara et al., 1990, Ex. 4). In our framework, however, this problem cannot

occur.

An overview discussion of the proof of Theorem 1 will be provided in the next

section. In fact, the proof may be of some interest because it examines the before-

mentioned incentives for interim voluntary disclosure, identifying also quite intuitive
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effects such as a beneficial self-disclosure for the weakest type of the underdog, as

well as strategies of intimidation (or discouragement) for the strongest type of the

favorite. We also check that full revelation is indeed a perfect Bayesian equilibrium.28

It is instructive to compare Theorem 1 with the case of auctions with interdepen-

dent valuations, where the incentives to reveal a private signal are typically strongest

at the bottom of the signal support (Benoît and Dubra, 2006). In both cases, volun-

tary disclosure aims at reducing the opponent’s incentives for bidding too aggressively.

However, unlike the auction setting, the contest may induce also the most optimistic

types to reveal their private information. Indeed, as Proposition 2 below will show,

this is definitely so for the type at the top of the signal support, corresponding to the

strongest type of the favorite.

Hagenbach et al. (2014) identified necessary and suffi cient conditions for the exis-

tence of a fully revealing sequential equilibrium with “extremal”off-equilibrium beliefs

that implements a given Nash equilibrium action profile on and off the equilibrium

path. They assumed that a player that surprises her opponent by not revealing her

type is deemed to be the worst-case type, i.e., the type that no other type would like

to masquerade as. In our setting, the worst-case type is either the most effi cient type

of the underdog, or the least effi cient type of the favorite. Thus, the off-equilibrium

beliefs they constructed correspond precisely to those that will be used below to estab-

lish the equilibrium property.29 Theorem 1 complements the analysis of Hagenbach et

al. (2014) by providing conditions suffi cient for the uniqueness of the perfect Bayesian

equilibrium outcome in the special case of probabilistic all-pay contests.

28In principle, to reveal all private information, it suffi ces that, for each player, all but one type
disclose their private information. The residual type is then indifferent between concealing or re-
vealing her information. As a result, the uniqueness claim to be made concerns only the outcome,
rather than the equilibrium.
29In particular, given our assumption of finite type spaces, full revelation can be seen to satisfy

the consistency property of a sequential equilibrium (Kreps and Wilson, 1982) in our framework.
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We conclude this section by showing that the conclusion of Theorem 1 need not

hold when Assumption 1 is dropped.

Example 1.30 (Failure of the strong-form disclosure principle) In the ex-ante

symmetric set-up specified in Table I, neither type benefits from unilateral disclosure.

In this particular case, this is so even though the self-disclosure by the strong type

c1 = c11 marginalizes the weak type c2 = c22 of the opponent.

Table I. Failure of the strong disclosure principle.

Thus, in a contest that is not unfair, all types concealing their private information

may well be a perfect Bayesian equilibrium.

4. Understanding the unraveling result

This section discusses the mechanics underlying Theorem 1. We start by deriving ba-

sic monotonicity properties of players’best-response mappings. Then, the disclosure

decision of the weakest type of the underdog is dealt with. Finally, we consider the

disclosure decision of the strongest type of the favorite.

30All the numerical examples in this paper are based on the unbiased lottery contest. Moreover,
to exclude the possibility of rounding errors in the first-order conditions, we have double-checked
any close case using a working precision of as much as 256 decimal digits.

18



4.1 Lattice-theoretic framework

Given two bid schedules ξi, ξ̂i ∈ Xi, we write ξi �i ξ̂i when ξi(ci) ≥ ξ̂i(ci) holds for

any ci ∈ Ci. Thus, (Xi,�i) is the set of bid schedules equipped with the product

order.31 As usual, we will write ξi �i ξ̂i if ξi �i ξ̂i and there is ci ∈ Ci such that

ξi(ci) > ξ̂i(ci). Moreover, the subscript i in �i and �i will be dropped whenever there

is no risk of ambiguity.

Denote by X∗j ⊆ Xj the set of bid schedules ξj for player j ∈ {1, 2} that admit,

for any type ci ∈ Ci of player i 6= j, a unique maximizer xi ≡ β̃i(ξj; ci) ∈ R+ of the

expected payoff function xi 7→ Ecj [Πi(xi, ξj(cj); ci)]. Given ξj ∈ X∗j , the bid schedule

βi(ξj) = β̃i(ξj; ·) : Ci → R+ will be called the best-response bid schedule against ξj.

In Appendix A, it is shown that, for any ξj ∈ X∗j , the best-response bid schedule

βi(ξj) is weakly declining in the type, and strictly so at positive bid levels.

The mapping βi : X∗j → Xi that maps a given bid schedule ξ
∗
j of player j to

player i’s best-response bid schedule against ξ∗j will be referred to as player i’s best-

response mapping. In the case of complete information, the best-response mapping

satisfies monotonicity properties only on a strict subset of the opponent’s strategy

space.32 This is likewise so in the case of incomplete information. We will say that

player 1’s domain condition holds at (ξ2; c1) ∈ X∗2 × C1 if (i) β̃1(ξ2; c1) > 0, and

(ii) p1(β̃1(ξ2; c1), ξ2(c2)) >
1
2
for any c2 ∈ C2. Thus, player 1’s domain condition at

(ξ2; c1) requires that type c1’s best-response bid against ξ2 is interior, and wins with

a probability strictly exceeding one half against any of player 2’s types. Similarly, we

will say that player 2’s domain condition holds at (ξ̂1, c2) ∈ X∗1 ×C2 if (i) β̃2(ξ̂1; c2) >

0, and (ii) p2(ξ̂1(c1), β̃2(ξ̂1; c2)) <
1
2
for any c1 ∈ C1. Thus, player 2’s domain condition

at (ξ̂1; c1) requires that type c2’s best-response bid against ξ̂1 is interior, and wins

31In fact, (Xi,�i) is a lattice, yet this property will not be used below.
32See Dixit (1987). See also Gama and Rietzke (2017), who offer a lattice-theoretic discussion of

the complete-information set-up.
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with a probability strictly below one half against any of player 1’s types. Using these

definitions, we obtain the following useful result.

Lemma 3. (Strict monotonicity of best-response mappings)

(i) Let ξ2, ξ̂2 ∈ X∗2 with ξ2 � ξ̂2, and let c1 ∈ C1. If player 1’s domain condition holds

at (ξ2; c1), then β̃1(ξ2; c1) > β̃1(ξ̂2; c1). In particular, if player 1’s domain condition

holds at (ξ2; c1) for every c1 ∈ C1, then β1(ξ2) � β1(ξ̂2).

(ii) Let ξ1, ξ̂1 ∈ X∗1 with ξ1 � ξ̂1, and let c2 ∈ C2. If player 2’s domain condition

holds at (ξ̂1; c2), then β̃2(ξ1; c2) < β̃2(ξ̂1; c2). In particular, if player 2’s domain

condition holds at (ξ̂1; c2) for every c2 ∈ C2, then β2(ξ1) ≺ β2(ξ̂1).

Proof. See Appendix B. �

This lemma shows that the domain conditions are suffi cient to ensure that a type’s

best-response bid and a player’s best-response bid schedule, respectively, move in a

strictly monotone way to changes in the opponent’s bid schedule. For example, in

the case of player 1, the best-response bid of type c1 will strictly rise in response

to an increase of player 2’s bid schedule. If player 1’s domain condition holds at

all of her types, then we get a strict order relation even between the best-response

bid schedules. Similar comparative statics properties hold for player 2, whose best-

response mapping is, however, strictly declining under the assumptions of Lemma

3. In sum, the contest with two-sided incomplete information exhibits, subject to

domain conditions, comparative statics properties analogous to those of the complete-

information contest.

4.2 Benefits of self-disclosure for the underdog

In this subsection, we study the incentives of the weakest type of the underdog to dis-

close her type, given a candidate equilibrium in which all types conceal their informa-
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tion. Consider, consequently, a contest with incomplete information in which player

2 has at least two possible type realizations. Let ξ∗ = (ξ∗1, ξ
∗
2) denote the Bayesian

equilibrium at the contest stage. For the weakest type of the underdog c2, the prob-

ability of winning and the expected payoff are given by p∗2 = Ec1 [p2(ξ
∗
1(c1), ξ

∗
2(c2))]

and Π∗2 = Ec1 [Π2(ξ
∗
1(c1), ξ

∗
2(c2); c2)], respectively. Consider, next, the Bayesian equi-

librium (ξ#1 , x
#
2 ) in the contest with one-sided incomplete information that results

when the weakest type of the underdog reveals her type. Then, type c2’s prob-

ability of winning and expected payoff are given by p#2 = Ec1 [p2(ξ
#
1 (c1), x

#
2 )] and

Π#
2 = Ec1 [Π2(ξ

#
1 (c1), x

#
2 ; c2)], respectively. The following result summarizes the com-

parative statics of the equilibrium at the contest stage with respect to the disclosure

decision by the weakest type of the underdog.

Proposition 1. (Self-disclosure by the weakest type of the underdog)

Suppose that Assumption 1 holds, and that the underdog has at least two possible type

realizations. Then, a unilateral disclosure by the weakest type of the underdog, c2,

(i) induces type c2 to strictly raise her effort, i.e., x
#
2 > ξ∗2(c2);

(ii) strictly raises type c2’s interim probability of winning, i.e., p#2 > p∗2 (even against

any given type of player 1); and

(iii) strictly raises type c2’s expected payoff, i.e., Π#
2 > Π∗2.

Proof. See Appendix B. �

Thus, after revealing her relative weakness, the weakest type of the underdog behaves

as if gaining confidence. She bids more aggressively and wins with a strictly higher

probability. Moreover, the disclosure is always strictly beneficial for her. In the

proof of the unraveling result, we will actually need only part (iii) of Proposition 1.
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However, as will become clear, parts (i) and (ii) are crucial steps that need to be

made in order to derive part (iii).

Note that the conclusions of Proposition 1 are immediate for any type of the

underdog that is inactive in ξ∗. Indeed, disclosure is the only way for such types

to ensure an active participation, a positive probability of winning, and a positive

expected payoff. Thus, Proposition 1 shows that the weakest type of the underdog

has an incentive to disclose her type even when she foresees herself being active after

concealment.

Figure 2. A lattice-theoretic argument.

The fact that the weakest type of the underdog raises her effort after self-disclosure

may be unexpected. To understand this point, suppose that, instead of strictly raising

her effort, the weakest type of the underdog were to weakly lower her effort after

disclosure, i.e., x#2 ≤ ξ∗2(c2), as shown in the diagram on the right-hand side of Figure

2. Consider now the flat bid schedule ψ2(x
#
2 ) ∈ X2 that prescribes an effort of x

#
2

for each type c2 ∈ C2 of the underdog. Then, since there are at least two types for

the underdog, and since the equilibrium bid schedule ξ∗2 is strictly declining, we get

ξ∗2 � ψ2(x
#
2 ). From the strict monotonicity of player 1’s best-response mapping, after

22



checking domain conditions, we therefore obtain ξ∗1 = β1(ξ
∗
2) � β1(ψ2(x

#
2 )) = ξ#1 , as

shown in the diagram on the left-hand side of Figure 2. Applying now the strictly

declining best-response mapping of the weakest type of the underdog, checking also

here the domain condition, we arrive at ξ∗2(c2) = β̃2(ξ
∗
1; c2) < β̃2(ξ

#
1 ; c2) = x#2 , which

yields the desired contradiction. Thus, the weakest type of the underdog indeed gains

in confidence after self-disclosure.

Based upon this fact, it can be shown that self-disclosure strictly raises also the

probability of winning for the weakest type of the underdog. Ultimately, this is a

consequence of what we call the Stackelberg monotonicity of the complete-information

model. By this, we mean the fact that an increase of player i’s bid, subject to an

optimal response by the opponent j, always raises player i’s winning probability (and

strictly so in the interior). Intuitively, a higher effort is rewarded in terms of higher

winning probabilities.33 Applied to the present situation, this says that a Stackelberg-

leading player 2 that raises her bid from ξ∗2(c2) to x
#
2 strictly increases her probability

of winning. But type c2’s probability of winning with her bid ξ
∗
2(c2) in the Stackelberg

setting is already strictly higher than in the Bayesian equilibrium under two-sided

incomplete information, because player 1’s best-response bid schedule against the

leader’s bid ξ∗2(c2) is strictly lower than ξ
∗
1 in the product order. Combining these

two insights, it follows that indeed, the probability of winning for the weakest type

of the underdog rises strictly subsequent to self-disclosure. In fact, this is so even for

any given type of the favorite.

Finally, we check that the weakest type of the underdog has a strict incentive to

disclose her private information. The proof we managed to come up with exploits, in

the spirit of the envelope theorem, type c2’s first-order condition in order to rewrite

33This property, for which we did not find a suitable reference, may be seen as an analogue of
Dixit’s (1987, Eq. 8) precommitment result. However, in contrast to that result, the Stackelberg
monotonicity property holds regardless of contestants’relative strengths.
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her expected payoff from the contest as a monotone function of ex-post winning

probabilities and bids. Given parts (i) and (ii) of Proposition 1, this suffi ces to prove

the claim. Unfortunately, however, developing a simple intuition for part (iii) seems

to be more intricate.

Through repeated application of Proposition 1, the underdog’s side of the contest

equilibrium is seen to unravel. Indeed, all types of the underdog except the worst-case

type will, when in the position of the weakest type that is foreseen to conceal, find

it strictly optimal to voluntarily disclose their private information. Thus, incomplete

information is effectively one-sided in any perfect Bayesian equilibrium.

4.3 Benefits of self-disclosure for the favorite

From the previous section, we know that, in any perfect Bayesian equilibrium, the

type of the underdog is public information at the contest stage. Let c#2 denote the

commonly known cost type of the underdog. Given this setting with one-sided in-

complete information, we will study the incentive of the strongest type of the favorite

to disclose her private information to the underdog.

If type c1 decides to conceal her private information, then the ensuing contest is

of one-sided incomplete information, with equilibrium efforts ξ#1 (c1) ≡ ξ#1 (c1; c
#
2 ) and

x#2 ≡ x#2 (c#2 ). Type c1’s probability of winning and expected payoff are consequently

given by p#1 = p1(ξ
#
1 (c1), x

#
2 ) and Π#

1 = Π1(ξ
#
1 (c1), x

#
2 ; c1), respectively. If, however,

type c1 decides to disclose her private information, then the ensuing contest is of com-

plete information, with equilibrium efforts x◦i ≡ x◦i (c1, c
#
2 ), for i = 1, 2. In that case,

type c1’s probability of winning and expected payoff are given by p
◦
1 = p1(x

◦
1, x
◦
2) and

Π◦1 = Π1(x
◦
1, x
◦
2; c1), respectively. The following result summarizes the comparative

statics of the one-sided incomplete-information contest with respect to a revelation

by the strongest type of the favorite.

24



Proposition 2. (Self-disclosure by the strongest type of the favorite)

Suppose that Assumption 1 holds and that the type of the underdog is public informa-

tion, whereas the favorite has at least two possible type realizations. Then, a unilateral

disclosure by the strongest type of the favorite, c1,

(i) induces the underdog to strictly lower her effort, i.e., x◦2 < x#2 ;

(ii) allows type c1 to strictly lower her effort, i.e., x
◦
1 < ξ#1 (c1);

(iii) strictly raises type c1’s probability of winning, i.e., p
◦
1 > p#1 ; and

(iv) strictly raises type c1’s expected payoff, i.e., Π◦1 > Π#
1 .

Proof. See Appendix B. �

Thus, if the type of the underdog is public, then the self-revelation by the strongest

type of the favorite discourages the underdog. As a result, the strongest type of the

favorite exerts a lower effort, but still wins with higher probability. Clearly then, she

finds it strictly optimal to reveal her private information to the underdog. The proof

of Proposition 2 employs the same methods that have been used before. However,

given that informational incompleteness is one-sided, the argument is of course much

simpler in this case.34

As shown in the Appendix, an iterated application of Proposition 2 implies that

also the favorite’s side unravels. Thus, in the presence of Assumption 1, full revelation

is the only outcome consistent with the assumption of perfect Bayesian rationality.

But, as already discussed, disclosure by all types of both players is indeed a per-

fect Bayesian equilibrium of the contest with pre-play communication, which then

completes the proof of Theorem 1.
34Part (ii) of Proposition 2 can actually be shown to hold also in the case of two-sided incomplete

information, using an argument similar to the one used for Proposition 1. Beyond this observation,
however, the analogy is incomplete. In fact, we conjecture that parts (iii) and (iv) of Proposition 2
do not generalize to a setting with two-sided incomplete information.
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5. Nonmonotone reactions to disclosure

This section documents two additional effects, intuitively corresponding to “domi-

nant”and “defiant” reactions, that naturally arise in the study of the comparative

statics of the Bayesian equilibrium at the contest stage with respect to changes in the

information structure. On a more technical level, this will also allow us to clarify the

relationship between the present analysis and the recent contribution of Monaco and

Sabarwal (2016).

5.1 Equilibrium responses to the underdog’s self-disclosure

While self-disclosure by the weakest type of the underdog tends to have an overall

moderating effect on the favorite, some types of the favorite may actually respond by

becoming more aggressive.

Example 2. (“Dominant reaction”) Consider the set-up specified in Table II. As

can be seen, after the self-disclosure by type c2 = c22 of the underdog, the weak type

c1 = c21 of the favorite raises her effort.

Table II. Equilibrium bids before and after the underdog’s self-disclosure.

Example 2 shows that the self-disclosure by the weakest type of the underdog need not

cause a generally soothing shift in the favorite’s bid schedule. Indeed, in response to
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learning that the underdog is weak, only the strong type of the favorite decreases her

bid, whereas the weak type of the favorite raises her bid, as if being challenged. For

intuition, note that there are two countervailing effects. On the one hand, following

the self-disclosure by the weakest type of the underdog, the favorite’s belief regarding

the underdog’s type collapses and henceforth assigns probability one to the weakest

type of the underdog. Clearly, this induces all of the favorite’s types to lower their

respective bids. On the other hand, the weakest type of the underdog will raise her

bid after having disclosed her type, which induces all of the favorite’s types to likewise

raise their respective bids. Since the two effects have opposite signs, the overall effect

of the underdog’s self-disclosure on the bid of a given type of the favorite is, in general,

ambiguous.

Despite this flexibility, the model does impose some structure of the favorite’s

reaction. First, not all types of the favorite may simultaneously raise their bids in

response to the self-disclosure by the weakest type of the underdog. Indeed, this would

be incompatible with our earlier conclusion that the weakest type of the underdog

necessarily raises her bid. Second, even a dominant reaction of the favorite will never

be strong enough to press the probability of winning for the weakest type of the

underdog weakly below her probability of winning under concealment.

5.2 Equilibrium responses to the favorite’s self-disclosure

The following example demonstrates that, in analogy to the case just considered,

a type of the underdog may actually raise her effort after the favorite’s attempt to

discourage her.

Example 3. (“Defiant reaction”) Consider the set-up specified in Table III. It

can be seen that, in response to the favorite’s attempt to discourage the underdog,

only the two weaker types of the underdog lower their respective efforts, whereas the
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strongest type of the underdog actually raises her effort.

Table III. Equilibrium bids before and after the favorite’s self-disclosure.

In fact, the example illustrates again another possibility, seen before in a symmetric

environment, viz. that a type of the underdog may become so discouraged that she

decides to exert zero effort.35

5.3 Relationship to Monaco and Sabarwal (2016)

Monaco and Sabarwal (2016) introduced an interesting new class of games that they

referred to as parameterized games of strategic heterogeneity. For the precise defini-

tion, we refer the reader to the original paper. Very roughly, however, in such games,

strategy spaces are lattices and payoff functions allow for strategic complements and

substitutes at the same time. One can check that, under suitable constraints on

bids, the incomplete-information contests considered in the present paper are indeed

parameterized games of strategic heterogeneity. Rather unexpectedly, however, we

found that the contraction-mapping approach of Monaco and Sabarwal (2016, Th. 5)

need not go through– when the contest is too unbalanced. The problem is that, as

35This possibility is reminiscent of the drop-out identified by Parreiras and Rubinchik (2010).
However, in their setting, intimidation is caused by the presence of additional players, whereas in
our setting, intimidation is caused by disclosed information.
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recently noted by Wärneryd (2016) in a different context, the best-response iteration

in a suffi ciently asymmetric contest need not be a contraction. Figure 1 above illus-

trates this fact for the case of complete information, but the situation is quite similar

under incomplete information.36

6. A commitment problem

While self-disclosure is always individually rational for some type of some player,

other types of the same player might subsequently suffer from an increased level of

competition. It turns out that this is indeed feasible. More specifically, it will be

shown in this section that the unraveling may lead to higher ex-ante levels of rent

dissipation for both players and to a lower ex-ante probability of winning for the

underdog. In fact, the unraveling may be strictly undesirable for both contestants.

To illustrate this point, we will compare the equilibrium scenario of full revelation

(FR) with the hypothetical benchmark of mandatory concealment (MC). Let CFR =

E[c1x
◦
1(c1, c2)+c2x

◦
2(c1, c2)] and C

MC = E[c1ξ
∗
1(c1)+c2ξ

∗
2(c2)], respectively, denote to-

tal expected costs under full revelation and under mandatory concealment.37 Further,

for i ∈ {1, 2}, let pFRi = E [pi(x
◦
1(c1, c2), x

◦
2(c1, c2))] and p

MC
i = E [pi(ξ

∗
1(c1), ξ

∗
2(c2))] de-

note player i’s ex-ante probability of winning under full revelation and under manda-

tory concealment. Finally, likewise for i ∈ {1, 2}, let ΠFR
i = pFRi − E[cix

◦
i (c1, c2)]

and ΠMC
i = pMCi − Eci [ciξ∗i (ci)] denote player i’s ex-ante expected payoff under full

revelation and mandatory concealment. A specific setting that allows to draw some

clear-cut conclusions is assumed in the following result.

36To see this for Example 2, let β1(ξ2) = β1(ψ2(ξ2(c2))) denote player 1’s best-response bid
schedule against ψ2(ξ2(c2)), where ξ2 ∈ X∗2 . Monaco and Sabarwal (2016, Th. 5) required that
β1(ξ̂2) � ξ∗1, where ξ̂2 = β2(ξ̂1) and ξ̂1 = β1(ξ

∗
2). A numerical computation shows that ξ̂1(c1) =

0.1016, ξ̂1(c1) = 0.0715, and ξ̂2(c2) = 0.0194. As a result, β1(ξ̂2)(c1) = 0.4208 > 0.1592 = ξ∗1(c1) and
β1(ξ̂2)(c1) = 0.2919 > 0.1042 = ξ∗1(c1). Thus, β1(ξ̂2) � ξ∗1, in conflict with the required condition.
37E[.] = Ec1,c2 [.] denotes the ex-ante expectation.
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Proposition 3. (“Commitment problem”)

Consider an unbiased lottery contest satisfying Assumption 1. Suppose that the type of

the favorite is public information, whereas the underdog has at least two possible type

realizations. Assume also that, under mandatory concealment, all types are active.

Then,

(i) CFR > CMC (in both cases, expected costs split evenly between the players);38

(ii) the underdog’s (the favorite’s) ex-ante probability of winning is strictly lower

(strictly higher) under full revelation than under mandatory concealment, i.e., pFR2 <

pMC2 ( pFR1 > pMC1 ); and

(iii) the ex-ante payoff for the underdog is strictly lower under full revelation than

under mandatory concealment, i.e., ΠFR
2 < ΠMC

2 .39

Proof. See Appendix B. �

The result above shows that the option to disclose private information may be undesir-

able for a contestant. Intuitively, there is an externality that the disclosing marginal

type imposes upon the silent submarginal types. The externality is a virtual one only,

because two type realizations of the same contestant never coexist. Notwithstanding,

the inability to commit leads to a situation in which the privately informed player

loses in expected terms by the unraveling.

The following example illustrates the possibility that the unraveling may actually

be ex-ante undesirable for both contestants.

38Thus, the effort of the favorite is strictly higher under full revelation than under mandatory
concealment. The expected effort of the underdog, however, may either rise or fall, depending on
parameters.
39The payoff comparison for the favorite is ambiguous, i.e., depending on parameters, it may be

that ΠFR
1 ≥ ΠMC

1 , or as in Example 4 below, that ΠFR
1 < ΠMC

1 .
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Example 4. (“Disclosure trap”) The setting specified in Table IV satisfies the

assumptions of Proposition 3, and hence, illustrates the conclusions of the proposition.

More importantly, it can be seen that the unraveling leads the contestants into a

strictly Pareto inferior outcome.

Table IV. Equilibrium bids under full revelation and mandatory concealment.

Thus, in contrast to the more common situation in which the receiver in a persuasion

game, such as an employer, a consumer, or a health insurer, tends to benefit from the

unraveling, sometimes even unduly so, this need not be the case in a contest.

7. Conclusion

In this paper, we have identified general conditions under which a probabilistic contest

with pre-play communication admits full disclosure as the unique perfect Bayesian

equilibrium outcome. Interestingly, our main result is just the opposite of the cor-

responding finding for the all-pay auction (Kovenock et al., 2015). Moreover, given

that the usual assumptions for the uniqueness of the fully revealing equilibrium out-

come (Milgrom, 1981; Okuno-Fujiwara et al., 1990; Seidman and Winter, 1997; Van
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Zandt and Vives, 2007) fail to hold for contests, our results mean an extension of

existing theory. In particular, the strong-form disclosure principle is more general

than previously perceived.40

Regarding methods, we have extended the existing lattice-theoretic approach for

the analysis of the comparative statics of equilibria in games of strategic heterogeneity

(Monaco and Sabarwal, 2016). Furthermore, we have developed an improved version

of Jensen’s inequality, which might be of independent interest.

Our analysis took us naturally to a formalization of several intuitive concepts for

which, to our knowledge, a flexible and all-encompassing framework in the realm of

contest theory has been lacking so far. These concepts include strategic attempts

of individual types to either moderate or discourage an opponent through pre-play

communication of verifiable information, as well as the possibility of seemingly ir-

rational, “dominant”or “defiant”, reactions to such attempts. Clearly, these latter

findings are unexpected given the absence of behavioral elements in our framework.

Therefore, the further analysis of such effects appears to us as a valuable route for

future research.41

40Theorem 1 continues to hold when the revelation stage is replaced by a sequential-move model in
which the disclosure decision is made first by the favorite. But also in the case where the underdog
moves first, we have found (by a definite result for the lottery contest, and an extensive numerical
search for more general technologies) that full revelation remains the unique perfect Bayesian equi-
librium outcome. Thus, even if disclosure decisions are made sequentially, it does not seem possible
for the players to escape the logic of the unraveling result.
41For instance, our numerical exercises suggest that only the weakest types of the favorite may

exhibit dominant reactions, and that only the strongest types of the underdog may exhibit defiant
reactions.
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Appendix A: Auxiliary results

In this Appendix, we state and prove a number of auxiliary results. Lemma A.1 col-

lects some properties of a transformation introduced by Wärneryd (2003).42 Lemma

A.2 establishes a basic monotonicity property of the best-response bid schedule.

Lemma A.3 provides bounds on the bid distributions. Lemma A.4 establishes the

Stackelberg monotonicity property of the complete-information contest. Finally,

Lemma A.5 offers an extension of Jensen’s inequality.

Lemma A.1 (Wärneryd’s transformation)

Let Φ(z) = h(z)/h′(z), for any z > 0. Then,

(i) limz↘0 Φ(z) = 0,

(ii) 1 ≤ Φ′ ≤ ρ, and

(iii) (d lnh)/(d lnΦ) = 1/Φ′.

Proof. (i) By assumption, h is differentiable in the interior of the strategy space,

with h′ positive and declining. Hence, limz→0 h
′(z) ∈ (0,∞]. Moreover, by continuity,

limz→0 h(z) = 0. The claim follows. (ii) Note first that Φ′ = 1 − (hh′′/(h′)2) ≥ 1 by

the concavity of h. To see that Φ′ ≤ ρ, take some ρ > ρ such that hρ is convex. Then,

in the interior of the strategy space,

ρ(ρ− 1)hρ−2 (h′)
2

+ ρhρ−1h′′ ≥ 0. (6)

Recall that ρ ≥ 1. Hence, ρ > 1. Dividing (6) by ρhρ−2(h′)2 > 0, and rearranging,

one obtains Φ′ ≤ ρ. Taking the limit ρ→ ρ, the claim follows. (iii) A straightforward

42See also Inderst et al. (2007).
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calculation shows that

d lnh(z)

d ln Φ(z)
=

(
dh(z)

h(z)

)/(
dΦ(z)

Φ(z)

)
=
h′(z)dz

h(z)
· Φ(z)

Φ′(z)dz
=

1

Φ′(z)
(z > 0), (7)

as claimed. This proves the lemma. �

Lemma A.2 (Best-response bid schedules)

Let ξj ∈ X∗j and ci, ĉi ∈ Ci for i 6= j such that ci > ĉi. Then, β̃i(ξj; ci) ≤ β̃i(ξj; ĉi),

where the inequality is strict if β̃i(ξj; ĉi) > 0.

Proof. Take an arbitrary bid schedule ξj ∈ X∗j of player j. The assertion is obvious

for β̃i(ξj; ci) = 0. Suppose instead that xi ≡ β̃i(ξj; ci) > 0. Then, the necessary

first-order condition for type ci implies

∂Ecj [pi(xi, ξj(cj))]

∂xi
= ci. (8)

We will show first that player i’s marginal probability of winning, i.e., the left-hand

side of equation (8), is strictly declining in i’s bid. Indeed, because the best-response

bid β̃i(ξj; ci) exists, there is a type cj ∈ Cj such that ξj(cj) > 0. A straightforward

calculation shows, therefore, that

∂2Ecj [pi(xi, ξj(cj))]

∂x2i

=
∂

∂xi
Ecj

[
γiγjh

′(xi)h(ξj(cj))

(γih(xi) + γjh(ξj(cj)))
2

]
(9)

= Ecj

[
γiγjh(ξj(cj))

{
(γih(xi) + γjh(ξj(cj)))h

′′(xi)− 2γi(h
′(xi))

2
}

(γih(xi) + γjh(ξj(cj)))
3

]
(10)

< 0, (11)

which proves the claim. There are now two cases. Assume first that x̂i > 0. For this
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case, it is claimed that x̂i > xi. To provoke a contradiction, suppose that x̂i ≤ xi.

Then, since the marginal probability of winning for player i is strictly declining in i’s

bid,

ĉi =
∂Ecj [pi(x̂i, ξj(cj))]

∂xi
≥
∂Ecj [pi(xi, ξj(cj))]

∂xi
= ci, (12)

in conflict with ĉi < ci. Hence, x̂i > xi, as claimed. Assume next that x̂i = 0, i.e.,

type ĉi finds it optimal to respond to ξj with a zero effort. But then, clearly, strictly

higher marginal costs induce type ci to do the same, i.e., xi = 0. The lemma follows.

�

Lemma A.3 (Bounds on the bid distributions)

Let ξ∗ = (ξ∗1, ξ
∗
2) be a Bayesian equilibrium in a contest such that both players are

active with probability one. Then, the following two inequalities hold:

γih(ξ∗i (ci)) ≤
1

πi
· γih(ξ∗i (ci)) +

1− πi
πi

· γjh(ξ∗j(cj)) (j 6= i) (13)

h(ξ∗2(c2)) ≤
1

σ̂
· h(ξ∗1(c1)) (14)

Proof. Take an arbitrary type ci ∈ Ci of player i. Since, by assumption, ξ∗i (ci) > 0,

the necessary first-order condition for type ci holds, i.e.,

Ecj

[
γiγjh

′(ξ∗i (ci))h(ξ∗j(cj))

(γih(ξ∗i (ci)) + γjh(ξ∗j(cj)))
2

]
− ci = 0, (15)

where j 6= i. To prove the first claim, evaluate (15) at ci = ci. Then, making use of
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Lemma A.2 and the concavity of h, we get

ci = Ecj

[
γiγjh

′(ξ∗i (ci))h(ξ∗j(cj))

(γih(ξ∗i (ci)) + γjh(ξ∗j(cj)))
2
·
(
γih(ξ∗i (ci)) + γjh(ξ∗j(cj))

γih(ξ∗i (ci)) + γjh(ξ∗j(cj))

)2]
(16)

= Ecj

 γiγjh
′(ξ∗i (ci))h(ξ∗j(cj))

(γih(ξ∗i (ci)) + γjh(ξ∗j(cj)))
2
·
(

1 +
γih(ξ∗i (ci))− γjh(ξ∗i (ci))

γih(ξ∗i (ci)) + γjh(ξ∗j(cj))

)2
︸ ︷︷ ︸

monotone increasing in cj

 (17)

≥ Ecj

[
γiγjh

′(ξ∗i (ci))h(ξ∗j(cj))

(γih(ξ∗i (ci)) + γjh(ξ∗j(cj)))
2

]
·
(
γih(ξ∗i (ci)) + γjh(ξ∗j(cj))

γih(ξ∗i (ci)) + γjh(ξ∗j(cj))

)2
(18)

= Ecj

[
γiγjh

′(ξ∗i (ci))h(ξ∗j(cj))

(γih(ξ∗i (ci)) + γjh(ξ∗j(cj)))
2

]
×
(
h′(ξ∗i (ci))

h′(ξ∗i (ci))

)
︸ ︷︷ ︸

≥1

·
(
γih(ξ∗i (ci)) + γjh(ξ∗j(cj))

γih(ξ∗i (ci)) + γjh(ξ∗j(cj))

)2
(19)

≥ ci ·
(
γih(ξ∗i (ci)) + γjh(ξ∗j(cj))

γih(ξ∗i (ci)) + γjh(ξ∗j(cj))

)2
. (20)

Dividing by ci > 0, and using πi =
√
ci/ci, we obtain

γih(ξ∗i (ci)) + γjh(ξ∗j(cj))

γih(ξ∗i (ci)) + γjh(ξ∗j(cj))
≤ 1

πi
. (21)

Inequality (13) follows. To prove the second claim, one multiplies type ci’s first-order

condition (15) by Φ(ξ∗i (ci)), and subsequently takes expectations. This yields

Eci [ciΦ(ξ∗i (ci))] = Ec1,c2

[
γ1γ2h(ξ∗1(c1))h(ξ∗2(c2))

(γ1h(ξ∗1(c1)) + γ2h(ξ∗2(c2)))
2

]
(i = 1, 2), (22)

where Ec1,c2 [.] denotes the ex-ante expectation. Exploiting the fact that equilibrium

bid schedules are monotone declining (by Lemma A.2), and that Φ′ > 0, this implies

c2Φ(ξ∗2(c2)) ≤ Ec2 [c2Φ(ξ∗2(c2))] = Ec1 [c1Φ(ξ∗1(c1))] ≤ c1Φ(ξ∗1(c1)), (23)
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or, using that Φ(ξ∗2(c2)) > 0,

Φ(ξ∗1(c1))

Φ(ξ∗2(c2))
≥ c2
c1

= σ. (24)

There are two cases. Assume first that ξ∗1(c1) ≥ ξ∗2(c2). Then, using Φ′ ≤ ρ (see

Lemma A.1), we obtain

ln

(
h(ξ∗1(c1))

h(ξ∗2(c2))

)
=

∫ ξ∗1(c1)

ξ∗2(c2)

d lnh(z) (25)

=

∫ ξ∗1(c1)

ξ∗2(c2)

d lnh(z)

d ln Φ(z)
d ln Φ(z) (26)

=

∫ ξ∗1(c1)

ξ∗2(c2)

1

Φ′(z)
d ln Φ(z) (27)

≥ 1

ρ

∫ ξ∗1(c1)

ξ∗2(c2)

d ln Φ(z) (28)

=
1

ρ
ln

(
Φ(ξ∗1(c1))

Φ(ξ∗2(c2))

)
. (29)

Using (24), this implies

h(ξ∗2(c2)) ≤
1

σ1/ρ
· h(ξ∗1(c1)). (30)

Assume next that ξ∗1(c1) < ξ∗2(c2). Then using Φ′ ≥ 1 (taken likewise from Lemma

A.1) delivers

ln

(
h(ξ∗2(c2))

h(ξ∗1(c1))

)
=

∫ ξ∗2(c2)

ξ∗1(c1)

d ln Φ(z)

Φ′(z)
≤
∫ ξ∗2(c2)

ξ∗1(c1)

d ln Φ(z) = ln

(
Φ(ξ∗2(c2))

Φ(ξ∗1(c1))

)
. (31)

Hence, in that case,

h(ξ∗2(c2)) ≤
1

σ
· h(ξ∗1(c1)). (32)
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Thus, exploiting that ρ ≥ 1,

h(ξ∗2(c2)) ≤ h(ξ∗1(c1)) ·max

{
1

σ
,

1

σ1/ρ

}
(33)

= h(ξ∗1(c1))·

 1/σ if σ ≤ 1

1/σ1/ρ if σ > 1.
(34)

Clearly, this proves (14). �

Lemma A.4 (Stackelberg monotonicity)

Let x2 > x̂2 ≥ 0 and c1 ∈ C1 such that x1 = β̃1(ψ2(x2), c1) and x̂1 = β̃1(ψ2(x̂2), c1).

If x̂1 > 0 then,

(i) p2(x1, x2) > p2(x̂1, x̂2), and

(ii) Π1(x1, x2; c1) < Π1(x̂1, x̂2; c1).

Proof. (i) By assumption, x̂1 = β̃1(ψ2(x̂2), c1) > 0. Therefore, x2 > x̂2 implies

p2(x̂1, x2) > p2(x̂1, x̂2). Assume first that x1 ≤ x̂1. Then, clearly, p2(x1, x2) ≥

p2(x̂1, x2). Combining the last two inequalities, we arrive at p2(x1, x2) > p2(x̂1, x̂2),

as claimed. Assume, next, that x1 > x̂1. Then, the necessary first-order conditions

associated with the respective optimality of x̂1 and x1 hold. As for x̂1, we find

γ1h
′(x̂1)γ2h(x̂2)

(γ1h(x̂1) + γ2h(x̂2))
2 = c1. (35)

Multiplying by γh(x̂2)/h
′(x̂1), where γ = γ2/γ1 as before, yields

(p2(x̂1, x̂2))
2 =

c1γh(x̂2)

h′(x̂1)
. (36)

38



Similarly, one shows that the optimality of x1 implies

(p2(x1, x2))
2 =

c1γh(x2)

h′(x1)
. (37)

Recalling that h is strictly increasing and that h′ is weakly declining, we see that

(p2(x1, x2))
2 > (p2(x̂1, x̂2))

2. The claim follows.

(ii) As a consequence of the envelope theorem,

dΠ1(β̃1(ψ2(x2); c1), x2; c1)

dx2
=

∂Π1(x1, x2; c1)

∂x2

∣∣∣∣
x1=β̃1(ψ2(x2);c1)

(38)

= − γ1h(β̃1(ψ2(x2); c1))γ2h
′(x2)

(γ1h(β̃1(ψ2(x2); c1)) + γ2h(x2))2
(39)

< 0. (40)

Thus, player 1 benefits from the lowered effort of player 2. This proves the second

claim, and hence, the lemma. �

Lemma A.5 (Improved Jensen’s inequality)43

Let g : (1,∞) × (1,∞) → R be a twice continuously differentiable function with

Hessian matrix

Hg ≡ Hg(x, y) =

 ∂2g(x,y)
∂x2

∂2g(x,y)
∂x∂y

∂2g(x,y)
∂y∂x

∂2g(x,y)
∂y2

 , (41)

and let Y be a nondegenerate random variable with finite support in (1,∞). If

{
x > 1, y ≥ x2, dx > 0, dy > 0,

dy
dx

>
y − 1

x− 1

}
⇒ (dx dy) (Hg(x, y))

(
dx
dy

)
> 0, (42)

43This auxiliary result is used in the proof of Proposition 3. It also helped us to see through the
analysis of sequentially taken disclosure decisions (see fn. 40). Alternative extensions of Jensen’s
inequality have been proposed by Pittenger (1990), Guljašet al. (1998), and Liao and Berg (2017),
in particular. However, those results do not render the payoff comparisons made in the proof of
Proposition 3.
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then

E
[
g
(
Y, Y 2

)]
> g

(
E[Y ], E[Y 2]

)
. (43)

Proof. By induction. Assume first that the random variable Y has precisely two

possible realizations y1, y2 ∈ (1,∞). Without loss of generality, y1 < y2. Consider

the auxiliary mapping f : [0, 1]→ R2 defined through

f(t) = (1− t)
(
y1
y21

)
+ t

(
y2
y22

)
(t ∈ [0, 1]). (44)

By assumption, g is strictly convex along the straight line described by f .44 In

particular, the composed mapping g ◦ f is strictly convex. Therefore, when t is

considered a random variable that assumes the value t = 0 with probability q1 =

pr(Y = y1) > 0 and the value t = 1 with probability q2 = 1 − q1 = pr(Y = y2) > 0,

then

E[g(Y, Y 2)] = E[g(f(t))] (45)

> g(f(E[t])) (46)

= g
(
q1y1 + (1− q1)y2, q1y21 + (1− q1)y22

)
(47)

= g([E[Y ], E[Y 2]). (48)

This proves the claim in the case that Y has two realizations only. Suppose that

the claim has been shown for K ≥ 2 realizations, and assume that Y has K + 1

realizations y1 < ... < yK+1, with respective probabilities qk = pr(Y = yk) > 0,

where k = 1, ..., K + 1. Consider the random variable Y ′ that assumes value yk, for

44To see this, let x = (1 − t)y1 + ty2 > 1, y = (1 − t)y21 + ty22 ≥ x2, dx = y2 − y1 > 0, and
dy = y22 − y21 > 0. Then, dy/dx = y2 + y1 > 1 + y1 = (y − 1)/(x − 1), so that the precondition in
(42) indeed holds true.
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k = 2, ..., K + 1, with probability

q′k =
qk

1− q1
=

qk∑K+1
κ=2 qκ

. (49)

Thus, Y ′ follows a conditional distribution after learning Y 6= y1. In particular,

E[Y ] = q1y1 + (1− q1)E[Y ′], (50)

E[Y 2] = q1y
2
1 + (1− q1)E[(Y ′)2]. (51)

Moreover, by the induction hypothesis, inequality (43) holds for Y ′, i.e.,

E
[
g
(
Y ′, (Y ′)2

)]
> g

(
E[Y ′], E[(Y ′)2]

)
. (52)

As above, we define an auxiliary mapping

f̃(t) = (1− t)
(
y1
y21

)
+ t

(
E[Y ′]

E[(Y ′)2]

)
(t ∈ [0, 1]). (53)

Clearly, E[(Y ′)2] > E[Y ′]2. Therefore, as illustrated in Figure 3, the vector that

directs from
(
y1
y21

)
to
(
E[Y ′]
E[(Y ′)2]

)
is steeper than the vector that directs from

(
y1
y21

)
to(

E[Y ′]
E[Y ′]2

)
. Hence, g is strictly convex also along the linear path described by f̃ .45 Thus,

g ◦ f̃ is strictly convex.
45Indeed, letting x = (1− t)y1+ tE[Y ′] > 1, y = (1− t)y21 + tE[Y ′2 > x2, dx = E[Y ′]−y1 > 0, and

dy = E[(Y ′)2]−y21 > 0, we see that dy/dx = (E[(Y ′)2]−y21)/(E[Y ′]−y1) > (E[(Y ′)]2−y21)/(E[Y ′]−
y1) = E[Y ′] + y1 > 1 + y1 = (y − 1)/(x− 1), so that the precondition in (42) holds true also in this
case.
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Figure 3. Improved Jensen’s inequality.

Therefore, considering t as a random variable that assumes the value t = 0 with

probability q1 = pr(Y = y1) > 0 and the value t = 1 with probability 1 − q1 > 0,

relationships (50-53) imply

E[g(Y, Y 2)] = q1g(y1, y
2
1) + (1− q1)E[g(Y ′, (Y ′)2] (54)

> q1g(y1, y
2
1) + (1− q1)g

(
E[Y ′], E[(Y ′)2]

)
(55)

= E[g(f̃(t))] (56)

> g(f̃(E[t])) (57)

= g
(
q1y1 + (1− q1)E[Y ′], q1y

2
1 + (1− q1)E[(Y ′)2]

)
(58)

= g(E[Y ], E[Y 2]). (59)

Thus, the claim holds for K + 1 realizations. This completes the induction, and

thereby, the proof of the lemma. �
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Appendix B: Proofs

This Appendix contains formal proofs of the results stated in the body of this paper.

Proof of Lemma 1. This is a special case of a result in Ewerhart and Quartieri

(2013). The details are omitted. �

Proof of Lemma 2. Part (ii) will be proved first. So assume that all types of both

players are active in the contest. There are two cases.

Case A. All types of both players conceal their private information. We make use of

Lemma A.3. Letting i = 2 in (13) yields

γ2h(ξ∗2(c2)) ≤
1

π2
· γ2h(ξ∗2(c2)) +

1− π2
π2

· γ1h(ξ∗1(c1)). (60)

Combining this with (14) delivers

γ2h(ξ∗2(c2)) ≤
{

1

π2
· γ
σ̂

+
1− π2
π2

}
︸ ︷︷ ︸

≡α

· γ1h(ξ∗1(c1)), (61)

where γ = γ2/γ1, as before. Letting i = 1 in (13), and plugging the result into (61)

yields

γ2h(ξ∗2(c2)) ≤ α ·
{

1

π1
· γ1h(ξ∗1(c1)) +

1− π1
π1

· γ2h(ξ∗2(c2))

}
. (62)

To be able to solve for γ2h(ξ∗2(c2)), we assume for the moment that

1− α1− π1
π1

> 0. (63)
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Then, rewriting (62), we obtain

γ2h(ξ∗2(c2)) ≤
{

α · 1
π1

1− α · 1−π1
π1

}
︸ ︷︷ ︸

≡λ

· γ1h(ξ∗1(c1)). (64)

Thus, γ2h(ξ∗2(c2)) ≤ λ · γ1h(ξ∗1(c1)). We claim that inequality (63) holds. Indeed,

starting with Assumption 1, we find that

γ <
π1 + 2π2 − 2

2− π1
· σ̂ (65)

⇔ γ

σ̂
+ 1 <

2π2
2− π1

(66)

⇔ (γ/σ̂) + 1

π2︸ ︷︷ ︸
=α+1

<
2

2− π1︸ ︷︷ ︸
=

π1
2−π1

+1

(67)

⇔ α <
π1

2− π1
(68)

⇔ 1− α(1− π1)
π1

>
α

π1
. (69)

Clearly, this implies (63). Moreover, it can be readily verified that (69) implies λ < 1.

Therefore, γ2h(ξ∗2(c2)) ≤ γ1h(ξ∗1(c1)). Using the monotonicity of equilibrium bid

schedules (Lemma A.2 above), this proves

γ2h(ξ∗2(c2)) ≤ γ1h(ξ∗1(c1)) (c1 ∈ C1, c2 ∈ C2). (70)

Clearly this proves part (ii) for the case that all types of both players conceal their

private information.

Case B. Some type of some player discloses her private information. The conclusion

remains valid even if not all types conceal. To understand why, note that disclosure

by some types means that, in the relevant information set at the contest stage, the
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sets C1 and C2 are replaced by nonempty subsets, respectively. Therefore, player 1’s

lowest relative resolve σ = c2/c1 rises weakly. Given that the curvature ρ ≥ 1 stays

unchanged, this implies that σ̂(σ, ρ) rises weakly as well. Further, player 1 and 2’s

predictabilities π1 and π2 fall weakly, while the net bias γ stays the same. Therefore,

Assumption 1 continues to hold, and the argument detailed under case A goes through

as before.

This concludes the proof of part (ii) of the lemma.

It remains to verify part (i) of the lemma, i.e., that all types of player 1 are active.

Suppose not. Then, all types of player 2 are active. Denote by ∅ 6= C∗1 ( C1 the set

of active types of player 1, and by q∗1 =
∑

c1∈C∗1
q1(c1) the ex-ante probability that

player 1 is active. Then, since any positive bid wins against an inactive type with

probability one, the corresponding terms in player 2’s first-order condition vanish, so

that ∑
c1∈C∗1

q1(c1)
γ2h

′(ξ∗2(c2))γ1h(ξ∗1(c1))

(γ1h(ξ∗1(c1)) + γ2h(ξ∗2(c2)))
2

= c2 (c2 ∈ C2). (71)

In the modified contest, player 1’s type set C1 is replaced by the subset C∗1 , the

probability distribution q1(.) is replaced by q∗1(c1) = q1(c1)/q
∗
1, and player 2’s type set

C2 is replaced by
C2
q∗1

=

{
c2
q∗1

∣∣∣∣ c2 ∈ C2} . (72)

Denote by ξ∗1|C∗1 the restriction of the mapping ξ
∗
1 : C1 → R+ to C∗1 , and by ξ∗2|q∗1 :

C2
q∗1
→ R+ the bid schedule for player 2 in the modified contest that satisfies ξ∗2|q∗1 ( c2

q∗1
) =

ξ∗2(c2) for any c2 ∈ C2. We claim that (ξ∗1|C∗1 , ξ
∗
2|q∗1 ) is a Bayesian equilibrium in the

modified contest. Indeed, quite obviously, the first-order condition of any active type
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of player 1 holds in the modified contest. Moreover, dividing (71) by q∗1 > 0, we get

∑
c1∈C∗1

q1(c1)

q∗1

γ2h
′(ξ∗2(c2))γ1h(ξ∗1(c1))

(γ1h(ξ∗1(c1)) + γ2h(ξ∗2(c2)))
2

=
c2
q∗1

(c2 ∈ C2), (73)

i.e., also the first-order condition of any type of player 2 holds in the modified contest.

Since all types of both players are active in (ξ∗1|C∗1 , ξ
∗
2|q∗1 ) and since, in addition, the

expected payoff against a player that is always active is strictly concave in the own

bid, this proves the claim, i.e., (ξ∗1|C∗1 , ξ
∗
2|q∗1 ) is indeed a Bayesian equilibrium in the

modified contest. Next, one notes that, since Assumption 1 holds for the original

contest, Assumption 1 holds also for the modified contest (because π1 and σ rise

weakly, while γ, ρ, and π2 stay the same). From the first part of the proof, applied

to the modified contest, it therefore follows that

γ2h(ξ∗2(c2)) ≤ γ1h(ξ∗1(c1)) (c1 ∈ C∗1 , c2 ∈ C2). (74)

Now, by assumption, some types of player 1 remain inactive in the original contest.

Since, by Lemma A.2, ξ∗1 is monotone declining, this clearly implies ξ
∗
1(c1) = 0.

Consequently, the marginal productivity at the zero bid level h′(0) = limε↘0
h(ε)
ε
is

finite. Moreover, type c1’s marginal payoff at the zero bid level is weakly negative,

i.e.,

Ec2

[
γ1h

′(0)

γ2h(ξ∗2(c2))

]
≤ c1. (75)

Plugging (74) into (75), we see that

h′(0)

h(ξ∗1(c1))
≤ c1 (c1 ∈ C∗1). (76)
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Moreover, Assumption 1 implies

γ2
γ1

= γ <
π1 + 2π2 − 2

2− π1︸ ︷︷ ︸
≤1

· σ̂(σ, ρ)︸ ︷︷ ︸
≤σ

≤ σ =
c2
c1
. (77)

Multiplying inequality (76) by (γ/q∗1) > 0, exploiting (77), and taking expectations

over all c1 ∈ C∗1 , we get

∑
c1∈C∗1

q1(c1)

q∗1

γ2h
′(0)

γ1h(ξ∗1(c1))
<
c2
q∗1
. (78)

Thus, in the modified contest, the marginal expected payoff of type (c2/q
∗
1) at the

zero bid level is strictly negative. But this is impossible given that she is active and

her expected payoff against ξ∗1|C∗1 is strictly concave. The contradiction shows that,

indeed, all types of player 1 are active in the original contest. �

Proof of Theorem 1. It is shown first that incomplete revelation is incompatible

with the assumption of a perfect Bayesian equilibrium. The proof is by contradic-

tion. Suppose that there is a perfect Bayesian equilibrium in which not all private

information is disclosed. Then, there is at least one information set on the equilib-

rium path in which at least one of the players has at least two types that may realize

with positive probability. By suitably redefining C1 and C2, we may assume without

loss of generality that all types conceal their types in that scenario. Suppose first

that |C2| ≥ 2. Then, Proposition 1 implies that the weakest type of the underdog

has a strict incentive to unilaterally deviate at the revelation stage, in conflict to the

equilibrium assumption. Suppose next that |C2| = 1. Then, since there is incomplete

information, |C1| ≥ 2. But, again, this cannot be part of a perfect Bayesian equilib-

rium by Proposition 2. Thus, either way, we obtain a contradiction, and the claim
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follows.

Next, it will be shown that there are off-equilibrium beliefs such that self-disclosure

by all types of both players constitutes a perfect Bayesian equilibrium. To this end,

we specify beliefs µ01 and µ
0
2 as follows. The underdog expects a favorite that does

not disclose her private information to be of type c1 = c1 with probability one. Thus,

µ01(c1) = 1 if c1 = c1, and µ01(c1) = 0 otherwise. Similarly, the favorite expects an

underdog that does not disclose her private information to be of type c2 = c2 with

probability one. Thus, µ02(c2) = 1 if c2 = c2, and µ
0
2(c2) = 0 otherwise.46 To check

the equilibrium property, consider first an arbitrary type c1 ∈ C1 of the favorite. If

c1 complies with equilibrium self-disclosure, and is matched with some type c2 ∈ C2

of the underdog, then c1 receives a complete-information equilibrium payoff of

Π◦1(c1, c2) = Π1(x
◦
1(c1, c2), x

◦
2(c1, c2); c1) (79)

= Π1(β̃1(x
◦
2(c1, c2); c1), x

◦
2(c1, c2); c1). (80)

If, however, the favorite chooses to not disclose her type, then, given the off-equilibrium

beliefs specified above, an underdog of type c2 expects the favorite to be of the worst-

case type c1 and, having revealed her own type c2 to the favorite, chooses an effort

of x◦2(c1, c2). Responding optimally to type c2’s bid, the deviating favorite of type c1

chooses an effort of β̃1(x
◦
2(c1, c2); c1) at the contest stage, and consequently receives a

payoff of

Πdev
1 (c1, c2) = Π1(β̃1(x

◦
2(c1, c2); c1), x

◦
2(c1, c2); c1). (81)

A straightforward application of Monaco and Sabarwal (2016, Th. 3) shows that,

46Alternatively, one could argue that the least effi cient type of the favorite and the most effi cient
type of the underdog do not disclose their types, in which case the consideration of off-equilibrium
beliefs would not be necessary in the first place.
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given Assumption 1, x◦2(c1, c2) ≤ x◦2(c1, c2).
47 We claim that Π◦1(c1, c2) ≥ Πdev

1 (c1, c2).

Indeed, if x◦2(c1, c2) < x◦2(c1, c2) then, by Lemma A.4(ii), Π◦1(c1, c2) > Πdev
1 (c1, c2).

Moreover, if x◦2(c1, c2) = x◦2(c1, c2) then Π◦1(c1, c2) = Πdev
1 (c1, c2), which proves the

claim. Taking expectations over all c2 ∈ C2 yields

Ec2 [Π◦1(c1, c2)] ≥ Ec2
[
Πdev
1 (c1, c2)

]
(c1 ∈ C1). (82)

Hence, a deviation is not profitable for any type c1 ∈ C1. On the other hand, if

any type of the underdog deviates, and the favorite interprets this as a tactic of

the strongest type of the underdog, then one can show in complete analogy that

the equilibrium condition holds.48 It follows that self-disclosure by all types of both

players is indeed a perfect Bayesian equilibrium. This proves the theorem. �

Proof of Lemma 3. (i) Let ξ2, ξ̂2 ∈ X∗2 with ξ2 � ξ̂2, and c1 ∈ C1. By assumption,

player 1’s domain condition holds at (ξ2; c1). We wish to show that x1 ≡ β̃1(ξ2; c1) >

β̃1(ξ̂2; c1) ≡ x̂1. To provoke a contradiction, suppose that x̂1 ≥ x1. From the domain

condition, we have x1 > 0. Therefore, both x1 and x̂1 are positive, so that the

corresponding first-order conditions imply

Ec2

[
γ1h

′(x1)γ2h(ξ2(c2))

(γ1h(x1) + γ2h(ξ2(c2)))
2

]
= Ec2

[
γ1h

′(x̂1)γ2h(ξ̂2(c2))

(γ1h(x̂1) + γ2h(ξ̂2(c2)))
2

]
= c1. (83)

Fix some c2 ∈ C2 for the moment. Letting x = γ1h(β̃1(ξ2; c1)) and y = γ2h(ξ2(c2)),

the domain condition implies x > y. Clearly, the mapping y 7→ y/(x+ y)2 is strictly

47For a self-contained argument, it suffi ces to replicate earlier arguments. Indeed, suppose that
x◦2(c1, c2) > x◦2(c1, c2). Clearly, all equilibrium efforts are positive under complete information.
Therefore, using Lemma 2(ii), player 1’s domain condition holds at (x◦2(c1, c2); c1), so that, by
Lemma 3(i), x◦1(c1, c2) > x◦1(c1, c2). Moreover, using Lemma 2(ii) another time, player 2’s domain
condition is seen to hold at (x◦1(c1, c2); c2), so that by Lemma 3(ii), x

◦
2(c1, c2) < x◦2(c1, c2), which

yields the desired contradiction. The claim follows.
48The details are omitted.
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increasing over the interval [0, x]. Therefore, noting that ξ2 � ξ̂2 implies y ≥ ŷ ≡

γ2h(ξ̂2(c2)), we see that

γ1h
′(x1)γ2h(ξ2(c2))

(γ1h(x1) + γ2h(ξ2(c2)))
2
≥ γ1h

′(x1)γ2h(ξ̂2(c2))

(γ1h(x1) + γ2h(ξ̂2(c2)))
2

(c2 ∈ C2), (84)

with strict inequality for at least one c2 ∈ C2. Moreover, from x̂1 ≥ x1,

γ1h
′(x1)γ2h(ξ̂2(c2))

(γ1h(x1) + γ2h(ξ̂2(c2)))
2
≥ γ1h

′(x̂1)γ2h(ξ̂2(c2))

(γ1h(x̂1) + γ2h(ξ̂2(c2)))
2

(c2 ∈ C2). (85)

Combining (84) and (85), and subsequently taking expectations , we arrive at

Ec2

[
γ1h

′(x1)γ2h(ξ2(c2))

(γ1h(x1) + γ2h(ξ2(c2)))
2

]
> Ec2

[
γ1h

′(x̂1)γ2h(ξ̂2(c2))

(γ1h(x̂1) + γ2h(ξ̂2(c2)))
2

]
, (86)

in conflict with (83). The contradiction shows that x1 > x̂1, as claimed. Moreover,

if player 1’s domain condition holds for any c1 ∈ C1, then β̃1(ξ2; c1) > β̃1(ξ̂2; c1) for

any c1 ∈ C1, which indeed implies β1(ξ2) � β1(ξ̂2).

(ii) The proof is similar. Let ξ1, ξ̂1 ∈ X∗1 with ξ1 � ξ̂1, and c2 ∈ C2. By assump-

tion, player 2’s domain condition holds at (ξ̂1; c2). Suppose that x2 ≡ β̃2(ξ1; c2) ≥

β̃2(ξ̂1; c2) ≡ x̂2. Then, from the domain condition, x̂2 > 0. Hence,

Ec1

 γ2h
′(x̂2)γ1h(ξ̂1(c1))(

γ1h(ξ̂1(c1)) + γ2h(x̂2)
)2
 = Ec1

[
γ2h

′(x2)γ1h(ξ1(c1))

(γ1h(ξ1(c1)) + γ2h(x2))2

]
= c2. (87)

Fix some c1 ∈ C1, and let x̂ = γ2h(β̃2(ξ̂1; c2)) and ŷ = γ1h(ξ̂1(c1)). By the domain

condition, x̂ < ŷ. Moreover, the mapping ŷ 7→ ŷ/(x̂ + ŷ)2 is strictly declining for
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ŷ ≥ x̂. Hence, given that ξ̂1 ≺ ξ1 implies ŷ ≤ y ≡ γ1h(ξ1(c1)), we see that

γ2h
′(x̂2)γ1h(ξ̂1(c1))(

γ1h(ξ̂1(c1)) + γ2h(x̂2)
)2 ≥ γ2h

′(x̂2)γ1h(ξ1(c1))

(γ1h(ξ1(c1)) + γ2h(x̂2))
2 (c1 ∈ C1), (88)

with strict inequality for some c1 ∈ C1. Moreover, from x̂2 ≤ x2,

γ2h
′(x̂2)γ1h(ξ1(c1))

(γ1h(ξ1(c2)) + γ2h(x̂2))2
≥ γ2h

′(x2)γ1h(ξ1(c1))

(γ2h(ξ1(c1)) + γ2h(x1))2
(c1 ∈ C1). (89)

Combining (88) and (89), and taking expectations, we arrive at

Ec1

 γ2h
′(x̂2)γ1h(ξ̂1(c1))(

γ1h(ξ̂1(c1)) + γ2h(x̂2)
)2
 > Ec1

[
γ2h

′(x2)γ1h(ξ1(c1))

(γ1h(ξ1(c1)) + γ2h(x2))2

]
, (90)

in contradiction to (87). It follows that, indeed, x̂2 > x2. In particular, provided that

player 2’s domain condition holds for any c2 ∈ C2, it follows that β2(ξ1) ≺ β2(ξ̂1).

This concludes the proof. �

Proof of Proposition 1. As noted in the body of the paper, the conclusions of

Proposition 1 are immediate if ξ∗2(c2) = 0. We may, therefore, assume without loss

of generality that ξ∗2(c2) > 0. Since, by Lemma A.2, the equilibrium bid schedule ξ∗2

is weakly declining, actually all types of player 2 are active in ξ∗2. Using Lemma A.2

another time, one sees that ξ∗2 is even strictly declining. These observations will be

tacitly used below. We now prove the three assertions made in the statement of the

proposition.

(i) First, it is shown that self-disclosure induces the weakest type of the underdog

to strictly raise her bid, i.e., ξ∗2(c2) < x#2 . To provoke a contradiction, suppose that

ξ∗2(c2) ≥ x#2 . Then, because ξ
∗
2 is strictly declining and there are at least two possible
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type realizations for player 2, we get ξ∗2 � ψ2(x
#
2 ). We claim that player 1’s domain

condition holds at (ξ∗2; c1), for any c1 ∈ C1. To see this, take some c1 ∈ C1. Then,

from Lemma 2(i), β̃1(ξ
∗
2; c1) = ξ∗1(c1) > 0. Further, since all types of player 2 are

active in ξ∗2, Lemma 2(ii) implies that p1(ξ
∗
1(c1), ξ

∗
2(c2)) >

1
2
for any c2 ∈ C2, which

proves the claim. We may, therefore, apply Lemma 3(i) so as to obtain

ξ∗1 = β1(ξ
∗
2) � β1(ψ2(x

#
2 )) = ξ#1 . (91)

Next, it is claimed that player 2’s domain condition holds at (ξ#1 ; c2). Since (ξ#1 (.), x#2 )

is an equilibrium in the contest with one-sided incomplete information, we have x#2 >

0, i.e., player 2 is active with probability one. Applying Lemma 2(ii) shows, therefore,

that p2(ξ
#
1 (c1), x

#
2 ) < 1

2
, for any c1 ∈ C1. Since β̃2(ξ

#
1 ; c2) = x#2 , this means that

p2(ξ
#
1 (c1), β̃2(ξ

#
1 ; c2)) < 1

2
, for any c1 ∈ C1. I.e., player 2’s domain condition at

(ξ#1 ; c2) is indeed satisfied. Therefore, using relationship (91) and Lemma 3(ii), we

see that

ξ∗2(c2) = β̃2(ξ
∗
1; c2) < β̃2(ξ

#
1 ; c2) = x#2 , (92)

in contradiction to ξ∗2(c2) ≥ x#2 . Thus, ξ
∗
2(c2) < x#2 , as claimed.

(ii) Next, it is shown that, after disclosure, the probability of winning for the

weakest type of the underdog rises strictly, i.e.,

p#2 = Ec1 [p2(ξ
#
1 (c1), x

#
2 )] > Ec1 [p2(ξ

∗
1(c1), ξ

∗
2(c2))] = p∗2. (93)

In fact, we will prove the somewhat stronger statement

p2(ξ
#
1 (c1), x

#
2 ) > p2(ξ

∗
1(c1), ξ

∗
2(c2)) (c1 ∈ C1). (94)
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Take some type c1 ∈ C1. It is claimed first that β̃1(ψ2(ξ
∗
2(c2)); c1) > 0, as shown

in the left diagram of Figure 4. Indeed, because player 2 is always active in ξ∗2,

the mapping x1 7→ Ec2 [Π1(x1, ξ
∗
2(c2); c1)] is strictly concave on R+, and vanishes at

x1 = 0. Therefore, the optimality of ξ∗1(c1) > 0 implies Ec2 [Π1(ξ
∗
1(c1), ξ

∗
2(c2); c1)] > 0.

But the flat bid schedule ψ2(ξ
∗
2(c2)) is everywhere weakly lower than ξ

∗
2. Therefore,

Ec2 [Π1(ξ
∗
1(c1), ψ2(ξ

∗
2(c2)); c1)] > 0, i.e., type c1 is able to realize a positive payoff

against the flat bid schedule ψ2(ξ
∗
2(c2)). Since ξ

∗
2(c2) > 0, it follows that type c1’s best-

response bid against ψ2(ξ
∗
2(c2)) is positive, as claimed. Next, from the previous step,

we know that x#2 > ξ∗2(c2). Invoking Lemma A.4(i), and noting that ξ
#
1 = β1(ψ2(x

#
2 )),

it follows that

p2(ξ
#
1 (c1), x

#
2 ) > p2(β̃1(ψ2(ξ

∗
2(c2)); c1), ξ

∗
2(c2)) (c1 ∈ C1). (95)

Next, comparing the strictly declining equilibrium bid schedule ξ∗2 = β2(ξ
∗
1) with the

flat bid schedule ψ2(ξ
∗
2(c2)), and recalling that there are at least two types, we obtain

ξ∗2 � ψ2(ξ
∗
2(c2)). Moreover, as seen above, all types of player 2 are active. Hence,

by Lemma 2(ii), p1(ξ
∗
1(c1), ξ

∗
2(c2)) >

1
2
for any c1 ∈ C1 and any c2 ∈ C2, so that via

β̃1(ξ
∗
2; c1) = ξ∗1(c1), player 1’s domain condition is seen to hold at (ξ∗2; c1), for any

c1 ∈ C1. Therefore, by Lemma 3(i), ξ∗1 = β1(ξ
∗
2) � β1(ψ2(ξ

∗
2(c2))), as illustrated in

Figure 4.49 In particular,

ξ∗1(c1) ≥ β̃1(ψ2(ξ
∗
2(c2)); c1) (c1 ∈ C1). (96)

Therefore,

p2(β̃1(ψ2(ξ
∗
2(c2)); c1), ξ

∗
2(c2)) ≥ p2(ξ

∗
1(c1), ξ

∗
2(c2)) (c1 ∈ C1). (97)

49The figure shows an example where x#2 < ξ∗2(c2). In general, we may also have that x
#
2 ≥ ξ

∗
2(c2).
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Combining (95) and (97) yields (94). In particular, this proves p#2 > p∗2, as claimed.

Figure 4. Proof of Proposition 1(ii).

(iii) Finally, we show that the weakest type of the underdog has a strict incentive

to disclose her type. Clearly, the equilibrium effort x#2 is positive. One can check

that type c2’s first-order condition is equivalent to

Ec1

[
p2(ξ

#
1 (c1), x

#
2 )−

(
p2(ξ

#
1 (c1), x

#
2 )
)2]

= c2Φ(x#2 ). (98)

Exploiting (98), we obtain for type c2’s expected payoff from self-disclosure,

Π#
2 (c2) = Ec1

[(
p2(ξ

#
1 (c1), x

#
2 )
)2]

+ c2

(
Φ(x#2 )− x#2

)
. (99)

In a completely analogous fashion, we can convince ourselves that concealment grants

type c2 a payoff of

Π∗2(c2) = Ec1
[
(p2(ξ

∗
1(c1), ξ

∗
2(c2)))

2]+ c2 (Φ(ξ∗2(c2))− ξ∗2(c2)) . (100)

Now, from (94), we see that

Ec1

[(
p2(ξ

#
1 (c1), x

#
2 )
)2]

> Ec1
[
(p2(ξ

∗
1(c1), ξ

∗
2(c2)))

2] . (101)
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Moreover, from Lemma A.1, Φ′ ≥ 1, so that the mapping x2 7→ Φ(x2)−x2 is monotone

increasing in x2. But, as shown above, ξ
∗
2(c2) < x#2 . It follows that the weakest type

of the underdog has indeed a strict incentive to reveal her type. This proves the final

claim, and concludes the proof of the proposition. �

Proof of Proposition 2. Since x◦1 and x
◦
2 are equilibrium efforts under complete

information, we have x◦1 > 0 and x◦2 > 0. Similarly, one notes that x#2 > 0. Moreover,

by Lemma 2(i), all types of player 1 are active in ξ#1 , so that by Lemma A.2, the

bid schedule ξ#1 is strictly declining. We now prove the four assertions made in the

statement of Proposition 2.

(i) It is claimed that x◦2 < x#2 . To provoke a contradiction, suppose that x
◦
2 ≥ x#2 .

Lemma 2(ii) implies p1(x◦1, x
◦
2) >

1
2
, so that in view of x◦1 = β̃1(x

◦
2; c1), player 1’s

domain condition holds at (x◦2; c1). Hence, by Lemma 3(i), if even x
◦
2 > x#2 , then

x◦1 = β̃1(x
◦
2; c1) > β̃1(x

#
2 ; c1) = ξ#1 (c1). (102)

If, however, x◦2 = x#2 , then it is immediate that x
◦
1 = ξ#1 (c1). Thus, either way, we

arrive at x◦1 ≥ ξ#1 (c1), so that ψ1(x
◦
1) � ψ1(ξ

#
1 (c1)). Moreover, given that player 1 has

at least two types, and that ξ#1 is strictly declining, ψ1(ξ
#
1 (c1)) � ξ#1 . Hence, ψ1(x

◦
1) �

ξ#1 . Lemma 2(ii) implies that p2(ξ
#
1 (c1), x

#
2 ) < 1

2
for any c1 ∈ C1. Thus, recalling

that x#2 = β̃2(ξ
#
1 ; c#2 ), player 2’s domain condition holds at (ξ#1 ; c#2 ). Therefore, using

Lemma 3(ii), we arrive at

x#2 = β̃2(ξ
#
1 ; c#2 ) > β̃2(ψ1(x

◦
1); c

#
2 ) = x◦2, (103)

a contradiction. It follows that x◦2 < x#2 , as claimed.

(ii) Next, it is shown that x◦1 < ξ#1 (c1). From the previous step, we know that
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x#2 > x◦2. Via Lemma 2(ii), we see that p1(ξ
#
1 (c1), x

#
2 ) > 1

2
. Thus, the domain

condition for player 1 holds at (x#2 ; c1). Lemma 3(i) implies, therefore, that

ξ#1 (c1) = β̃1(x
#
2 ; c1) > β̃1(x

◦
2; c1) = x◦1. (104)

Thus, the effort of the strongest type of the favorite will indeed be strictly lower after

self-disclosure.

(iii) Given part (i) above, we have x◦2 < x#2 . Recalling that x
◦
1 > 0, Lemma A.4(i)

implies p2(x◦1, x
◦
2) < p2(ξ

#
1 (c1), x

#
2 ), so that p1(x◦1, x

◦
2) > p1(ξ

#
1 (c1), x

#
2 ). Thus, type c1

indeed wins with a strictly higher probability after self-disclosure.

(iv) The claim that Π◦1 > Π#
1 follows now directly from Lemma A.4(ii). This

completes the proof. �

Proof of Proposition 3. (i) Let c#1 ∈ C1 denote the public type of the favorite.

For the unbiased lottery contest, an interior equilibrium may be easily derived from

the corresponding first-order conditions (Hurley and Shogren, 1998a; Epstein and

Mealem, 2013; Zhang and Zhou, 2016). In our set-up, this yields equilibrium bids

x#1 =

(
E
[√
c2
]

c#1 + E [c2]

)2
, and (105)

ξ#2 (c2) =

√
x#1
c2
− x#1 (c2 ∈ C2), (106)

where we dropped, for convenience, the subscript c2 from the expectation operator.

Using these expressions, total expected costs under mandatory concealment are easily
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derived as

CMC = c#1 x
#
1 + E[c2ξ

#
2 (c2)] (107)

= (c#1 − E[c2])x
#
1 + E[

√
c2]

√
x#1 (108)

=
(c#1 − E[c2])E[

√
c2]

2

(c#1 + E[c2])2
+

E[
√
c2]

2

c#1 + E[c2]
(109)

=
2c#1 E[

√
c2]

2

(c#1 + E[c2])2
. (110)

Note that this formula entails, in particular, the complete-information case where c2

is public as well. Therefore, being an expectation over such complete-information

scenarios, total expected costs under full revelation amount to

CFR = E

[
2c#1 c2

(c#1 + c2)2

]
. (111)

To compare the two expressions, we apply Lemma A.5 with Y =
√
c2/c

#
1 and

g(x, y) = g1(x, y) ≡ 2x2

(1+y)2
. The Hessian of the mapping g1 is given by

Hg1(x, y) =


4

(1 + y)2
− 8x

(1 + y)3

− 8x

(1 + y)3
12x2

(1 + y)4

 . (112)

It suffi ces to show that, for any x > 1, y ≥ x2, dx > 0, dy > 0 such that dy
dx
> y−1

x−1 ,

the quadratic form

(dx dy) (Hg1(x, y))

(
dx
dy

)
=

4

(1 + y)2
dx
2 − 16x

(1 + y)3
dxdy +

12x2

(1 + y)4
dy
2 (113)

=
4dx

2

(1 + y)2

(
1− x

1 + y

dy
dx

)(
1− 3x

1 + y

dy
dx

)
(114)
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attains a positive value. To see this, one checks that

x

y + 1
· dy
dx

>
x

y + 1
· y − 1

x− 1︸ ︷︷ ︸
increasing in y

≥ x

x2 + 1
· x

2 − 1

x− 1
=
x2 + x

x2 + 1
> 1. (115)

Clearly then, the right-hand side of (114) is positive. This proves the claim. It follows

that

CFR = E

[
2(c2/c

#
1 )

(1 + (c2/c
#
1 ))2

]
>

2E

[√
c2/c

#
1

]2
(1 + E[c2/c

#
1 ])2

= CMC, (116)

i.e., total expected costs are indeed strictly higher under full revelation than under

mandatory concealment. In particular, given that, by equation (22), expected costs

in the lottery contest are the same across contestants, and given that the favorite’s

type is public, the favorite exerts a higher effort under full revelation than under

mandatory concealment.

(ii) From (105) and (106), player 1’s probability of winning is easily determined

as

pMC1 = E

[
x#1

x#1 + ξ#2 (c2)

]
= E

[√
x#1 c2

]
=

E
[√
c2
]2

c#1 + E [c2]
, (117)

under mandatory concealment, and by

pFR1 = E

[
c2

c#1 + c2

]
(118)

under full revelation. We again apply Lemma A.5 for Y =
√
c2/c

#
1 , but using this

time the mapping g(x, y) = g2(x, y) ≡ x2

1+y
. The corresponding Hessian reads

Hg2(x, y) =


2

1 + y
− 2x

(1 + y)2

− 2x

(1 + y)2
2x2

(1 + y)3

 . (119)
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Suppose that x > 1, y ≥ x2, dx > 0, and dy > 0. Then, clearly,

(dx dy) (Hg2(x, y))

(
dx
dy

)
=

2dx
2

1 + y

(
1− x

1 + y

dy
dx

)2
≥ 0. (120)

Moreover, from relationship (115), inequality (120) is even strict, which implies strict

convexity of g2 along the relevant linear path segment. Thus, we have

pFR1 = E

[
(c2/c

#
1 )

1 + (c2/c
#
1 )

]
>

E

[√
c2/c

#
1

]2
1 + E[c2/c

#
1 ]

= pMD1 , (121)

and, consequently, also pFR2 < pMD2 .

(iii) Since expected costs are equal across players in the lottery contest, ex-ante

expected payoffs for the underdog are given by ΠFR
2 = pFR2 − CFR

2
under full revelation,

and by ΠMD
2 = pMD2 − CMD

2
under mandatory concealment. As seen above, pFR2 < pMD2

and CFR > CMD. Hence, ΠFR
2 < ΠMD

2 , as claimed. �
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