

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Lindholt, Lars

Working Paper Effects of higher required rates of return on the tax take in an oil province

Discussion Papers, No. 892

Provided in Cooperation with: Research Department, Statistics Norway, Oslo

Suggested Citation: Lindholt, Lars (2019) : Effects of higher required rates of return on the tax take in an oil province, Discussion Papers, No. 892, Statistics Norway, Research Department, Oslo

This Version is available at: https://hdl.handle.net/10419/192874

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

Effects of higher required rates of return on the tax take in an oil province

Discussion Papers No. 892, January 2019 Statistics Norway, Research Department

Lars Lindholt

Effects of higher required rates of return on the tax take in an oil province

Abstract:

For different reasons the oil companies might apply higher required rates of return than they did some years ago, and this will have consequences for investments and tax revenue in oil provinces. By applying various required rates of return as well as various oil prices, this study derives future Norwegian tax revenue during 2018-2050 by using a partial equilibrium model for the global oil market. The model explicitly accounts for reserves, development and production. Both investment in new reserves and production are profit driven. With rising required rates of return less of the high cost reserves become profitable to develop and investments decline. Because the government in practice carries a large fraction of the investments, less investment in a period increases the tax base and the tax income. The initial effect is offset by a subsequent reduction in production which has a negative effect on future taxes. The result is that increasing required rates of return will lead to small variations in net present value of total tax revenue. With lower oil prices, tax take increases significantly when required rates of return rise.

Keywords: Norwegian continental shelf, oil market, rates of return, fiscal policy, tax take, equilibrium model, firm behaviour

JEL classification: H21, H32, L20, Q35, Q38

Acknowledgements: Thanks to Knut Einar Rosendahl, Taran Fæhn and Bjart Holtsmark for valuable comments. Thanks to Finn Roar Aune for data support. The project is financed by CREE and the PETROSAM program at the Research Council of Norway (Grant no. 233687). While carrying out this research the author has been associated with CREE - Oslo Centre for Research on Environmentally Friendly Energy. The CREE Centre acknowledges financial support from The Research Council of Norway.

Address: Lars Lindholt, Statistics Norway, Research Department. E-mail: li@ssb.no

Discussion Papers

comprise research papers intended for international journals or books. A preprint of a Discussion Paper may be longer and more elaborate than a standard journal article, as it may include intermediate calculations and background material etc.

© Statistics Norway Abstracts with downloadable Discussion Papers in PDF are available on the Internet: http://www.ssb.no/en/forskning/discussion-papers http://ideas.repec.org/s/ssb/dispap.html

ISSN 1892-753X (electronic)

Sammendrag

Av ulike grunner kan oljeselskapenes avkastningskrav være høyere i dag enn bare for noen år siden. På grunn av lavere oljepriser har flere selskap flyttet til petroleumsprovinser der ressursene kan hentes opp relativt raskt. Oljebransjen ser også ut til å ha vært gjennom et skifte fra volum til verdi, dvs. at selskapene i dag fokuserer mer på prosjekter som gir høy avkastning i stedet for høyt produksjonsvolum. I tillegg kan oljeselskapene ha blitt stadig mer urolige for at deler av deres verdier kan bli "strandet" eller verdiløse, hvis flere land innfører strengere tiltak for å motvirke global oppvarming. Dette kan også føre til at man i større grad fokuserer mer på kortsiktig inntjening og dermed har høyere avkastningskrav enn tidligere.

Ved å anvende ulike avkastningskrav og ulike oljeprisbaner ser denne studien på fremtidig norsk petroleumsproduksjon, investeringer og skatteinntekter fra 2018 til 2050. Et viktig kjennetegn ved det norske petroleumsskattesystemet er at staten i praksis finansierer en stor andel av oljeselskapenes investeringer på grunn av høy nettoskatt og gunstige fradragsmuligheter. En konsekvens av dette er at på kort sikt øker skatteinngangen når investeringene blir mindre. Det vil dessuten ta relativt lang tid før reduserte investeringer gir vesentlig lavere produksjon og dermed lavere skatteinntekter.

Jeg viser at stigende avkastningskrav i liten grad vil påvirke nåverdien av statens skatteinntekter. Hovedårsaken er at når avkastningskravet stiger vil investering og kapitalutgifter være lavere i en innledende periode, og dette gjør at fradragene blir mindre og skatteinntektene større. Lavere investeringer vil kun ha en gradvis negativ effekt på fremtidig produksjon på grunn av lange ledetider og slik sett på sikt påvirke statens inntekter negativt. I tillegg gjør et høyere avkastningskrav det lønnsomt for oljeselskapene å utsette noen av investeringene, og dette vil isolert sett hindre fremtidig produksjon fra å avta enda mer. Selv om lavere produksjon gradvis har en negativ innvirkning på de totale skatteinntektene, oppveies dette av den positive effekten på inntektene fra lavere investeringer i den innledende perioden.

Jeg viser videre at med en relativ lav oljepris vil høyere avkastningskrav være klart gunstig for myndighetene. Årsaken er at den positive effekten på skatteinntektene av reduserte investeringer i den innledende perioden mer enn oppveier den påfølgende negative effekten fra lavere produksjon. Disse resultatene støttes av følsomhetsberegninger.

1. Introduction

This paper looks at the effects on the government's tax take of an assumed rising required rate of return (RRR) in the petroleum sector. There are various reasons why the RRR (or the discount rate) for the oil companies may be higher today than only some years ago. First, since the price drop in 2014 many oil majors have moved from high-cost undeveloped resources to lower-cost areas where resources can be brought on relatively quickly (PIW, 2018). There have also been changes in the types of projects that are executed. Companies increasingly focus on projects that deliver high rates of return rather than high reserve volumes (IEA, 2017a). There has also been a shift towards projects with shorter investment cycles. The clearest example of this is investment in light tight oil reserves, but also in conventional crude oil projects with shorter time lags, i.e. lags between development approval and production (IEA, 2017b). This may result in higher RRR in provinces with long lead times like the Norwegian continental shelf (NCS). According to the Financial Times (2018a) the oil majors have to a certain degree moved back into high-cost and high-risk areas, due to the increase in oil price from early 2015 to 2018. However, it is still emphasized that the industry seems to drill fewer and better wells in commercially attractive areas than before, meaning that high returns are preferred over high volumes.

A second trend is the rising awareness within the business community of climate risk to the economy (Carbon Tracker, 2017). Future investment opportunities can consist of assets that might be undeveloped. Oil companies (and energy companies in general) are under scrutiny from investors about the impact of climate policies on their future earnings. Pension funds globally have increasingly begun pulling out of fossil fuel companies over fears that their assets could become "stranded", or worthless, if governments across the world introduce stricter rules to tackle global warming (Financial Times, 2018b). This can lead to more near-sighted investment strategies and hence, a higher RRR.

A possible threat to the future oil demand is that the cost of electric vehicles (EV) is expected to be at par with the cost of cars with internal combustion engines, according to Randall (2016) by as soon as 2022. The largest emerging economies China and India have signalled high ambitions for EV (Reuters, 2017) and car producers have pledged to end production of cars with only internal combustion engines (The Guardian 2017a, b). Once electrification of transport takes hold, why should it stop at cars? Technological breakthroughs in battery technology could also reduce the oil demand from trucks, ships and aircrafts. In addition, the petrochemicals sector is vulnerable to environmental concerns as an emerging "war on plastics" is taking place (Energy Intelligence, 2018). This could also lead to reduced demand for oil, thus raising the uncertainty about the prospects of oil suppliers. It must be emphasized that some of the effects described above is linked to an environment of both higher RRR for the oil companies as well as lower future oil prices.

There are different opinions on the appropriate RRR to apply in petroleum analyses. The rate of return shall reflect the return of capital in the best alternative use, while the oil company at the same time is compensated for taking risk. Hence, the real rate of return is the risk-free rate plus a risk premium (because it may not be possible to diversify the risk). The Ministry of Petroleum and Energy has set the discount rate in petroleum projects to be 7 per cent (Riksrevisjonen, 2015). Based on the discussion above, this study analysis the effects of higher (real) RRR for producers outside OPEC. Oil companies often apply a real discount rate of 10 per cent in their cash-flow analyses. This is seen as an average RRR or a "rule of thumb" in the industry (Harden, 2014). Wood Mackenzie considers the standard industry benchmark for the internal rate of return for a robust project to be around 15 per cent or even somewhat higher (Upstream, 2016). Hence, this study looks at the effects of increasing the RRR from 7 per cent to 10, 15 and 20 per cent.

Many analysts argue that it may prove beneficial for the government to carry a large fraction of the initial investment to secure higher tax revenue later in the project life cycle (e.g. Osmundsen et al, 2017). Summers (1987) argues that when the governments weigh present revenue against future income, they must consider that companies use a substantially higher discount rate, and he concludes that governments would win by introducing accelerated depreciation. I contribute to the discussion by showing how rising RRR affects the tax income on the NCS, which can be described as an oil province with favourable deductions of capital expenses and a high net tax rate. This entails that a large part of the revenue is collected by the government when the projects are profitable. When RRR rises fewer of the high costs reserves are profitable to develop and investment declines. Because the government indirectly carries a large fraction of the investments, less investment in a period increases the tax base and the tax income. This initial effect is offset by a subsequent reduction in production which has a negative effect on future taxes. Hence, the result is only marginal changes in the net present value (NPV) of total tax take in the various RRR scenarios. I also show that with a low oil price the tax revenue increases significantly when RRR rises.

Oil prices are of course important for the profitability of investments. Oil prices over 100 USD per barrel in the period 2011-14 brought about large increases in supply from Non-OPEC producers and consequently oil prices fell sharply in 2014. Following reductions in production in both OPEC and some Non-OPEC countries, the oil price is higher today than in the beginning of 2015. How changes

in the RRR will affect future investment, production and total tax revenue in an oil province will clearly vary with the oil price level. Therefore, this study applies three oil price scenarios based on IEA (2017a). This is a high, a middle (reference) and a low oil price trajectory, which will be described later.

With this point of departure, I analyse how future Norwegian oil production and investment might develop. This study seeks to answer the following questions:

- How robust is supply and investment to future oil price development?
- How will variations in RRR affect investment and production under different oil price assumptions?
- What will be the effects on the government's tax take?

To answer these questions, this study applies a comprehensive and transparent global oil model with prices, costs and reserves. An important contribution of the paper is the detailed modelling of the supply side. Oil producers base their investment and production decisions on profit maximization and detailed information about the access to fields worldwide. The producers might invest in new reserves, which are both new fields and increased oil recovery from existing fields. The assumption that investments first target the most profitable reserves leads to a geographical spread of oil extraction worldwide. Gradually less profitable resources are developed until the internal rate of return is equal to the RRR.

Many studies on resource taxation do not deal with the complete tax system of a country, but on more partial and often theoretical effects of taxes. Lund (2009) surveys distortionary effects of taxation on investment and extraction in the nonrenewable resource sector, under different assumptions regarding company behaviour. He searches for an optimal tax policy when uncertainty is taken into consideration. Smith (2013) surveys different studies on taxation in general and presents the strengths and limitations of different framework modelling regarding resource taxation. He emphasizes that anticipating the taxpayer's behavioural response is primarily what economic analyses add to the accounting discussion of tax policy. Kemp and Stephen (2017) disregard taxes, but look at how different rates of return (discount rates) affect investment and production on various undeveloped fields on the UK continental shelf. They apply Monte Carlo techniques on data for fields size, development and operational costs over two exogenous future oil (and gas) prices. Contrary to us, they do not apply a model where the oil companies base their investment and production decisions on profitability. Among empirical studies of oil taxation, Berg et al (2018) look at various planned

Norwegian petroleum fields and study to what extent a lower uplift will make the shareholders reduce investment and production. The authors only apply a given discount rate of 8 per cent. In line with my approach, Helmi-Oskoui et al (1992) assume that the oil producers maximize the present value of profits. They look at a given reservoir in the U.S. and study how different discount rates affect production and investment. The model output is not only the number of wells, but also their location. However, the result does not seem credible as a lower discount rate will make the operator postpone any development for 17 years followed by only three years of extraction. In addition, like Kemp and Stephen (2017) and Berg et al (2018), they do not explore the effects on petroleum tax payment, which is the focus of my study. Further, I have not been able to find studies that analyse effects on the total tax revenue in an oil province in a *global* environment. Many empirical studies focus on specific characteristics of oil tax systems in an *isolated country*, e.g. Mansour and Nakhle (2016) that surveys fiscal stabilization in oil and gas contracts in 20 countries. This means that they cannot take into consideration e.g. a possible tax competition between countries in the form of redirection of investments to a more favourable investment environment.

The next section describes the numerical oil market model, which is called FRISBEE. I present simulations of different scenarios towards 2050 present in Section 3. In Section 4 the sensitivity analyses are discussed, and I conclude in Section 5.

2. Model description

The FRISBEE¹ model is a partial equilibrium model of the global oil market, which is recursively dynamic, i.e. the model is solved in sequential periods, and equilibrium within each period depends only on past and contemporaneous variables. Other versions of the model also include global gas, coal, and electricity markets. In the present version the world is divided into 16 regions, including Norway, where oil companies produce oil. The time periods in the model are one year and the base year is 2012. Prices are thus stated in year 2012-USD and exchange rates are held constant over time. The world market price of oil is exogenous, but different price scenarios are considered. OPEC satisfies the residual demand at the prevailing oil price, determined as the difference between world demand and Non-OPEC supply. The fixed price assumption implies that demand and Non-OPEC supply are determined independently of each other. Therefore, the model description will focus on the supply side of Non-OPEC in general and of Norway in particular². The present model version has three different

¹ FRISBEE: Framework of International Strategic Behavior in Energy and Environment.

² A more formal and detailed description of the model is given in Aune et al (2005).

Norwegian geographical areas, which are the North Sea, the Norwegian Sea and the Barents Sea.³ FRISBEE has previously been used for studies of petroleum production (Lindholt and Glomsrød, 2018), emission from shipping and petroleum activities in the Arctic (Peters et al, 2011) and impacts of petroleum industry restructuring (Aune et al, 2010).

2.1. Production and investment

For each of the 15 FRISBEE regions (*r*) there are 4 field categories. In addition, Greenland is one region with one field category (see Table A1 in Appendix A). The model separates between oil companies' investment and production decisions in the 14 regions outside OPEC, which consist of ($4 \times 13 + 1 =$) 53 field categories, based on profit maximization and detailed information about the access to fields worldwide⁴. In each region, oil companies produce oil, which they sell on the global market and all trade between regions goes through a common pool. Regional supply, demand and trade flows are among the outputs of the model.

Expected future price is based on history and is set equal to the average oil price during the previous six years. Price expectations are thus continuously updated along the simulated scenarios. Hence, I apply adaptive oil price expectations in the following way:

(1)
$$E_t[P_j] = \frac{1}{6} \sum_{n=0}^{6-1} PP_{j,t-n}$$

where $E_t[P_j]$ is the expected (real) oil price and $PP_{j,t}$ the actual oil price in year *t* in field group *j*. The oil price scenarios are from IEA (2017a).

The model assumes that basic incentive for oil companies is to invest in provinces and field types with the highest expected return and apply the traditional NPV method, which Graham et al (2015) suggest is the predominant principle in investment decision. NPV are calculated for the 53 field categories, based on adaptive price expectations described above and a pre-specified required rate of return, which is set to 7, 10, 15 and 20 per cent in real terms.

Neglecting footscript *t* for simplicity of exposition, investments in new reserves in Non-OPEC are derived from the following maximisation problem (see Appendix B for details):

³ I ignore Lofoten/Vesterålen/Senja as this area at present is closed for petroleum activity.

⁴ For this modelling work I have benefited from access to the comprehensive IHS Energy field database, see <u>www.ihs.com</u>.

(2) $Max_{R_j}\pi^e\{R_j, E[P_j], RRR_j, CO_j, CC_j(R_j, UR_j), GT_j, NT_j, TD_j, \overline{F}_j\}$

where π^{e} is expected discounted profits, R_{i} denotes investment in new reserves (new fields and reserve growth in existing fields) in field group j, $E[P_i]$ is expected (real) price which is equal over the field groups j, RR_i is the required rate of return which is also equal over field groups, CO_i and CC_i is operating and capital costs, respectively, GT_i and NT_i gross and net tax rates on oil production, respectively, and TD_i is tax deductions which in Norway are depreciation, uplift and interest expenses (se Section 2.3 for further elaboration on this). $\overrightarrow{F_i}$ is a vector of field characteristics that differ across field groups (notably decline rates and time lags). Note that capital costs are convex in the short term. This may reflect capacity constraints in the short run as e.g. shortage on the availability of oilrigs, personnel etc. Further, marginal capital costs increase in investment activity (R_i) and when the pool of undeveloped reserves available for new reserve investment declines (UR_i) . In this manner the exhaustibility constraint partly reflects that the scarcity rent is higher the less undeveloped resources there are. The investment cost function also takes into consideration that large current production modifies the rising trend in field development costs because of economies of scale, and that a large regional activity level modifies the rising trend in development costs. These factors make it more attractive to stay in an area rather than entering new locations with a lower degree of reserve development. Data on reserves (both producing, developed and undeveloped) and operational and capital costs are based on the extensive database of global petroleum reserves in the year 2012.⁵ The parameters in the cost function are based on these available cost data.

I derive gross and net tax rates for each country by data from EY (2015), Kallas (2016) and Wood Mackenzie (2016). When I estimate the average tax rates for a region which consists of various countries, I apply each country's share of the regional production as weights. As will be clear later, the general level of taxes in other oil provinces than Norway is only of importance when the oil companies are constrained by credit and cannot invest in all projects they find profitable.

A simpler approach is applied for exploration investments. The model assumes that the process for discovered reserves R_{Ei} is a function of the expected oil price, remaining undiscovered reserves in

⁵ The initial regional costs from IHS have been updated with data on break-even prices from Rystad Energy, see http://www.rystadenergy.com/.

each region and the RRR, and captured by the following function (cf. Appendix B), and footscript *t* is still subdued:

(3)
$$R_{Ej} = R_{Ej}(E[P_j], U_j, RRR_j, \overline{F}_j)$$

where U_j denotes (expected) remaining undiscovered reserves. A lower expected price and/or a higher *RRR_j* will decrease the level of discoveries. When new fields are developed, the stock of undeveloped reserves is reduced. New discoveries add to the stock of undeveloped reserves at the end of each year in every region and field category (see Appendix B for details). Expected undiscovered oil reserves are mainly based on USGS (2000, 2008, 2012) as well as Norwegian Petroleum Directorate (2016, 2017).

For developed Non-OPEC fields the model assumes that oil supply is determined by equalizing the producer price of oil with the sum of the marginal operating cost and the gross sales taxes in each field category. The producer price of oil in a region is mainly determined by the global crude oil price and transport costs, but may also differ because of crude oil quality. We have for region r and field group j at time t:

(4)
$$CO_i^r = PP_r(1 - GT_r)$$
 if $S_i > 0$

where CO_j^r is the marginal operating costs in field group *j* in region *r*, PP_r is the producer price in region *r*, which is considered exogenously by the Non-OPEC producers. GT_r is the gross tax in region *r*, but for Norway and other regions without gross taxes⁶, marginal operating costs simply equal the oil price. S_j is production in field group *j*. Operating costs are increasing functions of production, but are generally low unless production is close to the fields' production capacity; then they increase rapidly. The parameters in the cost function are based on available cost data.

In summary, oil companies invest in the development of new reserves, which is the sum of investment in new fields and in efforts to increase oil recovery from producing fields. As Non-OPEC production is profit-driven, a higher oil price path (compared to a reference path) will gradually increase Non-OPEC supply. Extraction from existing capacities (Eq. 4) is fairly fixed, but investing in new reserves

⁶ I disregard area fees and CO₂-taxes, which in 2018 are estimated to constitute 3 per cent of total taxes on the NCS (Norwegian Petroleum, 2018a).

(Eq. 2) will in the medium to long term lead to more fields being developed. In the longer term new fields are discovered and appraised for development (Eq. 3).

The oil and gas companies only invest in projects with a *RRR* above or at the pre-specified level. The assumption that investments first target the most profitable reserves leads to a geographical spread of extraction. Gradually, reserves that are costlier to extract become candidates for investment, and the cost of development will rise as reserves are depleted. On the other hand, new discoveries add to the pool of undeveloped reserves.

FRISBEE operates with constraints on the scale of investments to modify the dynamic effect in periods with high profits. Reinvestment of a certain share of the cash flow into the oil industry varies over time, and it is difficult to get hold of reliable and updated estimates of this share. In an earlier study OGJ (2001) claims that the oil industry historically had reinvested a remarkably consistent 60 per cent of cash flow (includes expenditures on exploration). Hence, I limit total expenditure on capital to 50 per cent of total cash flow in the oil industry (as the model does not include exploration costs). The cash flow constraint is generally not binding in the various scenario, and lower levels of constraints are tested in the sensitivity analyses.

2.2. Demand

The model distinguishes between three end-users of oil products, i.e., industry, households (including services) and power producers. Industries and households consume both transport oil and stationary oil (including processing), whereas power producers consume fuel oil. The regional end-user prices are the sum of producer price, transport, distribution and marketing costs, VAT and a carbon tax, and are mainly taken from IEA (2012a), IEA (2012b) and GIZ (2013). Demand from the final end-users is log-linear functions of price, population, GDP per capita and autonomous energy efficiency improvements (AEEI). The per capita income elasticities vary between 0.1 and 1.1 in the long run (weighted averages are around 0.6 for both households and industries). The long-run direct price elasticity varies between -0.1 and -0.6 with a weighted average of -0.30 for households and -0.21 for industries. The elasticities are mainly taken from Liu (2004), IEA (2007), Tsirimokos (2011) and Burke and Yang (2016). Demand for fuel oil from power producers is simply set fixed and constant over time (IEA, 2017a).

2.3. The Norwegian tax take

Petroleum is important to the Norwegian economy. In 2012 the gross product of oil and gas extraction in Norway amounted to nearly 25 per cent of GDP of which 67 per cent was resource rent (Cappelen et al, 2013). Following the drop in oil prices in 2014, the gross product of oil and gas extraction was down to 14 per cent of GDP in 2017 (Ministry of Finance, 2018). Almost all the oil and gas produced on the NCS is exported, and the present export value of oil is marginally higher than for gas.

One of the overall principles of Norway's management of its petroleum resources is that it shall lead to maximum value creation. Since the resources belong to society as a whole, the Norwegian state secures a large share of the value creation through taxation (Norwegian Petroleum, 2018a). In 2018, Norway's tax revenues from petroleum activities are estimated to about 105 billion NOK (Ministry of Finance, 2018). This amounts to 47 per cent of the government's total income from the petroleum sector. The contribution to total petroleum income from the State Direct Financial Interest (SDFI) will be around 44 per cent and dividends of the state oil company Equinor (former Statoil) around 6 per cent. The remaining 3 per cent of the petroleum income comes from environmental taxes and area fees. Further, it is estimated that approximately 19 per cent of total state revenues will come from the oil and gas sector in 2018.

According to Norwegian Petroleum (2018b) taxation in Norway in period *t* consists of an ordinary corporate tax NT^{C} of 23 per cent which is levied on revenue less operating costs, capital allowances and interest expenses over field groups *j* in Norway. Reintroducing footscrip *t*:

(5)
$$NT_{Norway,t}^{C}\left[\sum_{j\in Norway}(PP_{Norway,t}S_{j,t}-CO_{j,t}-D_{j,t}-IE_{j,t})\right]$$

where $PP_{Norway,t}$ is the producer price in Norway at time *t* which is equal over field groups, $S_{j,t}$ is production in field group *j* at time *t* and $CO_{j,t}$ is operating costs in the various field groups at time *t*. $IE_{j,t}$ is interest expenses in field group *j* on loans that finance the investment. Deduction of interest is restricted to a loan of 50 per cent of the remaining tax value of the offshore production factors. Hence, I assume that the oil companies borrow 50 per cent of their outlay on capital each year. In the actual valuation of the financial costs the authorities apply the companies' average interest rate paid on loans. I select an interest rate of 3.5 per cent in the calculations as is also done by the Ministry of Finance (2013). $D_{j,t}$ is the depreciation of capital costs ($CC_{j,t}$) in field group *j* at time *t*, which is made linearly over six years in Norway.

(6)
$$D_{j,t} = \frac{1}{6} \sum_{n=0}^{6-1} C C_{j,t-n}$$

A Special Petroleum Tax NT^{s} of 55 per cent is applied to the offshore oil industry and is levied on the same amount as the corporate tax except for an extra capital allowance:

(7)
$$NT_{Norway,t}^{S}\left[\sum_{j\in Norway}(PP_{Norway,t}S_{j,t}-CO_{j,t}-D_{j,t}-IE_{j,t}-UP_{j,t})\right]$$

where $UP_{j,t}$ is a 21.2 per cent uplift on capital investment ($CC_{j,t}$), which is treated as a 4-year straightline depreciation (5.3 per cent per year).

(8)
$$UP_{j,t} = \frac{1}{4} \sum_{n=0}^{4-1} 0.212CC_{j,t-n}$$

I refer to the expression in Eq. (5) and (7) between the brackets as the tax base. Total tax take TAX_t in year *t* is the sum of Eq. (5) and (7). The NPV of the tax take is:

(9)
$$TAX = \sum_t \frac{TAX_t}{(1+d)^t}$$

where d is the government's discount rate, which is set to 4 per cent. I follow the Ministry of Finance (2014) which states that the risk-adjusted discount rate should be at this level in socioeconomic analyses. However, I also derive the results with a 7 per cent rate which is used by the Ministry of Petroleum and Energy.

It is important to bear in mind that both changes in production (through gross income) and investment (through deductions of capital depreciation, uplift and interest expenses) affect the tax take, c.f. Eq. (5) and (7). Lower investments for a period, ceteribus paribus, mean lower deductions and a higher tax base and tax take. Further, lower investments will eventually lead to lower production and this drives down the future gross income which is taxed by the government. These two opposing effects are central in this study.

3. The Norwegian oil market towards 2050

I assume that changes in petroleum prices and RRR imply changes in production and investment as from 2018. Keeping the rules governing depreciation, uplift and interest payment allowances constant, I derive the tax take of the Norwegian government each year, and calculate the discounted tax take over the 2018-2050 period.

3.1. Oil price scenarios

The supply of oil is calculated for three price trajectories. I first develop a reference oil price scenario based on the New Policy Scenario of IEA (2017a). Figure 1 shows that the real oil price (2012-USD) is expected to increase to 77 USD per barrel in 2025 before rising to reach 102 USD in 2040.⁷ As I study the effects until 2050, I simply keep the oil price constant after 2040. In addition to the reference scenario, IEA considers a low oil price scenario, where the oil price reaches 58 USD per barrel in 2040.⁸ Such a development relates to rapid growth of electricity use in transport as well as increased OPEC production and higher supply of light tight oil in the US and other regions. However, continued high economic growth in large developing economies combined with higher decline rates at existing fields and the need to gradually move to less productive provinces might sustain a high oil price. This is the background of the Current Policy Scenario, where oil prices reach 125 USD per boe in 2040.

⁷ The oil price in 2018 of 50 USD per barrel in 2012-prices corresponds to around 60 USD in 2018-prices. This might deviate from the present price level, but the study focuses on long-term prices and not short-term fluctuations.

 $^{^{8}}$ This corresponds to an oil price of around 70 USD in 2018-prices.

When the real price of oil is increasing, the assumption of adaptive expectations will lead investors into a rising expected price path that is lagging somewhat behind the real price development.

3.2. Production, investment and tax revenue

Figure 2 shows Norwegian oil production towards 2050 with a RRR of 7 per cent in the reference oil price scenario. The production level fits relatively closely the true development up to 2018. We see that production increases from around 2020 in the North Sea and this is consistent with projections from Norwegian Petroleum (2018c). The reason is the start-up of the giant oil field Johan Sverdrup. However, as from around 2026 both North Sea production and total supply decline steadily over the projection period. In 2050 the production level in the North Sea is one quarter of the level in 2018. Production in the Norwegian Sea is almost constant before it starts to decline from around 2027. At the end of the period production in this region is one-third of the present level. Production in the Barents Sea increases slightly up to the mid-30s and then remains more or less constant. Remember that behind such a constant supply level many fields are emptied and new fields come into production. Aker BP (2018) estimates that *total Norwegian oil and gas* production is down 50 per cent in 2040 from 2018. In comparison, I find that total *oil* supply shows a reduction of 40 per cent in 2040 compared to the present level.

Figure 2. Projections of Norwegian supplies towards 2050 in various regions. Reference oil price scenario and a rate of return of 7 per cent.

From now on I call the scenario with a RRR of 7 per cent the reference return scenario. Figure 3 shows that when we move from the reference return scenario to a situation with a RRR of 10 per cent, production is lower up to 2032. From then on extraction is higher in the 10 per cent scenario. This may be somewhat surprising at first glance. To explain this, we start by looking at Figure 4 which shows that in the reference return scenario investments in new reserves generally are on a declining trend, except for an increase in 2022 when a relatively larger amount of reserves is developed. Thereafter investment declines over the projection period. Since investments first target the most profitable reserves, introducing a higher RRR means that it is optimal to reduce investments, because more of the high cost reserves become unprofitable to develop. In the 10 per cent scenario investments are lower than in the reference scenario initially, but they are higher as from 2023. The reason is that lower investments in an initial period entail lower future capital costs, both because of reduced investment activity in itself and also because the pool of undeveloped reserves decline more slowly (cf. the discussion following the introduction of Eq. 2). This means that it will be profitable to invest in these fields at a later stage. Investments decline in the 10 per cent scenario as from 2025, but are higher than in the reference return case over the rest of the projection period. Due to long lead times from investment to actual extraction, this explains why production is higher after 2032 in the 10 per cent case compared to the reference return scenario (see Figure 3). This pattern repeats itself moving to the 15 and to the 20 per cent scenario. Oil companies reduce initial investments to a larger extent and for a longer period when the RRR rises compared to the preceding level. Again, this drives down the capital costs and makes it profitable to invest in these reserves at a later stage. Because of this extraction is higher as from 2038 with RRR of 15 per cent than in the reference return case. Likewise, after 2042 production is higher with a RRR of 20 per cent compared to the reference scenario.

We see that even if the increasing oil price has a positive impact on new discoveries as described in Eq. (3), adding continously to the stock of undeveloped reserves, total oil production declines as from around 2026 independent of the level of the RRR. The reason why production declines can be illustrated by the ratio between investments in new reserves and the production level (in mtoe). A ratio above one means that the extracted reserves are more than replaced by added (developed) reserves. Comparing Figure 3 and 4 we see that the ratio is less than one in all scenarios, which explains the significant contraction in supply after 2025.

Figure 3. Projection of supply on the Norwegian continental shelf towards 2050 with a reference oil price scenario and with various rates of return.

Turning to the effects of variation in the RRR on the undiscounted Norwegian tax take, it is important to bear in mind that both changes in production (through gross income) and investments (through

deductions of capital depreciation, uplift and interest expenses) affect the tax take, c.f. Eq. (5) and (7). Figure 5 shows the effect of increased RRR on the tax take in the reference oil price scenario.

Figure 5. Tax take towards 2050 with a reference oil price scenario and with various rates of return.

We can differ between three stages. In an initial stage moving to a higher RRR only to a small extent lowers production up to around 2025 as shown in Figure 3, and therefore the negative effect from lower production on the tax take in this period is relatively small. The reason why the tax take is higher in this initial stage when RRR rises as Figure 5 shows, is that investments are lower and this leads to smaller depreciation, uplift and interest payments allowances, which in turn increase the tax base in Eq. (5) and (7).⁹ As production only gradually declines due to long lead times, it takes time for this negative effect to dominate the investment effect and force the tax take down. In the second stage Figure 5 shows that both reduced production and increased investment have a negative effect on the tax take, and the effect is stronger as RRR rises. The postponement of investment is the reason why production eventually becomes higher when there is an increase in RRR, and the various tax take scenarios approach each other at this third stage towards the end of the projection period.

⁹ Higher RRR will lead to both lower investments and lower discoveries, which is shown by Eq. (2) and Eq. (3). However, exploration *costs* are not included in the model. These costs are deductible in full in Norway, as opposed to other capital outlays which are activated and written-off. Including exploration costs would probably strengthen the increase in tax take.

In summary, in all RRR scenarios the initial positive effects of reduced investment on the tax take are offset by the later negative effect of reduced production. Because of this the NPV of the tax take only changes marginally when we move to a scenario with a higher RRR. Table 1 shows that the change in NPV of the tax take from the reference scenario is +3, +1 and -3 per cent in the 10, 15 and 20 per cent scenarios, respectively. We also see that with a reference oil price and a RRR of 7 per cent the NPV of the tax take is 353 billion USD with a government discount rate of 4 per cent.¹⁰ If we apply a discount rate of 7 per cent, the NPV of the tax take is now slightly more positive than with a 4 per cent discount rate as it increases by +3, +4 and +4 per cent in the 10, 15 and 20 per cent scenarios, respectively. The reason is that the positive initial tax effect of lower investments weighs more with higher RRR.

With a high oil price the NPV of the tax take increases to 460 bn USD, 30 per cent above the reference scenario. Higher prices lead to more discoveries as shown in Eq. (3), which subsequently can be developed and extracted. A higher price also leads to increased investments because more of the high cost fields become profitable to develop, c.f. Eq. (2). However, following an initial period of increasing investments they gradually start to fall significantly, similar to the pattern in Figure 4, despite new discoveries. As with the reference oil price, we experience declining production after around 2025-26. Likewise, for an initial period lower investments result in a larger tax take when RRR rises. In addition, lower investments lead to both lower production and tax take only gradually. As in the reference scenario, the result is marginally changes in the NPV of tax take over various RRR as is shown in Table 1. If we apply a discount rate of 7 per cent the NPV of the tax take is again down with around one-third. As with the reference oil price, when RRR rises the relative change in the NPV of the tax take is now slightly more positive than with a 4 per cent discount rate.

With a low oil price the NPV of the tax take is 114 bn USD, one third of the value in the reference case. Lower prices lead to less discoveries which subsequently means less resources are being developed and extracted. When the oil price is low variations in the RRR have larger and more lasting effect on *production* somewhat earlier on than with a reference oil price. Firstly, higher RRR has a larger and more persistent impact on the *investments*. The reason is that because the capital cost function of new reserves is convex, we are on the flatter part of the cost curve when the oil price is

¹⁰ In comparison the Government Pension Fund in 2018 amounts to around 1070 billion USD, when we include revenue from both oil and gas. To put this in further perspective, it can be assumed that the NPV of the tax take from natural gas comes to the same amount as oil (around 350 bn USD). The other important component of the government's net cash flow from petroleum, mainly SDFI, is in 2018 estimated to be roughly equal to the total income from oil and gas. If the SDFI and other components develop in tandem with the future oil and gas income, total NPV of future revenue from the oil and gas sector is around 1400 bn USD, 40 per cent above the present value of the Pension Fund.

low, i.e. variations in the RRR have a stronger effect on the investment volume (and on production with a lag). Further, as the oil price is more or less constant, production gradually declines relatively more with higher RRR than in the reference oil price case when the price is increasing. However, because of discounting, the positive effects on the tax take from much lower investments earlier on weigh stronger than the somewhat later negative effect of reduced production. The result is that the tax take now increases more and for an extended period initially when RRR rises. Table 1 shows that when we move from a situation with a RRR of 7 per cent, the increase in NPV of the tax take is +18, +19 and +42 per cent in the scenarios with a RRR of 10, 15 and 20 per cent, respectively. With a 7 per cent governmental discount rate, the relative change in the NPV of the tax take is even more positive when RRR rises than with a 4 per cent discount rate. The NPV of total tax revenue marginally as the relative increase now is +24, +37 and +63 per cent. The reason is that the positive initial tax effect of lower investments weighs more with a higher RRR due to a higher governmental discount rate.

Table 1.Net present value of tax take. Billion USD when the rate of return is 7 per cent. Deviation from the 7 per cent return case with various oil prices and various returns.

	Required rate of return				
	7 per cent	10 per cent	15 per cent	20 per cent	
		Change from 7 per cent			
High oil price	460 bn USD	0 %	1 %	-3 %	
Reference oil price	353 bn USD	3 %	1 %	-3 %	
Low oil price	114 bn USD	18 %	19 %	42 %	

4. Sensitivity analyses

The results are influenced by the length of the lead times, of which one part is the time lapse from when a development decision is made to actual production starts. In the model the lead time in each field group is based on existing data. However, future lead times can probably be reduced with simpler and more standardized developments (Norwegian Petroleum Directorate, 2011). However, a priori it is impossible to say how this may affect the results. With shorter lead times the reduction in initial investments will lead to a more rapid response of lower production, which will have a negative effect on total tax revenue earlier on. However, the effect of the higher investments after the initial period is a faster increase in production and tax revenue which counteracts the initial negative tax effect.

Assumptions regarding costs are quite uncertain. The costs have declined over the last years (Norwegian Petroleum Directorate, 2018), and we may see further cost reductions in the future.

Hence, I have tested the effects of lower operating and capital costs on the NCS. I carry out the cost sensitivity analyses in the reference oil price scenario with a cash flow constraint of 50 per cent. First, I reduce the capital costs by 20 per cent. The increase in NPV of total tax revenue compared to the situation with original capital costs is around 10-12 per cent over the various RRR scenarios. Lower capital costs lead to somewhat higher investment over the whole period and lift the production profile upwards. However, moving to higher RRR levels has by and large the same effects as with the original costs. Compared to the 7 per cent case, higher RRR leads to changes in the NPV of total tax revenue with +2, 0 and -5 per cent in the scenarios with a RRR of 10, 15 and 20 per cent, respectively. In a situation with 20 per cent lower *production* costs, we get a relative change in the total tax revenue in the same magnitude as with a lower capital costs.

Following the fall in oil prices since 2014, oil companies cut investment budgets in response to a dramatic reduction in cash flow. Some argue that since companies prefer to fund a considerable part of new investment from their cash flow, they therefore cut capital spending. Further, they may be reluctant to cut back on dividends promised to shareholders, and be careful not to increase debt levels to much due to credit rating concerns and fear of financial stress (Osmundsen et al, 2017). As I apply a global model with oil producer taxes in different regions, I can take account of a possible tax competition between the different provinces. In the analysis (static) tax competition can only manifest itself if oil companies cannot invest in all projects with an internal rate of return of at least the prevailing RRR. So far I have applied a 50 per cent cash flow constraint and this is not binding for any year in the reference oil price scenario, which means that the oil companies can invest in all oil fields they find interesting. However, if the oil and gas companies limit their investments to 30 per cent of cash flow in the reference oil price scenario, the cash flow constraint is binding for some or all of the years in the 2018-2050 period. Then the companies may redirect their investments from the NCS to other provinces with lower costs and more profitable investment environment. However, this effect is somewhat dampened by the cost function modelling which makes it more attractive to stay in an area where the company already has production rather than entering new areas. However, the results show that with a 30 per cent constraint Norwegian production and investment decline faster compared to the non-binding situation, leading to a lower tax take in each RRR scenario. The reduction in NPV of total tax revenue from the situation with no cash flow constraint is around 10-15 per cent over the various RRR scenarios. However, the relative effects of higher RRR are similar as in the non-binding case. Again, a rise in RRR gradually leads to reductions in production. As the effects of reduced investments initially on one side and gradually lower production on the other offset each other, the result is marginal changes in NPV of tax revenue as in the reference oil price scenario without cash flow

constraint. Compared to the 7 per cent case, higher RRR increases the NPV of the tax take by +1, +2 and +2 per cent in the scenarios with a RRR of 10, 15 and 20 per cent, respectively.

When RRR rises, total Non-OPEC production declines. Because the oil price is exogenous in the model, OPEC increases their production correspondingly. In reality OPEC might not offset the reduction in production completely, and this would lead to higher oil prices. Due to this price effect, a rise in RRR could lead to even higher tax take compared to the situation with an exogenous oil price.

This study has not modelled uncertainty in an explicit way. However, by changing RRR and prices I have studied potential upside and downside scenarios alongside the reference case. Further, the oil companies are in a way cautious as the modelling of the cost functions imply that it is somewhat more profitable for companies to hold on to provinces where they already have exploration and production activities, rather than plunging into new ones. In addition, companies can be said to behave more cautiously when RRR rises, as they demand higher returns due to more risky investments. However, a future research task could be to implement uncertainty explicitly into the oil company's investment decisions, e.g. into the expected oil price function in Eq. (2).

5. Conclusions

For various reasons the required rate of return for the oil companies may be higher today and in the future, than only some years ago. Because of lower oil prices, many oil majors have moved to lower-cost areas where resources can be brought on relatively quickly. This could mean less interest in relatively high cost areas with long lead times like the Norwegian continental shelf. There may also have been a shift from volume to value, i.e. the increasing focus by companies on projects that deliver high rates of return rather than high reserve volumes. In addition, companies may have become increasingly anxious that their assets could become "stranded", or worthless, if governments across the world introduce stricter rules to tackle global warming. This can lead to more near-sighted investment strategies and hence, a higher required rate of return.

By applying various required rates of return as well as various oil prices, I derive future Norwegian oil production, investment and tax payment during the 2018-2050 period by using a partial equilibrium model for the global oil market. A central feature of the Norwegian tax system, among others, is that the government in practice carries a large fraction of the oil companies' investments, because of a high net tax rate and favourable possibilities for deductions of capital expenses. An important consequence of this is that lower investments over a period will increase the tax take.

I show that rising required rate of return generally will lead to small variations in the net present value of total tax revenue. The main reason is that when return rises, less of the high cost reserves become profitable to develop and investment declines for an initial period. However, declining investments mean lower capital outlay and hence lower tax deductions, which in turn increase the tax base and the tax income. Lower investments have a negative effect on future production with a time lag due to long lead times. On the other hand, due to reduced initial capital costs the oil companies postpone investments to later periods and without this effect future production would have fallen even more. Although lower production gradually has a negative effect on tax revenue, this is offset by the positive effect on revenue from lower investment initially.

I show that with a relatively low oil price, higher required rates of return are beneficial for the government. As the required rate becomes higher, tax revenue increases significantly. The reason is that the initial positive effect of reduced investment outweighs the negative effect from lower production later on. The results are supported by sensitivity analyses.

References

Aker BP (2018): Capital markets day, 15. January, https://www.akerbp.com/wp-content/up-loads/2018/01/2018-CMD-presentation_F.pdf

Aune, F.R., Glomsrød, S., Lindholt, L. and K.E. Rosendahl (2005): Are high oil prices profitable for OPEC in the long run?, Discussion Papers. 416, Statistics Norway.

Aune, F.R., Mohn, K., Osmundsen, P. and K.E. Rosendahl (2010): Financial market pressure, tacit collusion and oil price formation, *Energy Economics* 32 (2), 389-398.

Berg, M., Bøhren, Ø. and E. Vassnes (2018): Modelling the response to exogenous shocks: The capital uplift rate in petroleum taxation, *Energy Economics* 69, 442-455.

Burke, P.J. and H. Yang (2016): The price and income elasticities of natural gas demand: International Evidence, Working Paper14, Australian National University.

Cappelen, Å., Eika, T. and J. Prestmo J. (2013): Petroleumsvirksomheten i norsk økonomi og lønnsadnnelse – Framtidig nedbygging og følsomhet for oljeprissjokk. Rapporter 59/2013, Statistics Norway (in Norwegian, abstract in English).

Carbon Tracker (2017): 2 degrees of separation: Transition risk for oil & gas in a low carbon world 2017, http://2degreeseparation.com/reports/2D-of-separation_PRI-CTI_Summary-report.pdf.

Energy Intelligence (2018): Energy Intelligence 2018 outlook – Looking past the downturn, Energy Intelligence group.

EY (2015): Global oil and tax guide, EYG no. DW0530.

Financial Times (2018a): Oil majors return to deepwater drilling, 25. July, https://www.ft.com/con-tent/caca46c2-8e61-11e8-bb8f-a6a2f7bca546

Financial Times (2018b): New York sues big oil companies over climate change, 11. January, https://www.ft.com/content/4de8e4fc-f62b-11e7-88f7-5465a6ce1a00

Harden, C. (2014): Discount rate in oil and gas valuation, SPE-169862-MS, Society of Petroleum Engineers.

GIZ (2013): International fuel prices 2012/2013, https://www.giz.de/expertise/html/4282.html.

Graham, J.R., Campbell R.H. and M. Puri (2015): Capital allocation and delegation of decision-making authority within firms, *Journal of Financial Economics* 115 (3), 449-470.

Helmi-Oskoui, B., Narayanan, R., Glover, T. and K.S. Lyon (1992): Optimal extraction of petroleum resources: an empirical approach. *Resources and Energy* 14, 267-285.

IEA-International Energy Agency (2007): World energy outlook, OECD/IEA, Paris.

IEA-International Energy Agency (2012a): Energy prices and taxes, OECD/IEA, Paris.

IEA-International Energy Agency (2012b): Data services, OECD/IEA, Paris.

IEA-International Energy Agency (2017a): World energy outlook, OECD/IEA, Paris.

IEA-International Energy Agency (2017b): World energy investment 2017, OECD/IEA, Paris.

Kallas, G. (2016): Fiscal responses to lower oil prices, Presentation at the 27th International Petroleum Tax Conference, Oslo 2-3. November.

Kemp, A. and L. Stephen (2017): The implications of different acceptable prospective returns to investment for activity in the UKCS, North Sea Study Occasional Paper No. 141.

Lindholt, L. and S. Glomsrød (2018): Phasing out coal and phasing in renewables – Good or bad news for arctic gas producers?, *Energy Economics* 70, 1-11.

Liu, G. (2004): Estimating energy demand elasticities for OECD countries - a dynamic panel data approach, Discussion Papers 373, Statistics Norway.

Lund. D. (2009): Rent taxation for nonrenewable resources, *Annual Review of Resource Economics* 1, 287-308.

Ministry of Finance (2014): Prinsipper og krav ved utarbeidelse av samfunnsøkonomiske analyser mv., Rundskriv R-109/14 (in Norwegian).

Ministry of Finance (2018): National budget 2018. https://www.regjeringen.no/en/topics/the-economy/the-national-budget/id1437/

Mansour, M. and C. Nakhle (2016): Fiscal stabilization in oil and gas contracts: Evidence and implications, OIES Paper: SP 31, The Oxford Institute for Energy Studies.

Norwegian Petroleum (2018a): The government's revenues, <u>https://www.norskpetroleum.no/en/econ-omy/governments-revenues</u>

Norwegian Petroleum (2018b): The petroleum tax system, https://www.norskpetroleum.no/en/economy/petroleum-tax/

Norwegian Petroleum (2018c): Oil and gas production, https://www.norskpetroleum.no/produksjon-og-eksport/olje-og-gassproduksjon/

Norwegian Petroleum Directorate (2011): Petroleum resources on the Norwegian continental shelf, Stavanger.

Norwegian Petroleum Directorate (2016): Resource report 2016, Stavanger.

Norwegian Petroleum Directorate (2017): Doubling the resource estimate of the Barents Sea, Stavanger, http://www.npd.no/en/news/News/2017/Doubling-the-resource-estimate-for-the-Barents-Sea/

Norwegian Petroleum Directorate (2018): The shelf 2017, Stavanger.

OGJ-Oil and Gas Journal (2001): Special Report: OPEC's evolving role, Oil and Gas Journal, July 9, 62-75.

Osmundsen, P., Løvås, K. and M. Emhjellen (2017): Petroleum tax competition subject to capital rationing, USAEE Working Paper No. 17-306.

Peters, G.P., Nilssen, T.B., Lindholt, L., Eide, M.S., Glomsrød, S., Eide, L.I. and J.S. Fuglestvedt (2011): Future emissions from shipping and petroleum activities in the Arctic, *Atmospheric Chemistry and Physics* 11, 5305-5320.

PIW-Petroleum Intelligence Weekly (2018): Big oil comes around to stranded asset risks, 19. February.

Randall T. (2016): Here's how electric cars will cause the next oil crisis, Bloomberg 25. February, https://www.bloomberg.com/features/2016-ev-oil-crisis/.

Reuters (2017): India's electric vehicles push likely to benefit Chinese car makers, 24. May, http://www.reuters.com/article/us-india-autos-policy-analysis-idUSKBN18K062.

Riksrevisjonen (2015): Riksrevisjonens undersøkelse av myndighetenes arbeid for økt oljeutvinning fra modne områder på norsk kontinentalsokkel, Dokument 3:6 (in Norwegian).

Smith, J.L. (2013): Issues in extractive resource taxation: A review of research methods and models, *Resources Policy* 38, 320-331

Summers, L.H. (1987): "Investment incentives and the discounting of depreciation allowances," in M. Feldstein (Ed.), The effects of Taxation on Capital Accumulation, University of Chicago Press, Chicago, p. 295–304.

The Guardian (2017a): All Volvo cars to be electric or hybrid from 2019, 5. July, https://www.theguardian.com/business/2017/jul/05/volvo-cars-electric-hybrid-2019.

The Guardian (2017b): France to ban sales of petrol and diesel cars by 2040, 6. July, <u>https://www.theguardian.com/business/2017/jul/06/france-ban-petrol-diesel-cars-2040-emmanuel-macron-volvo</u>.

The Ministry of Finance (2013): Changes in tax and duty legislation, Proposition 150 LS (in Norwegian),

The Ministry of Finance (2018): Revised national budget 2018 (in Norwegian),

Tsirimokos, C. (2011): Price and income elasticities of crude oil demand – The case of ten IEA countries, Master Thesis 705, Swedish University of Agricultural Sciences.

USGS (U.S. Geological Survey) (2000): World petroleum assessment 2000 (http://greenwood.cr.usgs.gov/energy/WorldEnergy/DDS-60).

USGS (2008): Fact Sheet 2008- 3049, Circum-arctic resource appraisal: estimates of undiscovered oil and gas north of the arctic circle, http://energy.usgs.gov/Arctic.

USGS (2012): Fact Sheet 2012-3042, An estimate of undiscovered conventional oil and gas resources of the world, <u>http://pubs.usgs.gov/fs/2012/3042</u>.

Ustream (2016): WoodMac votes for Castberg floater, 4. June, http://www.upstreamonline.com/live/1154339/statoil-in-castberg-pipe-talks

Wood Mackenzie (2016): Global fiscal trends & benchmarking, https://www.woodmac.com/consulting/multi-client-studies/global-fiscal-trends-and-benchmarking/

Appendix A

	Oil field category				
	1	2	3	4	
Africa	Onshore	Offshore deep < 400 Mboe	Offshore deep > 400 Mboe	Offshore shallow	
Canada	Arctic	Non-Arctic conv.	Unconventional Open Pit	Unconventional In Situ	
Caspian region	Onshore < 400 Mboe	Onshore > 400 Mboe	Offshore < 400 Mboe	Offshore > 400 Mboe	
China	Onshore < 100 Mboe	Onshore >100; < 1000 Mboe	Onshore > 1000 Mboe	Offshore	
Eastern Europe	Onshore < 100 Mboe	Onshore > 100 Mboe	Offshore < 100 Mboe	Offshore > 100 Mboe	
Greenland	All				
Latin America	Onshore	Offshore deep < 1000 Mboe	Offshore deep > 1000 Mboe	Offshore shallow	
Norway	Arctic Barents	Arctic Lo-Ve-Se	Arctic Norwegian Sea	Non-Arctic	
OECD Pacific	Onshore	Offshore deep	Offshore shallow < 100 Mboe	Offshore shallow > 100 Mboe	
OPEC Core	Onshore < 400 Mboe	Onshore > 400; < 1000 Mboe	Onshore > 1000 Mboe	Offshore	
Rest of Asia	Onshore < 400 Mboe	Onshore > 400 Mboe	Offshore < 400 Mboe	Offshore > 400 Mboe	
OPEC Rest	Onshore < 400 Mboe	Onshore > 400 Mboe	Offshore deep	Offshore shallow	
Russia	Non-Arctic Onshore & Offshore	Arctic offshore	East Arctic Onshore	West Arctic Onshore	
USA	Non-Arctic Onshore	Alaska	Non-Arctic Offshore deep	Non-Arctic Offshore shallow	
Western Europe	Offshore deep < 400 Mboe	Offshore deep > 400 Mboe	Offshore shallow + Onshore < 100 Mboe	Offshore shallow > 100 Mboe	
United Kingdom	Offshore deep < 400 Mboe	Offshore deep > 400 Mboe	Offshore shallow < 100 Mboe	Offshore shallow > 100 Mboe	

Table A1. List of oil regions and field categories in the FRISBEE model

Appendix B

Following Eq. (3), the expanded specification of discoveries (R_{Ej}) is given by (reintroducing footscript *t*):

(B1)
$$R_{Ej,t} = R_{Ej,t} (E_t[P_j], U_{j,t}, RRR_{j,t}) = \alpha_{E_{j,t}} E_t[P_j]^{0.5} U_{j,t} e^{-RRR_{j,t}(t_0 + 2/3t_1)}$$

where t_0 is the length between exploration and the actual development decision, t_1 is the investment phase and $\alpha_{E_{j,t}}$ is a calibrated parameter. See Aune et al (2010) for a more thorough description of the discovery function. Undiscovered reserves are based on USGS (2000, 2008, 2012) and the figures for Norway are based on Norwegian Petroleum Directorate (2016, 2017).

A more detailed outline of the modelling of investment behaviour for Non-OPEC producers is presented below. For the complete formal structure of FRISBEE, see Aune et al (2005). With access to all Non-OPEC regions and field categories, oil companies maximise expected discounted profits from investments. Choice variable are given by reserve additions (R_j) from field development in the various field categories outside OPEC (see Table A1). It must be emphasized that when the oil companies invest, they know how the capacity profile and the amount of reserves in field group *j* are linked together, as well as how the operating and capital costs develop over the lifetime of the field. Expanding the profit function of Eq. (2), the present value of the oil companies' expected profit from new reserve investment in field group *j* is (introducing footscript *t*):

$$(B2) \ Max_{R_{j,t}}\pi^{e}(R_{j,t}, E_{t}[P_{j}], RRR_{j,t}, CO_{j,t}, CC_{j,t}(R_{j,t}, UR_{j,t}), GT_{j,t}, NT_{j,t}, TD_{j,t}, \overline{F}_{j,t}) = \sum_{t}^{T_{j}} \left[\sum_{j(j)} \left[\left\{ (E_{t}[P_{j}](1 - GT_{j,t}) - CO_{j,t})(1 - NT_{j,t}) - \frac{CC_{j,t}}{R_{j,t}} + \frac{D_{j,t}}{R_{j,t}} NT_{j,t} + \frac{OD_{j,t}}{R_{j,t}} NT_{j,t} \right\} R_{j,t} \right] \right] \frac{1}{(1 + RRR)^{t}}$$

where $E_t[P_j]$ is the expected (real) oil price in field category *j* at time *t*, *RRR* is the required rate of return (discount rate), and $CO_{j,t}$ and $CC_{j,t}$ are operating costs and capital costs in field category *j* at time *t*, respectively. *GT*_{j,t} and *NT*_{j,t} are gross and net tax rates on oil production, $\overline{F}_{j,t}$ is a vector of field-specific characteristics in field category *j* at time *t* and *T*_j is terminal year of production for field group *j*. Linear capital allowances, $D_{j,t}$, are made over a certain number of years. These deductions are made over six years in Norway¹¹. *OD*_j is other deductions of capital cost. In Norway these deductions

¹¹ Depreciation over six years is the rule in Norway and seems to be a reasonable average period over different fiscal regimes.

are interest expenses on loans that finance the investments and a special uplift on capital expenses (see Section 2.3).

The model defines the net cash flow (NCF) over all field groups *j* as revenues less current operating costs and total taxes.

$$(B3) \quad NCF_t = \sum_{j \in J} (PP_{r,t}S_{j,t} - CO_{j,t}^r - TNT_{j,t} - TGT_{j,t})$$

where *TNT* and *TGT* are total net and gross taxes paid, respectively. My starting point is that total expenditure on capital is limited to 50 per cent of net cash flow. Hence, the following restriction applies in the reference scenario:

$$(B4) \quad \sum_{j \in J} \left[CC_{j,t} \right] \le 0.5 NCF_t$$

I emphasize that this cash flow constraint generally is not binding in the period 2012-2050. The model assumes that outside debt will not affect the cash flow, and this is true if interests and repayments on loans equal the loan amount each year¹². Hence, the model only takes into consideration the effect of debt through interest payments, which is included in other deductions (*OD*) in Eq. (B2). It is assumed that the oil companies borrow 50 per cent of their outlay on capital.

¹² Actually, the NPV of future interest and repayments on loan is equal to the loan amount each year.