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Sammendrag 

I 1993 påviste to forskere, Michael P. Clements og David F. Hendry, at evaluering av prognoser for 

enkeltvariabler for hver prognosehorisont ikke er invariant for lineære transformasjoner av 

prognosene. Dette kan illustreres ved å se på to ulike prognosemodeller for oljeprisen, hvor prognoser 

basert på den ene modellen er best når man vurderer oljeprisen målt på nivå flere perioder framover, 

mens prognosene for den andre modellen er best når man vurderer oljeprisveksten. Forskerne foreslo 

derfor et mål for hele systemet av prognoser som er invariant for slike lineære transformasjoner. Men 

25 år senere finnes det relativt lite forskning som evaluere nøyaktigheten av hele systemet på tvers av 

alle prognosehorisontene. 

 

I denne artikkelen utleder jeg såkalte omslutnings-tester (encompassing-tester) for å sammenligne to 

sett med prognoser. Et sett med prognoser omslutter et annet sett med prognoser hvis sistnevnte ikke 

inneholder ytterligere informasjon, det vil si at det første settet av prognoser ikke kan forbedres ved å 

utnytte informasjonen i sistnevnte sett av prognoser.  

 

De utledede testene brukes til å undersøke om SSBs prognoser omslutter prognoser basert på en 

tilfeldig gang (random walk) prosess, noe resultatene viser at de gjør. Testene viser også at prognoser 

offentliggjort i et bestemt kvartal omslutter prognosene publisert i det foregående kvartalet. I 

artikkelen undersøker jeg prognosene for BNP, KPI og arbeidsledighetsraten for inneværende og neste 

år. 

 



1 Introduction

Clements and Hendry (1993) showed that evaluation of forecasts of individual variables at

each horizon separately is not invariant to linear transformations of the forecasts. Ericsson

(2008) illustrates this by considering two different models for forecasting the oil price, where

the multi-step forecasts based on one of the models are best when considering the oil price in

levels, but that the forecasts of another model are best when considering the oil price growth.

Clements and Hendry (1993) suggested a measure of the whole system of forecasts when eval-

uating the system forecasts. However, 25 years later Hendry and Martinez (2017) point out that

“relatively little work has been done on evaluating the accuracy of the whole system across all

forecasting horizons.”

The following two examples illustrate the importance of considering forecasts of “the whole

system” (Example 1) and forecasts “across all forecasting horizons” (Example 2):

Example 1 (“the whole system”) Suppose you forecasted private consumption and income to grow

by 2 percent in period t. When period t is finished, the National Accounts numbers show that both

private consumption and income increased by 3 percent. You missed both private consumption and

private income by 1 percentage point. However, your implied forecast on the savings ratio was spot on!

Example 2 (“across all forecasting horizons”) Suppose you forecast the consumer price index (CPI)

to increase by 2 percent in both years t and t + 1. Then it turns out that CPI grew by 1 percent in year

t and 3 percent in year t + 1. Measured by the annual CPI-growth, you missed by 1 percentage point

each year. However, your implied prediction of the CPI-level in year t + 1 was correct!

Usually, measures for forecast accuracy only consider forecast for one variable at one fore-

casting horizon. Measures such as mean absolute forecast errors and mean square forecast

errors (or variants of these) are usually applied. For measuring the accuracy of a system of

forecasts variants of these individual measures can be applied. One example is the mean (or

sum) of the mean square forecast errors. Kolsrud (2015) suggests applying a prediction box

covering a pre-given fraction of the forecast errors as a measure of the forecast accuracy. Un-

fortunately, none of these measures are invariant to the transformations in Example 1 and

Example 2. However, as suggested by Clements and Hendry (1993), using the determinant
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of the covariance matrix of the whole system of forecasts yields a measure that is invariant

to scale-preserving linear transformations of the forecasts. This measure is equivalent to the

predictive likelihood, see Bjørnstad (1990).

In this paper, I consider encompassing tests for comparing two sets of forecasts. One set

of forecasts encompasses another set of forecasts if the latter does not include any additional

information, i.e., the former set of forecasts cannot be improved by knowing the latter set

of forecasts. Granger and Newbold (1973) defined the preferred forecasts as “computationally

efficient” with respect to the latter. Chong and Hendry (1986) and Clements and Hendry (1993)

apply the formulation that the preferred forecasts “encompass” the competing forecasts.

Harvey et al. (1998) consider a test for forecast encompassing when there exist two forecasts

of the same variable and develop a test with small size distortion. In the present paper, this test

is modified such that it can be used to test if forecasts of one vector of variables over a range of

forecasting horizons encompass another vector of forecasts.

The tests are used to investigate if the forecasts made by Statistics Norway encompass

forecasts based on a random walk model, which the results show they do. The tests also show

that forecasts made in one particular quarter of the year encompass the forecasts made in the

previous quarter. In the analysis, I investigate the forecasts of GDP, CPI and the unemployment

rate for the current and the next year jointly.

The rest of the paper is organized as follows: In Section 2 the theoretical background for

the encompassing tests as well as the proposed tests are presented. In Section 3 the power and

size of the tests are investigated. In Section 4 the proposed encompassing tests are applied to

examine the forecasts made by Statistics Norway. Section 5 concludes.

2 Theory

2.1 Measures of forecast accuracy and ranking of forecasts

Let yi
t+h|t be the forecast of variable i in period t + h made in period t. In the present paper I

assume that the value of y in period t is not known in period t; hence forecasts for the current

period (i.e., nowcasting) can be made and is denoted yi
t|t. The prediction error of the forecast

of variable i in period t + h made in period t is defined as ei
t+h|t ≡ yi

t+h − yi
t+h|t, where yi

t+h is
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the outcome of variable i in period t + h.

The observed Mean Square Forecast Error (MSFE) is given by

T−1
T

∑
t=1

(
ei

t+h|t

)2
, (1)

which expresses the mean square forecast error of variable i forecasted h periods for forecasts

made in T consecutive periods. The MSFE (or the root of MSFE) is a widely used measure

for the accuracy of forecast and ranking of forecasts also for h > 0; see, e.g., Bjørnland et al.

(2017), El-Shagi et al. (2016), Jungmittag (2016), and Kock and Teräsvirta (2016) for some recent

applications. However, the MSFE for ranking forecasts when h > 0 depends on how the

forecasts are measured, see Clements and Hendry (1993). Only in the case of h = 0, i.e.,

the forecasts for the current period, rankings based on the observed (univariate) MSFE are

invariant of linear transformations of the forecasts, see Clements and Hendry (1993, 1998).

To rank forecasts of one variable generated by different models, we need to consider all

forecasts up to forecast horizon H (where H is used for the longest forecast horizon). Therefore,

we define yi
t,H|t to be the vector of forecasts of yi in each period from period t to period t + H

made at time t, i.e., yi
t,H|t =

(
yi

t|t, yi
t+1|t, . . . , yi

t+H|t

)′
. The prediction error of yi

t,H|t is given by

ei
t,H|t ≡ yi

t,H|t − yi
t,H , where yi

t,H =
(
yi

t, yi
t+1, . . . , yi

t+H

)′
is the vector of the outcome of variable

i from period t to period t + H. This implies that ei
t,H|t =

(
ei

t|t, ei
t+1|t, . . . , ei

t+H|t

)′
.

A matrix version of the observable MSFE would then be

Vi
H = T−1

T

∑
t=1

ei
t,H|te

i′
t,H|t, (2)

which is here denoted the MSFE Matrix (or MSFEM). This matrix is of dimension (H + 1) ×

(H + 1) and it is not obvious how to rank forecasts based on this measure.

One approach for ranking forecasts could be the trace of MSFEM, which is the sum of the

mean square forecast errors. Ranking based on this criterion is an often used approach, as also

noted in Christoffersen and Diebold (1998) and Hendry and Martinez (2017). A recent exam-

ple is Bjørnland et al. (2017), who apply the square roots of the mean of individual squared

forecast errors, which is just a simple transformation of the trace of MSFEM that does not alter
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the ranking. However, as shown by Clements and Hendry (1993), this measure is not invari-

ant to linear transformations of the forecasts and, then, linear transformations of the forecast

errors. Let (Vi
H)A and Vi

H)B be the MSFEM of two different forecasting models. Furthermore,

let M(Vi
H)AM′ and M(Vi

H)BM′ be the MSFEM of the linear transformed versions of the

two forecasts where M is an (H + 1) × (H + 1) full rank matrix expressing the linear trans-

formation.1 If trace
(
(Vi

H)A
)

< trace
(
(Vi

H)B
)
, it does not follow that trace

(
M(Vi

H)AM′) <

trace
(
M(Vi

H)BM′
)
. This implies that a linear transformation, such as considering differences

instead of levels, can alter the ranking of two models.

Clements and Hendry (1993) suggest using the determinant of MSFEM. The ranking can

then be based on this measure. If |(Vi
H)A| < |(Vi

H)B|, then the forecast based on model A

with MSFE given by (Vi
H)A is ranked over (i.e., preferred over) the forecast of model B with

MSFE given by (Vi
H)B. This measure is invariant to linear transformations of the forecasts, i.e.

|(Vi
H)A| < |(Vi

H)B| implies |M(Vi
H)AM′| < |M(Vi

H)BM′|.2 Furthermore, if (Vi
H)B − (Vi

H)A �

0, (i.e., that the difference between the two MSFEMs is positive definite, see, e.g. Dhrymes,

1984, prop. 66) then it follows that |(Vi
H)A| < |(Vi

H)B|.

The lack of invariance for MSFE is also present across different variables. To present a mea-

sure of forecast errors that is also invariant to linear transformations of different variables, let

Yt,H|t be a vector of yi
t,H|t for all variables, i = 1, 2, . . . , N, such that Yt,H|t =

(
y1′

t,H|t, y2′
t,H|t, . . . , yN′

t,H|t

)′

is a vector with M ≡ N(H + 1) elements. The prediction error of Yt,H|t is then given by Et,H|t ≡

Yt,H − Yt,H|t, where Yt,H =
(

y1′
t,H , y2′

t,H , . . . , yN′
t,H

)′
, such that Et,H|t =

(
e1′

t,H|t, e2′
t,H|t, . . . , eN′

t,H|t

)′
.

The observable MSFEM for this forecast system is

VH = T−1
T

∑
t=1

Et,H|tE
′
t,H|t, (3)

which is an M × M matrix. As above, the determinant of this matrix is an invariant measure

for ranking of forecasts.

1Clements and Hendry (1993) also assume |M| = 1, which can be interpreted as a scale-preserving transfor-
mation. Then trace(M(Vi

H)AM′) 6= trace((Vi
H)A) shows the lack of invariance. However, since two forecasts are

compared, we do not need M to have this property; see also Schmidt (1993).
2The implication follows from |M (Vi

H)jM′| = |M|2|(V̂i
H)j| for j = A, B.
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2.2 Encompassing

Bates and Granger (1969) and Chong and Hendry (1986) suggest an encompassing test that can

be used to test if one forecast is inferior to another, i.e., it contains no additional information.

Hence, this is a stronger criterion than that one forecast is ranked better than another forecast

based on the determinant of their MSFEM.

Consider two different forecasts of variable i in period t + h made in period t; denoted
(

yi
t+h|t

)A
and

(
yi

t+h|t

)B
. Then, consider the “composite artificial model”

yi
t+h = (1 − α)

(
yi

t+h|t

)A
+ α

(
yi

t+h|t

)B
+ ui

t+h|t, (4)

which is a weighted average of the two forecasts with the weight α and error term ui
t+h|t.

3 The

forecast-encompassing test of the hypothesis α = 0 investigates whether forecast A contains

all information (i.e., there is no additional information in forecast B). Likewise, the hypothesis

α = 1 implies that forecast B contains all information. Any other outcome implies that neither

model encompasses the other. Unfortunately, in the same manner as MSFE, this test is not

invariant to linear transformations of the forecasted variable, as the illustration in Ericsson

(2008) shows. Hence, the forecasts based on one model (say A) could be considered better

than the forecasts of another model (B) when the forecasts are measured in levels, but forecasts

from B could be preferred over forecasts from A when measured in differences.

A generalization of this test could be to consider the vector version where all forecast hori-

zons up to H for all variables are considered jointly, i.e.

Yt,H = (IM − Γ)
(
Yt,H|t

)A + Γ
(
Yt,H|t

)B + Ut+H|t, (5)

where the error term is Ut+H|t =
(

u1′
t,H|t, u2′

t,H|t, . . . , uN′
t,H|t

)′
with ui

t,H|t =
(

ui
t|t, ui

t+1|t, . . . , ui
t+H|t

)′
.

The test for forecast vector A encompassing the composite model is then Γ = 0 and the test

for forecast vector B encompassing the composite model is Γ = IM. Otherwise, neither forecast

encompasses the other.

A simplified (i.e., restricted) version of this test would be to consider the “composite arti-

3See Ericsson (1993) for a discussion of why this formulation for the encompassing test is preferred to more
general formulations where the weights are not restricted to sum to unity and possibly an intercept is included.
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ficial model” as a weighted average of the two forecasts. Then, Γ = αIM where α is a scalar,

i.e., Γ is a matrix where all the diagonal elements are equal to α and all other elements are zero.

Then the “composite artificial model” becomes

Yt,H = (1 − α)
(
Yt,H|t

)A + α
(
Yt,H|t

)B + Ut,H|t. (6)

Both (5) and (6) are used in Section 4 to test if one set of forecasts is encompassing another.

Note that if we subtract (Yt,H)A on both sides of (6) we get the formulation

EA
t,H|t = α

[(
Et,H|t

)A −
(
Et,H|t

)B
]
+ Ut,H|t, (7)

which is usually applied for univariate encompassing tests, see e.g. Harvey et al. (1998). Fur-

thermore, define Dt,H|t ≡
(
Et,H|t

)A −
(
Et,H|t

)B
, which is the difference in the forecast errors

between the two forecasts. It follows that Dt,H|t is also the difference between the two fore-

casts, i.e., Dt,H|t =
(
Yt,H|t

)B −
(
Yt,H|t

)A
.

The parameter α in (4) and (6) is usually estimated with OLS with the formulation in (7).

The distribution of this estimator is non-standard, see e.g., Harvey et al. (1998) and Harvey and

Newbold (2000) in the case of univariate forecasts. There are two important reasons why the

distribution is non-standard. First, the distribution of the forecast errors can be non-normal.

For example, Harvey et al. (1998) show that if two univariate forecasts errors (i.e., when n = 1

and H = 0) are generated by the bivariate Student’s t-distribution — see Dunnett and So-

bel (1954) — with 4 degrees of freedom, then for the nominal 5%-level of the t-test the true

asymptotic size is 12.2%. Second, the forecast errors will be autocorrelated since the forecast-

ing horizons overlap (i.e., with H > 0) each other.

2.3 The simplified encompassing test statistics

By defining the vectors y =
(

EA′
1,H|1, EA′

2,H|2, . . . , EA′
T,H|T

)′
and x =

(
D′

1,H|1, D′
2,H|2, . . . , D′

T,H|T

)′
,

(7) can be formulated as

y = αx + ε, (8)

with ε =
(

U′
1,H|1, U′

2,H|2, . . . , U′
T,H|T

)′
.
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When ignoring that the forecast errors given at different time periods can be correlated

the conditional estimators for α and the covariance matrix for ε are given by (when ignoring

possible degrees of freedom adjustments for the covariance matrix)

α̂(Ω̂) =
(

1
TM

x′
(

IT ⊗ Ω̂−1
(α̂)

)
x

)−1 ( 1
TM

x′
(

IT ⊗ Ω̂−1
(α̂)

)
y

)

, (9)

Ω̂(α̂) =
1
T

T

∑
t=1

(
EA

t,H|t − α̂(Ω̂)Dt,H|t

) (
EA

t,H|t − α̂(Ω̂)Dt,H|t

)′
, (10)

where ⊗ indicates the Kronecker product and the subscript in parenthesis indicates that the

estimates are a function of another estimate. The estimates in (9) and (10) can be obtained by

an iterative procedure until convergence, and the final estimates will equal the ones obtained

with full information maximum likelihood, see Oberhofer and Kmenta (1974).

The estimator of the variance of the estimator in (9), when considering that forecasts made

at different time periods can be correlated is given by

̂
Var

(
α̂(Ω̂)

)

(a)

=
1

TM

[
1

TM
x′
(

IT ⊗ Ω̂−1
(α̂)

)
x

]−2 [ 1
TM

x′
(

IT ⊗ Ω̂−1
(α̂)

)
Σ̂(a)

(
IT ⊗ Ω̂−1

(α̂)

)
x

]

, (11)

where the TM × TM matrix Σ̂(a) is the covariance matrix of ε. The parameter a usually is

set equal to the estimated α, but I include it as a separate parameter to allow it to take other

values. It can be shown that with H steps ahead forecasts (including nowcasting), there will

be autocorrelation up to order H and no autocorrelations above order H. The reason is that

a forecast made in period t + H will overlap with a forecast made in period t, as both sets

of forecasts will involve forecasts of variables for period t + H. However, a forecast made in

period t + H + 1 will not overlap with a forecast made in period t, and hence the prediction

errors in the two sets of forecasts are not expected to be correlated. This property is also shown

in Hendry and Martinez (2017) and used by Diebold and Mariano (1995), Harvey et al. (1997,

1998), and Harvey and Newbold (2000), among others. Hence, the block element (t, t + l) in
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Σ̂(a) is given by

{Σ̂(a)}t,t+l =






Û(a),t,H|tÛ
′
(a),t+l,H|t+l for l = 0, 1, . . . , H

0M×M otherwise,

(12)

where

Û(a),t,H|t = EA
t,H|t − aDt,H|t. (13)

Hence, Û(0),t,H|t = EA
t,H|t and Û(1),t,H|t = EB

t,H|t.

The last term in (11) can then be written as

Q(a) =
1

TM
x′
(

IT ⊗ Ω̂−1
(α̂)

)
Σ̂(a)

(
IT ⊗ Ω̂−1

(α)

)
x

=
1
T

[
T

∑
t=1

d2
(a),t + 2

H

∑
l=1

T−l

∑
t=1

wld(a),td(a),t+l

]

, (14)

where

d(a),t =
1

M1/2
Dt,H|tΩ̂

−1
(α̂)Û(a),t,H|t (15)

can be interpreted as a generalized measure of the difference between the two forecasts, and

where wl must be equal to unity for the equality in (14) to hold. However, to secure that the

estimated variance in (11) is positive, Newey and West (1987) suggest using wl = 1 − l
H+1

(l = 1, . . . , H), as will be used here.

Based on this, two alternative t-tests can be formulated for testing the null hypothesis of

α = 0 or α = 1: one where the estimated value of α is used in the expression for the variance

in (11) and another where the value under the null hypothesis is used. Both t-statistics can be

formulated as
α̂ − α0√
V̂ar (α̂)(a)

= (TM)1/2w1/2
0 d̄(α0)Q

−1/2
(a) , (16)

where α0 is the value of α under the null hypothesis, and d̄(a) is the sample mean of (15).

When the test statistic is computed for the estimated α in the expression of the variance, we

have a = α̂; and when it is computed under the null, a = 0 or a = 1, depending on the null

hypothesis. For the encompassing test of a forecast of only one variable, Harvey et al. (1997)
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derive the correction factor w0 = T−1
[
T − 1 − 2H + T−1H(H + 1)

]
. This correction factor is

because one in (14) divide by the sample size T instead of the number of autocovariances T − l

(where l = 1, 2, . . . , H).

In the univariate case, i.e., when only forecast of one variable and not a vector is made,

Harvey et al. (1998) and Harvey and Newbold (2000) show that both variants of the test in (16)

have severe size distortions; the version with a = α over-rejects and the other under-rejects.

Therefore Harvey et al. (1998) and Harvey and Newbold (2000) suggest a modification of the

test where Q(a) in (16) is replaced with

Q∗
(a) =

1
T

[
T

∑
t=1

(
d(a),t − d̄(a)

)2
+ 2

H

∑
l=1

T−l

∑
t=1

wl

(
d(a),t − d̄(a)

) (
d(a),t+l − d̄(a)

)
]

. (17)

They show that this modified expression with a equal to α under the null hypothesis, the

corresponding t-test has only small size distortions in the univariate case.

Henningsen and Hamann (2007) discuss the degrees of freedom for t-tests in systems. They

distinguish between system-based t-tests and equation-based t-tests and write that in the lit-

erature sometimes the degrees of freedom of the entire system (total number of observations

in all equations minus the total number of estimated coefficients) is applied. In other cases the

degrees of freedom of the single equation (the number of observations in the equation minus

the number of estimated coefficients in the equation) is used. In OxMetrics the results of t-tests

are reported using the equation-based degrees of freedom, see (Doornik and Hendry, 2013,

sec. 5.3). Here, the equation-based t-test is applied, as it has much smaller size distortions than

the system-based t-test. An additional question concerns what we mean by the number of es-

timated coefficients (that we need to adjust for in the t-test). The way (8) is formulated, only

one coefficient is estimated under the alternative and, hence, only one coefficient is included

in each equation. This indicates that we should use T − 1 degrees of freedom in the test. How-

ever, to estimate this coefficient, we start out with a system with M regressors in each equation,

but with restrictions both within each equation and across equations. Then T − M seems to be

the appropriate degrees of freedom in the test. Simulation results, see Section 3, indicate that

the 95 percent quantile in the statistic in (16) increases with M, and that the adjustment based
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on T − M performs better than using T − 1.4

An additional argument for using the smaller number of degrees of freedom is that t-tests

based on HAC covariance estimates generally exhibit substantial size distortions, see, e.g.,

Andrews (1991), Andrews and Monahan (1992), and den Haan and Levin (1997). Usually, the

distortions lead to over-rejecting. Applying T − M degrees of freedom instead of TM − M

degrees of freedom in the test can therefore also reduce distortion bias.

2.4 The full encompassing test statistics

Now, consider the encompassing test based on the formulation in (5), i.e., with the more gen-

eral weight matrix Γ. Then (8) is replaced by

y = (D ⊗ IM) vecΓ + ε, (18)

where D =
((

D1,H|1
)

,
(
D2,H|2

)
, . . . ,

(
DT,H|T

))′
being a T × M matrix and vec is the vector

operator. The estimator of vecΓ becomes

vecΓ̂ =
(

1
T

D′D ⊗ IM

)−1 ( 1
T

(D ⊗ IM)′ y

)

(19)

with variance

̂Var
(
vec
(
Γ̂
))

=
1
T

(
1
T

D′D ⊗ IM)

)−1 [ 1
T

(D ⊗ IM)′ Σ̂(G) (D ⊗ IM)
] (

1
T

D′D ⊗ IM)

)−1

, (20)

where Σ̂(G) has the properties in (12) with Û(G),t,H|t given by (13) where the scalar a is replaced

with the arbitrary M × M matrix G. The term in the square brackets, which we define as Q(G),

4In addition, the simulation results support that applying the “total number of observations in all equations” —
i.e., TM, as the system-based t-test calls for — is not appropriate here.
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becomes:

Q(G) =
1
T

(D ⊗ IM)′ Σ̂(G) (D ⊗ IM)

=
1
T

T

∑
t=1

[
5(G),t5

′
(G),t

]
+

1
T

H

∑
l=1

T−l

∑
t=1

wl

[
5(G),t 5

′
(G),t+l + 5(G),t+l 5

′
(G),t

]
,

where 5(G),t =
((

Dt,H|t
)
⊗ IM

)
Û(G),t,H|t. Hence, 5(G),t has dimension M2 × 1 and corre-

sponds to the variable d(a),t in the simple case. The equality requires wl = 1, but I follow

Newey and West (1987) and use wl = 1 − l
H+l to secure the M2 × M2 matrix Q(G) to be posi-

tive definite.

Let Γ0 be the Γ-matrix under the null hypothesis. Then, provided that Q(G) is nonsingular,

the F-test statistic is given by

F =
T

M2 w05̄
′
(Γ0)Q

−1
(G)5̄(Γ0), (21)

where 5̄(G) is the sample mean of 5(G),t with G set equal to Γ0, and w0 is as given for the t-test.

A similar modification to the one suggested in Harvey et al. (1998) and Harvey and New-

bold (2000), see (17), would be

Q∗
(Γ0)

=
1
T

T

∑
t=1

[(
5(Γ0),t − 5̄(Γ0)

) (
5(Γ0),t − 5̄(Γ0)

)′]

+
1
T

H

∑
l=1

T−l

∑
t=1

wl

[(
5(Γ0),t − 5̄(Γ0)

) (
5(Γ0),t+l − 5̄(a)

)′

+
(
5(Γ0),t+l − 5̄(Γ0)

) (
5(Γ0),t − 5̄(Γ0)

)′]

.

The matrix Q∗
(Γ0)

is not the conventional covariance matrix as it allows for heteroscedastic-

ity and autocorrelations. However, if Q∗
(Γ0)

were the conventional covariance matrix of 5(Γ0),t,

then the statistics T5̄′
(Γ0)Q

∗−1
(Γ0)

5̄(Γ0) would take the form of Hotelling’s T2-statistic, see Hotelling

(1931). Following Harvey and Newbold (2000), I assume that this expression still can be ap-

proximated with Hotellings T2-statistic. Under the null hypothesis, this statistic has the distri-

bution M2(T−1)
T−M2 F(M2,T−M2) where F(d1,d2) is the F-distribution with d1 degrees of freedom in the

numerator and d2 degrees of freedom in the denominator. Hence, when applying Q∗
(Γ0)

, we
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use the test statistic

F∗ =
T

M2

T − M2

T − 1
w05̄

′
(Γ0)Q

∗−1
(Γ0)

5̄(Γ0). (22)

Note that when M = 1 the F-statistic is identical to the t-statistic.

3 Size and power of the tests

3.1 Size of the tests

To test the empirical size of the two tests, we consider (5) or (6) where α = 0 or Γ = 0, respec-

tively, under the null hypothesis. Hence, we generate the forecast error (vector) for forecast A

— the forecast with the ‘correct’ forecast — as a “white noice” process; EA
t,H|t ∼ N (0, IM). The

forecasts from the other forecast B have no additional information on the variables forecasted,

and we implicitly generate these forecasts through Dt,H|t = EA
t,H|t − EB

t,H|t ∼ N
(
0, v2 IM

)
with

the scalar v 6= 0. The joint forecasts errors are then generated by






EA
t,H|t

EB
t,H|t




 ∼ N











0

0




 ,






IM IM

IM (1 + v2)IM









 , (23)

which is similar to the simulation design in Harvey and Newbold (2000) when they only con-

sider the forecast of one variable at one horizon (but with more than two forecasts). Further-

more, as also noted by Harvey and Newbold (2000), the null distributions will be invariant

to the choice of v as long as v 6= 0. Hence, we will not consider different values for v in the

simulations.

In Table 1 the actual size of the t-test and F-test based on the estimated parameters (Q(α̂)

or Q(Γ̂)) and the parameters under the null (Q∗
(0)) for different values of T, M, H at both the 1

and 5 percent significance level is reported. The F-test is not applicable when T is small and M

is large (i.e., when T ≤ M2), both because Q is singular and the degrees of freedom in the test

becomes negative.

Based on the simulations reported in Table 1 we can draw the following conclusions: First,

there are large distortions for the t-test in small samples for M ≥ 4, though applying Q∗

reduces these distortions. Second, the actual size is higher for H = 1 than for H = 0. Third,
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Table 1: Size of tests of forecast encompassing

Q(α̂) or Q(Γ̂) Q∗
(0)

H = 0 H = 1 H = 0 H = 1
T M Test statistic 1 pct. 5 pct. 1 pct. 5 pct. 1 pct. 5 pct. 1 pct. 5 pct.
12 1 t and F 0.0381 0.1066 0.0051 0.0396

2 t 0.0530 0.1350 0.0660 0.1611 0.0080 0.0613 0.0102 0.0591
F 0.0921 0.2244 0.1575 0.3200 0.0019 0.0223 0.0113 0.0552

3 t 0.0723 0.1804 0.0151 0.0914
F 0.0699 0.2405 0.0062 0.0298

6 t 0.1779 0.3431 0.2015 0.3721 0.0328 0.2082 0.0372 0.1939
F — — — — — — — —

25 1 t and F 0.0225 0.0787 0.0066 0.0418
2 t 0.0304 0.0936 0.0366 0.1059 0.0107 0.0649 0.0129 0.0657

F 0.0572 0.1495 0.0854 0.2007 0.0049 0.0332 0.0092 0.0548
3 t 0.0302 0.0978 0.0140 0.0724

F 0.0905 0.2317 0.0038 0.0301
6 t 0.0614 0.1579 0.0718 0.1714 0.0383 0.1328 0.0395 0.1298

F — — — — — — — —
100 1 t and F 0.0144 0.0602 0.0096 0.0511

2 t 0.0143 0.0567 0.0151 0.0608 0.0111 0.0516 0.0120 0.0526
F 0.0220 0.0804 0.0276 0.0896 0.0078 0.0479 0.0093 0.0513

3 t 0.0151 0.0645 0.0124 0.0596
F 0.0314 0.1048 0.0058 0.0442

6 t 0.0170 0.0687 0.0176 0.0715 0.0150 0.0661 0.0154 0.0652
F 0.0884 0.2299 0.3094 0.5326 0.0062 0.0386 0.0741 0.2121

1000 1 t and F 0.0108 0.0507 0.0105 0.0500
2 t 0.0103 0.0521 0.0102 0.0528 0.0101 0.0516 0.0101 0.0514

F 0.0103 0.0524 0.0113 0.0529 0.0089 0.0493 0.0096 0.0499
3 t 0.0118 0.0528 0.0114 0.0524

F 0.0100 0.0542 0.0084 0.0472
6 t 0.0113 0.0520 0.0116 0.0523 0.0112 0.0519 0.0114 0.0513

F 0.0144 0.0624 0.0186 0.0768 0.0101 0.0460 0.0117 0.0552
Note: table shows actual size of test for both the simple encompassing test (t-test) and the full encom-
passing test (F-test) for different values of T, M, H and the nominal size (1 pct. and 5 pct.), all derived
both under the estimated parameters (Q(α̂) or Q(Γ̂)) and under the null hypothesis (Q∗

(0)). The figures

are based on 10 000 replications.
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Table 2: Simulated quantiles

Q(α̂) or Q(Γ̂) Q∗
(0)

H = 0 H = 1 H = 0 H = 1
T M Test statistic 99 pct. 95 pct. 99 pct. 95 pct. 99 pct. 95 pct. 99 pct. 95 pct.
12 1 t and F 20.5075 8.1793 7.9988 4.4452

2 t 23.7051 10.4784 30.0717 12.2992 9.3708 5.3911 10.1162 5.3868
F 22.3048 10.1090 35.0118 14.9118 4.7309 3.0139 7.3413 3.9532

3 t 32.2494 13.9104 11.8542 6.8649
F 127.8313 37.0102 19.6239 6.4436

6 t 92.3865 37.5830 121.4018 44.3172 19.4085 12.1573 21.3042 12.2590
F — — — — — — — —

25 1 t and F 11.5567 5.4355 6.7849 3.9612
2 t 11.7374 6.2409 12.9193 6.7828 7.9774 4.8257 8.4338 4.8142

F 7.5258 4.6052 9.6957 5.4812 3.7157 2.5677 4.2437 2.9059
3 t 12.3028 6.3915 8.9193 5.1731

F 7.8456 4.7543 3.1525 2.2572
6 t 16.9092 9.2091 18.6325 10.0863 12.7018 7.2961 13.0938 7.4885

F — — — — — — — —
100 1 t and F 7.6941 4.3455 6.7822 3.9668

2 t 7.7824 4.1940 8.2824 4.3090 7.3065 3.9806 7.5822 4.0124
F 4.0801 2.8478 4.3245 3.0040 3.3884 2.4368 3.4800 2.4907

3 t 7.8439 4.4102 7.3644 4.2384
F 3.1845 2.3810 2.4570 1.9497

6 t 7.9349 4.6424 8.1253 4.7991 7.6570 4.4768 7.6415 4.5598
F 2.6039 2.1209 3.6557 2.8621 1.8674 1.5420 2.5104 2.0561

1000 1 t and F 6.8227 3.8723 6.7088 3.8501
2 t 6.7621 3.9307 6.7381 3.9255 6.6770 3.9151 6.6683 3.8919

F 3.3627 2.4115 3.3889 2.4215 3.2911 2.3736 3.3099 2.3784
3 t 6.9007 3.9561 6.8270 3.9398

F 2.4208 1.9141 2.3436 1.8702
6 t 6.8263 3.9281 6.8737 3.9164 6.8025 3.9166 6.8830 3.9083

F 1.7213 1.4684 1.7446 1.5013 1.6512 1.4161 1.6719 1.4448
Note: table shows simulated quantiles (99 pct. and 95 pct.) of test for both the simple encompassing
test (t-test) and the full encompassing test (F-test) for different values of T, M, and H, all derived both
under the estimated parameters (Q(α̂) or Q(Γ̂)) and under the null hypothesis (Q∗

(0)). The figures are

based on 10 000 replications.
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Table 3: Power of tests

Q(α̂) or Q(Γ̂) Q∗
(0)

T& H = 0 H = 1 H = 0 H = 1
(av)2 M Test statistic 1 pct. 5 pct. 1 pct. 5 pct. 1 pct. 5 pct. 1 pct. 5 pct.
12 1 t and F 0.0860 0.2880 0.0548 0.2281
0.52 2 t 0.1744 0.4533 0.1570 0.4390 0.1542 0.4227 0.1260 0.3936

F 0.0567 0.2086 0.0526 0.1958 0.0444 0.1653 0.0297 0.1436
3 t 0.2335 0.5472 0.2032 0.5176

F 0.0271 0.1170 0.0116 0.0699
6 t 0.2521 0.6143 0.2148 0.5870 0.2440 0.5719 0.1886 0.5061

F — — — — — — — —
25 1 t and F 0.0919 0.2795 0.0873 0.2666
0.32 2 t 0.2109 0.4509 0.2036 0.4413 0.2068 0.4436 0.1751 0.4303

F 0.0779 0.2324 0.0641 0.2228 0.0698 0.2217 0.0643 0.1929
3 t 0.3365 0.6171 0.3323 0.6146

F 0.0530 0.1965 0.0442 0.1631
6 t 0.5863 0.8219 0.5595 0.8052 0.5748 0.8367 0.5253 0.8115

F — — — — — — — —
100 1 t and F 0.2486 0.4888 0.2424 0.4895
0.22 2 t 0.5302 0.7897 0.5063 0.7854 0.5185 0.7885 0.4940 0.7834

F 0.2971 0.5282 0.2870 0.5156 0.2895 0.5246 0.2781 0.5193
3 t 0.7613 0.9115 0.7619 0.9121

F 0.3046 0.5576 0.3095 0.5499
6 t 0.9818 0.9964 0.9806 0.9964 0.9818 0.9964 0.9803 0.9964

F 0.2530 0.4973 0.1944 0.4479 0.1920 0.4559 0.1618 0.3800
1000 & 1 t and F 0.7083 0.8778 0.7088 0.8772
0.12 2 t 0.9708 0.9918 0.9711 0.9920 0.9713 0.9918 0.9713 0.9920

F 0.8859 0.9640 0.8833 0.9632 0.8856 0.9637 0.8844 0.9633
3 t 0.9976 0.9997 0.9976 0.9997

F 0.9473 0.9867 0.9500 0.9871
6 t 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F 0.9828 0.9979 0.9837 0.9978 0.9849 0.9978 0.9837 0.9976
Note: table shows power of test for both the simple encompassing test (t-test) and the full encompass-
ing test (F-test) for different values of T, M, H, (av)2 and the nominal size (1 pct. and 5 pct.), all derived
both under the estimated parameters (Q(α̂) or Q(Γ̂)) and under the null hypothesis (Q∗

(0)). The figures

are based on 10 000 replications.
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the change in size is much more profound for the F-tests than for the t-tests when applying Q∗

instead of Q. Fourth, for H = 0 using Q∗, the F-tests have generally an actual size smaller than

the nominal size. Using Q, the F-test has an actual size bigger than the nominal size. Fifth, the

distortions increase in the dimension M for the t-test. Sixth and finally, and as expected, the

size distortions decrease when the sample increases in T.

Since there can be large size distortions Table 2 reports the simulated 99 percent and 95

percent quantiles. Hence, these quantiles can be applied instead of threshold values from the

t- and F-distributions, especially when there are large size distortions.

3.2 Power of the tests of forecasting encompassing

To indicate the power of the tests the following processes are simulated. First, as for the test

of the size, Dt,h|t = EB
t,h|t − EA

t,H|t ∼ N
(
0, v2 IM

)
with v 6= 0 is generated. Then EA

t,h|t − aDt,h|t ∼

N (0, IM) is generated for the scalar a. For a = 0 this is the same process as was used for

simulating the size of the test. Hence, for a = 0 the null hypothesis that forecasts A encompass

forecasts B is correct. Therefore, when a 6= 0 the null hypothesis is not correct.

In Table 3 I have used v = 1 and different values of a, depending on the sample size (T).

However, it can be shown — see, e.g., Harvey and Newbold (2000) — that the simulation only

depends on (av)2 (for v 6= 0), so to derive the power for different values of a and v only the

different values of their squared product need to be examined. The table reports the fractions

the simulations exceed the simulated quantiles in Table 2. Hence, the tests do not gain power

if their actual size is greater than the nominal size.

From the simulations the following conclusions can be drawn: First, the t-test has much

more power than the F-test. Second, the power is approximately the same when using Q∗ as

when using Q. Third, the power seems to increase with the dimension M for the t-tests and to

decrease for the F-tests. Forth, the power is smaller for H = 1 than for H = 0.

4 Encompassing tests for forecasts made by Statistics Norway

Statistics Norway has, with a few exceptions, published forecasts every quarter for many vari-

ables for the year the forecast was made as well as the following year since the 1st quarter in
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1990. Among these variables are Mainland GDP5, CPI and the unemployment rate (UR).

Even though a quarterly model is used in generating the forecasts, the forecasts are only

published in annual terms. Therefore, in testing the forecasts from Statistics Norway, I only

consider forecasts of annual values.

Statistics Norway did not publish forecasts in the 2nd quarter of 1990 and 1991. In the

analysis, I have set those forecasts equal to the forecasts made in the 1st quarter. Also in the

3rd quarter in 2013 Statistics Norway did not publish a forecast. Here, also, the forecast for

the 3rd quarter is set equal to the previously published forecast, i.e., the forecast from the 2nd

quarter that year.6 The latest forecast considered in the examination is the forecast made in the

4th quarter of 2014, which includes forecasts of variables for the year 2015. Hence, the sample

spans 25 years of forecasts.

The published numbers for CPI and the unemployment rate are never revised. The pub-

lished numbers for variables from the National Accounts, such as the Mainland GDP, can be

revised in many quarters until they are fixed. Though also these ‘fixed’ numbers can be revised

due to revisions in the System of National Accounts. In the analysis undertaken here, the first

published number of Mainland GDP-growth is used.

4.1 Comparison with random walk

Table 4 compares the forecasts by Statistics Norway with the forecasts generated by a ran-

dom walk. The forecasts based on a random walk are equal to the last observed value of

the variables, i.e. the last observed GDP-growth (for Mainland-Norway), the last observed

year-on-year CPI-growth, and the last observed level of unemployment over a calendar year.

Hence, the forecasted values for the growth provided by a random walk given at time t, q (i.e.,

quarter q in year t) for Mainland GDP in both year t and year t + 1 is equal to the Mainland

GDP growth in year t − 1. Similarly, the random walk forecast implies that the CPI-growth in

both year t and year t + 1 is equal to the CPI-growth in year t − 1, and the unemployment rate

in t and t + 1 is equal to the unemployment rate in year t − 1.

5Mainland Norway consists of all domestic production activity except exploration of crude oil and natural gas,
transport via pipelines and ocean transport. The term was revised as a part of the main revision of the national
accounts in 2014. Before this, service activities incidental to oil and gas were also excluded from Mainland Norway.

6Due to the onset of the financial crises, Statistics Norway published an extra forecast in mid-October 2008. This
extra forecast is not included in the current analysis.
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The forecasts by Statistics Norway, given at time t, q for GDP, CPI, and UR, for horizons 0

and 1, are given by the vector

Yt,1|(t,q) =
(

ΔGDPt|(t,q), ΔGDPt+1|(t,q), ΔCPIt|(t,q), ΔCPIt+1|(t,q), URt|(t,q), URt+1|(t,q)

)′
, (24)

where Δ indicates that we are considering the growth of that particular variable. The ordering

of the elements in the vectors in (24) is not important, only that they are in the same order

in the two forecasts we are comparing when applying the simplified encompassing test. The

distinction between level and growth in (24) is only important for the simplified encompassing

test when we are comparing with forecasts generated by a random walk, as it makes it easier

to formulate the corresponding forecast from the random walk model. The corresponding

forecasts of the random walk model are then the last observation of the corresponding variable

in (24), i.e., YRW
t,1|(t,q) = (ΔGDPt−1, ΔGDPt−1, ΔCPIt−1, ΔCPIt−1, URt−1, URt−1)

′.7

For the full encompassing test of the full system the regression considered is therefore

Yt,1 = (1 − Γ) Yt,1|(t,q) + ΓYRW
t,1|(t,q) + ut,q, (25)

where Yt,1 = (ΔGDPt, ΔGDPt+1, ΔCPIt, ΔCPIt+1, URt, URt+1), and N = 3, H = 1, and —

therefore — M = 6. For the simple encompassing test the coefficient matrix is restricted by

Γ = αIM where α is a scalar.

In the first block of Table 4, one is testing if the forecasts of the full system made in one

quarter encompass the forecasts based on a random walk, as in (25). In the first line, two

numbers are reported for each quarter; the estimated α and its standard error.8 For forecasts

made in both the 2nd and 3rd quarter the weights on the forecasts based on the random walk

are less than 0.01 (i.e., less than one percent). Based on the standard error (derived by the

estimated α) these estimates are clearly not significantly different from zero. Also for the 4th

quarter, the weight on the forecasts based on the random walk is small (less than 3 percent), but

7If all variables in Yt|(t,q) were in levels, we could formulate the corresponding forecasts generated by a random
walk as (GDPt−1 + ΔGDPt−1, GDPt−1 + 2ΔGDPt−1, CPIt−1 + ΔCPIt−1, CPIt−1 + 2ΔCPIt−1, URt−1, URt−1). The
results in Table 4 would then be unchanged, also for the simplified encompassing test provided that also Yt,1 were
measured in levels.

8The standard error is implicitly derived such that the t-value is given in (16) with a = α.
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Table 4: Comparison with Random Walk

Q1 Q2 Q3 Q4

Both horizons
α̂(Ω̂) 0.1148 (0.0386) 0.0002 (0.0240) 0.0042 (0.0178) 0.0287 (0.0102)
H0 : α = 0 (0.0433) 7.0309 [0.0162] (0.0256) 0.0001 [0.9941] (0.0195) 0.0455 [0.8335] (0.0171) 2.8276 [0.1099]
H0 : α = 1 (0.2172) 16.6073 [0.0007]** (0.2756) 13.1653 [0.0019]** (0.3016) 10.8992 [0.0040]* (0.2979) 10.6329 [0.0043]*

Nowcasting
α̂(Ω̂) 0.1128 (0.0552) -0.0138 (0.0275) 0.0168 (0.0199) 0.0205 (0.0103)
H0 : α = 0 (0.0576) 3.8318 [0.0637] (0.0282) 0.2413 [0.6284] (0.0229) 0.5425 [0.4695] (0.0128) 2.5715 [0.1237]
H0 : α = 1 (0.1850) 22.9940 [0.0001]** (0.2609) 15.0972 [0.0009]** (0.2593) 14.3790 [0.0011]** (0.2635) 13.8142 [0.0013]**
H0 : Γ = 0 0.4941 [0.8397] 0.5126 [0.8272] 0.3169 [0.9440] 0.5932 [0.7716]
H0 : Γ = IM 3.0052 [0.0804]* 2.4934 [0.1208]* 3.1232 [0.0737]* 3.7472 [0.0477]**

GDP H = 1
α̂(Ω̂) 0.1572 (0.1127) 0.0358 (0.0842) -0.0006 (0.0801) 0.0054 (0.0396)
H0 : α = 0 (0.0902) 3.0353 [0.0954] (0.0807) 0.1968 [0.6616] (0.0853) 0.0000 [0.9946] (0.0414) 0.0168 [0.8981]
H0 : α = 1 (0.3840) 4.8167 [0.0390]* (0.4109) 5.5055 [0.0284]* (0.3911) 6.5445 [0.0179]* (0.3867) 6.6152 [0.0174]*
H0 : Γ = 0 1.0511 [0.4104] 0.3654 [0.8298] 0.9699 [0.4494] 0.3569 [0.8357]
H0 : Γ = IM 1.2162 [0.3404] 1.3728 [0.2848] 1.5459 [0.2339] 1.8802 [0.1603]

CPI H = 1
α̂(Ω̂) 0.0414 (0.0634) -0.0320 (0.0434) 0.0028 (0.0242) 0.0205 (0.0117)
H0 : α = 0 (0.0684) 0.3654 [0.5517] (0.0466) 0.4727 [0.4989] (0.0263) 0.0116 [0.9151] (0.0162) 1.6060 [0.2183]
H0 : α = 1 (0.3378) 8.0552 [0.0096]* (0.3527) 8.5631 [0.0078]** (0.3362) 8.7980 [0.0071]** (0.3148) 9.6780 [0.0051]**
H0 : Γ = 0 1.0939 [0.3911] 1.9145 [0.1543] 2.2744 [0.1037] 0.7677 [0.5609]
H0 : Γ = IM 4.6855 [0.0099]** 3.1912 [0.0398]* 5.0329 [0.0073]** 4.6209 [0.0104]**

UR H = 1
α̂(Ω̂) 0.2295 (0.1492) 0.1213 (0.1432) 0.0488 (0.0708) 0.0260 (0.0601)
H0 : α = 0 (0.1715) 1.7918 [0.1944] (0.1631) 0.5533 [0.4648] (0.0724) 0.4533 [0.5078] (0.0603) 0.1863 [0.6702]
H0 : α = 1 (0.2570) 8.9876 [0.0066]** (0.2637) 11.1066 [0.0030]** (0.3257) 8.5292 [0.0079]** (0.3021) 10.3954 [0.0039]**
H0 : Γ = 0 2.3031 [0.1005] 0.7745 [0.5568] 0.8700 [0.5020] 0.9816 [0.4436]
H0 : Γ = IM 2.1431 [0.1197] 3.1341 [0.0421]* 3.7003 [0.0242]* 3.1425 [0.0417]*

Note: Simple and full encompassing test for forecasts made by Statistics Norway encompass a random
walk. Q1 – Q4 indicates the quarter (of the year) the forecast is made. For α̂(Ω̂) the estimated value
and its standard errors (implicitly derived such that the t-value is given in (16) with a = α) is reported.
For the simple tests standard errors (derived under the null with Q∗), F-value (squared t-value), and
the corresponding p-value to the F-value are reported, in addition to asterisks, where one asterisks
denote that the test statistics exceeds the 95 percent critical value and two asterisks denote that the test
statistics exceeds the 99 percent critical value. For the full test the F-value with corresponding p-value
is reported together with asterisks.

with an even smaller standard error. A standard t-test would lead to rejection of the hypothesis

α = 0. The same is the case for the forecasts made in the 1st quarter, where both the estimated

α and its standard error are larger.

In the line “H0 : α = 0” the null hypothesis of α = 0 is tested when the standard error

is derived under the null (and Q∗ is applied). In the parenthesis, the corresponding standard

error to the t-test is reported. Also, the F-value (i.e., the square of the t-test) is reported, and the

p-value based on the t-test is reported in the square brackets. Finally, two asterisks succeeding

the p-value denote that the F-value exceeds the simulated 99 percent quantile reported in Table

2; similarly, one asterisk shows that the F-value of the test exceeds the simulated 95 percent

quantile. The standard errors are somewhat larger when derived under the null hypothesis
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(and Q∗) than when derived based on the estimated α.

The results of the test α = 0 show that the forecasts made in the 2nd, 3rd, and 4th quarter

encompass the forecasts based on a random walk. For the forecasts made in the 1st quarter,

the encompassing test is rejected at the 5 percent level when applying the t-test. However,

when compared to the simulated 95 percent quantile, also the forecasts made in the 1st quarter

encompass the forecasts based on a random walk.

In the line “H0 : α = 1” the null hypothesis α = 1 is rejected for the forecasts made in

all four quarters. Hence, forecasts made by Statistics Norway do significantly improve the

forecasts based on a random walk. From the estimated α and its standard error, this is not

surprising. Though, when applying the standard error under the null hypothesis, the standard

error increases dramatically: for the forecasts made in the 4th quarter the standard error is

almost 30 times higher when derived under α = 1 than for the estimated α. Even with these

large increases in the standard error, the hypothesis that α = 1 is clearly rejected.

The F-test for the full system forecast (M = 6) is not applicable since T < M2.

In the remaining tests, only subsets of the system are applied. The results are relatively

similar to the ones with the full system when considering the t-test. The F-test supports the t-

test when considering nowcasting and the forecasts of CPI and UR, where Γ = 0 is not rejected,

but (with one exception) Γ = I is rejected (at the 5 percent significance level).

When only considering the forecasts of GDP (for mainland Norway) the hypothesis Γ = I

cannot be rejected despite that the hypothesis α = 1 is rejected in the t-tests for forecasts made

in all quarters. These diverging results can be due to the low power of the F-test.

4.2 Improved forecast through the year?

The encompassing tests can also be used to test if a forecast made at a point in time outperforms

a forecast of the same variables for the same periods made at an earlier point in time. If the

latest forecast does not encompass the previous forecast, one could make a better forecast by

using a weighted average of the two forecasts. In this case, the latest published forecast is not

efficient.

In the upper part of Table 5 I report test results related to whether forecasts of Mainland

GDP, CPI, and UR for the current and next year improves throughout the calendar year. To
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test if the forecast improves throughout the year, we consider the following regression

Yt,1 = (1 − Γ) Yt,1|(t,q1) + ΓYt,1|(t,q2) + ut,1, (26)

with Γ = αIm for the simplified encompassing test. Suppose q1 > q2. Then we hope the

forecast made in quarter q1 (q1 = 2, 3, 4) should include all information that was available at

quarter q2 (q2 = 1, 2, 3) plus the extra information that has come available between the two

times the forecasts were made. Hence, we should not expect a combined forecast of Yt+1|(t,q2)

and Yt+1|(t,q1) to outperform the latter (i.e., the latest forecast). Therefore, we hope that the

hypothesis α = 0 is not rejected. Finally, we would like the hypothesis α = 1 to be rejected.

The upper part of Table 5 reports results of the encompassing tests for the system with

all three variables (N = 3) and forecasts for both the current and next year (H = 1), hence

M = 6, as in (24). In the first column, I test if the forecasts made in the 2nd quarter of the year

encompass the forecasts made in the 1st quarter. In the remaining two columns I also compare

the forecasts with the forecasts made in the previous quarter; hence I always use q2 = q1 − 1.

The estimate of α is close to zero (-0.0631 when comparing the 2nd quarter forecasts to the

1st quarter forecasts; 0.0805 when comparing the 3nd quarter forecasts and the 2nd quarter

forecasts; and 0.0769 when comparing the two latest forecast of the year), indicating that the

best combined forecast puts full weight on the latest forecasts and no weight on the previous

forecasts. The standard errors (reported in parenthesis and based on the estimated α) are rela-

tively large, so based on the t-test derived for the estimated α the hypothesis that α = 0 is not

rejected for any of the compared quarters. The exception is for the test of whether the forecasts

made in the 4th quarter encompass the forecasts of the 3rd quarter; here the t-value is about 2.3,

whereas the critical value (based on the t-distribution) is about 2.1 with T − M = 25 − 6 = 19

degrees of freedom at the 5 percent significance level in a two-sided test.

The next line in the table reports the t-test for α = 0 when Q∗ is applied. For this test the

null hypothesis α = 0 is not rejected for any of the three cases.

The results of the test of the hypothesis α = 1 indicate the power of the encompassing

test. Note that the standard error is between three and four times higher than for the test of

the hypothesis α = 0. If I had used the estimated standard error, the hypothesis of α = 1
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Table 5: Improved forecasts throughout the year?

Q2 vs. Q1 Q3 vs. Q2 Q4 vs. Q3

Both horizons
α̂(Ω̂) -0.0631 (0.0815) 0.0805 (0.0702) 0.0769 (0.0332)
H0 : α = 0 (0.0844) 0.5583 [0.4646] (0.0947) 0.7213 [0.4069] (0.0384) 4.0135 [0.0604]
H0 : α = 1 (0.2709) 15.4001 [0.0010]** (0.3802) 5.8483 [0.0264] (0.1302) 50.2976 [0.0000]**

Nowcasting
α̂(Ω̂) -0.2073 (0.0818) -0.0499 (0.0762) 0.0616 (0.0652)
H0 : α = 0 (0.0825) 6.3095 [0.0203]* (0.0910) 0.3007 [0.5892] (0.0697) 0.7828 [0.3863]
H0 : α = 1 (0.2449) 24.2974 [0.0001]** (0.5220) 4.0461 [0.0573] (0.1672) 31.4824 [0.0000]**
H0 : Γ = 0 2.3479 [0.1367]* 2.9062 [0.0867]* 0.7609 [0.6566]
H0 : Γ = IM 3.2286 [0.0682]** 1.5538 [0.2872] 5.2640 [0.0198]**

GDP H = 1
α̂(Ω̂) -0.3904 (0.2880) -0.1669 (0.3035) 0.1271 (0.1429)
H0 : α = 0 (0.3231) 1.4596 [0.2398] (0.3487) 0.2290 [0.6370] (0.1680) 0.5724 [0.4573]
H0 : α = 1 (0.4922) 7.9809 [0.0099]* (0.5663) 4.2461 [0.0514] (0.2003) 18.9874 [0.0003]**
H0 : Γ = 0 1.0657 [0.4037] 0.3473 [0.8422] 0.3892 [0.8134]
H0 : Γ = IM 2.7394 [0.0631] 1.7255 [0.1908] 6.2784 [0.0027]**

CPI H = 1
α̂(Ω̂) 0.0769 (0.0648) -0.0397 (0.0855) 0.0366 (0.0466)
H0 : α = 0 (0.0768) 1.0007 [0.3280] (0.0775) 0.2624 [0.6135] (0.0487) 0.5647 [0.4603]
H0 : α = 1 (0.3590) 6.6126 [0.0174]* (0.5987) 3.0158 [0.0964] (0.2133) 20.4055 [0.0002]**
H0 : Γ = 0 0.8458 [0.5154] 0.9376 [0.4659] 0.6097 [0.6612]
H0 : Γ = IM 4.2448 [0.0146]** 1.1145 [0.3821] 6.1579 [0.0030]**

UR H = 1
α̂(Ω̂) -0.1647 (0.1822) 0.1494 (0.1582) 0.1597 (0.1389)
H0 : α = 0 (0.2127) 0.5999 [0.4469] (0.1474) 1.0272 [0.3218] (0.1715) 0.8662 [0.3621]
H0 : α = 1 (0.3999) 8.4842 [0.0081]** (0.3665) 5.3866 [0.0300]* (0.1769) 22.5628 [0.0001]**
H0 : Γ = 0 0.3976 [0.8076] 0.8560 [0.5097] 1.0807 [0.3969]
H0 : Γ = IM 3.0439 [0.0461]* 1.3921 [0.2786] 5.1950 [0.0064]**

Note: Column “Q2 vs. Q1” compares the forecasts made by Statistics Norway in the second quarter (of
the year) with the forecasts made in the first quarter. Similarly for the columns “Q3 vs. Q2” and “Q4
vs. Q3”. For further explanation, see Table 4.

would clearly have been rejected. Here, however, using the standard error under the null

(and Q∗), makes it more difficult to reject the null hypothesis. Still, I reject the null hypothesis

that the forecasts made in the 1st quarter encompass the forecasts of the 2nd quarter at the 1

percent level, both when judged by the t-distribution and when compared to the simulated

quantile. Also, I reject that the forecasts made in the 3rd quarter encompass the forecasts from

the 4th quarter. However, I cannot reject that forecasts made at the 2nd quarter encompass

the forecasts from the 3rd quarter when applying the simulated quantile. When applying the

t-distribution the p-value shows that the null hypothesis (that α = 1) is rejected when applying

a 5 percent significance level.
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In the remainder of the table, similar tests are conducted of a subsystem of the variables

in the full system. The test results are similar to the results for the full system. In the simpli-

fied encompassing test for comparing nowcasting of the three variables made in the first two

quarters of the year, the estimated weight on the forecasts made in the 1st quarter is -0.2073.9

With a standard error based on the estimated α of about 0.08, the null hypothesis of α = 0 is

rejected. This hypothesis is also rejected using the standard error based on α under the null

hypothesis (and for the test of the hypothesis Γ = 0 for the full encompassing test using the

variance matrix under the null hypothesis). This results could indicate that Statistics Norway

has not put enough weight on new information available between the publications of the 1st

and the 2nd quarter.

5 Conclusions

This paper presents two alternative encompassing tests for system forecasts. Both tests involve

a correct specification of the system under the null hypothesis that one set of forecasts encom-

passes another set of forecasts. However, under the alternative, one of the tests (the simplified

test, i.e., the t-test) involves a more restrictive formulation than the other test (the general test,

i.e., the F-test).

For both of the tests, two different assumptions with respect to the variance are considered;

one employs the estimated parameter(s), the other the value under the null hypothesis.

Simulation results show that for both the simplified and the general test, the version where

the value of the variance under the null is used has the smallest size distortions. Furthermore,

the simplified test shows the highest power.

The two versions of the two tests are used to examine forecasts published quarterly over

25 years from Statistics Norway. I find that the forecasts made by Statistics Norway encom-

pass forecasts based on a random walk. Furthermore, forecasts made in one quarter generally

encompass forecasts made in the previous quarter.

9Often, the restriction 0 ≤ α ≤ 1 is imposed. Even with two unbiased forecasts, the optimal weight on one
of them can be negative. As pointed out by Granger and Newbold (1986, ch. 9) for the univariate forecast: “an
inferior forecast may still be worth including with negative weight on the grounds that its relatively high error
variance is outweighed by a large ρ value — that is to say, the part of the variable of interest left unexplained
by it is sufficiently strongly related to the part left unexplained by the better forecast” where “ρ is the correlation
between the two forecast errors”.

26



References

Andrews, D. W. K. (1991). Heteroskedasticity and Autocorrelation Consistent Covariance Ma-

trix Estimation. Econometrica, 59(3):817–858.

Andrews, D. W. K. and Monahan, J. C. (1992). An Improved Heteroskedasticity and Autocor-

relation Consistent Covariance Matrix Estimator. Econometrica, 60(4):953–966.

Bates, J. M. and Granger, C. W. J. (1969). The Combination of Forecasts. Operational Research

Quarterly, 20(4):451–468.

Bjørnland, H. C., Ravazzolo, F., and Thorsrud, L. A. (2017). Forecasting GDP with global

components: This time is different. International Journal of Forecasting, 33(1):153–173.

Bjørnstad, J. F. (1990). Predictive Likelihood: A Review. Statistical Science, 5(2):242–254.

Chong, Y. Y. and Hendry, D. F. (1986). Econometric Evaluation of Linear Macro-Economic

Models. The Review of Economic Studies, 53(4):671–690.

Christoffersen, P. F. and Diebold, F. X. (1998). Cointegration and Long-Horizon Forecasting.

Journal of Business & Economic Statistics, 16(4):450–456.

Clements, M. P. and Hendry, D. F. (1993). On the limitations of comparing mean square forecast

errors. Journal of Forecasting, 12(8):617–637.

Clements, M. P. and Hendry, D. F. (1998). Forecasting Economic Time Series. Cambridge Univer-

sity Press.

den Haan, W. J. and Levin, A. T. (1997). A practitioner’s guide to robust covariance matrix

estimation. In Handbook of Statistics, volume 15, chapter 12, pages 299–342. Elsevier.

Dhrymes, P. J. (1984). Mathematics for Econometrics. Springer-Verlag, New York, 2nd edition.

Diebold, F. X. and Mariano, R. S. (1995). Comparing Predictive Accuracy. Journal of Business

and Economic Statistics, 13(3):253–265.

Doornik, J. A. and Hendry, D. F. (2013). Modelling Dynamic Systems - PcGive 14: Volume II,

volume II.

27



Dunnett, C. W. and Sobel, M. (1954). A Bivariate Generalization of Student’s t-Distribution,

with Tables for Certain Special Cases. Biometrika, 41(1-2):153–169.

El-Shagi, M., Giesen, S., and Jung, A. (2016). Revisiting the relative forecast performances of

Fed staff and private forecasters: A dynamic approach. International Journal of Forecasting,

32(2):313–323.

Ericsson, N. R. (1993). On the limitations of comparing mean square forecast errors: Clarifica-

tions and extensions. Journal of Forecasting, 12(8):644–651.

Ericsson, N. R. (2008). Comment on ‘Economic Forecasting in a Changing World’ (by Michael

Clements and David Hendry). Capitalism and Society, 3(2):1–16.

Granger, C. W. J. and Newbold, P. (1973). Some comments on the evaluation of economic

forecasts. Applied Economics, 5(1):35–47.

Granger, C. W. J. and Newbold, P. (1986). Forecasting economic time series. Academic Press, 2nd

edition.

Harvey, D. I., Leybourne, S. J., and Newbold, P. (1997). Testing the equality of prediction mean

squared errors. International Journal of Forecasting, 13(2):281–291.

Harvey, D. I., Leybourne, S. J., and Newbold, P. (1998). Tests for Forecast Encompassing. Journal

of Business & Economic Statistics, 16(2):254–259.

Harvey, D. I. and Newbold, P. (2000). Tests for multiple forecast encompassing. Journal of

Applied Econometrics, 15(5):471–482.

Hendry, D. F. and Martinez, A. B. (2017). Evaluating Multi-Step System Forecasts with Rela-

tively Few Forecast-Error Observations. International Journal of Forecasting, 33(784):359–372.

Henningsen, A. and Hamann, J. D. (2007). systemfit : A Package for Estimating Systems of

Simultaneous Equations in R. Journal of Statistical Software, 23(4).

Hotelling, H. (1931). The Generalization of Student ’ s Ratio. The Annals of Mathematical Statis-

tics, 2(3):360–378.

28



Jungmittag, A. (2016). Combination of Forecasts across Estimation Windows: An Application

to Air Travel Demand. Journal of Forecasting, 35(4):373–380.
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