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Sammendrag 

I en ko-frasjonell ("co-fractional") vektor-autoregressiv (VAR) modell estimeres det to parametre mer 

enn med den tradisjonelle cointegrated VAR-modell. Det økte antall parametere som må estimeres 

fører til identifikasjonsproblemer; det finnes ikke er noen unik formulering av et ko-fraksjonelt 

system, men vanligvis er en formulering foretrukket. Denne artikkelen har følgende bidrag: (i) den 

diskuterer forskjellige typer identifikasjonsproblemer i ko-fraksjonelle VAR-modeller; (Ii) den 

foreslår en spesifikasjontest for høyere ordens fraksjonelle prosesser; (Iii) den presenterer et program 

som kan brukes for å estimere og teste ko-fraksjonelle systemer; og (iv) den bruker de ovennevnte 

bidrag til å analysere et system av statsobligasjoner i USA og Norge der resultatene indikerer at nivået 

("level") og helningen ("slope") i rentekurven har en høyere fraksjonsorden enn krumningen 

("curvature"). Dette indikerer raskere endringer i krumningen over tid enn i nivå og helning på 

rentekurven. 



1 Introduction

In a co-fractional vector autoregressive (VAR) model two more parameters are estimated, com-

pared to the traditional cointegrated VAR model (Johansen , 1988, 1996). These two additional

parameters, usually denoted d and b, describes fractionally integrated orders in the system.

The parameter d denotes the overall fractional integrated order of the system and b denotes

the reduced fractional order of integration in the co-fractional relationships. The latter param-

eter also express the lag length used in the formulation, see Johansen (2008).

One interesting type of identification problem arises when there are no co-fractional re-

lationships among the variables. This system can be formulated in two different ways in a

co-fractional system. First, it can be formulated with a full co-fractional rank where the system

as a whole is fractionally integrated of order d + b but where the full rank implies that all the

variables in the system is fractionally integrated of order d. Second, it can be formulated with a

co-fractional rank of zero where the whole system is fractionally integrated of order d. The two

formulations are just reparameterizations of each other, and therefore equivalent formulations,

where the latter formulation needs one extra lag. This is also shown in Carlini and Santucci de

Magistris (2013).

This equivalence result has an important implication for co-fractional rank testing. For the

test of the null hypothesis of a rank equal to zero with a full rank as the alternative (i.e., a

trace test for co-fractional rank), the equivalence result implies that this is closely related to

a lag-reduction test. With one formulation of the parameter space, the co-fractional rank test

of zero rank is always identical to a lag-reduction test. This identification problem is shown

as a special case of a more general identification problem. In this paper I propose a slightly

different parameter space for the fractional parameters d and b than in Johansen (2008).

The more general type of identification problems arise when too many lags are included

in the specification. Two such identification problems are presented here; one which is also

presented in Carlini and Santucci de Magistris (2013) and another that is — to my knowledge

— not shown before. This is the first novel contribution of the paper and shown in Section 2.

Carlini and Santucci de Magistris (2013) suggest applying a so-called F(d) condition for

testing for such identification problems, where they suggest to simulate the distribution of

their test statistic for each time it is applied. Here I suggest to reformulate the system in as

in Johansen (1996) for I(2) systems and test for fractionality at a higher order of integration.

The test suggested here builds on the same idea as Carlini and Santucci de Magistris (2013),

but the main advantage is that the critical values of the test are available. Hence, additional

simulation for critical values are not necessary. This is the second contribution of this paper,

and is shown in Section 3.

The paper accommodate an Ox program for estimating co-fractional systems. This pro-

gram can be used interactively and makes estimation of co-fractional systems easy. The Ox
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program is the third contribution of this paper and is presented in Section 4.

The paper also shows how to apply co-fractional systems to test for long memory in Gov-

ernment bond yields. The estimation of these systems also shows the identification problems

in practice; both with respect to how this can lead to erroneous estimation of the co-fractional

parameters and how to deal with these identification problems in order to end up with a for-

mulation of the system that is interpretable. The analysis of the yield curves for the US and

Norway is the forth contribution of the paper and is presented in Section 5.

2 Formulation of co-fractional systems

In order to understand the concept of fractional and co-fractional processes, consider the uni-

variate process Δdyt = et where et is i.i.d. and Δd is the fractional difference operator. The frac-

tional difference operator is defined by the binomial expansion Δdyt = ∑∞
n=0(−1)n(d

n)yt−n =

yt + ∑∞
i=1

∏n−1
i=0 (−d+i)

n! yt−n. This variable is integrated of order d, denoted yt ∼ I(d), where d > 0.

If d = 1 the fractional difference operator simplifies to the standard difference operator, Δ. If

two variables are fractionally integrated of order d, they can be co-fractionally integrated of

order d − b, where d − b ≥ 0, i.e., (y1t − ζy2t) ∼ I(d − b) or Δd−b (y1t − ζy2t) ∼ I(0) for a pa-

rameter ζ. Standard cointegration is a special case of fractional cointegration where d = b = 1.

Johansen (2008) suggest the following formulation of the co-fractional vector autoregres-

sive (VAR) model for the n variables in Yt as

ΔdYt = ΠLbΔd−bYt +
`

∑
i=1

ΓiL
i
bΔdYt + εt, (1)

where Δd is the fractional difference operator and Lb = 1 − Δb is the fractional lag operator.

The coefficient matrices Γi (i = 1, . . . , `) are of dimension n × n, and the n × n coefficient

matrix Π can have reduced rank and, hence, we define Π = αβ′ where both α and β are of

dimension n × r and have full column rank such that rank(Π) = r. Finally, εt is i.i.d. (0, Ω) in

n dimensions.

Let α⊥ and β⊥ be the orthogonal complement of α and β, respectively, both with dimension

n × (n − r).1 Furthermore, let Γ = ∑`
i=1 Γi − In. For the system in (1) not to be integrated of an

higher order than d the following assumptions must hold when r < n:

Assumption 2.1 The (n − r) × (n − r) matrix α′
⊥Γβ⊥ has full rank.

This is an assumption known from both standard cointegrated VAR models (see, e.g.,

Johansen , 1996) and co-fractional VAR models (Johansen and Nielsen , 2012). Carlini and

1The orthogonal complement of the full column rank matrix A is denoted A⊥ and is defined such that A′
⊥A = 0

and (A, A⊥) has full rank. (The orthogonal complement of a nonsingular matrix is 0, and the orthogonal comple-
ment of a zero matrix is an identity matrix of suitable dimension.)

5



Santucci de Magistris (2013) show that this is a sufficient condition for identification when

n > r > 0. Furthermore, they suggest how one can apply this criteria in practise. In Section 3

I suggest an alternative approach for testing this assumption that does not involve additional

simulations.

Furthermore, I will assume the following assumption is satisfied:

Assumption 2.2 The coefficient matrix Γ` 6= 0.

This assumption is included to avoid the type of equivalent formulation for any co-fractional

order, as one can always add one extra lag in the system where the corresponding coefficient

matrix consists of zeros only.

In Section 2.1 I will consider two types of identification problems. In addition, I describe the

general consequence of each of the two types of identification problems. In Section 2.2 I discuss

the parameter spaces for the two fractional parameter and the implications of these parameter

spaces on the identification problems. In Section 2.3 I show how one of the identification

problems always implies that a test of a co-fractional rank is equal to zero versus the alternative

of a full co-fractional rank is identical to a lag reduction test for a particular choice of parameter

set.

2.1 Two identification problems - illustrations

To illustrate the identification problems it will be convenient to rewrite the system as

Δd+bYt = ΠLbΔd−bYt + ΓLbΔdYt +
`−1

∑
i=1

Γ∗
i Li

bΔd+bYt + εt, (2)

where Γ∗
i = − ∑`

j=i+1 Γj (i = 1, . . . , ` − 1).

Now consider a simple version of (1) with no lags in differences (i.e., `1 = 0);

Δd(1)Yt = Π(1)Lb(1) Δd(1)−b(1)
Yt + εt, (3)

where the super script (1) is used to denote one particular parameter set; here parameter set 1.

2.1.1 Identification problem 1 - illustration

The system in (1) and (2) with parameter set 2 where `(2) = 1 becomes

Δd(2)
Yt = Π(2)Lb(2) Δd(2)−b(2)

Yt + Γ(2)
1 Lb(2) Δd(2)

Yt + εt

m

Δd(2)+b(2)
Yt = Π(2)Lb(2) Δd(2)−b(2)

Yt + Γ(2)Lb(2) Δd(2)
Yt + εt. (4)
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This system in (4) is equivalent with (3) when b(2) = b(1), d(2) = d(1) − b(1), Π(2) = 0, and

Γ(2) = Π(1) (where the latter implies Γ(2)
1 = In + Π(1)).

First, note that if Π(1) has reduced rank, then Assumption 2.1 does not hold for parameter

set 2. In this case we have α
(2)
⊥ = β

(2)
⊥ = In with parameter set 2 (since α(2) = β(2) = 0 follows

from Π(2) = 0). Therefore; the criteria in the assumption becomes (α
(2)
⊥ )′Γ(2)β

(2)
⊥ = Γ(2) = Π(1),

which has reduced rank. Hence, the criteria in Assumption 2.1 is not fulfilled for parameter

set 2 when Π has reduced rank.

Second, note that if Π(1) has full rank, Assumption 2.1 holds for both parameter set 1

and parameter set 2. With parameter set 1 the system is formulated as a system with full

co-fractional rank, whereas for parameter set 2 the system is formulated with a co-fractional

rank of zero. This will be shown below (in Corollary 2.1) to be a general result: a system with

full co-fractional rank with any number of lags can also be formulated as a system with a co-

fractional rank of zero, where the latter system has more lags than the former. Note also that

— given the co-fractional rank and the lag length — the number of free parameters are the

same in the two formulations. Therefore, the likelihood value will also be identical for the two

formulations.

Now I will show this result more generally. Let λ(1) = λ(1)(`(1), r(1)) =

(d(1), b(1)Π(1), Γ(1)
1 , . . . , Γ(1)

`(1) , Ω(1)) be parameter set 1 with the reformulation of the co-fractional

system in (1) for any lag length ` ≥ 0. The parameter set 2 is defined similarly.

Proposition 2.1 (The non-uniqueness involving higher order integration I)

Consider the system in (1) with parameter set 1, i.e., λ(1) = λ(1)(`(1), r(1)) =

(d(1), b(1)Π(1), Γ(1)
1 , . . . , Γ(1)

`(1) , Ω(1)). Furthermore, let k be any positive integer. An equivalent formula-

tion of this system is (1) with the following parameter set; λ(2) = λ(2)(`(2), r(2)) =

(d(2), b(2), Π(2), Γ(2)
1 , . . . , Γ(2)

`(2) , Ω(2)) where d(2) = d(1) − kb(1), b(2) = b(1) , `(2) = `(1) + k, and

Π(2) = 0 which implies r(2) = 0. If k = 1: Γ(2) = Π(1), which implies that α′
⊥Γβ⊥ has reduced rank

when r < n. If k > 1: Γ(2) = 0, i.e., the criteria in Assumption 2.1 has reduced rank for all r. Finally;

Ω(2) = Ω(1), hence, the two formulations are just reparametrizations of each other.

The proof is given in the Appendix. A consequence of this proposition is the following

result:

Corollary 2.1 If Π(1) has full rank and Assumption 2.1 holds for parameter set 1, then — for k = 1

— we have Π(2) = 0 and `(2) = `(1) + 1 under parameter set 2 and for this particular k Assumption

2.1 holds also for parameter set 2.
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2.1.2 Identification problem 2 - illustration

The second type of identification problem follows Carlini and Santucci de Magistris (2013).

Now consider (1) and (2) with parameter set 3 where `3 = 1;

Δd(3)
Yt = Π(3)Lb(3) Δd(3)−b(3)

Yt + Γ(3)
1 Lb(3) Δd(3)

Yt + εt

m

Δd(3)+b(3)
Yt = Π(3)Lb(3) Δd(3)−b(3)

Yt + Γ(3)Lb(3) Δd(3)
Yt + εt (5)

Furthermore, to show the identification problem, use

Π(3)Lb(3) Δd(3)−b(3)
Yt

= Π(3)L2b(3) Δd(3)−b(3)
Yt + Π(3)Lb(3) (1 − Lb(3) ) Δd(3)−b(3)

Yt

= Π(3)L2b(3) Δd(3)−b(3)
Yt + Π(3)Lb(3) Δb(3)

Δd(3)−b(3)
Yt

= Π(3)L2b(3) Δd(3)−b(3)
Yt + Π(3)Lb(3) Δd(3)

Yt.

Inserting this into (5) yields

Δd(3)+b(3)
Yt = Π(3)L2b(3) Δd(3)−b(3)

Yt

+
(

Γ(3) + Π(3)
)

Lb(3) Δd(3)Yt + εt. (6)

Now we can see that the formulation in (3) is equivalent with (5) with the following pa-

rameter restrictions: b(3) = 1
2 b(1), d(3) = d(1) − 1

2 b(1), Π(3) = Π(1), and Γ(3) + Π(3) = 0 (where

the latter implies Γ(3)
1 = In − Π(1)).

Note that if Π(1) has reduced rank, then Assumption 2.1 does not hold for parameter set

3. With parameter set 3 and if 0 < r < n we have α
(3)
⊥ = α

(1)
⊥ , β

(3)
⊥ = β

(1)
⊥ and Γ(3) =

−Π(1) = −α(1)β(1)′.2 Applying this in the criteria in Assumption 2.1 yields α
(3)′
⊥ Γ(3)β

(3)
⊥ =

α
(1)′
⊥ α(1)β(1)′β

(1)
⊥ = 0, which has a rank equal to zero, and — hence — a reduced rank. If r = 0,

the criteria in Assumption 2.1 is the rank of Γ(3), which clearly has a rank equal to zero since

Γ(3) = Π(0) = 0.

If Π(1) has full rank, the criteria in Assumption 2.1 is not defined and can not be used to

choose between the two formulations.

A general formulation of this identification problem is given in the following proposition:

Proposition 2.2 (The non-uniqueness involving higher order integration II)

Consider the system in (1) with transformed parameter set 1, i.e., λ(1) = λ(1)(`(1), r(1)) =

2Actually, only the space spanned by α and α⊥ are identified and whereas the parameter matrices α and α⊥

are not. Therefore, to be precise we have sp(α
(3)
⊥ ) = sp(α

(1)
⊥ ) and sp(β

(3)
⊥ ) = sp(β

(1)
⊥ ) where sp(α) denotes space

spanned by α. However, since only the space spanned by these matrices are identifiable, we can always choose a

normalisation such that α
(3)
⊥ = α

(1)
⊥ and β

(3)
⊥ = β

(1)
⊥ .
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(d(1), b(1)Π(1), Γ(1)
1 , . . . , Γ(1)

`(1) , Ω(1)). Furthermore, let k be any positive integer exceeding one. An

equivalent formulation of this system is (1) with the following transformed parameter set; λ(3) =

λ(3)(`(3), r(3)) = (d(3), b(3), Π(3), Γ(3)
1 , . . . , Γ(3)

`(3) , Ω(3)) with d(3) = d(1) − k−1
k b(1), b(1) = b(1)/k,

`(3) = (k + 1)`(1) − 1, Π(3) = Π(1) (so r(3) = r(1)). Furthermore, Γ(3) = −Π(1) for any k, so the

criteria in Assumption 2.1 has reduced rank for any feasible k as long as r < n. Finally; Ω(3) = Ω(1),

hence, the two formulations are just reparametrizations of each other.

The proof is given in Carlini and Santucci de Magistris (2013) and repeated in the Ap-

pendix.

2.2 Parameter space and true parameters

The difference operator Δd is well-defined for non-negative values of d. For d = 0 we have

Δ0Yt = Yt. Hence, the left hand side of (1) is well-defined for d ≥ 0. Similarly, the co-fractional

term is well defined for d − b ≥ 0. The lag-operator Lb = 1 − Δb is not defined for b < 0.

Furthermore, b = 0 implies L0 = 0 which is equivalent with no lags and, hence, that the

parameter coefficients Γi (i =, . . . , `) are not identifiable. Therefore, b is restricted to be strictly

positive. Johansen and Nielsen (2012) considers the following parameter space:

Assumption 2.3 (Parameter space I) The parameter space for d and b is given by d ≥ b > 0 if r > 0

or ` > 0. For ` = r = 0, b is not a part of the system, and the parameter space for d is given by d ≥ 0.

However, for co-fractional rank equal to zero, the term involving the difference operator

Δd−b is not a part of the system. Hence, the parameter space can be extended for r = 0:

Assumption 2.4 (Parameter space II) The parameter space for d and b is given by (i) d ≥ b > 0 if

r ≥ 1 and (ii) d > 0 and b ≥ 0 for r = 0 and ` ≥ 1. For ` = r = 0, b is not identifiable, and the

parameter space for d is given by d ≥ 0.

The parameter space in Assumption 2.3 (i.e., Parameter space I) implies that Corollary

2.1 does not hold for all parameters. If 2b2 > d2 > b2 under full rank, the corresponding

parameters in the zero-rank formulation will imply d1 = d2 − b2 < b2 = b1 =⇒ d1 < b1, which

is not feasible given the parameter space in Assumption 2.3.

With the parameter space in Assumption 2.4 (i.e., Parameter space II), however, Corollary

2.1 will be valid for all feasible parameters. For example, consider the parameters d2 ≥ b2 > 0

under full rank, which corresponds to d1 = d2 − b1 ≥ 0 and b2 = b1 > 0 with zero-rank.

The equivalence results imply that it is not straightforward to define ’true parameters’. In

particulare, the ’true value’ of d differs between the full-rank formulation and the zero-rank

formulation.
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2.3 The co-fractional rank test as a lag-reduction test

For a given lag length, `, a given rank, r, and given values of the fractional parameters d and

b, the system in (1) can be estimated as standard cointegrated VAR models, as described in

Johansen (1996) or Johansen and Nielsen (2012). Let the corresponding profile likelihood

function where (α, β, Γ1, . . . , Γ`, Ω) have been concentrated out to be denoted L (d, b, `, r). Fur-

thermore, let L
(
λ̂
(
`, r; d ≥ dmin

))
= maxd≥dmin ,b>0 L (d, b, `, r), be the likelihood value when

estimating for a lag length ` and a rank r where the parameter space for d is stated explicit.

The parameter dmin take the value b for a co-fractional rank greater than one, and takes the

value b or 0 for a co-fractional rank of zero, depending on the chosen parameter space (i.e.,

dmin = b if Parameter space I in Assumption 2.3 or dmin = 0 if Parameter space II in Assump-

tion 2.4 is chosen). Corollary 2.1 can now in terms of likelihood value be formulated as

L
(
λ̂ (`, 0; d ≥ 0)

)
= L

(
λ̂ (` − 1, n; d ≥ b)

)
. (7)

The likelihood ratio test for testing the null hypothesis of a co-fractional rank r against a

full rank n is given by

LR(n − r) = 2 log
[

L
(
λ̂ (`, n; d ≥ b)

)
/L
(

λ̂
(
`, r; d ≥ dmin

))]
. (8)

First, consider this test with the parameter space given by Assumption 2.4 (i.e., Parameter

space II). Then dmin = b if r ≥ 1 and dmin = 0 if r = 0, where the interest here is on the case

with r = 0. Applying (7) yields

LR(n) = 2 log

[
L
(
λ̂ (`, n; d ≥ b)

)

L
(
λ̂ (` − 1, n; d ≥ b)

)

]

. (9)

This expression is identical to a lag-reduction test. Hence, when allowing the parameter set to

be given by Assumption 2.4 (i.e., Parameter space II), the co-fractional rank test of a rank equal

to zero is identical to a lag-reduction test as long as ` > 0.

Second, consider the co-fractional rank test with the parameter space given by Assumption

2.3(i.e., Parameter space I), which is the parameter space considered by Johansen and Nielsen

(2012). Since this is a test with a more restricted parameter space for the rank equal to zero, the

test will not have the same distribution as above if the parameter restriction for d is binding.

3 Testing for higher order fractional integration

The formulation in (2) can be used to distinguish between two cases: (i) normal co-fractionality,

and (ii) polynomial co-fractionality. Normal co-fractionality implies that the variables in Y are

integrated of order d but there possibly exists one or more linear relationships between these
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variables that are integrated of order d − b. A simple type of polynomial co-fractionality im-

plies here that Y is integrated of order d + b, and there are linear combinations of the variables

in Y and ΔbY that are integrated of order d − b. In this case both Π and α′
⊥Γβ⊥ has reduced

rank in (2).

First I will derive the necessary and sufficient restriction for the system to not involve

polynomial co-fractionality. Here, I follow the exposition in Johansen (1996) for I(2)-systems

but with the necessary adjustments to allow for co-fractionality. Assume that (α, β, r, d, b) are

known (or estimated). Then also α⊥ and β⊥ are known. The question is now if this implies

normal co-fractionality, e.g., that Y is integrated of order d and β′Y is integrated of order d − b.

To derive the condition for normal co-fractionality, I pre-multiply (2) with α′
⊥ and get

α′
⊥Δd+bYt = α′

⊥ΓLbΔdYt +
`−1

∑
i=1

α′
⊥Γ∗

i Li
bΔd+bYt + α′

⊥εt. (10)

Furthermore, applying In = β⊥(β′
⊥β⊥)−1β′

⊥ + β(β′β)−1β′, we get

[
α′
⊥Δd+bYt

]
= α′

⊥Γβ⊥

[
(β′

⊥β⊥)−1β′
⊥LbΔdYt

]
+ α′

⊥Γβ(β′β)−1
[

β′LbΔdYt

]

+
`−1

∑
i=1

α′
⊥Γ∗

i

[
Li

bΔd+bYt

]
+ α′

⊥εt. (11)

For Y to be fractionally integrated of order d then α′
⊥Γβ⊥ must have full rank. If α′

⊥Γβ⊥ do

not have full rank Y is integrated of order d + b or higher.

Carlini and Santucci de Magistris (2013) suggest testing for full rank by testing if |α′
⊥Γβ⊥| =

0. If the hypothesis |α′
⊥Γβ⊥| = 0 is rejected α′

⊥Γβ⊥ has full rank, and — hence — Y is inte-

grated of order d. If the hypothesis is not rejected, Carlini and Santucci de Magistris (2013)

indirectly assumes that it has a rank equal to zero. They then suggest to reduce the lag length

` and reestimate the system.

One disadvantage with the approach suggested by Carlini and Santucci de Magistris (2013)

is that the distribution of the proposed test must be simulated for each data set. Another

disadvantage is that the test does not distinguish between when α′
⊥Γβ⊥ has a rank of zero or

a reduced rank. These situations have two different implications. A reduced rank can indicate

that the identification problem in Proposition 2.1 applies. It can also indicate that there are

some sort of polynomial co-fractionality among the series in Y. However, if the rank is equal to

zero there still can be a situation with normal co-fractionality, though the difference in the order

of integration between Y and the cofractioanal relatioship is a multiplicity of b, see Carlini

and Santucci de Magistris (2013). I suggest estimating (11) with reduced rank regression,

where (α, β, r, d, b) is assumed known (and set equal to the estimates when estimating (1)). This

is similar to the misspecification test for the presence of I(2) suggested by Johansen (1996).

The approach implies regressing α′
⊥Δd+bYt on (β′

⊥β⊥)−1β′
⊥LbΔdYt corrected for β′LbΔdYt and
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LbΔd+bYt, . . . , L`−1
b Δd+bYt. This is a normal fractional system, and when testing for reduced

rank critical test values for such systems can be used. Hence, we can use this formulation to

test for wether α′
⊥Γβ⊥ has full rank or not.

4 Estimating co-fractional systems with Cofrac for Ox

Cofrac is an Ox Program for estimating co-fractional systems.3 It is run as an OxPack program

in Ox Professional, which makes it an interactive program with an easy-to-use graphical user

interface. Therefore, the program is easy to use to estimate co-fractional systems.

Cofrac can be used to estimate co-fractional systems such as in (1). The special case where

the coefficient restriction b = d is imposed, see Johansen and Nielsen (2012), can also be

estimated. In this case an intercept is included in the co-fractional relationship:

ΔdYt = ΠLdY∗
t +

`

∑
i=1

ΓiL
i
dΔdYt + εt,

where Y∗
t = (Y′

t , 1)′. Note that with this restriction the co-fractional relationship is I(0).

Cofrac can also be used to estimate systems where all the variables in Yt are integrated

of different orders. See e.g. Tschering et al. (2013) for an example of such formulation of

a co-fractional system. This specification can be considered as a generalization of a standard

co-fractional system where a standard co-fractional analysis is conducted on a system where

the difference in the order of integration for all variables in Y are corrected for.







Δd1 y1,t
...

Δdn yn,t





 = ΠLb







Δd1−by1,t
...

Δdn−byn,t





+

`

∑
i=1

ΓiL
i
b







Δd1 y1,t

Δdn yn,t





+ εt

m

Δd1










y1,t

Δd2−d1 y2,t
...

Δdn−d1 yn,t










= ΠLbΔd1−b










y1,t

Δd2−d1 y2,t
...

Δdn−d1 yn,t










+
`

∑
i=1

ΓiL
i
bΔd1










y1,t

Δd2−d1 y2,t
...

Δdn−d1 yn,t










+ εt

In Cofrac it is also possible to set restrictions for the parameter space for b and d. For

3The program can be downloaded from http://www.hungnes.net/cofrac. It requires OX Professional, see
Doornik (2007) and http://www.oxmetrics.com.
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example, the lower restriction for the fractional parameter b can be set to 0 or 1
2 ; the upper

restriction to 1
2 or infinite. Hence, it is possible to force the co-fractional rank test to be χ2-

distributed by imposing that b < 1
2 ; or have a non-standard distribution by imposing b > 1

2 .

Cofrac allows also for restrictions on d − b.4 For example, the restriction d − b = 0, which

implies that the co-fractional relationship is integrated of order 0. With this restriction, an

intercept is automatically included in the co-fractional relationships, see Johansen and Nielsen

(2012). Alternatively the restriction d − b < 1
2 can be imposed. This implies that the co-

fractional relationships are strictly stationary, i.e. have both a mean and a finite variance.

For given values of the fractional parameters d and b the following vector of variables can

be constructed5

Z0,t = ΔdYt, Z1,t = LbΔd−bYt, and Z2,t =
(

LbΔdY′
t , . . . , L`

bΔdY′
t

)′
,

and the co-fractional system can be formulated as

Z0t = αβ′Z1t + ΓZ2t + εt,

where Γ = (Γ1, . . . , Γ`). This system can be estimated as standard cointegrated systems, see

e.g. Johansen (1996). In order to find the full information maximum likelihood estimates

of all the parameters, i.e., also d and b, a simulation procedure must be applied. Since also

Cofrac allows for imposing restriction on the co-fractional parameters d and b, the MaxSQP

algorithm in Ox is applied. According to the Ox documentation, see Doornik (2007), MaxSQP

implements a sequential programming technique to maximize a non-linear function subject to

non-linear constraints, similar to Algorithm 18.7 in Nocedal and Wright (1999).

If d is not an integer, ΔdXt is a function of infinite number of lags of Xt. To construct

a feasable counterpart of ΔdXt Cofrac construct a ”type II” (truncated) fractional process as

suggested by Johansen and Nielsen (2010). Hence, Cofrac applies Z0t = ∑N
i=0(−1)n(d

i)Xt−i,

where N is the number of initialising observations. In Cofrac the user can set the value of N.

The constructed variables Z0,t, Z1,t and Z2,t are function of d and b and must be updated

throughout the search algorithm for obtaining the maximum likelihood estimates. The updat-

ing of these variables are conducted as suggested in Jensen and Nielsen (2014) to speed up the

updating of the constructed variables.

The search algorithm for obtaining the estimates of the parameters need some starting val-

ues for the fractional parameters. The identification problems presented in Section 2 indicates

that the likelihood function may not be well-behaved. Hence, good starting values can be es-

sential to reach a global maximum likelihood, and not just a local maximum likelihood. To get

4For systems with co-fractional rank equal to zero (i.e. no co-fractional relationships), the user can choose to put
restrictions on d rather than d − b.

5If the restriction d − b = 0 is imposed, an intercept is included in Z1t.
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good staring values the program starts out with a grid search over the parameters b and d. For

both b and d − b the grid involves 11 different values from 0 to 2 (where the lower and upper

limit is changed if it is outside the allowed parameter space).6

In Cofrac one can also estimate systems where restrictions on the co-fractional relation-

ships are imposed as β = H′φ where H is an n × s matrix of specified parameters where

n < s < 0 such that φ is s × r of unknown parameters that are to be estimated.

Cofrac also test for higher order fractional integration as described in Section 3.

5 Government bonds and the yield curve

Factor models are popular for modelling the yield of bonds. According to Duffee (2011) and

Diebold and Rudebusch (2013) only a few factors are sufficient for fitting the yield curve.7

Hence, only a few factors can describe the yield for any maturity. Furthermore, due to the

relationship between yield rates and forward rates, these factors also describes the forward

curve.

Diebold and Rudebusch (2013) divides the literature of modelling the yield curve by factor

models in three approaches. A first approach places structure on the estimated factors and

leaving loadings free. A second approach places structure on the loadings and leaves the

factors free. A third approach restrict both factors and loadings such that arbitrage possibilities

are removed.

When structure is imposed on the factors, these can be given economical interpretation.

The three factors in Nelson and Siegel (1987) are interpreted as a level factor, a slope factor,

and a curvature factor.

The level factor of the yield curve is usually found to be non-stationary. When estimated

as a fractional process, the estimate of the integration order is about 0.8, see e.g., Osterrieder

and Schotman (2012). The slope and curvature factors are estimated to be non-stationary, with

estimate of the fractional order between 0 and 0.5.

5.1 Theory

I start out by recalling the relationships between the yield to maturity, the forward rate and the

price of a bond. Let y(τ) be the continuously compounded yield to maturity. Then, if the price

of a bond is normalized to 1 when it matures, its value is given by

Pt(τ) = e−τyt(τ).

6If the co-fractional rank is set to zero and an extended parameter space is allowed for (i.e., Parameter space II
in Assumption 2.4), the grid runs from 0 to 2 for both b and d. In the case where it is allowed for all the variables
in Y to have different order of integration, the grid has n + 1 dimensions (where n is the number of variables in Y),
otherwise the dimension is 2.

7Duffee (2011) claims that the cross sectional R2 for factor models with a few factors are typically around 0.999.
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The forward rate curve is given by

ft(τ) =
P′

t (τ)
Pt(τ)

.

Finally, it follows that the yield rate curve is given by

yt(τ) =
1
τ

∫ τ

0
ft(u)du.

Nelson and Siegel (1987) suggest the following approximation of the forward rate curve

ft(τ) = γ1t + e−λτγ2t + λτe−λτγ3t,

which secures that all forward rates are positive. The corresponding yield curve is (see e.g.

Diebold and Li , 2006)

yt(τ) = γ1t +
(

1 − e−λτ

λτ

)

γ2t +
(

1 − e−λτ

λτ
− e−λτ

)

γ3t. (12)

The parameter λ represents the exponential decay rate; a small value imply slow decay and

better fit at the curve at long maturities. Diebold and Li (2006) suggest fixing this at 0.7308

when τ is measured in years. The dynamic factors are represented by γ1t, γ2t and γ3t. These

are referred to as a level factor (γ1t), slope factor (γ2t) and curvature factor (γ3t). The loading

for the level factor is 1 for all values of τ. The loading for the slope factor starts at 1 and decays

monotonically to 0. The loading for the curvature factor starts at 0, increases, and then decays

to 0 again.

Note that yt(∞) = γ1t. Hence, this is a long term factor and expresses the yield at long

horizons. Furthermore, ft(∞) = γ1t, so this parameter also express the forward rate at long

horizons. The yield and forward rate at short horizon are given by yt(0) = ft(0) = γ1t + γ2t.

Hence, yt(0) − yt(∞) = ft(0) − ft(∞) = γ2t, represents the slope factor. Finally, the butterfly

spread is 2yt(τ∗) − yt(0) − yt(∞) =
(
1 − 2e−λτ∗)

γ3t for τ∗ such that 2 1−e−λτ∗

λτ∗ = 1, and —

hence — is proportional to the curvature factor. For λ = 0.7308 this corresponds to τ∗ ≈ 2 and

1 − 2e−λτ∗
≈ 0.8. (Similarly for the forward curve; 2 ft(τ∗∗) − ft(0) − ft(∞) = λτ∗∗γ3t for τ∗∗

such that 2e−λτ∗∗
= 1 and for λ = 0.7308 this implies τ∗∗ ≈ 1 and λτ∗∗ ≈ 0.7.)

5.2 Empirical results

Here I estimate the co-fractional system with Yt = (yt(3), yt(5), yt(10))′, where yt(τ) is the

τ-year yield.
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Table 1: US Government Bonds
lags rank likelih. estimates lag-reduction rank-test high. ord. int.
` r L b d LR [p-val] LR [pval] LR [p-val]
0 0 3415.8 - 0.892 136.8 [0.000]**

1 3479.5 0.306 0.991 9.4 [0.052]
2 3483.1 0.375 1.042 2.2 [0.138]
3 3484.2 0.463 1.163 72.6 [0.000]**

1 0 3484.2 0.463 0.700 31.4 [0.000]** 12.519 [0.000]**
1 3496.2 0.425 0.931 7.4 [0.116] 82.66 [0.000] **
2 3499.8 0.476 0.966 0.2 [0.655] 107.79 [0.000]**
3 3499.9 0.477 0.986 41.2 [0.000]**

2 0 3499.9 0.477 0.509 22.4 [0.008]** 0.24 [0.6260]
1 3508.3 0.443 0.443 5.6 [0.231] 0.09 [0.7611]
2 3510.4 0.420 0.420 1.4 [0.237] 0.68 [0.4106]
3 3511.1 0.392 0.392 18.8 [0.027]*

3 0 3511.1 0.392 0 18.8 [0.027]* 1.49 [0.2217]
1 3517.4 0.232 0.232 6.2 [0.185] 0.78 [0.3781]
2 3519.6 0.306 0.306 1.8 [0.180] 1.66 [0.1978]
3 3520.5 0.363 0.406

The full data sample is: 1962(2) - 2013(12) (623 observations)

Sample used for initialization is: 1962(2) - 1962(12) ( 11 observations)

Sample used for estimation is: 1963(1) - 2013(12) (612 observations)

Table 2: US Government Bonds - co-fractional relationships
lags rank co-fractional vector
` r β′Yt =
0 1 yt(3) − 1.86yt(5) + 0.91yt(10)
1 1 yt(3) − 1.93yt(5) + 0.92yt(10)
2 1 yt(3) − 1.22yt(5) + 0.24yt(10)
3 1 yt(3) − 1.50yt(5) + 0.53yt(10)

lags rank level slope curvature
` r β′ = (0, 0, 1) β′ = (−1, 0, 1) β′ = (1,−2, 1)
0 1 96.6 [0.0000]** 118.0 [0.0000]** 20.2 [0.0000]**
1 1 14.6 [0.0007]** 21.8 [0.0000]** 0.6 [0.7408]
2 1 14.0 [0.0009]** 5.2 [0.0743] 10.0 [0.0067]**
3 1 9.0 [0.0111]* 24.8 [0.0000]** 10.8 [0.0045]**

5.2.1 US Government Bonds

Table 1 reports the estimation results for many combinations of lag length (`) and co-fractional

rank (r). In estimation of the system the restriction on the parameter space given by Assump-

tion 2.4 is imposed.

One of the identification problems — given in Corollary 2.1 — can immediately be seen

from Table 1: the likelihood for the system with zero co-fractional rank is equal to the likeli-

hood of the system with one less lag and a full co-fractional rank. The estimate of the fractional

parameter b is also equal for the two systems. The estimate for the fractional parameter d dif-
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fers between the two formulations, but the difference is exactly equal to the estimated b. All

these results are consistent with the Proposition 2.1 and Corollary 2.1.

From the table we see that the restriction d ≥ b is binding for most of the systems with lag

length 2 or 3 (i.e, ` = 2 and ` = 3) and a non-zero co-fractional rank.

In all the estimated systems reported in Table 1 the estimated b is less than 0.5. This implies

that a standard χ2-distribution can be applied for testing the co-fractional rank.

The column ’lag-reduction’ in Table 1 reports lag reduction tests. The p-values are here

derived from the χ2-distribution. A lag-length of both zero or one is rejected (tested against

a lag-length of 3). A lag-length of 2 can be rejected or not depending on whether a 1% or 5%

significance level is applied.

The point of departure is a system with a lag length of 3. The co-fractional rank test indi-

cates a co-fractional rank equal to one. According to Table 1 the yields are with this specifica-

tion estimated to be integrated of order 0.232 and the co-fractional relationship is integrated of

order 0 (as d̂ − b̂ = 0). The estimated co-fractional relationship for this specification is reported

in Table 2. From the table we also see that we reject that this relationship corresponds to the

level, trend or slope of the yield curve.

To evaluate if the results for this specification is reliable we have to test for higher order

integration. This is conducted in the last column of Table 1. Here we cannot reject that α′
⊥Γβ⊥

has reduced rank. Hence, this indicates that our estimates of the fractional parameters d and

b are not reliable (in the sense that we cannot conclude based on the estimation results that Yt

being fractionally integrated of order d and β′Yt being fractionally integrated of order d − b).

Hence, to get more reliable results, the lag length is reduced to two lags.

When considering a lag length of two, the co-fractional rank test still indicate a co-fractional

rank equal to one. The estimated co-fractional relationship with this specification is also re-

ported in Table 2. For this specification we reject that the co-fractional relationship corresponds

to the level or curvature. However, the test that the co-fractional relationship corresponds to

the slope is not rejected for this specification. Also for this lag length higher order fractionality

cannot be rejected. Hence, the lag length is reduced to 1 lag.

In the specification with one lag, the co-fractional rank test also indicates a co-fractional

rank of one. The estimated co-fractional relationship is close to representing the curvature, and

an formal test for this is far form rejected. The test that this co-fractional relationship represents

the level or slope are clearly rejected. Furthermore, with this specification the test for higher

order fractionality is rejected. Hence, these results indicates that the curvature is integrated

of a fractional order of 0.931 − 0.425 = 0.501, whereas the level and slope are integrated of a

fractional order of 0.931. This implies that the curvature component in the yield curve has a

shorter memory that the level and slop components. The level and slope components are close

to follow random walk processes (as they are close to being integrated of order 1), whereas the

the curvature component is close to being stationary (as it wold be if it where integrated of an
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Table 3: Norwegian Government Bonds
lags rank likelih. estimates lag-reduction rank-test high. ord. int.
` r L b d LR [p-val] LR [pval] LR [p-val]
0 0 1723.4 - 0.925 59.9 [0.0000]**

1 1745.1 0.764 0.979 16.6 [0.004]**
2 1750.1 0.832 1.009 6.6 [0.010]*
3 1753.4 0.747 1.079 57.2 [0.0006]**

1 0 1753.4 0.747 0.332 20.1 [0.0175]* 10.5 [0.001]**
1 1759.9 0.691 0.849 7.0 [0.165] 51.5 [0.000]**
2 1762.6 0.676 0.973 1.5 [0.197] 33.5 [0.000]**
3 1763.4 0.785 1.063 37.1 [0.0051]**

2 0 1763.4 0.785 0.278 25.1 [0.0029]** 2.6 [0.103]
1 1770.7 0.894 0.894 10.5 [0.078] 48.8 [0.000]**
2 1773.8 0.911 0.911 4.3 [0.042]* 93.3 [0.000]**
3 1775.9 0.743 1.257 12.0 [0.2131]

3 0 1775.9 0.743 0.514 12.0 [0.2131] 7.7 [0.005]**
1 1779.1 0.664 0.664 5.8 [0.240] 15.3 [0.000]**
2 1781.3 0.697 0.397 1.2 [0.250] 16.9 [0.000]**
3 1782.0 0.709 0.709

The full data sample is: 1987(4) - 2013(12) (321 observations)

Sample used for initialization is: 1987(4) - 1987(12) ( 9 observations)

Sample used for estimation is: 1988(1) - 2013(12) (312 observations))

Table 4: Norwegian Government Bonds - co-fractional relationships
lags rank co-fractional vector
` r β′Yt =
0 1 yt(3) − 1.93yt(5) + 0.93yt(10)
1 1 yt(3) − 1.89yt(5) + 0.87yt(10)
2 1 yt(3) − 1.84yt(5) + 0.82yt(10)
3 1 yt(3) − 1.64yt(5) + 0.63yt(10)

lags rank level slope curvature
` r β′ = (0, 0, 1) β′ = (−1, 0, 1) β′ = (1,−2, 1)
0 1 34.7 [0.0000]** 39.9 [0.0000]** 0.3 [0.8641]
1 1 9.7 [0.0111]** 14.0 [0.0009]** 3.0 [0.2212]
2 1 14.4 [0.0009]** 6.5 [0.0383]* 6.3 [0.0421]*
3 1 5.4 [0.0667] 2.6 [0.2791] 6.0 [0.0499]*

order less that 0.5).

5.2.2 Norwegian Government Bonds

In Table 3 and Table 4 the corresponding estimation results are reported for Norwegian gov-

ernment bond data. Here the data series are from a shorter period; the Norwegian data starts

in the end of the 1980s whereas the US data starts in the beginning of 1960s. Hence, the US data

covers about 25 more years that the Norwegian data does, such that the US data covers about

50 years of monthly data and the Norwegian covers about 25 years. Since the US data series
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has about twice as many observations as the Norwegian series, the results for the Norwegian

data series may not be as reliable as those for the US data.

Table 3 can be used to examine the lag length and the co-fractional rank. A reduction from

a lag length of 3 to 2 is not rejected. A lag length of 1, however, is rejected based on the χ2-

distribution, both when it is compared to a lag length of 3 or a lag length of 2. Hence, the

results indicate a lang length of 2.

Given a lag length of 2, the co-fractional rank test indicates a co-fractional rank of 1 or 3.

Johansen and Nielsen (2012) suggest suggest starting out by testing a rank of zero. If that rank

restriction is rejected — as it is here — the next test is the test of a co-fractional rank equal

to 1. This restriction is not rejected by conventional test sizes. However, if one starts out by

general-to-specific approach by reducing the co-fractional rank in the null-hypothesis in each

step, one ends up with a full co-fractional rank when a 5 per cent size is used in the test.

The full rank result implies that there is no co-fractional relationships between the vari-

ables. If a co-fractional rank of 1 is imposed, the estimated co-fractional relationship between

the variables is given by yt(3) − 1.84yt(5) + 0.82yt(10), see Table 4. This is close to the but-

terfly spread, here used as a proxy for the curvature factor, which is yt(3) − 2yt(5) + yt(10).

Nevertheless, this co-fractional relationship is rejected when using a test size of 5 per cent.

However, when using a 1 per cent test size, neither the hypothesis that the co-fractional rela-

tionship corresponds to the slope factor nor the hypothesis that the co-fractional relationship

corresponds to the curvature factor is rejected. The hypothesis that the co-fractional relation-

ship corresponds to the level factor is clearly rejected.

5.3 Sensitivity analysis

In a system with more than two variables there might be polynomial co-fractionality. For

example, each of the variables yt(3), yt(5) and yt(10) can be integrated of order d; and any

spread between them can be integrated of order d − b such that yt(3) − yt(10) ∼ I(d − b) and

yt(5) − yt(10) ∼ I(d − b); and finally the butterfly spread could be integrated of order d − 2b

such that [yt(3) − yt(10)] − 2 [yt(5) − yt(10)] = yt(3) − 2yt(5) + yt(10) ∼ I(d − 2b).

To investigate if there could be polynomial co-fractionality among the time series I investi-

gate four different subsets of the variables where each subset includes only two variables. The

four subsets are: (yt(3), yt(5)) in Table 5; (yt(3), yt(10)) in Table 6; (yt(5), yt(10)) in Table 7;

and (yt(3) − yt(10), yt(5) − yt(10)) in Table 8. In all these tables I start out with a lag length of

two lags.

In Table 5 co-fractionality in a system with the 3 year and 5 year bond rate is investigated.

Here a reduction of the lag length to 0 is not rejected. Given this lag length, reduced co-

fractional rank is rejected, indicating no co-fractional relationship among the variables. The

estimated fractional order for the two yield rates are 2.332 − 1.443 = 0.888.
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Table 5: US Government Bonds, (yt(3), yt(5))
lags rank likelih. estimates lag-reduction rank-test high. ord. int.
` r L b d LR [p-val] LR [pval] LR [p-val]
0 0 2013.1 - 0.968 31.6 [0.0000]**

1 2020.6 0.270 1.047 16.5 [0.0000]**
2 2028.9 1.443 2.332 11.7 [0.1660]

1 0 2028.9 1.443 0.888 4.3 [0.3670] 535.0 [0.000]**
1 2030.9 0.884 0.884 0.2 [0.713] 216.3 [0.000] **
2 2031.0 1.613 2.519 7.4 [0.1170]

2 0 2031.0 1.613 0.906 7.4 [0.1170] 530.3 [0.000]**
1 2034.5 0.945 0.945 0.4 [0.562] 154.8 [0.000]**
2 2034.7 0.950 0.950

The full data sample is: 1962(2) - 2013(12) (623 observations)

Sample used for initialization is: 1962(2) - 1962(12) ( 11 observations)

Sample used for estimation is: 1963(1) - 2013(12) (612 observations))

Table 6: US Government Bonds, (yt(3), yt(10))
lags rank likelih. estimates lag-reduction rank-test high. ord. int.
` r L b d LR [p-val] LR [pval] LR [p-val]
0 0 1687.7 - 0.986 27.2 [0.0000]**

1 1692.0 0.736 1.010 18.6 [0.0000]**
2 1701.3 1.639 2.558 21.3 [0.0065]**

1 0 1701.3 1.639 0.919 3.6 [0.470] 675.3 [0.000]**
1 1702.7 0.914 0.914 0.8 [0.418] 257.8 [0.000] **
2 1703.1 1.671 2.605 17.7 [0.0014]**

2 0 1703.1 1.671 0.934 17.7 [0.0014]** 581.3 [0.000]**
1 1706.3 0.893 1.001 11.2 [0.001]** 169.0 [0.000]**
2 1711.9 2.612 3.566

The full data sample is: 1962(2) - 2013(12) (623 observations)

Sample used for initialization is: 1962(2) - 1962(12) ( 11 observations)

Sample used for estimation is: 1963(1) - 2013(12) (612 observations))

Table 7: US Government Bonds, (yt(5), yt(10))
lags rank likelih. estimates lag-reduction rank-test high. ord. int.
` r L b d LR [p-val] LR [pval] LR [p-val]
0 0 1916.5 - 0.933 41.6 [0.0000]**

1 1930.6 0.000 1.045 13.2 [0.0000]**
2 1937.2 1.314 2.201 13.7 [0.0907]

1 0 1937.2 1.314 0.887 6.0 [0.1974] 291.4 [0.000]**
1 1940.2 0.894 0.894 0.1 [0.820] 242.4 [0.000] **
2 1940.2 0.895 0.895 7.6 [0.1054]

2 0 1940.2 0.895 0 7.6 [0.1054] 0.1 [0.819]**
1 1943.8 0.642 1.050 0.6 [0.428] 102.4 [0.000]**
2 1944.1 0.582 1.177

The full data sample is: 1962(2) - 2013(12) (623 observations)

Sample used for initialization is: 1962(2) - 1962(12) ( 11 observations)

Sample used for estimation is: 1963(1) - 2013(12) (612 observations))
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Table 8: US Government Bonds, (yt(3) − yt(10), yt(5) − yt(10))
lags rank likelih. estimates lag-reduction rank-test high. ord. int.
` r L b d LR [p-val] LR [pval] LR [p-val]
0 0 2741.8 - 0.803 94.3 [0.0000]**

1 2786.1 0.427 0.960 5.8 [0.0164]*
2 2789.0 0.61421 1.151 13.0 [0.1128]

1 0 2789.0 0.614 0.537 4.2 [0.3743] 13.1 [0.000]**
1 2791.1 0.575 0.575 0.0 [0.968] 14.6 [0.000] **
2 2791.1 0.576 0.576 8.7 [0.0682]

2 0 2791.1 0.576 0 8.7 [0.0.0682] 0.0 [0.934]
1 2795.2 0.235 0.235 0.6 [0.4337] 2.9 [0.0889]**
2 2795.5 0.013 0.624

The full data sample is: 1962(2) - 2013(12) (623 observations)

Sample used for initialization is: 1962(2) - 1962(12) ( 11 observations)

Sample used for estimation is: 1963(1) - 2013(12) (612 observations)

In Table 6 co-fractionality between the 3 year and 10 year bond rate is investigated. Here

tests for reducing the lag length from 2 are rejected, indicating a lag length of 2. Given this

lag length the co-fractional rank test indicates a full rank, which implies no co-fractional re-

lationship between the variables. The estimated fractional order of the two yield rates are

3.566 − 2.612 = 0.954.8

In Table 7 co-fractionality between the 5 year and 10 year bond rate is investigated. Here the

estimation results indicated a lag length of 0 and a full co-fractional rank. Hence, this indicates

that there are no co-fractional relationship among the variables. The estimated fractional order

of integration is 2.201 − 1.314 = 0.887.

Finally, in Table 8 co-fractionality between the difference between two yield rates are in-

vestigated. In the table this is formalized as the the 3 year and 5 year bond rate relative to the

10 year bond rate. However, it does not matter how these differences are constructed. For ex-

ample, the data set (yt(5) − yt(3), yt(10) − yt(3)) will give exactly the same estimation results,

since this data set is just a linear transformation of the data set used in the table.

The results in Table 8 indicated a lag length of 0 and a full co-fractional rank. Here we

would expect a co-fractional rank equal to 1 if the butterfly spread represents a co-fractional

relationship. If I use a 1 per cent significance level for the rank test, I do not reject a co-fractional

rank equal to 1. Note that for the other subsets of the yield rates the co-fractional rank is

clearly rejected. Hence, of all the four subset data set this is the only one were there are some

evidence of a co-fractional relationship. When imposing one co-fractional relationship, the

estimated relationship becomes (yt(3) − yt(10))− 1.7927 (yt(5) − yt(10)), which again is close

to the butterfly spread. However, the hypothesis test of this parameter being equal to -2 is

8Overall, the results do not change if more lags are allowed for. With a lag length of 3, reducing the lag length to
2 is rejected. Furthermore, given a lag length of 3, a reduced co-fractional rank is rejected. Finally, for this lag length,
the estimated fractional order is 3.720 − 2.767 = 0.952. Extending the lag length even further does not improve the
likelihood much, hence, the null hypothesis of a lag length equal to 3 is not rejected when the alternative is 4 lags.
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rejected.9

6 Conclusions

There are not many estimation programs that can be used to estimate co-fractional VAR mod-

els. This paper presents a new estimation program, Cofrac, that can be used to estimate such

systems. It is menu-driven and — hence — easy to use. This is one of the contributions of this

paper, and is presented in Section 4.

The program is used to identify co-fractional relationships between Government bond

yield rates in US and Norway. Applying for each country a data set with bond rates with

three different time to maturity, the results indicate one co-fractional relationship for both US

and Norway. This relationship seems to be close to the curvature factor of the yield curve, here

approximated with the butterfly spread. This another contribution of this paper, and presented

in Section 5.

The estimation results illustrates that there are severe identification problems in co-fractional

systems. Such identification problems are shown in Section 2. One type of identification prob-

lem is not shown previously, and is a further contribution of this paper.

To deal with the identification problems, this paper suggest to reformulate the system such

that one can test for higher order integration. The absence of higher order integration secures

identification in most cases for the identification problems considered here. The exception is

co-fractional systems with no co-fractional relationships, which can be formulated both with a

co-fractional rank of zero or a full co-fractional rank. This test for higher order integration is

also a contribution of this paper, and is presented in Section 3.
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A Proofs of propositions

The formulation of the fractionally cointegrated VAR in (1) includes both a fractional difference

operator and a fractional lag operator. It will be convenient to also have a formulation of the

co-fractional system where only the fractional difference operator is used. By inserting for the

expression for the lag operator and reformulate, we get

`

∑
i=−1

ΨiΔ
d+ibYt = εt, (13)

23



where Ψ−1 = −Π = −αβ′, Ψ0 = In − ∑`
i=1 Γi + Π = −Γ + Π and Ψ` = (−1)`+1Γ` defines

some of the parameter matrices in (13). Furthermore, we have ∑`
i=0 Ψi = In. Now, define

λ
(1)
∗ = λ

(1)
∗ (`(1), r(1)) = (d(1), b(1), Ψ(1)

−1, . . . , Ψ(1)
`(1) ) be parameter set 1 with this formulation of the

system.10 The proofs of the propositions are now derived with these transformed parameter

sets, where parameter sets 2 and 3 are defined similarly as parameter set 1.

A.1 Proof of Proposition 2.1

Proof. With the transformed parameter set, parameter set 1 is given by λ
(1)
∗ . We shall show

that parameter set 2, given as λ
(2)
∗ , yields an identical description of the system with d(2) =

d1 − kb(1), b(2) = b(1) and `(2) = `(1) + k, where k is a positive integer.

With the transformed parameter set j, j = 1, 2, (13) can be formulated as

`j

∑
i=−1

Ψ(j)
i Δd(j)+ib(j)

Yt = εt

Applying parameter set 2 in (13) together with d(2) = d(1) − kb(1), b(2) = b(1) and `(2) = `(1) + k:

`(2)

∑
i=−1

Ψ(2)
i Δd(2)+ib(2)

Yt =
`(1)+k

∑
i=−1

Ψ(2)
i Δd(1)+(i−k)b(1)

Yt

=
`(1)

∑
i=−1−k

Ψ(2)
i+kΔd(1)+ib(1)

Yt

Comparing this with the similar formulation with parameter set 1 yields:

`(1)

∑
i=−1

(
Ψ(1)

i − Ψ(2)
i+k

)
Δd(1)+ib(1)

Yt =
−2

∑
i=−k−1

Ψ(2)
i+kΔd(1)+ib(1)

Yt

=
k−2

∑
i=−1

ΨiΔ
d(1)+(i−k)b(1)

Yt

From the last expression we see that the equality holds if Ψ(2)
i+k = Ψ(1)

i for i = −1, . . . , `(1), and

Ψ(2)
j = 0 otherwise (i.e., for j = −1, . . . , k − 2).

For k = 1 the parameter mapping implies Ψ(2)
0 = Ψ(1)

−1. The mapping between the trans-

formed and non-transformed parameter sets involves Ψ(1)
−1 = Π(1) and Ψ(2)

0 = Π(2) − Γ(2).

Finally, we have Ψ(2)
−1 = Π(2) = 0. Combining these yields Γ(2) = Π(2).

For k > 1 the parameter mapping implies Ψ(2)
0 = 0. Otherwise, the relationships between

the parameters are as for k = 1. Combining these yields Γ(2) = 0.

Since the parameter mappings implies that the left hand side of (13) is identical for the

two parameter spaces, the errors on the right hand side of (13) must be identical as well. This

10We could have excluded one of the Ψ’s in this parameter set due to the identity ∑ell
i=−1 Ψi = In.
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implies Ω(2) = Ω(1).

A.2 Proof of Proposition 2.2

Proof. We shall prove that parameter set 3, λ
(3)
∗ , gives an identical system as parameter set 1,

λ
(1)
∗ , when d(3) = d(1) − k−1

k b(1), b(3) = b(1)/k and `(3) = (k + 1)`(1) − 1.

Applying d(3) = d(1) − k−1
k b(1), b(3) = b(1)/k and `(3) = (k + 1)`(1) − 1 for parameter set 3

in (13) yields:
`(3)

∑
i=−1

Ψ(3)
i Δd(3)+ib(3)

Yt =
(k+1)`(1)−1

∑
i=−1

Ψ(3)
i Δd(1)+ i−k+1

k b(1)
Yt

Setting this equal (13) for parameter set 1 yield

`1

∑
i=−1

(
Ψ(1)

i − Ψ(3)
k(i+1)−1

)
Δd(1)+ib(1)

Yt =
(k+1)`1−2

∑
i=−1

i 6=k−1,2k−1,...,`1k−1)

Ψ(3)
i Δd(3)+ib(3)

Yt

From the last expression we see that the equality holds if Ψ5,k(i+1)−1 = Ψ1,i for i = 1, . . . , `1,

and Ψ5,i = 0 otherwise.

Note that Ψ(3)
−1 = −Γ(3) and Ψ(3)

0 = 0 for any applicable k (i.e., an integer exceeding one).

Furthermore, since Ψ(1)
−1 = −Γ(1) and Ψ(1)

−1 = −Ψ(3)
−1 combined with Ψ(3)

0 = −Γ(3) + Π(3), we

have Γ(3) = −Π(1).
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