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Abstract: 
This paper is concerned with the problem of ranking and quantifying the extent of deprivation 
exhibited by multidimensional distributions, where the multiple attributes in which an individual can 
be deprived are represented by dichotomized variables. To this end we first aggregate deprivation for 
each individual into a distribution of deprivation count, representing the number of dimensions for 
which the population suffer from deprivation. Next, by drawing on the dual social evaluation 
framework that originates from Yaari (1987, 1988) social evaluation functions are used to construct 
summary measures of deprivation. Moreover, the measures of deprivation are proven to admit 
decomposition into the mean and the dispersion of the distribution of multiple deprivations. Two 
alternative criteria of second-degree count distribution dominance are shown to divide the family of 
dual measures of deprivation into two separate subfamilies, which differ with regard to whether 
concern is turned towards those people suffering from deprivation on all dimensions or those 
suffering from at least one dimension. To provide a normative justification of the dominance criteria 
we introduce alternative principles of association rearrangements, where the mean deprivation is 
assumed to be kept fixed. An empirical application based on data for 26 European countries 
illustrates the usefulness of the proposed framework and shows how different ethical views lead to 
different results. 
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Sammendrag 

Statistisk sentralbyrå har i mer enn 40 år gjennomført omfattende undersøkelser om levekårene for den 

norske befolkningen. Fra disse undersøkelsene finnes det feks informasjon om personer er økonomisk 

fattige, har dårlig helse, lav utdanning, svakt sosialt nettverk, osv. Analyse av denne type data krever 

at en tar hensyn til at en og samme person kan være dårlig stilt på flere variable; dvs at en må 

analysere sammenhengene i den simultane fordelingen av de aktuelle variablene. Men siden det kan 

være vanskelig å avsløre et klart mønster ved sammenligning av flere simultane fordelinger for et gitt 

land over tid eller mellom land for et gitt år, vil det være nyttig å benytte summariske mål som er 

konstruert for å fange opp hovedtrekkene i de simultane fordelingene av et sett av levekårsindikatorer.  

 

Formålet med prosjektet har vært å utvikle metoder som kan brukes som grunnlag for å sammenligne 

graden av nød/fattigdom i flerdimensjonale fordelinger av sosiale plager. Ved å benytte prinsipper for 

endring av samspillstrukturen mellom levekårsvariablene viser vi dessuten at de foreslåtte metodene 

kan gis en normativ begrunnelse. Artikkelen inneholder også en sammenligning av levekårene i 

Norge, Island og EU-landene basert på data fra EU-SILC databasen. 
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1. Introduction 
Since the seminal papers of Sen (1976) and Foster-Greer-Thorbecke (1984), a flourishing literature 

has extended the normative approach of poverty measurement to the multidimensional case for 

continuous variables. In this paper we focus on situations where the multiple attributes in which an 

individual can be deprived are represented by dichotomized variables. The number of dimensions for 

which each individual suffers from deprivation may therefore be summarised in a “deprivation count” 

(see Atkinson, 2003)1. The purpose of this paper is not to discuss the justification for counting the 

deprivation indicators; we take it for granted by referring to the extensive practice of Statistical 

Agencies to publish such data; normally summarized by three summary measures: The proportion of 

people suffering from at least one deprivation indicator, the proportion of people suffering from all 

deprivation indicators and the average number of deprivations in the population. The importance of 

collecting such data has also been emphasized by the European Union and was adopted as part of the 

European 2020 Agenda measures. As a consequence EUROSTAT (the Statistical Agency of the EU) 

collects counting data on a regular basis, as part of the EU-SILC microdata on level of living. These 

facts form a motivating background for investigating deprivation and poverty in deprivation count 

distributions. 

 

Being deprived on a single dimension could result from the combination of a threshold and a 

continuous or discrete variable (e.g. income, or number of healthy days for year). In what follows it is 

supposed that available data only contain information on whether an individual is deprived or not on 

each dimension. This simplification allows us to delve into the question of how to measure (overall) 

deprivation in a country. As for the analysis of poverty in multidimensional distributions of continuous 

variables the order of aggregation is of crucial importance for the measurement of deprivation in count 

distributions. Data limitations might in some cases only allow to first aggregate across individuals for 

each dimension and next aggregate the dimension-specific proportions into an overall measure of 

deprivation (or poverty).  The Human Poverty Index (HPI) is a prominent example of this approach.2 

However, when data provide information on all dimensions for the same individuals then it is more 

relevant to employ the opposite order of aggregation. Otherwise, essential information about the 

association between deprivation indicators would have been lost3. First, by aggregating across the 

                                                      
1 Bossert et al. (2007) use the counting approach to analyse social exclusion in a dynamic context, whilst Bossert et al. (2012) 
and Lasso de La Vega and Urrutia (2011) provide alternative axiomatic foundations of deprivation measures based on the 
counting approach 
2 See also Anand and Sen (1997). 
3 The importance of accounting for the association between dimensions in analyses of multidimensional inequality and 
poverty has been underlined by e.g. Atkinson and Bourguignon (1982), Tsui (1999), Atkinson (2003), Bourguignon and 
Chakravarty (2003) and Alkire and Foster (2011).  
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single dimensions for each individual a “deprivation count” is identified, representing the number of 

dimensions for which the individual suffers from deprivation. Second, by aggregating across 

individuals we obtain a count distribution, which will form the basis of the development of the 

methods introduced in this paper.  

 

Atkinson’s (2003) illuminating discussion of the relationship between social welfare, measurement of 

deprivation and association between different attributes has formed the motivation and inspiration for 

this paper.4 However, as opposed to the approach discussed by Atkinson (2003), which can be justified 

by the “primal independence axiom” of the expected utility theory5, the methods proposed in this 

paper rely on an alternative independence axiom called the “dual independence axiom” by Yaari 

(1986).  The deprivation measures justified by the dual independence axiom (and some additional 

standard axioms) are obtained by aggregating a transformation of the count distribution over the range 

of counts, and moreover prove to admit a linear decomposition with regard to the mean and the 

dispersion of deprivation counts. The transformation function can be considered as the preference 

function of a social planner. The shape of the preference function reveals whether the concern of the 

social planner is turned towards those people suffering from deprivation on all dimensions (convex 

preference function) or those suffering from at least one dimension (concave preference function). 

This distinction is demonstrated also to be captured by two alternative partial orders; second-degree 

upward and downward count distribution dominance, which refines the trivial ranking of deprivation 

count distributions provided by Pareto dominance (or first-degree stochastic dominance).  

 

In line with the proposal of Alkire and Foster (2011) we also make a distinction between the notions of 

deprivation and poverty by introducing a cut-off z in the deprivation count distribution and define 

people that suffer from at least z deprivations as poor. It is demonstrated how the framework for 

measuring multidimensional deprivation can be extended to measure multidimensional poverty, when 

the available information is restricted to deprivation indicators.  

 

A normative justification of the dominance criteria is provided through alternative principles of 

association rearrangements, where the mean deprivation is assumed to be kept fixed. Our approach 

departs from the  correlation-based rearrangement principles discussed in the multidimensional 

inequality and poverty  literature (se e.g. Atkinson and Bourguignon, 1982, Bourguignon and 

Chakravarty, 2003 and Atkinson, 2003) and rests on a less restrictive mean preserving association 
                                                      
4 See also Duclos et al. (2006). 
5 This approach has been considered by Chakravarty and D’Ambrosio (2006), Bossert, D’Ambrosio and Peragine (2007), 
Alkire and Foster (2011)  and Aaberge and Brandolini (2014, 2015). 
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rearrangement principle.  Moreover, as opposed to the previous literature, we stress the importance of 

making a distinction between whether an association rearrangement comes from a distribution 

characterized by positive or negative association between two or several deprivation indicators, in the 

spirit of the statistical literature on measurement of association in multidimensional contingency tables 

(formed by two or several dichotomous variables).The introduced mean preserving association 

increasing/decreasing rearrangement principles will be proved to support second-degree 

downward/upward dominance and to divide the family of dual deprivation measures into two 

subfamilies, determined by whether the preference function is convex or concave.  

 

The paper is organized as follows. Section 2 first presents second-degree upward and downward 

dominance criteria as suitable refinements of first-order stochastic dominance. These criteria are able 

to capture alternative ethical views of a social planner mainly interested in individuals suffering from 

few or many deprivations, respectively. Next, we introduce a family of deprivation measures that is 

analogous to the family of dual (rank-dependent) measures of social welfare. These measures are 

shown to admit a useful decomposition with regard to the extent and the spread of deprivation counts. 

Moreover, the proposed deprivation measures prove to form a useful basis for defining measures of 

poverty for count distributions. A generalization to the case where the attributes under exam are 

differently weighted concludes the section. Section 3 introduces various mean preserving association 

rearrangement principles which are shown to justify the employment of second-degree upward and 

downward dominance criteria and two subfamilies of dual deprivation measures. The main results of 

the paper are collected and presented in two theorems. Section 4 provides an application of the 

framework based on material deprivation indicators (Eurostat, 2014) for 26 European countries. 

Section 5 provides a brief summary of the paper and discuss possible further developments. Proofs are 

gathered in the Appendix.  

2. Ranking distributions of deprivation counts 
We consider a situation where individuals might suffer from r different dimensions of deprivation. Let 

Xi be equal to 1 if an individual suffers from deprivation in the dimension i and 0 otherwise. Moreover, 

let 

1

r

i
i

X X



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be a random variable with cumulative distribution function F and mean  , and let 1F   denote the left 

inverse of F, that is  1( ) inf : ( )F t k F k t   . Thus, 1X   means that the individual suffers from 

one deprivation, 2X   means that the individual suffers from two deprivations, etc. We call X the 

deprivation count. Furthermore, let  Prkq X k   which yields 

 

(2.1)    0

( ) , 0,1,2...,
k

j
j

F k q k r


 
 

and 

(2.2)                   

 0 1 1
1 0

1 1

0 0 0

( ) ( 1)

( )

r r

k k r
k k

r k r

j
k j k

kq r r k q r rq r q q

r q r F k

 
 

 

  

           

  

 

 
. 

 

Section 2.4 considers comparison of distributions of weighted deprivation indicators. 

2.1. Partial orders 

As for distributions of continuous variables (like income) comparisons of count distributions can be 

achieved by employment of appropriate dominance criteria. The condition of first-degree dominance, 

i.e. 1 2( ) ( )F k F k  for all 0,1, 2,..., 1k r   and the inequality holds strictly for some k, justifies the 

claim that 1F  exhibits less deprivation than 2F .  

 

To deal with situations where deprivation count distributions intersect, weaker dominance criteria than 

first-degree dominance are called for. As will be demonstrated below it will be useful to make a 

distinction between aggregating across count distributions from below and from above. We first 

introduce the “second-degree downward dominance” criterion. 

 

DEFINITION 2.1A. A deprivation count distribution 1F  is said to second-degree downward dominate 

a deprivation count distribution 2F  if 

 
1 1

1 2( ) ( )
r r

k s k s

F k F k
 

 

   for 0,1,..., 1s r   

 

and the inequality holds strictly for some k . 
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A social planner who implements second-degree downward count distribution dominance is especially 

concerned about those people who suffer from deprivation over many dimensions. However, an 

alternative ranking criterion that focuses attention on those who suffer deprivation from few 

dimensions can be obtained by aggregating the deprivation count distribution from below.  

DEFINITION 2.1B. A deprivation count distribution 1F  is said to second-degree upward dominate a 

deprivation count distribution 2F  if 

 1 2
0 0

( ) ( )
s s

k k

F k F k
 

   for 0,1,..., 1s r  , 

 

and  the inequality holds strictly for some s. 

 

Note that second-degree downward as well as upward count distribution dominance preserves first-

degree dominance since first-degree dominance implies second-degree downward and upward 

dominance.  

 

The following example illustrates the difference between the two principles: Consider two counting 

distributions 1F  and 2F . In distribution 1F  individual i suffers from h deprivations and individual j 

from l (l<h) deprivations. In distribution 2F  individual i suffers from h+1 deprivations and individual 

j from l-1 deprivations. The remaining individuals of the population have identical status in 1F  and 2F

. A social planner who supports the condition of second-degree downward count distribution 

dominance will consider 1F  to be preferable to 2F . By contrast, a social planner who supports the 

condition of second-degree upward count distribution dominance will prefer 2F  to 1F . Thus, for a 

fixed number of deprivations second-degree downward dominance will rank the distribution with the 

lowest proportion suffering from all dimensions as more favourable then the distribution with the 

lowest proportion suffering from at least one dimension, whereas second-degree upward dominance 

provides a reverse ranking. As will be demonstrated in Section 2.3 these properties are associated with 

the union and intersection approaches for measurement of multidimensional poverty, when people are 

defined as poor if they suffer from at least one deprivation dimension.   

2.2. Complete orderings – the dual approachSince both second-degree downward and 

second-degree upward dominance in many cases will fail to provide rankings of deprivation count 

distributions, it will be helpful to introduce and employ summary measures of deprivation. Moreover, 
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summary measures of deprivation do not only rank distributions with regard to deprivation, but do also 

provide an estimate of the extent of deprivation exhibited by a multidimensional distribution of level 

of living indicators.  

 

Next, let F denotes the family of deprivation count distributions. A social planner’s ranking over F 

can be represented by a preference relation  , which will be assumed to be continuous, transitive and 

complete. It is well known that a preference ordering that satisfies these three conditions can be 

represented by an increasing and continuous preference functional (see Debreu 1964). To make the 

preference ordering   empirically relevant, it is required to impose further conditions on  . To this 

end, we introduce the following independence condition: 

 

Axiom  (Dual Independence). Let F1, F2 and F3 be members of F and let  0,1  . Then 21 FF   

implies      1 11 1 1 1
1 3 2 31 1F F F F   

        . 

 

The dual independence axiom was introduced by Yaari (1987) as an alternative to the independence 

axiom of the expected utility theory for choice under uncertainty6. This axiom requires that the 

ordering of distributions is invariant with respect to certain changes in the distributions being 

compared. If F1 is weakly preferred to F2, then the dual independence axiom states that any mixture on 

1
1F   is weakly preferred to the corresponding mixture on 1

2F  . The intuition is that identical mixing 

interventions on the inverse distribution functions being compared do not affect the ranking of 

distributions.  

 

To illustrate this averaging operation, let us consider the problem of evaluating the average 

deprivation within couples obtained by matching men and women with the same rank in the male and 

female deprivation count distributions (i.e. the most deprived man is matched with the most deprived 

woman, the second deprived man with the second deprived woman, and so on). Dual independence 

means that, given any initial distribution F3 of deprivation over the female population, if within the 

male population, distribution F1 is deemed to contain less deprivation than distribution F2, this 

judgement is preserved after the matching with the women. The dual independence axiom requires this 

property regardless of the initial patterns of deprivation and of the weights associated to male and 

female deprivation counts computing the average deprivation at the household level. 
                                                      
6 Weymark (1981) denoted this axiom Weak Independence of Income Source and used it to justify rank-dependent measures 
of inequality. 
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Provided that the preference relation   is continuous, transitive and complete and satisfies first-

degree stochastic dominance, the dual independence axiom justifies the following family of social 

evaluation functions: 

(2.3) ( ) ( ( ))
r 1

k 0

W F F k 




  , 

where , with (0) 0   and (1) 1  , is a non-negative and non-decreasing function that represents 

the preferences of the social planner7. The social planner will consider the distribution that produces 

the largest ( )W F as the most favourable distribution. Thus, the social evaluation function ( )W F  

provides a normative justification of the following family of deprivation measures:    

 

(2.4)     

1

0

( ) ( ( ))
r

k

D F r F k 




 
. 

 

Since F denotes the distribution of the deprivation count, ( )D F  can be considered as a summary 

measure of deprivation exhibited by the distribution F. The social planner considers the distribution F 

that minimizes ( )D F  to be the most favorable among those being compared. Contrasting (2.4) and 

(2.2), it is easy to observe that if  (t)=t, then ( )D F = . 

 

Atkinson et al. (2002) and Atkinson (2003) call attention to the distinction between the union and 

intersection approaches for measuring deprivation. A social planner who supports the union approach 

is concerned with the proportion of people who suffers from at least one dimension of deprivation (

01 q ) , whereas a social planner in favour of the intersection approach will focus attention on the 

proportion of people deprived on all dimensions ( rq ) . By choosing the following function for  , 

 

(2.5)    

0

01 1

t if t q
( t )

if q t



        

                                                      
7 Since the ordering relation defined on the set of inverse distribution functions is equivalent to the ordering relation defined 
on F, the proof of the axiomatic characterization of  W  defined by (2.3) can be derived from the proof of the expected 

utility theory for choice under uncertainty. For alternative proofs see Weymark (1981) and Yaari (1987). 
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we get 01D ( F ) q   , which means that the proportion that suffer from at least one dimension can be 

considered as a limiting case of the D -family of deprivation measures for concave  . The following 

alternative specification of the preference function, 

 

(2.6)     

 ( t )
0 if q

0
 t 1q

r

t if t 1q
r





  

 

yields 1 rD ( F ) r q    , which means that the proportion that suffer from all dimensions represents a 

limiting case of the D -family of deprivation measures for convex  . Although the proportions 

suffering from at least one dimension and all dimensions do not belong to the D -family (which is 

generated by continuous   functions) these deprivation measures can be approximated within this 

class (see Le Breton and Peluso 2010 for general approximation results).Decomposition of 

tion measures 

As is well-known social welfare measures derived from the expected and rank-dependent utility 

theories, called primal and dual approaches below, allow multiplicative decompositions with regard to 

the mean and the inequality of income distributions (see Atkinson, 1970 and Yaari, 1987). An 

extension to measurement of multidimensional inequality has been considered by Weymark (2006). In 

this section we show that the deprivation measures introduced above admit a decomposition with 

regard to the mean and the dispersion of the deprivation count distributions. Moreover, it is 

demonstrated that the structure of this decomposition depends on whether the preferences of the social 

planner are associated with the union or with the intersection approach.  

 

The following example motivates the methods introduced in this section: 

Example 1. Two alternative policies produce the following distributions of two-dimensional 

deprivation: 1F , where 50 per cent of the population suffers from one dimension and the remaining 50 

per cent suffers from the other dimension; 2F  where 50 per cent of the population does not suffer from 

any deprivation and the remaining 50 per cent suffers from both dimensions. Thus, the mean number 

of deprivation is 1 for both distributions, but the intersection measure ranks 1F  to be preferable to 2F  

whereas the union measure ranks 2F  to be preferable to 1F . An interesting question is which 

restrictions on   that guarantee that D  ranks 1F  to be preferable to 2F  or vice versa.  

As it will be demonstrated below, the ranking of 1F  and 2F  provided by D  depends on whether   is 

convex or concave, which according to Theorems 3.1A and 3.2B depend on whether the social planner 
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favors second-degree downward or upward count distribution dominance. This judgment can be 

equivalently expressed in terms of the mean and the dispersion of the deprivation count distributions. 

The intuition of this result is now presented through the two-dimensional case, then the general r-

dimensional case follows. 

 

Let 2r  , i.e. 1 2X X X  ,  

 

    1 2ijp Pr X i X j    ,  1Prip X i    and  2Prjp X j   .  

 

Thus,  Prkq X k   can be expressed by , , 1,2ijp i j   in the following way: 

(2.7) 
0 00

1 10 01

2 11.

q p

q p p

q p



 


 

 

The 2x2 case is illustrated in Table 2.1. 

Table 2.1. The distribution of deprivation in two dimensions 
 

 

 

X1 

X2 

             0                             1  

0 

1 

           00p                          01p  

           10p                          11p  

0p   

1p   

 0p                           1p  1 

 

The distribution F of X is given by  

(2.8)   0

( ) Pr( ) , 0,1,2,
k

j
j

F k X k q k


   
  

 

where (2) 1F   and the mean is defined by 
1

1 2
0

2 2 ( )
k

q q F k


    . 

In this case the class of deprivation measures ( )D F  defined by (2.4) is given by 
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(2.9)    2 0( ) 2 (1 ) ( )D F q q     . 

 

Note that   can be interpreted as a preference function of a social planner that assigns lower weights 

for one than for two deprivation counts.   

To supplement the information provided by ( )D F  and  , it will be useful to introduce the 

following measures of dispersion,  

(2.10)  

 

 

1

0

1

0

k

k

F( k ) ( F( k )) when is convex

( F )

(F(k)) F( k ) when is concave,


 


 






 

 





 

 

which by inserting for (2.8) in (2.10) yields 

  

(2.11)  
0 0 2 2

0 0 2 2

( ) (1 ) (1 )

( )

( ) (1 ) (1 ) .

q q q q when is convex

F

q q q q when is concave


  


  

    
 
     

  

 

It can easily be observed from (2.11) that ( ) 0F   if and only if 0 1,q q  or 2q  is equal to 1, which 

means that every individual suffers from 0, 1 or 2 deprivations. Note that ( )F can be considered as 

left- or right-spread measures of dispersion (or tail-heaviness), depending on whether   is concave or 

convex8. Since 0 2 1 2(1 ) 2 2 2q q q q        , it follows by inserting for   and  (2.10) in (2.9) 

that the deprivation measure D  admits the following decomposition 

 

(2.12)   

( )
( )

( ) .

F when is convex
D F

F when is concave





  
  


    

 

Thus, by using (2.12) we may identify the contribution to D  from the average number of 

deprivations  ( ) as well as from the dispersion of deprivations across the population.  Expression 

                                                      
8 See e.g. Fernández-Ponce et al. (1998) and Shaked and Shanthikumar (1998) who provide a discussion on how to compare 
the right-spread variability of distribution functions. 
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(2.12) demonstrates that a social planner with preference function ( )t t  will only be concerned 

about reducing the mean number of deprivations, whereas a social planner who is also concerned 

about reducing the dispersion of deprivations across the population will use a measure D  with a 

convex  . When   is convex the social planner pays more attention to people who suffer from 

many deprivations than to people who suffer from few deprivations. By contrast, when the social 

planner uses criterion D  with a concave  , he/she is more concerned about the number of people 

who are deprived on at least one dimension (the union approach) than about the number of individuals 

deprived on all dimensions (the intersection approach). In this case D  can be expressed as the 

difference between the mean number of deprivations in the population and the dispersion of 

deprivations across the population. Thus, with   concave, D  decreases when   increases.  

 

By employing the criterion ( )D F  defined by (2.12) to Example 1, it follows that 1F  is preferred if 

the social planner relies on a convex  . By contrast, 2F  is considered to be preferable if a concave 

  represent the preferences of the social planner. Two different  concave   are represented in 

Figure 1 below:  (t)= 1- (1-t)10  and  (t)= 1-(1-t)2 . Similarly,  (t)= t2 and  (t)= t10  are two 

examples of convex distortion functions. 

 

Figure 1. Examples of concave and convex preference functions   
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By inserting for 2( ) 2t t t   or 2( )t t   in (2.10) and (2.12) we get the following expressions for 

the Gini measure of deprivation and the associated Gini measure of dispersion (which corresponds to 

the Gini mean difference 1F( x )( F( x ))dx )9, 

 

(2.13)   

 

 

1
2

0

1
2

0

( ) 1 ( ) ( )

( ) ( )

( ) 1 ( ) ( ) 2

k
G

k

F k F k when t t

D F D F

F k F k when t t t


 

 





     
    





 

 

Note that  
1

0

( ) 1 ( )G
k

F k F k


   takes its maximum value 0.5 when 0 2 0.5q q  . Thus, when 

people on average suffer from one deprivation the minimum value of ( )GD F  is attained when 

( ) 0G F   in the convex case and ( ) 0.5G F   in the concave case; i.e. when each individual of the 

population suffers from one deprivation in the convex case and when 50 per cent of the population do 

not suffer from any deprivation and the remaining 50 per cent suffer from two deprivations in the 

concave case.  By contrast, the maximum value of ( )GD F  is attained when ( ) 0.5G F   in the 

convex case and when ( )G F  is 0 in the concave case. 

 

The r dimensional case 

Next, we consider the r dimensional case formed by the multinomial distribution of r deprivation 

indicators 1 2, ,..., rX X X . In this case 
0

1
r

k
k

q


  and the mean   is given by (2.2). Similarly as in the 

2x2 case we get that ( )D F  admits the decomposition  

 

(2.14)   

( )
( )

( ) ,

F when is convex
D F

F when is concave





  
  


    

 

where the dispersion measure ( )F  is defined by   

 

                                                      
5 Gini’s mean difference was already used by von Andrae (1872) and Helmert (1876) as a measure of spread. 
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(2.15)   

 

 

1

0

1

0

( ) ( ( ))

( )

(F(k)) ( ) ,

r

k

r

k

F k F k when is convex

F

F k when is concave


 


 










 

 





 

 

Note that 
1

0

( ) ( )
r

k

D F r F k 




    and ( )D F r    when is convex , and 0 ( )D F    

when is concave .  

 

The decomposition (2.14) suggests that 
1

0

( ( ))
r

k

r F k




  obeys the principle of mean preserving 

spread when is convex; i.e. ( )D F  increases when the number of deprivations at the middle of the 

count distribution is shifted towards the tails, under the condition of fixed total number of 

deprivations. However, when  is concave, the summary measure ( )D F  decreases as a 

consequence of a mean preserving spread. This is due to the fact that such an operation will increase 

the number of people who do not suffer from any deprivation and/or suffer from few dimensions of 

deprivation.  

As for the two-dimensional case, we get by inserting for 2( )t t   and 2( ) 2t t t    in (2.14) and 

(2.15) the following convenient expressions for the Gini measures of deprivation and dispersion, 

 

(2.16)    

2

2

( ) ( )
( )

( ) ( ) 2 .

G

G

F when t t
D F

F when t t t


  

  

   
    

 

where 

(2.17)    
 

1

0

( ) ( ) 1 ( )
r

G
k

F F k F k




 
. 

 

More generally, by inserting a parametric specification of Γ we can derive alternative parametric 

subfamilies of Δ and D. If the preference function is defined by  

 

(2.18)     ( ) it t  , 
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then  

 

(2.19)   

 

 

1
1

0

1
1

0

( ) 1 ( ( )) , 1

( ) ( )

( ) ( )) 1 , 0 1.

r
i

k
i r

i

k

F k F k i

F F

F k F k i
 











       
     




 

 

Note that i  can be considered as a measure of left-spread when 0 1i   and a measure of right-

spread when 1i  . The next sub-section will clarify the relationship between a mean preserving 

spread, second-degree upward and downward count distribution dominance and association 

rearrangements. The association rearrangement principles are shown to provide a normative 

justification of the convexity and concavity of the preference function  .  

2.3. Measurement of poverty versus deprivation  

The above discussion and results concern ranking and measurement of the extent of deprivation 

exhibited by distributions of deprivation counts, whilst the relationship between deprivation and 

poverty has been ignored. Whether or not deprivation and poverty should be considered as identical 

concepts has been subject to discussion in the literature. Bourguignon and Chakravarty (1999, 2003), 

Tsui (2002) and Bossert et al. (2013) among others do not make a distinction between poverty and 

deprivation, whereas Alkire and Foster (2011) introduce methods where suffering from poverty can be 

considered as more serious than suffering from deprivation. To capture this distinction between 

poverty and deprivation Alkire and Foster (2011) introduce a cut-off z (1 z r  ) in the deprivation 

count distribution, where a person is considered as poor if he/she suffers from deprivation in at least z 

dimensions. Thus, the headcount measure is given by 1 ( 1)F z  . Extending the primal and dual 

methods for measuring multidimensional deprivation to measuring poverty follows, as was also 

indicated by Aaberge and Brandolini (2015), from replacing the count distribution F with the 

conditional distribution F* defined by 

(2.20) 

( ) (z 1)
( ;z) Pr( ) , , z 1,..., ,

1 (z 1)

k

j
j z

r

j
j z

q
F k F

F k X k X z k z r
F q





 
      

 




 

 

with mean  



18 

(2.21)    

1

( ) ( )

r

jr
j z

r
k z

j
j z

jq

z r F k
q




 





  





. 

 

By inserting for F* in (2.14) and (2.15) we get the following measures of poverty for distributions of 

deprivation counts, 

(2.22)  

1

1

( )
( ) ( ( ))

( ) ,

r

k

F when is convex
D F r F k

F when is concave






  


  

 
 

 


    



 

 

and 

 

(2.23)   

1

1

( ) ( ( ))

( )

( ( )) ( ) .

r

k z

r

k z

F k F k when is convex

F

F k F k when is concave


 


 


 




 



     
   




 

 

Note that the poverty measures defined by (2.22) can be given a similar axiomatic justification based 

on an order relation defined on the conditional count distributions F* as was given for the family of 

deprivation measures ( )D F in Section 2.2. Moreover, the poverty measures admit the useful 

decomposition into the mean and dispersion of deprivation counts for people classified as poor, which 

means that these poverty measures captures both the mean and the distribution of poverty. By contrast, 

Alkire and Foster (2011) introduce separate headcount adjusted FGT poverty measures to account for 

the distribution of deprivations among the poor. Headcount adjusted versions of the distribution-

sensitive poverty measures (2.22) is given by 

 

(2.24) 

1 ( 1)
( ) ( ) when is convex

1 ( 1)
( ) ( )

1 ( 1)
( ) ( ) when is concave,

F z
z F

F z rN z D F
F zr

z F
r



 



  

  

 



 

         
   

 

where ( ) ( )
r

j
j z

z jq r



   is the headcount adjusted mean.  
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Note that  

11 ( 1)
( ) ( ) ( )

r

k z

F z
N z r F k z

r 


 



      
 

  and ( ) ( ) 1z N z    when is convex , and 

0 ( )N z    when is concave . For a given ( )z  the minimum value of ( )N z  for  convex 

 is attained when ( ) 0F
  ; i.e. when each of the individuals classified as poor suffers from the 

same number of deprivations.  

2.4. Accounting for different weights  

A social planner might consider deprivation in certain dimensions to be more detrimental than 

deprivation in other dimensions. A convenient way to incorporate such preferences is to replace the 

deprivation count X with the weighted counting variable 

(2.25)     1

r

i i
i

X w X




. 

 

with cumulative distribution F . For instance, in the two-dimensional case with  

1 2 1 1 2 2X X X w X w X       and  1 2w w  the cumulative distribution F  of X   is given by 

 

(2.26)    

00

00 10 1

00 10 01 2

1 2

0

1

p if z

p p if z w
F( z )

p p p if z w

if z w w .


      
  



 

 

where 00p , 01p , 10p  and 11p  is given by the following table, 

 

Table 2.2. The distribution of weighted deprivation in two dimensions 

 
 

2X  

1X  

             0                             w2  
0 
w1 

           00p                          01p  

           10p                          11p  
0p   

1p   

 0p                           1p  1 
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Let F  denote the family of distributions of X  for r dimensions and let S be the set of possible 

outcomes for X . Provided that the order relation   defined on F  is continuous, transitive and 

complete and satisfies the dual independence axiom and the following dominance condition, 

Axiom  (First-degree Stochastic Dominance FSD). Let 1 2,F F   F .  If 1 2( ) ( )F z F z   for all   zS 

then 1 2F F  , 

 we get a similar representation for   as was demonstrated for the count distributions in Section 2.2,   

 1 2 1 2F F D ( F ) D ( F )        ,   

where  D
  is defined by  

 

 (2.27)   1
z S

D ( F ) F( z ) 


    . 

The social planer considers the distribution F  that minimizes D ( F )
   to be the most favorable 

among those being compared.   

3. Association rearrangements  
The axiomatic characterization of the family D  of deprivation measures provides a normative 

justification of these measures. However, analogous to the role played by the Pigou-Dalton principle 

of transfers in measurement of income inequality it is useful to introduce a normative principle that 

justifies employment of the deprivation measures D  and the dominance criteria introduced in 

Section 2.1. To this end, the previous literature on measurement of multidimensional poverty and 

inequality in distributions of continuous variables have relied on the principle of correlation increasing 

transfers defined by Boland and Proschan (1988) and applied by e.g. Tsui, 1999 and Alkire and Foster, 

2011, whereas Epstein and Tanny (1980) and Atkinson and Bourguignon (1982) have provided an 

alternative definition in terms of correlation increasing perturbation which can be employed for 

discrete distributions10. Both definitions, which normally are referred to as a correlation increasing 

                                                      
10 For further discussion and application of association (correlation) increasing rearrangements under the condition of fixed 
marginal distributions we refer to Dardanoni (1995) , Tsui (2002), Bourguignon and Chakravarty (2003), Duclos et al. 
(2006), Weymark (2006) and Kakwani and Silber (2008). See also Tchen (1980) who deals with positive association (or 
concordance) between bivariate probability measures and Decancq (2012) for a recent generalization of these principles and 
an analysis of their links with stochastic dominance. 
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rearrangement, rely on the condition of fixed marginal distributions. To provide a normative 

justification of upward and downward count distribution dominance as well as for employing the 

deprivation measures D  for concave and convex  , we will introduce a generalization of the 

association intervention principles for multidimensional distributions of dichotomous variables, where 

the condition of fixed marginal distributions is relaxed and replaced by the less restrictive condition of 

fixed mean number of deprivations.  The general intervention rearrangement principle is illustrated in 

Table 3.1, where the parameters of the multinomial distribution are affected by small amounts   and 

  in such a way as to leave the mean number of deprivations unchanged. It follows from Table 3.1 

and definition (2.7) that the mean of the distribution in Table 3.1 is equal to the mean   of the 

distribution of Table 2.1 since 

10 01 11 10 01 11 1 2( 2 ) ( ) 2( ) 2 2p p p p p p q q                 .  

 

Since the multinomial distribution associated with a 2x2 table has three free parameters the condition 

of fixed mean implies that there are still two free parameters   and   available for the definition of 

the mean preserving association rearrangement. However, since we only are concerned about 

rearrangements that affect the counting distribution, i.e. the parameters  0 1 2,q q and q ,  can be 

considered as a nuisance parameter that only affects the allocation between the two dimensions (X1 

and X2) of those suffering from one dimension. Note that 0   ( 0  ) implies that the proportions 

of people that do not suffer from any deprivation and those suffering from two deprivations increase 

(decrease).  

 

Table 3.1. Illustration of a mean preserving association rearrangement 
 
 
 

X1 

X2

             0                             1  
0 
1 

    00p                         01p   

    10 2p                      11p   
0p      

1p      

    0p                        1p      1 

 

As opposed to the previous economic literature on correlation rearrangements, we will make a 

distinction between whether an association (or correlation) rearrangement comes from a distribution 

characterized by positive or negative association between two or several deprivation indicators, which 

means that application of the association rearrangement principles requires clarification of whether the 

different dimensions are positively or negatively associated. However, abandoning the condition of 

fixed marginal distributions requires employment of a measure of association that is invariant with 
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respect to changes in the marginal distributions. Thus, an appropriate measure of association has to be 

invariant with respect to the transformation  

(3.1) ij i j ijp a b p  

for any set of positive numbers  ia  and  jb  such that 
 


1 1

i j ij
i 0 j 0

a b p 1 . Since the correlation 

coefficient does not satisfy the invariance condition (3.1) it is not fully informative about the 

association between two variables, and consequently inappropriate as a measure of association for 

defining mean preserving increasing (decreasing) rearrangement principles. This limitation of the 

correlation coefficient motivates the use of the cross-product α as a measure of association. The cross-

product α was introduced by Yule (1900) and is defined by 

(3.2)   00 11

01 10

p p

p p
  

 and satisfies the invariance condition (3.1)11.  Thus, the association measure α and the marginal 

distributions 0 1( p , p )   and 0 1( p , p )   provide complete information of Table 2.1. It follows 

straightforward from the definition of α that 1   if and only if the indicators X1 and X2  are 

independent, i.e. 0 1ij i jp p p for i, j ,   . Note that 0 1,    when there is negative association 

between the two indicators ( 0 1ij i jp p p for i, j ,   ), whereas  1,   when there is positive 

association between the two indicators ( 0 1ij i jp p p for i, j ,   ). 

The cross-product for Table 3.1 is given by  

 

(3.3)     

( )( )
( , )

( )( )
00 11

01 10

p p

p p 2

 
  

  
 


   . 

 

Since ( , ) (0,0)     ( ( , ) (0,0)    ) if and only if 0   ( 0  ) the cross-product can be 

considered as a measure of the effect of the association rearrangement. Although the nuisance 

parameter   does not have any effect on the rearrangement of the count distribution it follows from 

(3.3) that it has an effect on the strength of the rearrangement intervention. The weakest effect is 

attained when 01 10( ) / 2p p    ; i.e. when the proportion suffering from one dimension is 

                                                      
11 Note that the cross-product α is closely associated with the Spearman and Kendall coefficients and the copula measures of 
association (see Nelsen, 2011). 
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equally distributed between the two dimensions ( 10 01 12 ( / 2)p p q         ). The strongest 

effect is attained when either  102 p    or 01p  ; i.e. the proportion suffering from one 

deprivation is either exclusively deprived from indicator X1 or from indicator X2.  

 

The discussion above provides a motivation for the following definitions of positive association 

increasing rearrangements, positive association decreasing rearrangements, negative association 

increasing rearrangements and negative association decreasing rearrangements.  

DEFINITION 3.1A. Consider a 2x2 table with parameters 00 01 10 11( p , p , p , p ) where  ijp 1 and 

 1 . The following change  00 01 10 11( p , p , p 2 , p )          is said to provide a mean 

preserving positive association increasing (decreasing) rearrangement if  0  (  0 ). 

  

DEFINITION 3.1B. Consider a 2x2 table with parameters 00 01 10 11( p , p , p , p ) where  ijp 1 and 

 1 . The following change  00 01 10 11( p , p , p 2 , p )          is said to provide a mean 

preserving negative association increasing (decreasing) rearrangement if  0 (  0 ). 

 

As illustrated by Table 3.2 the right (left) panel can be obtained from the left (right) panel by a mean 

preserving negative decreasing (increasing) rearrangement, since the association is negative and the 

mean is kept fixed equal to 1 under the rearrangement where 01.   (and 0  ).    

Table 3.2. Illustration of a mean preserving negative association decreasing rearrangement  
 0 1    0 1  

0 
1 

.20       

.30 
.30       
.20 

.50 

.50 
0 
1 

.21       

.28 
.30       
.21 

.51 

.49 
 .50 .50 1  .49 .51 1 

 

 As can be observed from Table 3.1 the condition of fixed marginal distributions is satisfied when 

  . Thus, it follows from Definitions 3.1A and 3.1B that the marginal distribution preserving 

rearrangement correlation principle can be considered as a special case of the mean preserving 

rearrangement association principle.  In this case the reduction ( 2 ) in the proportion of those 

suffering from one deprivation is equally allocated between the two indicators X1 and X2. When 0   

or 2   the proportion suffering from either dimension 1 or from dimension 2 is reduced by 2 . 

This case has been considered by Aaberge and Peluso (2011).  
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Definitions 3.2A and 3.2B can readily be extended to higher dimensions. However, for a large number 

of dimensions the standard subscript notation becomes cumbersome. Thus, we find it convenient to 

introduce the following simplified subscript notation ijkp , where i and j represents the outcomes 0 and 

1 of two arbitrary chosen deprivation dimensions and m represents the remaining r-2 dimensions and 

ijm  is defined by  

 

(3.3)      iim jjm
ijm

ijm jim

p p

p p
  , 

 

where m is a r-2 dimensional vector of any combination of zeroes and ones. In this case association is 

defined by r(r-1)/2 cross-products.  

 

In order to deal with r-dimensional counting data we introduce the following generalization of 

Definitions 3.1A and 3.1B, 

 

DEFINITION 3.2A. Consider a 2x2x…x2 table formed by s dichotomous variables with parameters 

iim ijm jim jjm( p , p , p , p ) where ijmp 1 and ijm 1  . The following change  

iim ijm jim jjm( p , p , p 2 , p )          is said to provide a mean preserving positive association 

increasing (decreasing) rearrangement if  0  (  0 ). 

  

DEFINITION 3.2B. Consider a 2x2x…x2 table formed by s dichotomous variables with parameters 

iim ijm jim jjm( p , p , p , p ) where ijmp 1  and ijm 1  . The following change  

iim ijm jim jjm( p , p , p 2 , p )          is said to provide a mean preserving negative association 

increasing (decreasing) rearrangement if  0 (  0 ). 

 

As is demonstrated by Theorems 3.1A below, a social planner who is in favour of second-degree 

downward dominance will consider a mean preserving positive association increasing rearrangement 

as well as a mean preserving negative association decreasing rearrangement as a rise in overall 

deprivation. By contrast, a planner who favours upward second-degree dominance will consider such 

rearrangement as a reduction in the overall deprivation.  Moreover, it is proved that the principles of 

mean preserving association increasing/decreasing rearrangement are equivalent to the mean 

preserving spread/contraction defined by  
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DEFINITION 3.3. Let F1 and F2 be members of the family F of count distributions based on s 

deprivation indicators and where F1 and F2 are assumed to have equal means. Then F2 is said to differ 

from F1 by mean preserving spread (contraction) if 2 1( ) ( )F F    for all convex  

   ( 2 1( ) ( )F F    for all concave  ). 

 

Note that Definition 3.3 is analogous to the mean preserving spread for continuous distributions 

introduced by Rothschild and Stiglitz (1970).  

 

Next let 1  be a subset of the D -family, defined as follows  

  1 : ( ) 0, ( ) 0 (0,1], (0) 0t t for all t and            

 

And 

 

  2 : ( ) 0, ( ) 0 0,1 , (1) 0t t for t and           . 

 

Note that (0) 0    and (1) 0    can be considered as normalization conditions. The following 

results provide characterizations of the relationship between second-degree downward and upward 

count distribution dominance and the general family D  of deprivation measures. Moreover, 

Theorems 3.1A and 3.1B provide normative justification in terms of principles of spread and 

association rearrangements for application of the dominance criteria and the deprivation measures, 

where a distinction has been made between whether an association rearrangement comes from a 

distribution characterized by positive or negative association. 

 

THEOREM 3.1A. Let F1 and F2 be members of the family F of count distributions based on s deprivation 

indicators and assume that F1 and F2 have equal means. Then the following statements are equivalent 

 

(i)  F1 second-degree downward dominates F2 

 
(ii) 1 2 1( ) ( )D F D F for all      

 
(iii) F2 can be obtained from F1 by a sequence of mean preserving positive association 

increasing rearrangements when  1 for both F1 and F2, a sequence of mean pre-
serving negative association decreasing rearrangements when  1  for both F1 and 
F2, and a combination of mean preserving positive association increasing and nega-
tive association decreasing rearrangements when  1 for either F1 and F2.  
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(iv) F2 can be obtained from F1 by a mean preserving spread. 
 
(Proof in Appendix). 

 

THEOREM 3.1B. Let F1 and F2 be members of the family F of count distributions based on s deprivation 

indicators and assume that F1 and F2 have equal means. Then the following statements are equivalent 

(i)  F1 second-degree upward dominates F2 

 
(ii) 1 2 2( ) ( )D F D F for all      

 
(iii) F2 can be obtained from F1 by a sequence of mean preserving positive association 

decreasing rearrangements when  1  for both F1 and F2, and a sequence of mean 
preserving negative association increasing rearrangements when  1  for both F1 
and F2, and a combination of mean preserving positive association decreasing and 
negative association increasing rearrangements when  1 for either F1 and F2. 

 
(iv) F2 can be obtained from F1 by a mean preserving contraction 
 
(Proof in Appendix). 

 
It follows straightforward that Theorems 3.1 A and 3.1 B can be generalized to valid for distributions 

of weighted counts discussed in Section 2.3.  

4. Application to EU material deprivation 
To give an example of the axiomatic theory at work we illustrate its use on the EU indicators of 

material deprivation. These ten indicators measure non-pecuniary material deprivation, in particular 

whether a person or household cannot afford: 

1. to pay their mortgage or rent  

2. to pay their utility bills  

3. to keep their home adequately warm  

4. to face unexpected expenses  

5. to eat meat or proteins regularly  

6. to go on holiday  

7. a television set  

8. a washing machine  

9. a car  

10. a telephone.  
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Data on these variables are collected by the EU Statistics on Income and Living Conditions (EU-

SILC) project for an increasing number of European countries. The EU-SILC surveys between 7,000 

and 15,000 individuals in each country giving every citizen over the age of 16 a non-zero sampling 

probability. We use version 2 of the 2011 cross-sectional data which leaves us with 26 countries. Our 

unit of analysis is the individual, and we link individuals to households in order to attach variables that 

are available at the household level only. The individual is only considered to be suffering in the 

particular dimension if she responds that she lacks the particular item because she cannot afford it. 

Non-response is treated as if the individual do not suffer from the deprivation. 

 

We follow Guio et al. (2009) and use the proportion of respondents in the Special Eurobarometer No 

279 on “poverty and exclusion” (see TNS, 2007) that answers that an item is “absolutely necessary” 

for an acceptable or decent standard of living in their country as weights. We compute the cumulative 

distributions of the weighted deprivation count given in (4.1) and rank them according to the 

deprivation measure (4.2) for several choices of . We consider the families 

    ( ) , 1, 2,...,10it t i    

 

and 

 

    ( ) 1 (1 ) , 1,2,...,10it t i      

 

of convex and concave preference functions, respectively. We also look at the ranking according to the 

union and mean approaches. It does not make sense to rank distributions according to the intersection 

measure as there exist only 11 observations which suffer in all ten dimensions (all are in Latvia, 

Bulgaria and Hungary). 

 

Results for a selection of  are presented in Figures 1-Feil! Fant ikke referansekilden.. An 

immediate observation is that the rank order is relatively stable with respect to the choice of , and 

does not change much even at the cases of extreme concavity and convexity. However, there are some 

notable changes. For instance Belgium looks worse the more convex is the measure, whereas the 

opposite is the case for Iceland and Portugal. 

To understand the changes in the rank order that occur as we use different  it is helpful to look at the 

case of Austria and Iceland, for which (un-weighted) deprivation distributions are presented in Figure 

3. As Austria has 67% suffering in no dimension, against 60% in Iceland, a follower of the union 

approach or other concave  would prefer Austria’s deprivation distribution. However, a social 
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planner with a more convex  would put more weight on the fact that Austria has relatively large 

concentration of individuals suffering in many dimensions, and conclude that the distribution of 

Iceland is the better. 

 

In Tables 1-3 we present first-degree dominance and second-degree upward and downward dominance 

among the deprivation distributions. A “>” indicates that the horizontal country dominates the vertical 

country, a “<” that the vertical country dominates the horizontal, and a “=” that no country dominates. 

Looking at Table 2 we see that, by using the criteria of second-degree upward dominance, we are able 

to rank almost any two distributions against each other. Thus, only knowing that a social planner is 

adhering to a concave  is sufficient for us to provide her with an almost complete rank order of 

material deprivation distributions. However, this optimistic message is turned around in the case of a 

convex ; there are a lot more pairs of distributions which we are not able to distinguish by using the 

criteria of second-degree downward dominance in Table 3. This is to be expected, however, as second-

degree downward dominance depends on comparing the shares of individuals suffering in many 

dimensions for which the number of observations are few. 

 

Figure 1. Ranking of EU material deprivation distributions for a selection of concave  
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Figure 2. Ranking of EU material deprivation distributions for a selection of convex 

 

 

Figure 3. Un-weighted EU material deprivation distribution for Iceland and Austria. 
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Table 4. First-degree dominanceamong EU material deprivation distributions 

 BG HU RO LT EE SK LV PL PT BE IT CZ SI FR FI CYMTUK SE DK NO AT DE ES LU IS
IS > > > > > > > > >  > > >              
LU > > > > > >  > > >    > >            
ES > > > > > > > >   > > >              
DE > > > > > > > > >  >                
AT > > > > >  > > > >                 
NO > > > > > >    >                 
SE > >  > > >                     
DK > >  > > >                     
UK > >  > > >                     
MT > > >    >                    
CY > >  >                       
FI > > >  >    >                  
FR > > > >                       
SI > > > >   > >                   
CZ > > >    >                    
IT > > >    >                    
BE > > > >                       
PT >  >                        
PL > > >                        
LV                           
SK                           
EE >                          
LT >                          
RO >                          
HU                           
BG                           
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Table 5. Second-degree upward dominanceamong EU material deprivation distributions 

 LV BG HU RO LT PL CY EE PT SK IT SI MT CZ ES FR UK DE BE IS AT FI DK LU NO SE

NO > > > > > > > > > > > > > > > > > > > > > > > >   

SE > > > > > > > > > > > > > > > > > > > > > > > >   

LU > > > > > > > > > > > > > > > > > > > > > > >    

DK > > > > > > > > > > > > > > > > > > > > > >     

FI > > > > > > > > > > > > > > > > > > > >       

AT > > > > > > > > > > > > > > > > > > >        

IS > > > > > > > > > > > > > > >            

BE > > > > > > > > > > > > > > > > > >         

FR > > > > > > > > > > > > > > >            

DE > > > > > > > > > > > > > > >            

UK > > > > > > > > > > > > > > >            

ES > > > > > > > > > > > > > >             

CZ > > > > > > > > > > > >               

MT > > > > > > > > > >                 

SI > > > > > > > >                   

IT > > > > > > >                    

SK > > > > > > >                    

PT > > > > > > >                    

EE > > > > > > >                    

CY > > > > > >                     

PL > > > > >                      

LT > > >                        

RO > >                         

HU > >                         

BG                           

LV                           
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Table 6. Second-degree downward dominance among EU material deprivation distributions 

 BG HU RO LT EE SK PT LV PL IT CZ BE CY FR MT SI UK FI AT DK SE NO LU ES DE IS

IS > > > > > > > > > > > > > > > > >  >        

DE > > > > > > > > > > >   > > >           

ES > > > > > > > > > > >    > >           

LU > > > > > > >  >   > > >    >         

NO > > > > > >      >               

DK > >  > > >           >          

SE > >  > > >       >              

AT > > > > > > > > > > > >               

FI > > >  >  >                    

UK > >  > > >                     

SI > > > > >  > > > >                 

MT > > > > >  > > >                  

FR > > > > >  >  >                  

CY > >  >                       

BE > > > > >                      

CZ > > >     >                   

IT > > > >    >                   

PL > > >                        

LV >                          

PT > > >                        

SK                           

EE >                          

LT > >                         

RO >                          

HU >                          

BG                           
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5. Summary and discussion 

The conventional approach in official statistics as well as in most empirical studies of 

multidimensional deprivation is to focus on distributions of the number of dimensions in which people 

suffer from deprivation. The conventional “expected utility” type approaches for analysing count 

distributions have previously been discussed by Chakravarty and D’Ambrosio (2006), Bossert, 

D’Ambrosio and Peragine (2007) and Aaberge and Brandolini (2014, 2015). This paper relies on the 

counterpart of the dual (rank-dependent) approach for measuring social welfare (Yaari, 1988) to rank 

and quantify deprivation and poverty in a multidimensional setting, where individual deprivation on 

the different dimensions is represented by dichotomized variables. The proposed family of deprivation 

and poverty measures are shown to be decomposable into extent of and dispersion of deprivation and 

poverty. The main theoretical result establishes a link between two well-defined subclasses of 

deprivation measures and  two families of dominance criteria easily testable starting from the CDF of 

the deprivation count distribution. To strengthen the normative justification of the proposed 

deprivation measures two intervention principles affecting the association between the different 

deprivation indicators and the spread of the deprivation counts are adopted.  The framework provided 

in this paper is extended to allow for different weighting profiles across the multidimensional 

distribution of deprivations. Several issues remain open for further research: even if counting the 

number of deprivations gives a trivial cardinal representation of individual achievements, the 

empirical implementation of deprivation measurement can easily reveal strict connections with the 

problem of assessing ordinal inequality (see Allison and Foster 2004 and Gravel et al 2015, among 

others). Both the rule eventually used to fix a threshold for each attribute and the comparison of 

populations where the number of dimensions with available data differ are two further difficulties 

related to this issue that are not considered in this paper and represent interesting directions for further 

research. 
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Appendix – Proofs 
 

Proof of Theorems 3.1A and 3.1B. 

To make the proof more transparent the two-dimensional case will be considered below.  However, 

since intersections between distributions formed by r dimensions can be described by 2x2 tables 

formed by the affected dimensions, the generalization to the r-dimensional case is straightforward. 

More precisely, since interventions affecting two specific dimensions  are described by a two-

dimensional table, when several dimensions are affected then the procedure demonstrated below for 

the two-dimensional case is carried out stepwise for the involved two-dimensional tables. 

We begin by proving the equivalence between statements (i) and (iii). 

Let 
1 1 2 2

0 0

( ) ( )
k k

j j
j j

F k q and F k q
 

  
, 0 1 2k , , .  

 

By inserting for 1F  and 2F  in Definition 2.1A we get that 1F  second-degree downward dominates 2F  

if and only if 

(A1) 
1 1

1 2
0 0

0 1
k k

j j
k i j k i j

q q for i ,
   

   . 

Note that the distance between F2 and F1 can be described by two parameters, which will be denoted 

0  and 1 , i.e.  

 

(A2)  

0

2 1 2 1 0 1
0 0

, 0

( ) ( ) , 1

0, k 2.

k k

j j
j j

k

F k F k q q k


 

 


     
 

 
  

The condition of fixed mean assumes that  

   21 22 11 12 11 1 11 1 10 0 11 11 10

0 1

0 2 2 2 1 2 1

2

q q q q q q q q q q

,

  
 
               

    

which implies that 1 02     and that 

 

(A3)  

0

2 1 2 1 0
0 0

, 0

( ) ( ) , 1

0, k 2.

k k

j j
j j

k

F k F k q q k




 


     
 

 
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and 

(A4)   

1 1

1 2
0

0, 0
( ) ( )

, 1.k i k i

k
F k F k

k 


   

 
  

 

Since 0  is the ratio of two integers we have that 0 2s  , where   is a small proportion and s an 

integer.  

Next, assume that the two dimensions are positively associated, i.e. 1  , and that F1 is affected by a 

mean preserving positive increasing rearrangement. The distance between the resulting distribution 

F   and F1 is given by 

(A5)    

1

, 0

( ) ( ) 2 , 1

0, k 2,

k

F k F k k





   
    

 

which means that the distance of the aggregated distributions is given by 

 

(A6)   

1 1

1

0, 0

( ) ( ) 2 , 1

0, 2.k i k i

k

F k F k k

k



 


  
 

 
 

 

When 0   it follows from (A6) and (A4) by choosing s=1 and 2 ( ) ( )F k F k  that (iii) implies (i). 

To prove the converse statement let 1 2 sF ,F ,...,F    be a sequence of discrete distribution functions 

such that 1 1F F  , 2 sF F   and i 1F 
  differs from iF   by a mean preserving positive association 

increasing rearrangement, i.e. i 1 iF F 
   is given by (A4)  

 

Next, we use (A5) to construct 1F   from 1F , 2F   from 1F   and finally 2F  from sF  . The required 

number of iterations (s) depends on the number of steps exhibited by the difference 0  .  

Next, we will prove the equivalence between (i) and (iv). As was demonstrated above the distance 

between two distributions F2 and F1 with equal mean can be described by equation (A3). Inserting for 

(A3) in (2.10) for the convex case yields 
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(A7) 
   2 1 10 11 10 11 0 10 0 10( ) ( ) ( ) ( ) ( ) ( )F F q q q q q q                

. 

 

It follows from (A7) and the definition of convexity that 2 1( ) ( ) 0F F     for a (non-decreasing) 

convex function ( )t  if and only if 0 0  , which according to equation (A4) means that F1 second-

degree downward dominates F2.   

  

What remains to be proved is the equivalence between (ii) and (iv), which follows directly from the 

decomposition (2.12).  

The proof for the concave case has been omitted since it is analogous to the prrof for the convex case. 

 

The proof of Theorem 3.1B is analogous to the proof of Theorem 3.1A. Thus, by using arguments like 

those in the proof of Theorem 3.1A the results of Theorem 3.1B are obtained.  
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