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Sammendrag 

Denne artikkelen diskuterer et rammeverk for modellering av arbeidstilbud der betydningen 

av jobb valg spiller en fundamental rolle. I dette rammeverket antas en arbeider å ha 

preferanser med hensyn på uobserverbare jobbmuligheter. Disse jobbmulighetene er inneholdt 

i en mengde (uobserverbar valgmengde) som avhenger av arbeideren. Fra denne valgmengden 

velges den foretrukne jobben. Den observerte arbeidstid og lønn tolkes her som den job-

spesifikke arbeidstid og lønn til den valgte jobben. Det sentrale bidraget i denne artikkelen er 

en analyse av identifikasjonsproblemet i dette rammeverket, under ulike betingelser, når det 

forutsettes at konvensjonelle mikro-data skal benyttes. 

           Dette rammeverket er dernest benyttet til å analysere arbeidstilbuds-atferden til 

gifte/samboende par på grunnlag av et mikro data sett av norske husholdninger. Nærmere 

bestemt estimerer vi to modellversjoner innen det generelle rammeverket. På grunnlag av de 

empiriske resultatene diskuterer vi sentrale kvalitative egenskaper ved de to modell -

versjonene. Endelig benytter vi den foretrukne modellversjonen til å utføre et 

simuleringseksperiment av en kontrafaktisk reform. 
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1. Introduction 

In the traditional approach to labor supply modelling, individual behavior is viewed as a 

choice among feasible leisure and disposable income combinations. This approach has been 

criticized for ignoring important behavioral aspects, namely that individuals in the labor 

market typically have preferences over job types and may face restrictions on their choices 

regarding job opportunities and hours of work. Recently, the discrete choice approach to labor 

supply modeling has gained widespread popularity, mainly because it is much more practical 

than the traditional continuous approach based on marginal calculus (See Bloemen and 

Kapteyn, 2008). However, from a theoretical perspective, the conventional discrete choice 

approach represents no essential departure from the traditional approach. This is because the 

only new assumptions made are that the set of feasible hours of work is finite and the random 

components of the utility function have particular distributional properties.1  

The purpose of this paper is to discuss identification and other aspects of an extended 

version of the conventional discrete choice model (latent job choice model) that allow for 

agents’ preferences being dependent on non-pecuniary job attributes, as well as allowing for 

possible restrictions on hours of work opportunities. In the latent job choice model, originally 

proposed by Dagsvik (1994), the starting point is the assumption that a worker’s labor supply 

follows from his or her job choice. More precisely, labor supply is viewed as resulting from a 

choice among latent job “packages”, each of which is characterized by an offered wage rate, 

offered hours of work and non-pecuniary (qualitative) attributes describing the nature of the 

job-specific tasks to be performed. This setup can be viewed as a version of Lancaster’s 

characteristic approach – see Lancaster (1966, 1971) – where agents have preferences 

regarding not only consumption and leisure, but also job attributes. The characteristic 

approach is intuitively appealing because it shifts the focus to qualitative aspects of the labor 

market that everyday life experiences tell us are important. Examples of such latent job 

attributes of major importance are job-specific tasks to be performed, location, quality of the 

social and physical environment, etc. More recently, Farzin (2009) has discussed the effects 

of including non-pecuniary variables explicitly in the traditional labor supply model. He 

argues that ignoring such aspects of jobs can result in biased estimates and thus lead to 

                                                      
1 Van Soest (1995) and others have proposed to introduce suitable dummies in the discrete labor supply model specification 

to improve the fit. However, this practice implies a non-structural model unless one interprets these dummies as part of the 
preference representation. In this case it means that the agent has stronger preferences for working particular hours (such as 
part time and full time hours) relatively to other hours. 
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misleading policy proposals. Further related approaches are put forward by Sattinger (1993, 

1995) and van Ophem et al. (1993). 

The latent job choice model allows us to address neglected aspects in traditional labor 

supply analysis: namely that workers face important restrictions on their job choice in the 

labor market (Dagsvik et al., 2014). Versions of the job choice model have been introduced 

and applied before: see Aaberge, et al. (1995), Aaberge, et al. (1999), Dagsvik and Strøm 

(2004, 2006), Dagsvik and Jia (2006), Kornstad and Thoresen (2007), Di Tommaso et al. 

(2009), Dagsvik et al. (2011) and Dagsvik et al. (2014). This paper contains a number of new 

contributions. First, we analyze the identification problem in depth. The identification 

problem in this type of model differs from standard identification results of discrete choice 

models because the present model contains representations of both preferences and choice 

constraints. We also extend the identification analysis to the case where the distribution of 

offered wage rates depends on unobserved individual characteristics. The empirical literature 

on job choice models cited above differs greatly in this respect. Aaberge et al.(1995) and 

Aaberge et al. (1999) assume that there is no unobserved variation in wages across workers, 

so that any unobserved heterogeneity in wages is due to firm characteristics. In contrast, 

Dagsvik and Strøm (2006), Dagsvik and Jia (2006) and Dagsvik et al. (2011) assume that 

wage variation is due solely to person-specific characteristics. In this paper, we clarify the 

differences between these two approaches and compare their empirical performances using a 

sample of Norwegian married/cohabitating couples. Finally, based on the model estimates, we 

discuss properties of the respective models and the issue of policy simulations. In particular, 

we show how one can simulate the effect of changes in labor supply restrictions.   

 The paper is organized as follows. In Section 2 we discuss the basic structure of the 

modeling framework. In Section 3 we consider identification issues. In Section 4 we first 

report results from an empirical application. Then, we discuss how to simulate the effect of a 

particular reform in the restriction on working hours. 

2. The modeling framework 

Let ( , , )U C h z  be the (ordinal) utility function of the household, where C denotes household 

consumption (disposable income), h is hours of work, z = 1, 2,.., indexes market opportunities 

(jobs) and z = -1,-2,…, indexes non-market opportunities. For a market opportunity z, 

associated hours of work and wage rate are assumed fixed and equal to (H(z),W(z)), where 
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H(z), z = 1,2, ..., takes value on a set D and W(z) is positive. When z is negative ( ) 0.H z =  In 

addition to the economic budget constraint, there are restrictions on the set of available 

market opportunities faced by a specific worker. This is because there are job types for which 

the worker is not qualified and there may be variations in the set of job opportunities for 

which he or she is qualified. In addition, due to competition in the labor market, jobs for 

which a worker is qualified may not necessarily be available to him or her. However, the 

choice sets of market and non-market opportunities are unobserved by the researcher. 

 

Assumption 1 

 The utility function has the structure 

(2.1)  ( , , ) ( , ) ( )U C h z v C h zε=  

for z =…,-2,-1, 1, 2,…, where ( )v ⋅  is a positive deterministic function defined on 

0[ , ) [0, ]C M∞ × , ( )zε  is a positive random taste-shifter, 0 0C ≥  is a known constant that 

represents subsistence consumption and M is the maximum hours of work.  

 

 The random taste-shifters are supposed to capture the effect of unobserved 

heterogeneity in preferences over non-pecuniary attributes that affect preferences across agent 

and across alternatives. Whereas the functional form of the deterministic part of the utility, 

( , ),v C h  can be very general, the separability condition in Assumption 1 is crucial. It may not 

hold in general because the error terms may depend systematically on disposable income and 

hours of work.  

For given hours and wage rate, h and w, the economic budget constraint is represented 

by ,( , )C f hw I=  where I is non-labor income and f(⋅) is the net of tax function that 

transforms gross household income into after-tax household income. The function f(⋅) can in 

principle capture all details of the tax and benefit system.   

 The next assumption concerns the representation of the choice sets. Here, choice sets 

are allowed to be random in order to accommodate that they may vary across observable 

identical agents due to unobserved heterogeneity in opportunities. For technical convenience, 

we assume at the outset that the choice sets may contain an infinite number of job and non-

market opportunities.  
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 Assumption 2 

 The taste-shifters { ( ), .., 2, 1}z zε = − −  associated with the available non-market 

opportunities and { ( ), 1,2,...}z zε =  associated with the available jobs are realizations of two 

independent Poisson processes on (0, ).∞  The intensity of the non-market process is equal to

2ε −  and the intensity of the market process is equal to 2θε − where θ is a positive constant. 

The available (offered) combinations of job-specific hours of work and wage rates 

{( ( ), ( )), 1, 2,...,}H z W z z =  are independent of the corresponding taste-shifters and are 

distributed on (0, )D× ∞  where D is finite and contains at least 3 point, according to a joint 

p.d.f. 1 2( ) ( | ).g h g w h   

 

Assumption 2 asserts that the taste-shifters associated with the set of available 

opportunities are independently scattered on the positive part of the real line but in a non-

homogeneous way. The probability that there is a job z in the choice set with taste-shifter 

( ) ( , )zε ε ε ε∈ + Δ  for some given positive ε  is (approximately) equal to 2 .θε ε− Δ  Since 2θε −  

is decreasing in ,ε  it means that the intensity is large for ε  close to zero. In other words, there 

are many available jobs that are unattractive jobs but relatively few attractive jobs available. 

For example, jobs and non-market opportunities may be located in another region or country. 

The parameter θ  is clearly a measure of job availability since a high value of θ  

means that there is a high probability that a job with a given level of ( )zε is available. 

Dagsvik (1994) has demonstrated that θ  can be interpreted as the ratio of the number of 

available market opportunities of interest (to the agent) to the number of nonmarket 

opportunities of interest. Note also that whereas in Assumption 1 preferences of hours are 

defined on the continuous set [0, M], the set of feasible hours of work, D, is a discrete subset 

of (0, M). The interpretation of 1( )g h  is as the probability that a job z with ( )H z h=  is 

available to the agent. The interpretation of 2 ( | )g w h wΔ  is as the probability (when wΔ  is 

small) that a job z with ( ) ( , )W z w w w∈ + Δ  is available to the agent, given that ( ) .H z h=  In 

the following we shall sometimes call 1 2( ) ( | )g h g w hθ  the opportunity measure and 

1 2( ) ( | )g h g w h  the opportunity density. A motivation for this particular type of representation 

of the set of available opportunities is given by Dagsvik (1994). He demonstrates that the 

intensities of the Poisson processes must have the form given in Assumption 2 in order for the 
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choice of job to satisfy the Independence from Irrelevant Alternatives (IIA) property.2 In 

general, the offered distribution of wage rates may depend on hours of work, similarly to 

Moffitt (1984). Aaronson and French (2009) have given a theoretical argument that supports 

this possibility.  

Let ( , | )h w Iϕ  denote the joint density of hours of work and wage rate of the chosen 

job, given non-labor income I, and similarly let (0,0 | )Iϕ  be the probability of not working.3  

 

 Theorem 1 

If Assumptions 1 and 2 hold, then the joint p.d.f. of observing hours and wage rate 

combination (h, w) is given by 

(2.2a)         1 2

1 2

0

( ( , ), ) ( ) ( | )
( , | )

( (0, ),0) ( ( , ), ) ( ) ( | )
r D

v f hw I h g h g w h
h w I

v f I v f ry I x g r g y x dy

θϕ
θ

∞

∈

=
+ 

        

for 0,h >  and the probability of not working is given by 

(2.2b)    

1 2

0

( (0, ),0)(0,0 | ) .

( (0, ),0) ( ( , ), ) ( ) ( | )
r D

v f II

v f I v f ry I r g r g y r dy

ϕ
θ

∞

∈

=

+ 
 

 

 In the case with discrete conditional distribution of offered wage rates (or continuous 

distribution of offered hours of work) similar expressions as in (2.2a, b) follow. The only 

difference is that the integration is replaced by summation (or summation is replaced by 

integration). The proof of Theorem 1 follows from Dagsvik (1994) but for the reader’s 

convenience a simplified version is given in Appendix A. This proof also covers the special 

case with degenerate distribution of offered wage rates.  

 For the sake of interpretation, let ( , )B h w  be the (random) set of points of the (market) 

Poisson process with ( )H z h=  and ( ) ( , )W z w w w∈ + Δ , where wΔ  is a small positive 

number. That is, ( , )B h w  is the set of available jobs with offered hours h and wage rates 

within ( , ).w w w+ Δ  Let ( , )U h w  be the utility of the most preferred job in ( , )B h w  that is, 

( , )
( , ) max ( ( , ), , ).

z B h w
U h w U f hw I h z

∈
=  Since wΔ  is small one can show that Assumptions 1 and 2 

                                                      
2 Dagsvik (1994) uses an equivalent additive utility specification, in which case the intensity that corresponds to 2θε −  is 

equal to .e εθ −  
3 For simplicity we apply the terminology of joint density function although the marginal distribution of realized hours of 

work is discrete. 
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imply that the utility ( , )U h w  has the same distribution as ( ( , ), ) ( , ) ( , )v f hw I h g h w w h wθ εΔ   

where { ( , )}h wε  are positive random variables with Fréchet c.d.f. exp( 1 / ),x−  for 0.x > 4 

Moreover, ( , )h wε ′ ′  and ( , )h wε  are independent when ( , ) ( , ).h w h w′ ′ ≠  Similarly, the utility 

of the most preferred available non-market opportunity, (0,0),U  has the same distribution as 

= 1max ( (0, ),0, ) ( (0, ),0) (0,0)z U f I z v f I ε≤− =   where (0,0)ε  is a positive random variable 

that also is Fréchet distributed. We note that the utility ( , )U h w  of the observable choice 

alternative (h,w) can conveniently be represented by the representative utility component 

exp ( ( , ), )v f hw I h  weighted by 1 2( ) ( | )g h g w h wθ Δ  which captures the distribution of 

available market opportunities in ( , ).B h w  Apart from the property that one choice variable 

(wage rate) is continuous, the reformulation of the objective function above links our Poisson 

process formulation to the conventional theory of discrete choice.  

It may be the case that many people view their number of available market 

opportunities of interest to be less than the number of nonmarket opportunities of interest. In 

addition, since θ  enters the model as a factor multiplied by ( , )v C h  it means that θ  also can 

capture psychological “costs” of working. For these reasons one might expect that in 

empirical applications θ  will be less than one.  

We noted above that the model in Theorem 1 is consistent with an interpretation with 

stochastic sets of available job opportunities. There may, however, be additional unobserved 

heterogeneity that may enter the opportunity measure in other ways. Note that 2 ( | )g w h  may 

be interpreted as the conditional distribution of offered wages given offered hours of work 

equal to h. The model (2.2a, b) above assumes that 2 ( | )g w h  is the same for observable 

identical individuals (Assumption 2). This may be rather restrictive.  

Studies on wage formations and wage dispersion have stressed the importance of 

unobserved individual heterogeneity: see, for example, Abowd et al. (1999) and Mortensen 

(2003). We will next consider a typical approach: namely that the distribution of offered wage 

rates for an individual depends both on observed covariates and on unobserved variables 

summarized in a random effect component ,η  which is assumed to be independent of the taste 

shifters { ( )}.zε  It is also possible to  allow θ  to depend on ,η  i.e. ( ).θ θ η=  We shall only 

consider the special case where only 2 ( | ; )g w h η  depends on η  whereas 1( )g h  is independent 

                                                      
4 The Fréchet distribution exp( 1/ )x−  in a multiplicative random utility formulation corresponds to the Gumbel distribution 

exp( exp( ))x− −  in the additive random utility formulation. 
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of .η  The motivation for this is that we believe that hours restrictions to a large extent are 

determined by institutional regulations determined by negotiation between the unions of 

employers and workers and therefore not dependent on individual characteristics. The 

extended choice model is given as  

(2.3a)        1 2

1 2

0

( ( , ), ) ( ) ( ) ( | ; )
( , | )

( (0, ),0) ( ( , ), ) ( ) ( ) ( | ; )
r D

v f hw I h g h g w h
h w I E

v f I v f ry I r g r g y r dy
η

θ η ηϕ
θ η η

∞

∈

 
 
 =
 

+ 
 


 

for h > 0, and  

(2.3b)        

1 2

0

( (0, ),0)
(0,0 | )

( (0, ),0) ( ( , ), ) ( ) ( ) ( | ; )
r D

v f I
I E

v f I v f ry I r g r g y r dy
ηϕ

θ η η
∞

∈

 
 
 =
 

+ 
 


 

for h = 0. Whereas the model in (2.2a, b) implies that the choice probabilities satisfy the IIA 

property this is not the case with (2.3a, b) due to the random effect η  in offered wage rate 

distribution. In the specification of (2.3a, b), the conditional distribution of offered wage rates 

2 ( | ; )g w h η  can be represented by a offered wage rate equation which depends on 

 where the latent variable  represents job-specific unobserved variation in 

offered wage rates across jobs given offered hours of work. A special version of the offered 

wage rate equation above would be an additive separable form such as 

(2.4)   

where  is a function of individual characteristics and  and H(z) are assumed to be 

mutually independent and  represents the influence of the job-specific offered hours.  

The case where (2.4) holds and  needs some further discussion. This 

corresponds to a model with degenerate distribution of offered wage rates, where the offered 

wage rates for a given individual vary only with respect to offered hours of work. Examples 

of studies within the conventional framework of this type include Moffitt (1984), Lundberg 

(1985), Biddle and Zarking (1989), Wolf (2002), and Aaronson and French (2004). These 

authors typically find a positive or inverse U shape relationship between the wage rates and 

hours worked. This feature is consistent with findings in the literature where part time 

workers have been found to earn less than full time workers. However, the gap seems to be 

( ( ), ( ), )H z zξ η ( )zξ

log ( ) ( ( )) ( )W z H z zα ψ η ξ= + + +

α ,η ( )zξ

( ( ))H zψ

( ) 0zξ =
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very small, once important job characteristics such as occupations are considered (Manning 

and Petrongolo, 2008).  

Within our framework, when ( ) 0zξ =  it follows from (2.4) that for any job z, we have 

log ( ) ( ( ))W z H zη ψ α= − − . Thus, given that the chosen hours of work and wage rate 

combination equals (h,w), then it follows that any  job z (say) with hours of work  has 

wage rate given by  Consequently, in the case with  

(2.3a) reduces to 

(2.5)  1

1

( ( , ), ) (log ( ) ) ( ) (log ( ) ) /
( , | )

( (0, ),0) (log ( ) ) ( ( exp( ( ) ( ) , ), ) ( )
r D

v f hw I h w h g h g w h w
h w I

v f I w h v f rw r h I r g r
ηθ ψ α ψ α

ϕ
θ ψ α ψ ψ α

∈

− − − −
=

+ − − − −
 

where ( )gη ⋅  is the p.d.f. of .η  If in addition, we assume that , i.e. the offered wage 

rate does not depends on offered hours of work, and that ( )θ η θ= , (2.5) reduces to  

(2.6)  1

1

(log )( ( , ), ) ( )
( , | )

( (0, ),0) ( ( , ), ) ( )
r D

g wv f hw I h g h
h w I

v f I v f rw I r g r w
η αθϕ

θ
∈

−
= ⋅

+ 
 

whereas in the analogous expression for the probability of not working the random effect 

must be integrated out. A two sector model similar to (2.6) has been applied by Dagsvik and 

Strøm (2006) to analyze labor supply and sectoral choice.  

When  we get a model where offered wage rates vary across different job 

offers (to a given agent). This model version was applied by Aaberge et al. (1995) and 

Aaberge et al. (1999).  

3. Identification 

We now turn to a discussion on identification of the model. We start with the simpler case 

where the random effect in the wage rate equation is ruled out, i.e., the model is as presented 

in Theorem 1. From Theorem 1 it follows that for positive h, 

(3.1)  1 2( , | ) / (0,0 | ) ( ( , ), ) ( ) ( | ) / ( (0, ),0).h w I I v f hw I h g h g w h v f Iϕ ϕ θ=  

Since both ( , | )h w Iϕ  and (0,0 | )Iϕ  are observable, the right hand side of (3.1) can be 

identified non-parametrically. However, it remains unclear if one can separately identify 

( , )v C h  and 1 2( ) ( | ).g h g w hθ  Essentially, the identification problem arises from the fact that 

observed labor supply behavior is a result of both preferences (utility function) and latent job 

choice constraints (opportunity measure) in our model. 

( )H z

( ) exp( ( ( )) ( )).W z w H z hψ ψ= − ( ) 0zξ =

( ) 0ψ ⋅ =

( ) 0hη ψ= =
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If available, information on desired hours of work could be used to identify 

preferences, since job choice constraints are irrelevant in this case5. Subsequently, based on 

the estimated preferences, one could, with this information, estimate the opportunity measures 

using data on actual observed behavior. In this way, both the utility function and the 

opportunity measure can be identified.  This approach is however not straight forward 

because the representation of job types in stated preference surveys may not fully correspond 

to the variety of job offers agents face in real labor markets. On the other hand, even if panel 

data or independent cross-section data are available, it is hard to see how this would help to 

solve the identification problem in general. If, for example, preference parameters were 

assumed to be fixed over time, this would enable us to identify changes in the opportunity 

measure non-parametrically, but not the level.  

In what follows we limit our discussion to the situation where only cross-section data 

are available: that is, we have observations on hours of work, wage, non-labor income and 

individual characteristics. Assumption 3 summarizes some useful regularity conditions for the 

deterministic part of the utility function ( , )v C h  and the net of tax function. 

 

Assumption 3 

The deterministic part of the utility function ( , )v C h is continuously differentiable in C 

and the net of tax function ),( Iuf is continuous, piecewise differentiable and strictly 

increasing in u and I.  

One important property of our setup is that non-labor income enters the utility 

specification in a particular manner, namely such that it can generate variation in consumption 

while keeping hours of work and the wage rate constant, and it enters the model only through 

consumption, not affecting the opportunity measure. The next theorem shows to what extent 

the model can be non-parametrically identified in this case. 

 

Theorem 2 

 Assume that Assumptions 1 to 3 hold. Then ( , )v C h  can be expressed as 

*( , ) ( ) ( , ) ( )rv C h C C h hζ λ δ=  for h>0, where ( )Cζ  and *( , )C hλ  are identified but r is an 

unknown constant and ( )hδ  an unknown function of h.  

                                                      
5 See for example, Bloemen (2008) and references therein for some recent studies using desired hours of work to identify 

preferences. 
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  The proof of Theorem 2 is given in Appendix A. Theorem 2 shows that even under the 

exclusion restriction that non-labor income does not affect the opportunity measure the 

model is non-parametrically unidentified. Dagsvik and Strøm (1997) show identification in 

an analogous model by assuming that preferences are separable in consumption and hours of 

work, and more importantly that fixed cost of working is observed. However, such 

information is rarely available.  

 

Assumption 4 

The offered wage rates and the offered hours of work are independently distributed. 

 

Theorem 3 

Assume that Assumptions 1 to 4 hold. Then the distribution of offered hours is 

identified and ( , ) ( , ) ( ),v C h C h hλ δ=  where ( , )C hλ  is identified but ( )hδ  is not identified.  

 

The proof is given in Appendix A. When offered wage rates and hours of work are 

correlated, additional restrictions are needed to achieve identification. Note that for the 

purpose of simulating solely the effect of counterfactual changes in taxes and wage rates it is 

not necessary to identify ( )hδ  and 1( )g h  separately as long as 1( )g h  is kept fixed. The 

reason is that the effect of changes in taxed and wages only enters the model through C and 

the opportunity density of offered wage rates.  

One way to obtain full identification is to make parametric functional form 

assumptions about both ( , )v C h  and 1 2( ) ( | ).g h g w hθ  Below, we consider one particular 

parametric utility specification, namely the generalized Box-Cox function given by 

(3.2)   1 2 3log ( , ) ( 1) / ((1 / ) 1) / ( 1)((1 / ) 1) / .v C h C h M C h Mα β α βγ α γ β γ αβ= − + − − + − − −  

See Dagsvik and Strøm (2006), Dagsvik and Røine Hoff (2011) for a theoretical justification 

based on invariance principles.6  

 

 Assumption 5 

 There exists an interval ( , )u u− +  such that when ( , ),u u u− +∈  the marginal net of tax 

rate w.r.t. non-labor income ( , ) /f u I I∂ ∂  does not vary with u. 

 
                                                      
6 See also the Errata in Dagsvik (2013). 
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 Assumption 5 is not particularly restrictive. In fact, most tax systems satisfy this 

condition. 

 

 Assumption 6 

 The function log ( , )v C h  is a generalized Box-Cox function as given in (3.2). 

Furthermore, there exist two points 1 2h h D≠ ∈  such that 1 1 1 2( ) ( ).g h g h=   

 

 The following theorem summarizes the key identification results when additional 

functional form assumptions are made for ( , )v C h  and 1 2( ) ( | ).g h g w h  

 

Theorem 4 

Assume that Assumptions 1 to 3, 5 and 6 hold. Then the model in (2.2a, b) is identified.  

 

 The proof of Theorem 4 is given in Appendix A. Theorem 4 gives sufficient 

conditions for the model in (2.2a, b) to be fully identified. Assumption 5 may not be 

necessary but is made here for convenience. As shown in the proof, under these particular 

functional form assumptions one can still obtain similar results as in Theorem 3, that is, 

( , )v C h  can be identified up to an unknown function of h, without functional form 

assumptions about 1 2( ) ( | ).g h g w h   

We shall next consider the more general setting where we allow for unobserved 

heterogeneity in offered wage rate, i.e. the model given by (2.3a,b). As shown below, it is 

necessary to introduce an exogenous variable X which influences only the opportunity 

density.   

 

Assumption 7 

The offered wage rates are generated by   

(3.3)  log ( ) ( )W z Xb a zη ξ= + + +  

where X is a continuous covariate that does not affect preferences and can take any real 

value, ( )zξ and η  are  zero mean random variables which are independent of each other and 

independent of the taste-shifters, a and b are unknown parameters. Furthermore, θ  is either a 

constant or has the structure 

(3.4)  ( a Xb ).θ θ η= + +  
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 Assumption 7 asserts that the offered wage rate equation is additively separable in 

,a Xb+  η  and ( ).zξ  The formulation in (3.3) is a special case of (2.4) with ( ) 0,ψ ⋅ =  

.a Xbα = +  The parameter a may depend on other individual characteristics than X. The 

motivation for the particular formulation of ( )θ ⋅  in Assumption 7 is that η++ Xba  is 

supposed to represent the effect of observed and unobserved individual ability which may 

affect the opportunity measure. Here, ( )zξ  and η  may be discrete random variables and 

( )zξ  may also be degenerate. Although here it is sufficient for our identification results that X 

is a scalar it could be extended to a vector. In the following we need to extend our notation of 

( , | )h w Iϕ  to ( , | , )h w I Xϕ  to indicate that the latter p.d.f. is conditional on X. 

 

 Assumption 8 

 The function ( , | , ) / ( ( , ), ))h w I X v f hw I hϕ  satisfies 

 
0

(| | | log | ( , | , ) / ( ( , ), ))m nX w h w I X v f hw I h dwdXϕ
∞ ∞

−∞

< ∞   

for , 0,1, 2,m n = h D∈ and 0.I > 7 

 

Theorem 5 

(i) If Assumptions 1 to 4, 7 and 8 hold then ( , )v C h  is identified apart from a 

multiplicative term that may depend on h, ( )θ ⋅  is identified up to a constant and the 

distribution of offered wage rates conditional on the random effect is identified.  

(ii) If Assumptions 1 to 4, and 6 to 8 hold then the model in (2.3a,b) or (2.5) is 

identified. 

 

 The proof of Theorem 5 is given in Appendix A. Theorem 5 extends the identification 

results of Theorems 3 and 4 to the case with a random effect in the offered wage rate 

distribution. It is worth noting that because of Assumption 4 the independence condition is 

still maintained in Theorem 5 in contrast to Theorem 4 where offered wage rate and hours of 

work are allowed to be correlated.  

Theorems 2 to 5 hold also in the case where the distribution of offered wage rates is 

discrete or the distribution of offered hours of work is continuous. Furthermore, Theorem 5 

                                                      
7 The assumption is analogous in the case where X is discrete, in which case the integral with respect to X is replaced by a 

sum. 
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holds when X is a discrete variable or when the distribution of offered wage rates across jobs 

is degenerate, that is, where each agent only faces one individual specific wage rate. 

4. An empirical application 

4.1 Model specification and estimation results.  

In this section we report results from an empirical application based on micro data from the 

Norwegian Labor Survey 1997. Details about variable definitions and the data, and the 

specification of a joint labor supply model for married couples can be found in Appendices B 

and C, respectively.  

The systematic part of the utility function is assumed to be a generalized Box-Cox 

functional form, similarly to (3.2). Alternatively, we could have used a flexible polynomial 

specification similarly to van Soest et al. (2002). Dagsvik and Strøm (2004, 2006) found that 

the Box-Cox functional form is more or less as flexible as the polynomial specifications, and 

in contrast to the latter ones it is globally concave. For each spouse, we specify eight feasible 

annual hours of work alternatives, namely 0, 208, 624, 1,040, 1,456, 1,950, 2,340 and 2,600. 

The logarithm of the job availability measures Fθ  and Mθ  are specified as linear functions of 

length of schooling. The opportunity probability mass functions of offered hours, 1 ( ),kg h k = 

F, M, are uniform except for peaks at full-time and part-time hours. The full-time peak 

corresponds to 1,950 hours annually (37.5 hours a week), while the part-time peak 

corresponds to 1,040 hours annually (20 hours a week). The part-time and full-time peaks in 

the hours distribution is supposed to capture the effect of institutional regulations on hours of 

work. Recall that this specification of the opportunity distribution is formally equivalent to 

introducing suitable dummy variables at full-time and part-time hours of work in the utility 

specification of the conventional discrete choice specification: see, for example, van Soest 

(1995). An advantage with our framework is that it provides a theoretical rationale for 

introducing such dummies in contrast to the conventional discrete choice labor supply model. 

A central issue in our empirical illustration is how to specify the opportunity density of 

offered wage rates. A fairly general class of specifications accounting for unobserved 

heterogeneity across both jobs and agents, as well as allowing for correlation between offered 

hours of work and offered wage rates, is given in (2.4). It remains, however, to prove that the 

model is identified in this case. Even in the case where offered hours and wage rates are 

independent it is a demanding task to obtain structural estimates due to measurement error in 
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reported hours worked. In our data set, only weekly hours of work are reported but not the 

usual number of weeks worked during a year. Furthermore, overtime is not reported. This 

type of measurement error is common in data sets used for labor supply analysis. See for 

example Borjas (1980) and Blundell et al. (2007) for extensive discussions on how to deal 

with this problem in conventional labor supply models. This measurement error creates a 

spurious negative correlation between the observed wage rate and hours in our data (-0.22 for 

married women, -0.17 for married men).8 This so-called “division bias” problem poses 

considerable challenges for empirical analyses based on this type of data.  

When offered wage rates and offered hours of work are independent, the division bias 

problem can be reduced by adopting the three-stage estimation procedure proposed by 

Dagsvik and Strøm (2004, 2006). This amounts to estimating a reduced-form participation 

probability in the first stage, and subsequently estimate wage rate equations using the results 

from the first stage to control for selectivity bias. In the third stage the labor supply model is 

estimated by the maximum likelihood method after inserting the wage rates predicted by the 

estimated wage equations into the model and integrating out the respective error terms. Under 

standard assumptions about the measurement error this leads to unbiased wage rate equations 

in the second stage apart from the estimate of the variance of the error terms which may be 

upward biased. This procedure does of course not eliminate the measurement error in hours of 

work but it removes the spurious negative correlation between observed hours and wage rates. 

Measurement error may still be a problem in the last stage maximum likelihood estimation, 

since it may cause misclassification of the dependent variable (individual’s working hours). 

Hausman et al. (1998) suggest a method to control for the misspecification problem in binary 

choice model. However, their method is not readily applicable in our analysis. Monte Carlo 

evidence reported in Flood and Islam (2005) indicates that the measurement error is only a 

serious problem in discrete choice labor supply model when it is large. 

Given Assumption 4, we have estimated two special cases of the model in (2.3a, b): 

Model 1 and Model 2. Using the notation of (2.5), Model 1 is based on the assumption that all 

observable identical individuals are assumed to face the same offered wage rate distribution 

across jobs ( ( ) 0η ψ= ⋅ = )  whereas in Model 2 each individual faces only one offered wage, 

though this wage may be different for observationally identical individuals ( ( ) ( ) 0zξ ψ= ⋅ = ). 

Thus, the interpretation of the first stage wage rate equations is rather different in the two 

                                                      
8 This error is sometimes denoted “division bias” and is a rather common problem in many typically available data sets, see 

for example discussion in Borjas (1980). 
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model versions, although the estimated equations are the same. In model 1, the error terms in 

the wage rate equations measure the variation of wage rates offers across different jobs. In 

contrast, in Model 2, the error terms represent unobserved individual heterogeneity.9    

The specification of the wage rate equations is conventional. In Model 1 ( )zξ  is 

assumed to be normally distributed with zero mean and in Model 2 η  is assumed to be 

normally distributed with zero mean. Thus, the estimated residual variances in the wage rate 

equations are interpreted as the variance of ( )zξ  and η  in Models 1 and 2, respectively. The 

termα  is specified as a linear function of length of schooling, potential experience, potential 

experience squared and a dummy variable for marriage status. Potential experience is defined 

as age minus years of schooling minus 7. The estimates of the wage rate equations are 

presented in Table C.1 in Appendix C. As shown in Table C.1, the selection bias in the wage 

rate equations is negligible.  

The estimates of the two models are reported in Table C.2 in Appendix C. In both 

models the results imply that log ( , )v C h  is strictly increasing and concave in consumption 

and leisure. The marginal utilities of female and male leisure are increasing functions of age. 

The number of children has a significant effect on the marginal utility of leisure for married 

women. In contrast, the marginal utility of leisure for married men does not depend 

significantly on the number of children. This indicates that the female takes more 

responsibility for children within the family than the male, which is not a surprising result. 

The measure of the job availability for the married women, ,Fθ depends positively on the 

length of schooling (S). Higher educational level increases the job opportunities for married 

women. The corresponding estimate for married men turns out not to be significant. This may 

be due to the fact that in our data set there are only very few married men who are out of the 

labor force. For both genders, the value of θ is estimated to be less than 1. Similar results are 

reported by Dagsvik and Strøm (2006), Di Tommaso et al. (2009) and Dagsvik et al. (2011). 

As discussed earlier, this can be interpreted as indicating that the number of interesting and 

available jobs is smaller than the number of interesting non-market opportunities. Note also 

that the full-time and part-time peaks in the opportunity probability mass function of hours for 

married men are substantially higher than the corresponding peaks for married women. The 

                                                      
9 One should, in principle, interpret the estimated error terms in the Mincer type wage equations as the sum of inter- and 

intra-individual effects, ( ) .zξ η+  Although it seems technically possible to separate the contribution of these two terms, 
we believe that this identification hinges too much on the mathematical structure of the model and is therefore not 
theoretically sound, given the available information.  
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reason for this is that women seem to have stronger preferences than men for working in 

particular labor market sectors (such as health care and teaching) and therefore may face 

different choice restrictions. This could partly be due to differences in gender-specific human 

capital investments, which are important in shaping the job choice constraints.10  

Both Model 1 and Model 2 fit the data quite well. Figures 1 and 2 display the observed 

and (aggregate) predicted values of participation and hours of work for each spouse based on 

our model. Model 2 seems to perform slightly better than Model 1. Since our model 

represents the behavior of couples, it seems more interesting to consider the joint distribution 

of hours of work rather than just the marginals. Due to the problem of thin cells, we are forced 

to consider joint distributions with highly aggregate hours of work intervals and combine 

selected hours of work intervals taking into account the fact that some hours of work 

alternatives are chosen by only a few households in our sample. For men, we distinguish only 

between the cases where they work less than full-time (0–1,456 hours a year) or work full-

time and more (≥1,950 hours a year). For women, we distinguish between three options (not 

working, working less than full-time and working full-time and more). Altogether, our 

selected aggregation procedure implies just six cells. Figure 3 shows the predicted and 

observed distributions of hours of work on these six cells. As with Figures 1 and 2, the fit of 

both models is quite good, with Model 2 performing slightly better than Model 1.  

These visual inspections of the marginal and joint distributions of hours of work can 

be seen as an informal and crude way to check goodness of fit of the models. Several 

alternative model evaluation methods are used for discrete choice models in the literature: see, 

for example, Train (2009). One popular summary measure analogous to the 2R  measure 

applied in regression analysis is McFadden’s 2ρ  measure (Pseudo 2 ),R  see McFadden 

(1973). The respective values of the loglikelihood functions are approximately equal to -5309 

and -5243. The corresponding 2ρ values for the two models are 0.49 and 0.50 respectively. 

These results seem to be consistent with the informal check based on Figures 1 to 3.   

 

 

 

 

 

 

                                                      
10 In a sector-specific model, as in Dagsvik and Strøm (2006), one could obtain explicit sector-specific opportunity measures. 
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Figure 1. Predicted and observed marginal hours of work distributions for married women, 1997 

 

 
 
 

Figure 2. Predicted and observed marginal hours of work distributions for married men, 1997 
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Figure 3. Predicted and observed joint hours of work distributions for couples, 1997 

 
 
 Another way of measuring goodness of fit uses tests based on comparing predicted 

probabilities with corresponding observed frequencies on some partitions of the outcome and 

exogenous variables in the tradition of the Pearson chi-square statistics. We have applied the 

chi-square test statistics of Andrews (1988a, b). To this end we used the same partition of 

cells as above (six cells). The test statistics is given as 1ˆ( ) ' ( ),N NF Nv V vβ β−=
 

 where ( )Nv β


 

is the vector of differences between the predicted and observed frequencies on the chosen 

cells, and V̂ is the estimated covariance matrix of ( ) .Nv Nβ


 In our case, the test statistics F 

is asymptotically chi-squared distributed with 5 degrees of freedom. The test statistics for 

Model 1 is equal to 57.6 and for Model 2 it is equal to 10.4. Note that the 5 percent significant 

level for the Chi square distribution with 5 degrees of freedom is 11.07. Thus Model 2 passes 

Andrew’s test at 5 percent significant level, while Model 1 is far from passing the test. Thus, 

Model 2 fits the data better than Model 1 and we therefore select Model 2 as our maintained 

model.11  

4.2. Aggregate wage elasticities and “labor supply curves” 

In this section, we present selected gross wage elasticities and figures for what we call labor 

supply curves. We have calculated elasticities that take into account both the systematic terms 
                                                      
11 However, we do not claim that it is more important to account for inter-individual wage variations than intra-individual 

wage variations in this model.    
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and the unobservables in the model. This means that we account for how the mean of the 

distribution of labor supply is affected by changes in (say) gross wage levels.  

There are two types of elasticities reported in the literature: see, for example, Dagsvik 

and Strøm (2006) and van Soest and Das (2001). One type is the so-called average elasticity, 

which is simply the average of the individual elasticities calculated from the formulas for 

expected hours of work or probability of working given the individual observed 

characteristics. The second is called aggregated elasticity, which is the elasticity of the 

aggregate (or average) response (e.g. the elasticity of the population mean hours of work).  

Table 1 displays aggregated gross wage elasticities for both models. The standard 

errors are generated using bootstrap methods with 100 replications. We have also computed 

the average elasticities for both models: the estimates are quite close to the aggregated 

elasticities reported in Table 1. The unconditional wage elasticity of hours of work is defined 

as the elasticity of expected number of hours of work with respect to wage. The 

corresponding elasticity of hours of work conditional on working can be found by subtracting 

the wage elasticity of the probability of working from the unconditional wage elasticity of 

hours of work.   

 In general, both models show that the gross wage elasticities are moderate for married 

females and very small for married males. Model 2 seems to predict stronger labor supply 

response than Model 1, though the differences are not big. Using estimates from Model 2, for 

married females the own-wage elasticity of the probability of working is equal to 0.33, which 

means that if the gross wages of married females were to increase by 5 percent (say), then the 

aggregate proportion of married females working would increase by around 1.5 percent. The 

cross wage elasticity for married women is negative and smaller in size than own wage 

elasticity, as found in many studies.  The elasticity of the probability of working for married 

women with respect to both spouse’s gross wage rate is equal to 0.2. This means that the 

proportion of married women working would increase by 1 percent, if both spouses’ wage 

rates were increased by 5 percent.  

Since the model is highly non-linear, the aggregate elasticities may cover substantial 

variation in elasticities across different wage levels and individual characteristics. Remember 

that when we have estimated the model we can compute wage elasticities conditional on 

given hypothetical wage levels, without using wage equations. To illustrate the non-linearity 

in the labor supply response resulting from wage changes we have plotted what we call 
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Table 1. Aggregated gross wage elasticities 

  Model 1 Model 2 
  Women’s 

wage 
Men’s 
wage 

Both 
wages 

Women’s 
wage 

Men’s 
wage 

Both 
wages 

Probability of working, -0.006 0.007 0.003 -0.007 0.010 0.006 
     men (0.003) (0.003) (0.001) (0.003) (0.004) (0.003) 
Probability of working, 0.221 -0.145 0.091 0.333 -0.165 0.205 
     women     (0.015) (0.020) (0.023) (0.022) (0.022) (0.024) 
Hours of work, men  -0.022 0.047 0.028 -0.022 0.080 0.062 
    (unconditional) (0.004) (0.007) (0.008) (0.005) (0.009) (0.009) 
Hours of work, women 0.405 -0.268 0.151 0.618 -0.272 0.381 
    (unconditional) (0.025) (0.034) (0.050) (0.039) (0.038) (0.054) 

        Bootstrapped standard errors in parentheses.  

 

Figure 4. Married women’s expected hours of work in a typical household, by husband’s wage  

 
 
 

 

expected labor supply curves. These curves show expected hours of work as a function of the 

wage rates, conditional on other characteristics (non-labor income, age, family size and 

opportunity measure). We have generated labor supply curves for married women for a 

typical household, which is constructed using the sample average value of household 

characteristics given by: the household consists of a husband aged 45, a wife aged 42 and one 
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school-age child. Both parents have 12 years of education. We look at three different 

scenarios: the husband’s wage is high (200 NOK per hour12), middle (150 NOK per hour) and 

low (100 NOK per hour). Figures 4 shows how the expected annual hours of work of married 

women in both models vary with her expected gross wage level. Both models predict that 

labor supply elasticities decreases as married women’s wage increases. However, at low wage 

rate levels the labor supply curves are steeper for Model 2 than for Model 1, whereas the 

difference is small between the two models at high wage rate levels.  

 

4.3. Simulation of changes in the opportunity distribution of offered hours of work 

Using our framework, we can also simulate the effect on labor supply from changing the 

opportunity distribution. Since our model is not an equilibrium one we can only simulate pure 

supply effects conditional on given the job availability measures, ( , ),F Mθ θ  and the 

distributions of offered hours and wage rates.  

In Norway, there is a high proportion of married women in part-time positions. In our 

sample, more than 35 percent of married women are working between 20 and 30 hours a 

week, while only around 40 percent are working full-time (37.5 hours a week). Many of those 

in part-time jobs are employed in the public sector, especially in health care. Whereas 

Norwegian working environment legislation opens for the possibility of voluntary part-time 

jobs, an important reason for the high concentration of part-time workers relates to particular 

institutional regulations in the public health sector. Part-time positions are sometimes the only 

positions offered by public health care organizations, especially in more rural areas. The 

proposed reform can be interpreted as a change in the opportunity distribution of hours for the 

women, obtained by removing the part-time peak and increasing the full-time peak (since the 

part-time jobs are replaced by full-time ones) while keeping the total number of available jobs 

unchanged (i.e. Fθ is unchanged). We refer to Appendix D for details.  

Figure 5 displays the results from such a simulation. As we can see, there is a 

significant decrease in the proportion of married women who choose to work part-time, 

accompanied by an increase in the proportion of full-time hours of work of about a similar 

magnitude. In addition, we found that the corresponding labor supply of the married men 

changes very little with the introduction of this reform.  

 

                                                      
12 Around $30 per hour at 1997 exchange rates.  
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Figure 5. Hours of work for married women, before and after reform 

 
 

 

However, one needs to be careful when interpreting this result in the context of 

reforms specific to labor market sectors (such as the health care sector), since sector-specific 

preferences and restrictions are not explicitly accounted for in the model. Nevertheless, this 

simulation exercise clearly illustrates the advantage and potential of our modeling framework.  

5. Conclusion 

The traditional models of labor supply, being versions of the theory of consumer demand with 

two goods, disposable income and leisure, simplify the choice setting in labor markets. In real 

labor markets, agents have preferences over pecuniary as well as non-pecuniary aspects of 

jobs and face limited sets of job opportunities in the labor market due to competition between 

workers and restrictions resulting from institutional regulations on hours of work. 

An essential feature of the modeling framework discussed in this paper is that it allows 

the researcher to accommodate restrictions on hours of work and the set of feasible jobs 

typically observed in many data sets. A major contribution of this paper is the analysis of 

identification. The standard identification results for multinomial and mixed logit models do 

not apply because our modeling framework contains representation of both preferences and 



 26

latent choice constraints (opportunity measure). Although the model is in general not 

identified we have demonstrated how it will be identified under specific conditions even in 

the presence of unobserved heterogeneity in offered wage rate distribution.  

 We have carried out an empirical application based on micro data from Norway. In 

contrast to Dagsvik and Strøm (2006), where they estimated a similar model for married 

women given the husband’s labor supply, we study the joint labor supply behavior for 

married couples simultaneously. We have, moreover, estimated two versions of the model 

based on two “extreme” assumptions about wage heterogeneity. A model with solely inter-

individual variation in wage rates seems to fit the data better than a model that allows only for 

variation in wage rates across jobs. We have computed labor supply curves to illustrate the 

substantial non-linearity in the labor supply responses, as function of wage rates and to 

illustrate how these curves depend on the two model formulations. Subsequently, we have 

shown how one can use the model to simulate the effect of hypothetical changes in the 

opportunity measure. Changes of this sort cannot be studied using conventional discrete labor 

supply models.  

 The data we have applied are not ideal due to measurement error in the hours of work 

observations. We are currently working on establishing another data set with much less 

measurement error in hours which hopefully will be helpful for studying the relationship 

between the offered wage rates and offered hours within a labor supply modeling framework.  
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Appendix A 

Proof of Theorem 1: 

From Assumptions 1 and 2 and Proposition 3.8 in Resnick (1987, p. 135) it follows that the 

job attributes {( ( ), ( ), ( )), 1, 2,...,}H z W z z zεϒ = =  can be viewed as realizations from a three-

dimensional Poisson process on (0, ) (0, )DΨ = × ∞ × ∞  with intensity measure 

2
1 2( ) ( | ) .g h g w h dwdθε ε−  Let 1 2B B B= ×  where 1 ,B D⊂  and 2B  is a Borel set on (0, ).∞   

Let  

( )( )
( )

( ) ( ), , ( ) ( ), 1,2,...,
( )

(0, ),0 ( ) 1, 2,...

v f H z W z I H z z z
U z

v f I z z

ε
ε

 == 
= − −

, 

and define 

   
( ( ), ( ))

max ( ).B
H z W z B

U U z
∈ ∩ϒ

=  

(Here it is understood that maximization is taken with respect to z in B, for a given realization 

of the Poisson Process). Evidently, BU  is the highest utility the agent can attain given that 

hours of work and wage rates are restricted to B. Note that if two sets A and B are disjoint sets 

in Ψ  then AU  and BU  are independent random variables, since the points of the Poisson 

process are independently scattered. Let Ω  be the set defined by  

( ) {( , , ) : ( , ) , ( ( , ), ) }u h w h w B v f hw I h uε εΩ = ∈Ψ ∈ >  

and let ( ( ))N uΩ  be the number of points of the three-dimensional Poisson process within 

( ).uΩ  By the properties of the Poisson process it follows that       

         
( ( )) exp( ( ( )))

( ( ( )) )
!

nu u
P N u n

n

Λ Ω −Λ ΩΩ = =  

where  

           
1 2

2
1 2

, ( ( , ), )

( ( )) ( ( )) ( ) ( | )
x B y B v f xy I x u

u EN u g x g y x dyd
ε

θε ε−

∈ ∈ >

Λ Ω = Ω =    

        
2

1

1
1 2( ( , ), ) ( ) ( | ) .

y B
x B

u v f xy I x g x g y x dyθ −

∈
∈

=    

Now consider the probability that .BU u≤  Evidently, it must be the case that 

(A.1) ( ) (BP U u P≤ = There are no points of the Poisson process within ( ))uΩ  

 
1 2

1
1 2( ( ( )) 0) exp( ( ( ))) exp( ( ( , ), ) ( ) ( | ) ).

x B B

P N u u u v f xy I x g x g y x dyθ −

∈

= Ω = = −Λ Ω = −    
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Hence, we have proved that BU  is distributed according to the Fréchet distribution.  

Now we specialize B to 1 { }B h=  and 2 (0, ],B w=  and let (0, ) \ .C D B= × ∞  Since B 

and C are disjoint, it follows, as mentioned above that BU  and CU  are independent and 

Fréchet distributed. In particular it follows from (A.1) that 

(A.2)                    1
1 2

0

( ) exp( ( ( , ), ) ( ) ( | ) )
w

BP U u u v f hy I h g h g y h dyθ −≤ = −   

and 

(A.3)  
1 2

1
1 2

\ (0, )\

( ) exp( ( ( ( , ), ) ( ) ( | ) )).C
D B B

P U u u v f xy I x g x g y x dyθ −

∞

≤ = −    

Let  

0
1 1

max ( ) ( (0, ),0) max ( ).
z z

U U z v f I zε
≤− ≤−

= =   

Since { ( ), .., 2, 1}z zε = − −  are realizations of independent Poisson processes on (0, )∞ with 

intensity 2ε − , it follows similarly to the demonstration above that 0U  also is Fréchet 

distributed and independent of BU  and CU with 

(A.4)   1
0( ) exp( ( (0, ),0)).P U u u v f I−≤ = −  

Then the probability that the agent shall choose a job with hours of work equal to h and wage 

less than or equal to w, among all available work options and non-market options, can be 

expressed as 0( max( , )).B CP U U U>  From (A.2-A.4) we thus obtain that  

    
1 2

0
0

1 2

0

( ( , ), ) ( ) ( | )

( max( , )) .

( (0, ),0) ( ( , ), ) ( ) ( | )

w

B C

r D

v f hy I h g h g y h dy

P U U U

v f I v f ry I y g r g y r d y

θ

θ
∞

∈

> =
+




 

The corresponding p.d.f. (2.2a) is found by differentiating the expression above with respect 

to w. Due to the adding-up restriction the probability for the nonworking option follows 

immediately from the expression above and is equal to  

0

1 2

0

( (0, ),0)
( max( , )) .

( (0, ),0) ( ( , ), ) ( ) ( | )
B C

r D

v f I
P U U U

v f I v f ry I y g r g y r d yθ
∞

∈

> =
+ 

 

Hence, we have proved (2.2b). The proofs in the cases where the distribution of offered hours 

of work is continuous or the distribution of offered wage rates is discrete are similar. This 

concludes the proof. 
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           Q.E.D.  
 

Proof Theorem 2: 

Let ( )kF x′  denote the partial derivative with respect to the k-th component of x of a function 

( ).F x  By assumption 3, ( , )f u I  is invertible in u for a given I except at a finite number of 

points. Thus, ( , )C Iκ  determined by ( ( , ), )C f C I Iκ=  is a well defined function and equals 

the wage income which is needed to achieve disposable income C at given non-labor income 

level I.  

From (2.2a, b) we have that 

 (A.5)                    
( ( , ), ) ( , ) ( , | )

( (0, ),0) (0,0 | )

v f hw I h g h w h w I

v f I I

θ ϕ
ϕ

=  

where ( , | )h w Iϕ  is the joint density of observed hours and wage rate. By taking the logarithm 

transformation of (A.5) and differentiating with respect to I we obtain 

(A.6)       1 2 1 2 3 3( ( , ), ) ( , ) ( (0, ),0) (0, ) ( , | ) (0,0 | )
.

( ( , ), ) ( (0, ),0) ( , | ) (0,0 | )

v f hw I h f hw I v f I f I h w I I

v f hw I h v f I h w I I

ϕ ϕ
ϕ ϕ

′ ′ ′ ′ ′ ′
− = −  

By inserting ( , )wh C Iκ=  into (A.6) and rearranging, (A.6) becomes 

(A.7)                 1

2

( , ) log ( , ) ( )
( , , ).

( , ) ( ( , ), )

v C h v C h r I
C h I

v C h C f C I Iκ
′ ∂= = + Γ

′∂  

where 

(A.8)     3 3

2

( , ( , ) / | ) (0,0 | ) 1
( , , ) .

( , ( , ) / | ) (0,0 | ) ( ( , ), )

h C I h I I
C h I

h C I h I I f C I I

ϕ κ ϕ
ϕ κ ϕ κ
′ ′ Γ = −  ′ 

 

and  

(A.9)      1 2( ) ( (0, ),0) (0, ) / ( (0, ),0).r I v f I f I v f I′ ′=   
 
  

By integrating (A.7) with respect to consumption we get that  

(A.10)        
0 0

0
2

log ( , ) log ( , ) ( ) ( , , ) .
( ( , ), )

C C

C C

dz
v C h v C h r I z h I dz

f z I Iκ
− = + Γ

′   

Let 

    
       0 2

log ( , )
( ( , ), )

C

C

dz
C I

f z I I
ζ

κ
=

′  and  
0

*log ( , , ) ( , , ) .
C

C

C h I z h I dzλ = Γ    

With this notation we obtain from (A.10) that 

(A.11)                          ( ) *
0( , ) ( , ) ( , , ) ( , ).r Iv C h C I C h I v C hζ λ=   
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for h > 0. We note that the left-hand side of (A.11) does not depend on I. We can therefore 

keep I fixed and equal to any given *I (say) in the expression on the right hand side. Since  

f(u, I) is known and ( , , )C h IΓ  is identified due to (A.8), both *( , )C Iζ  and * *( , , )C h Iλ  are 

identified for positive h. However, even when *I  has been fixed, (A.9) cannot be used to 

determine *( )r I  since ( ,0)v C  is not identified.  

When *I  has been fixed, we can suppress *I in the notation and write 

( ) ( , ),C C Iζ ζ ∗=  ( , ) ( , , ),C h C h Iλ λ∗ ∗ ∗=  *( )r r I=  and 0( , ) ( )v C h hδ=  in (A.11), which 

completes the proof. 

               Q.E.D. 

Proof of Theorem 3:  

By assumption 4, 2 2( | ) ( ).g w h g w=  From (2.2a) and (A.11) it then follows that for 0,I >

* ,h h D≠ ∈            

       
( ) *

1 1
* * * * ( ) * * * * *

1 1

( ( , ), ) ( ) ( ( , ), ) ( ( , ), , ) ( ) ( )( , | )

( , | ) ( ( , ), ) ( ) ( ( , ), ) ( ( , ), , ) ( ) ( )

r I

r I

v f hw I h g h f hw I I f hw I h I h g hh w I

h w I v f h w I h g h f h w I I f h w I h I h g h

ζ λ δϕ
ϕ ζ λ δ

= =  

which implies that for 1 2w w≠  

(A.12)   

* * * *
1 1 2 2

* * *
1 1 2 2

1 2
*

1 2

( , | ) ( ( , ), , ) ( , | ) ( ( , ), , )
log

( , | ) ( ( , ), , ) ( , | ) ( ( , ), , )

( ( , ), ) ( ( , ), )
( ) log .

( ( , ), ) ( ( , ), )

h w I f h w I h I h w I f hw I h I

h w I f hw I h I h w I f h w I h I

f hw I I f h w I I
r I

f h w I I f hw I I

ϕ λ ϕ λ
ϕ λ ϕ λ

ζ ζ
ζ ζ

∗

∗ ∗

∗

 
⋅ 

 
 

= ⋅ ⋅ 
 

 

From (A.12) we see that r(I) is identified. Thus ( , )C hλ  defined by 

( ) *( , ) ( , ) ( , , )r IC h C I C h Iλ ζ λ=  is identified and (A.11) implies that ( , )C hλ  does not depend 

on I. Hence, ( , ) ( , ) ( )v C h C h hλ δ=  for positive h. We thus realize that ( , )v C h  is identified for 

positive h up to a multiplicative term ( )hδ  that is solely a function of hours of work. 

Consider next the case with h = 0. From (A.9) we have  

(A.13)                      
log ( (0, ),0)

( ).
v f I

r I
I

∂ =
∂

 

The right hand side of (A.13) is known, since r(I) is identified by (A.12). By integrating 

(A.13) with respect to I we realize that log ( (0, ),0)v f I  is determined for each positive I up to 

an additive constant. But this means that ( ,0)v C  is identified up to a multiplicative constant.  

In the case where the distribution of offered wage rates is not degenerate we get from 

(2.2a) and the results above we have  
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(A.14)  2 2

( , | ) / ( ( , ), )
( ) ( ) .

( , | ) / ( ( , ), )

h w I f hw I h
g w g w

h w I f hw I h

ϕ λ
ϕ λ

∗
∗ ∗=  

By integrating (A.14) (or summing in the case with discrete offered wage rates) with respect 

to positive w it follows (because the left hand side is a p.d.f. function) that 

  2

0

( )
1 ( ( , | ) / ( ( , ), ))

( , | ) / ( ( , ), )

g w
h y I f hy I h dy

h w I f hw I h
ϕ λ

ϕ λ

∞∗

∗ ∗=   

which together with (A.14) yields 

(A.15)  2

0

( , | ) / ( ( , ), )
( )

( ( , | ) / ( ( , ), ))

h w I f hw I h
g w

h y I f hy I h d y

ϕ λ

ϕ λ
∞=


 

which shows that 2 ( )g w  is identified. The proof is thus complete.    

           Q.E.D. 

Proof of Theorem 4: 

Since by assumption 5, 2( , )f u I′ is constant in u within certain intervals, one can find an 

interval ( , )C C− + (say), a non-labor income *I and a constant 0,d ≠  such that

* *
2( ( , ), ) ,f C I I dκ′ =  for ( , )C C C− +∈ where ( , )C Iκ  is defined as in the proof above.  

 By assumption 6, log ( , )v C h  has the generalized Box-Cox functional form given in 

(3.2). In the interval ( , ),C C− +  (A.7) can be rewritten as  

(A.16)   
*

*log ( , ) ( )
( , , )

v C h r I
C h I

C d

∂ = +Γ
∂

 

where *( )r I is unknown. It then follows from (3.2) and differentiation of (A.16) with respect 

to C that  

(A.17)  
2

2 *3
1 12

1

log ( , ) (1 / ) 1
( 1) (1 ) ( , , ).

v C h h M
C C h I

C

β
α γγ α

γ β
−∂ − − ′= − + = Γ

∂  

For the case 0β = , the term ( )(1 / ) 1 /h M β β− −  in (A.17) is replaced by its limit 

log(1 / ).h M−  Let * ( , )C C C− +∈  be a value of disposable income different from C. Then 

(A.17) implies that  

 (A.18)   
2 *

1
* * *

1

( , , )

( , , )

C C h I

C C h I

α− ′Γ  =  ′Γ 
 

which identifies .α  Let 0 min{ | }h h h D= ∈  and define 0log(( ) /( )).x M h M h= − −  We see 

immediately that 0.x ≤  For 0x ≤  define 
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* *

1 0 1 0
2

( , (1 ) , ) ( , , )
( )

x xC M e e h I C h I
F x

Cα−

′ ′Γ − + −Γ=  

From (A.17) it follows that  

(A.19)   3

3

( 1)
( 1) if 0,

( )

( 1) otherwise.

xe
F x

x

β

α γ β
β

α γ

 −− ≠= 
 −

      

Let   

1 2
1 2( | , ) ( 1) / ( 1)x xG x x e eβ ββ = − −    

for 0β ≠  and 1 2 1 2(0 | , ) / ,G x x x x=  for 1 2, 0, 0.x x< <  It is easy to show that G is 

differentiable as a function of β  on the real line (also at 0β = ). From (A.19) we obtain that 

(A.20)   1
1 2

2

( )
( | , )

( )

F x
G x x

F x
β =  

for suitable 1 2 0x x< < .  We shall show that there is at most one β  that satisfies (A.20). Note 

first that  

(A.21)   
1 2 2 1

2

( )
1 2 1 2

2
2 1

( | , ) 1 1
.

( 1)

x x x x

x

G x x x x e e e

e x x

β β β

β
β
β

+ − − ∂ − −= − ∂ −  
 

It is easily verified that the function (1 ) /xe xβ−−  is strictly decreasing in x for all real x and 

.β  Hence, it follows that the right hand side of (A.21) is positive and therefore 1 2( | , )G x xβ  

is strictly decreasing inβ . Thus, (A.20) has at most one possible solution for .β  Then (A.20) 

implies that also 3γ is identified. Furthermore, we realize from (A.17) that also 1γ  is 

identified. Consequently, it follows that ( ,0)v C  is also identified. Let  

(A.22)  1 3( , ) exp( ( 1) / ( 1)((1 / ) 1) / ).v C h C C h Mα α βγ α γ αβ∗ = − + − − −   

From the results achieved above we have that ( , )v C h∗  is identified. Note also that under the 

generalized Box-Cox functional form assumption we can express ( , )v C h  as 

2( , ) ( , )exp( ((1 / ) 1) / )v C h v C h h M βγ β∗= − −   

where 2γ is unknown. Similarly to (A.15) it follows that 2( | )g w h  is identified and can be 

expressed as  

(A.23)  2

0

( , | ) / ( ( , ), )
( | ) .

( ( , | ) / ( ( , ), ))

h w I v f hw I h
g w h

h y I v f hy I h dy

ϕ

ϕ

∗

∞
∗

=


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It remains to show that 2,γ θ and 1( )g h  are identified. From (2.2a, b) and (A.23) we 

get that 

(A.24)  1 2
2

( , | ) ( (0, ),0) 1
( )exp( ((1 / ) 1) / )

(0 | ) ( ( , ), )) ( | )

h w I v f I
g h h M

I v f hw I h g w h
β ϕθ γ β

ϕ ∗− − = ⋅  

  0

( (0, ),0) ( ( , | ) / ( ( , ), ))

.
(0 | )

v f I h y I v f hy I h dy

I

ϕ

ϕ

∞
∗ ∗

=


 

The right hand side of (A.24) is known. By assumption 6, we can find 1h  and 2h  in D be 

hours of work such that  1 1 1 2( ) ( )g h g h=  which together with (A.24) imply that 

 1 2 2 2 2 1 2
2

2 1 1 2 1

( , | ) ( ( , ), )) ( | ) (1 / ) (1 / )
log

( , | ) ( ( , ), )) ( | )

h w I v f h w I h g w h h M h M

h w I v f h w I h g w h

β βϕ γ
ϕ β

∗

∗

  − − −= 
 

 

which identifies 2γ  since β  is known. But then (A.24) implies that 1( )g hθ  is identified and 

we can express 1( )g hθ  by means of (A.24). Since 1( )g h  has the property of a probability mass 

function and of which the sum is equal to one we can determine θ  by summing the formula 

for 1( )g hθ  over all positive value of h. Hence, the proof is complete. 

                        Q.E.D. 

 

Before we embark on the proof of Theorem 5 we need the following result. 

 

Lemma 1: 

Assume that Assumption 3 holds and let the function ( , )C Iκ  be determined by 

( ( , ), ) .f C I I Cκ =  Then, for 0( , )C C′∈ ∞  and h D∈  one can find constants 0[ , )C C∗ ∈ ∞  and 

h D∗ ∈  such that that there exists a positive solution ( , )I I C h∗=  (say) of the equation  

( ( , ) / , )C f h C I h Iκ∗ ∗=  for C in a suitable open neighborhood of .C′     

 

Proof of Lemma 1: 

Note that under Assumption 3, ( , )C Iκ is well-defined and continuous. Moreover, ( , )C Iκ  is 

strictly increasing in C and strictly decreasing in I. Evidently, solving the equation 

1( ( , ) , )C f h C I h Iκ∗ ∗ −=  for I is equivalent to solving 

(A.25)  
( , ) ( , )C I C I

h h

κ κ ∗

∗=  
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for I because the latter equation implies that 

 1( ( , ) , ) ( ( , ), ) .f h C I h I f C I I Cκ κ∗ − ∗ ∗= =  

The last equality above follows from the definition of ( , ).C Iκ   

Now consider the case when max{ | }.h h h D< ∈  In this case, we can choose 

* max{ | }h h h D= ∈ . Define 0( )I C  by 0( , ( )) 0.C I Cκ =  For all ,C C∗ >  we have 

0 0( , ( )) ( , ( )) 0.C I C C I Cκ κ∗ > =  Hence,  

(A.26)  0 0 0 0
* * *

( , ( )) ( , ( )) ( , ( )) ( , ( ))
0.

C I C C I C C I C C I C

h h h h

κ κ κ κ∗ ∗

− = > =   

When C C∗ >  we also have that ( ,0) ( ,0).C Cκ κ∗ >  But since *h h< and ( ,0)Cκ is 

continuous in C, one can still choose a suitable C C∗ >  such that 

(A.27)  
*

( ,0) ( ,0)C C

h h

κ κ∗

< .  

Since  is continuous in I as well, (A.26) and (A.27) imply that (A.25) has a positive 

solution 0( , ) (0, ( )).I C h I C∗ ∈  It is easy to see that when we vary C  within a small 

neighborhood the choice of ( , )C h∗ ∗  can be kept fixed.  

In the case where max{ | }h h h D= ∈ , we can let * min{ | },h h h D= ∈  and similarly to 

the case above we can find C C∗ <  such that  

*

( ,0) ( ,0)C C

h h

κ κ∗

> .  

Since C C∗ < , we have  

* *
0 0
*

( , ( )) ( , ( ))
.

C I C C I C

h h

κ κ∗

<   

Since the two latter inequalities are similar to (A.26) and (A.27) it follows that (A.25) has a 

positive solution also in this case. This concludes the proof. 

           Q.E.D. 

Proof of Theorem 5: 

Case (i): 

Consider first the case where ( )zξ  is distributed according to a continuous distribution with 

density (.).gξ  Under Assumption 7, we get from (2.3a) that 

(A.28)     ( )1( , | , ) ( ( , ), ) ( ) ( , ) (log ) /h w I X v f wh I h g h E R a Xb I g w Xb a wη ξϕ η η= + + − − −  

( , )C Iκ
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for positive h, where  

(A.29)     

1

( )
( , ) .

( (0, ),0) ( ( , ), ) ( ) ( ) ( )z

r D

u
R u I

v f I v f re I r u g r g z u dzξ

θ

θ
∞

∈ −∞

=
+ − 

 

For any feasible combination 0,  and 0,w h D I> ∈ ≥  such that 0( , )C f wh I C= ≥ , we have 

from Lemma 1 that one can find constants *C and *h h≠  such that the function *( , )I C h  

(depending also on * *, )C h  defined implicitly by * * * *( ( , ( , )) / , ( , ))f h C I C h h I C h Cκ =  exists 

and is non-negative. From (A.28) it follows that  

(A.30)  1
* * * *

1

( ( , ), ) ( )( , | , )
.

( , | , ) ( ( , ), ) ( )

v f wh I h g hh w I X

h w I X v f wh I h g h

ϕ
ϕ

=  

Rewrite ( , ) /w C I hκ=  and it follows that (A.30) yields 

(A.31)  * * *
1 1 *

( , ( , ) / | , )
( , ) ( ) ( ( ( , ) / , ), ) ( ) .

( , ( , ) / | , )

h C I h I X
v C h g h v f h C I h I h g h

h C I h I X

ϕ κκ
ϕ κ

=  

Since the left hand side of (A.31) does not depend on I, we can choose *( , ).I I C h=  Note that 

* * * *( ( , ( , )) / , ( , ))f h C I C h h I C h Cκ =  consequently, (A.31) yields 

(A.32)  
* *

* *
1 1 * *

( , ( , ( , )) / | ( , ), )
( , ) ( ) ( , ) ( )

( , ( , ( , )) / | ( , ), )

h C I C h h I C h X
v C h g h v C h g h

h C I C h h I C h X

ϕ κ
ϕ κ

∗
∗= ⋅  

for positive hours of work. Since *C and *h  are constants we realize that the right hand side of 

(A.32) is known apart from the constant * *
1( , ) ( ).v C h g h∗  Hence, 1( , ) ( )v C h g h  is identified 

apart from a constant but 1( )g h  cannot be identified. In other words for 0h >  we can write 

( , ) ( , ) ( )v C h v C h hδ=   where ( , )v C h  is known whereas ( )hδ  is an unknown function of h. 

It remains to prove identification for the parameters a, b, the distributions of ( ),zξ  η  

and the function ( ).θ ⋅  To this end we shall apply the Fourier transformation technique. Let 

logz w= , we note that (A.28) implies that for 0,h > z R∈  

(A.33)       
( , | , )

( ) ( ( , ) ( ))
( ( , ), )

z z

z

e h e I X
c h E R a Xb I g z Xb a

v f e h I h η ξ
ϕ η η= + + − − −


 

where the left hand side of (A.33) is known, 1( ) ( ) ( )c h h g hδ=  is an unknown positive 

function . Because ( , )v C h  is known the left hand side of (A.33) is known. For h D∈  and  

0I >  let  
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( , | , )

( , | , ) log .
( ( , ), )

z z
i z isX

z

e h e I X
s h I e dzdX

v f he I h
λϕλ

∞ ∞
+

−∞ −∞

 
Λ =  

 
  

 

By Assumption 8, ( , | , )s h IλΛ  exists and is twice continuously differentiable with respect to 

λ  and s. From (A.33) it follows that ( , | , )s h IλΛ  must satisfy 

(A.34) 

( )exp ( , | , ) ( ) ( ( ) ( , ))

( ) ( ) ( , ) .

i z isX

i z isX

s h I c h E g z Xb a R a Xb I e e dzdX

c h E g z Xb a R a Xb I e e dzdX

λ
η ξ

λ
η ξ

λ η η

η η

∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

Λ = − − − + +

= − − − + +

 

 
  

Consider the integral 

  ( ) ( , ) i z isXg z Xb a R a Xb I e e dzdXλ
ξ η η

∞ ∞

−∞ −∞

− − − + +   

for given .η  Next, make the change-of-variable, ( , ) ( , )X z u y→  where u a Xb η= + +  and 

,y z Xb a η= − − −  which yields ( ) /X u a bη= − −  and .z y u= +  The corresponding 

Jacobian of this transformation has absolute value equal to 1| | .b −  We therefore get for given 

,η  that 

   ( ) ( , ) i z isXg z Xb a R a Xb I e e dzdXλ
ξ η η

∞ ∞

−∞ −∞

− − − + +   

1 ( )/ ( / )| | ( ) ( , )is a b i y i s b ub e g y e dy R u I e duη λ λ
ξ

∞ ∞
− − + +

−∞ −∞

= ⋅  . 

Define the following Fourier transforms 

ˆ ( ) ,isg s Ee η
η =  ˆ ( ) ( )i yg e g y dyλ

ξ ξλ
∞

−∞

=       and   ˆ( | ) ( , ) .isuR s I e R u I du
∞

−∞

=   

From the equations above it follows that 

(A.35) 

( )

1 / / ( / )

1 /

exp ( , , ) ( ) ( ) ( , )

( ) | | ( ) ( , )

ˆˆ ˆ( ) | | ( / ) ( ) ( / | ).

i z isX

isa b is b i y i s b u

isa b

s h I c h E g z Xb a R a Xb I e e dzdX

c h b e Ee g y e dy R u I e du

c h b e g s b g R s b I

λ
η ξ

η λ λ
ξ

η ξ

λ η η

λ λ

∞ ∞

−∞ −∞
∞ ∞

− − − +

−∞ −∞

− −

Λ = ⋅ − − − + +

= ⋅

= ⋅ − +

 

    

Since gξ  and gη  are p.d.f. we have that ˆ ˆ(0) (0) 1g gξ η= =  and therefore we get from (A.35) 

that 

(A.36)  ( ) 1 / ˆˆexp (0, , ) | | ( ) ( / ) ( / | ).isa bs h I b c h e g s b R s b Iη
− −Λ = −  
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By substituting s by s bλ+  in (A.36), we get that 

(A.37)  ( ) 1 ( / ) ˆˆexp (0, , ) | | ( ) ( / ) ( / | ).ia s bs b h I b c h e g s b R s b Iλ
ηλ λ λ− − +Λ + = − − +  

Hence, (A.35) and (A.37) yield 

(A.38)       ˆ( , | , ) (0, | , ) log ( ) ( / ) ( / )s h I s b h I ia g s b s bξλ λ λ λ κ κ λΛ −Λ + = + + − − − −  

where ˆ( ) log ( ).s g sηκ =  By differentiating (A.38) w.r.t. s, we get  

(A.39)  1 1
2 2( , | , ) (0, | , ) ( / ) ( / ).s h I s b h I b s b b s bλ λ κ λ κ− −′ ′ ′ ′Λ −Λ + = − − − −  

By differentiating (A.39) with respect to s and ,λ  respectively, we obtain that 

(A.40)  2 2
22 22( , | , ) (0, | , ) ( / ) ( / )s h I s b h I b s b b s bλ λ κ λ κ− −′′ ′′ ′′ ′′Λ −Λ + = − − − + −  

and 

(A.41)  1
21 22( , | , ) (0, | , ) ( / ).s h I b s b h I b s bλ λ κ λ−′′ ′′ ′′Λ − Λ + = − − −  

By multiplying (A.40) by b and subtracting (A.41) from (A.40) we get that 

(A.42)  1
22 21( , | , ) ( , | , ) ( / ).b s h I s h I b s bλ λ κ−′′ ′′ ′′Λ −Λ = −  

Since the right hand side of (A.42) is independent of λ  it follows that for any 1λ  and 2λ  that  

  22 2 22 1 21 2 21 1( ( , | , ) ( , | , )) ( , | , ) ( , | , )b s h I s h I s h I s h Iλ λ λ λ′′ ′′ ′′ ′′Λ −Λ = Λ −Λ  

which identifies b.13 Since (z)ξ  and η  both have zero mean ˆ (0) 0gξ′ =  and ˆ (0) 0.gη′ =  By 

differentiating (A.38) with respect to λ  and letting 0,λ =  it follows that   

(A.43)  1 2(0, | , ) (0, | , ) '( / ).s h I b s h I ia s bκ′ ′Λ − Λ = + −   

Then, with 0,s =  (A.43) becomes 

(A.44)  1 2(0,0 | , ) (0,0 | , ) .h I b h I ia′ ′Λ − Λ =  

Eq. (A.44) implies that a is identified. Hence, it follows from (A.43) that also ( )κ ′ ⋅  is 

identified and together with the condition ˆ(0) log (0) 0,gηκ = =  ( )κ ⋅  is determined. Hence, 

ˆ ( )g sη  is identified. Moreover, (A.38) implies that ˆ ( )gξ λ  is identified. Finally, (A.36) with 

0s =  gives  

  1 ˆexp( (0,0 | , )) | | ( ) (0 | )h I b c h R I−Λ =  

implying that c(h) is identified up to a unknown constant 0c  (say). Subsequently, (A.36) 

implies that ˆ( | )R s I  is identified up to a constant 01/ .c   

                                                      
13 In order for b to be uniquely determined one must have that 21( , | , )s h Iλ′′Λ  (or 22 ( , | , )s h Iλ′′Λ )  is not constant as a function 

of .λ  
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Due to the uniqueness property of the Fourier transform we thus conclude that ( )gη ⋅ , 

and ( )gξ ⋅  are identified and ( , )R s I is identified up to a constant 01 / c . Once a, b and ( )g yξ  

are determined, it follows immediately from (3.3) that 2( | )g w η  is identified.  

Given that ( )c h  is identified up to a constant, 0 ,c  it follows from the relations 

1( ) ( ) ( )c h h g hδ=  and 1 1( , ) ( ) ( , ) ( ) ( ) ( , ) ( ),v C h g h v C h g h h v C h c hδ= =   that 1( , ) ( )v C h g h  is 

identified up to the same constant 0c  for 0.h >  From (A.29) it follows that  

(A.45)  
( (0, ),0) 1

( ( , ), ) ( ) ( ) .
( ) ( , )

z

r D

v f I
v f re I r c r g z u dz

u R u I ξθ

∞

∈ −∞

= − −    

In view of the analysis above we know that the right hand side of (A.45) is identified up to a 

constant 0c . It therefore follows that ( ,0) / ( )v C uθ  is also identified up to the constant, 0.c  

This is so because for any 0C C≥  we can find a ( )I C  (say) such that (0, ( )).C f I C=  

Accordingly, it follows that ( )θ ⋅  and ( ,0)v C  are identified apart from a multiplicative 

constant. 

The special case where θ does not depend on a Xb η+ +  but possibly on other 

covariates is covered by the proof above. This completes the proof of case with continuous 

distributions of η  and ( ).zξ   

Consider next the case where ( ) 0.zξ =  In this case (A.34) reduces to 

( ) ( )exp ( , | , ) ( ) ( , ) .i Xb a isXs h I c h E R a Xb I e e dXλ η
ηλ η

∞
+ +

−∞

Λ = + +  

By the change of variable; u a Xb η= + +  the above equation becomes 

(A.46)  ( ) 1 ( ) /exp ( , | , ) ( ) | | ( , ) i u is u a bs h I c h b E R u I e e duλ η
ηλ

∞
− − −

−∞

Λ =   

1 ˆ ˆ( ) | | ( / , ) ( / ).isac h b R s b I e g s bηλ− −= + −  

From (A.46) it follows that 

(A.47)  ( , | , ) (0, | , ) ( / ) ( / ).s h I s b h I ia s b s bλ λ λ κ κ λΛ −Λ + = + − − − −  

We note that (A.47) is a special case of (A.38) obtained when ˆ ( ) 1.gξ λ =  Accordingly, it is 

clear that the model also is identified in this case. 

The proof for the case where either η  or ( )zξ  or both have discrete distributions is 

similar. This completes the proof for case (i). 
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Case (ii): 

Above we have proved that ( , ) ( , ) ( )v C h v C h hδ=   where ( , )v C h  is known and ( )hδ  is an 

unknown function of h. Thus 2 2log ( , ) /v C h C∂ ∂  is identified. Then under the generalized 

Box-Cox assumption (3.2), one can use the same procedure as in the proof of Theorem 4 

regarding identification of 1, ,α β γ  and .γ3  (See the discussion from equation (A.18) to 

(A.23)). This also proves the identification of ( ,0).v C  It therefore only remains to identify 2.γ   

Note that above we also proved that 1( , ) ( )v C h g h  is identified up to a constant 0c  for 

0.h >  Now let 1h  and 2h  be two distinct points in D such that 1 1 1 2( ) ( ).g h g h=  Due to the 

generalized Box-Cox assumption it consequently follows that   

(A.48)  2 1 2 2 1
3 2

1 1 1

( , ) ( ) (1 / ) (1 / )1
log .

( , ) ( )

v C h g h h M h MC

v C h g h

β βα

γ γ
α β

     − − −−= +    
   

  

Since the left hand side of (A.48) is known and we have demonstrated that all the parameters 

except 2γ  are identified it follows that also 2γ  is identified. Thus, we have identified ( , ).v C h  

By using again the fact that 1( , ) ( )v C h g h  is identified apart from a multiplicative 

constant, it follows that 1( )g h  is identified apart from a constant. But this constant can be 

determined from the property that 1( )g h  is a probability mass function on D. Thus 1( )g h  is 

identified and 1( , ) ( )v C h g h  is identified. This implies that 0c  is identified. Thus, (A.45) 

implies that ( )θ ⋅  is identified. The proof is now complete. 

Q.E.D. 
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Appendix B.  

Data Description 

The data are obtained by merging the Labor force survey 1997 with two different register data 

sets that contain additional information about incomes, family composition, children and 

education. The concepts of the Labor force survey are in accordance with official statistics 

from Statistics Norway and recommendations given by ILO. Here we note that persons are 

asked about their attachment to the labor market during a particular week.  

 Information about actual and formal working time in main as well as second job and 

background variables such as demographic characteristics and occupation is included in the 

Labor force survey. Conditional on labor market participation, respondents are asked whether 

they consider themselves as self-employed or employee. Households where one of the adults 

has income from self-employment higher than NOK 80 000 are excluded. A person is defined 

as working if he works at least one hour per week. Hours of work is measured as the sum of 

formal hours of work in the main and the second job (if the individual have a second job). If 

this information is missing and the respondent is participating in the labor market, information 

about actual working time is used.  

 Information on education is obtained from the National Education database, a register 

database that can be linked to the Labor force survey using the system with personal 

identification numbers.   

 Whereas the Labor force survey yields detailed information about employment and 

hours of work, it does not provide information about annual labor incomes that can be used in 

the calculations of (average) gross wage rates, and non-labor income. To obtain this 

information we apply the Tax Return Register (includes more detailed information about 

employee income, self-employment income, taxable pensions etc.) These data can be linked 

to the Labor force survey using personal identification numbers. Nominal hourly wage rates 

are measured as labor income, measures as the sum of labor income from the main and the 

second job (if the individual has a second job) divided by (formal) total annual hours of work 

(for main -and second job). Households where one of the adults has hours of work higher than 

80, or wage rate less than NOK 50 or higher than NOK 400 are excluded. Experience 

(potential experience) is defined as age minus years of schooling minus 7. 
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 The sample we use only includes persons with age between 26-62 years. The 

motivation for this is that for women below 26 years of age education is an important activity  

 
Table B.1 Summary Statistics 
 both working only husband 

working 
only wife working 

 mean  std  mean  std  mean  std  
Men    
      Age 45.06 8.44 44.06 9.41 50.40 9.91 
      Education 12.58 2.89 12.26 2.71 11.80 3.03 
      Experience 25.48 9.14 24.80 9.99 31.60 11.08 
      non-labor income 6320 12032 10796 15543 30604 30395 
      wage rate 153.82 52.98 169.11 65.47   
      weekly hours of work 38.43 5.38 39.16 5.91   
Women    
      Age 42.75 8.39 41.68 9.70 47.40 7.86 
      Education 12.10 2.72 10.87 2.26 11.80 2.86 
      Experience 23.65 9.33 23.81 10.71 28.60 10.01 
      non-labor income 17655 16558 27689 21701 13848 14219 
      wage rate 120.12 37.79   22.82 17.98 
      weekly hours of work 30.45 8.93   29.78 12.06 
No of Children 0-6 0.37 0.68 0.70 0.89 0.20 0.45 
No of children 7-18 0.85 0.97 0.94 0.97 1.00 0.71 
Number of Households 2254  256  5  

 

and for those more than 62 years of age early retirement is rather frequent. The number of 

children includes all children with age less than 19. In Table B.1 we report the summary 

statistics for the sample used in estimating the labor supply model. 
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Appendix C.  

Model for Married Couples  

The modeling framework for two-person households is completely similar to the case for 

single individual households. Let ( ), , ,F MU C h h z  denote the utility function of a household, 

where hF  and hM  are hours of work for female and male and ( ),F Mz z z=  indexes the 

combination of jobs for the female and male in the household, respectively. Similarly to 

Assumption 1, assume that  ( ) ( ), , , , , ( ).F M F MU C h h z v C h h zε=  The budget constraint in this 

case can be written as 

(C.1)                                    ( ), ,F F M MC f h w h w I=  

where wF  and wM  are the respective wage rates for female and male and f(·) is the function 

that transforms gross income to disposable income for the household. Analogous to 

Assumption 2 we assume that for positive Fz  and ,Mz  { ( , ), , 1,2,...}F M F Mz z z zε =  is an 

enumeration of the points of a Poisson process on (0, )∞  with intensity measure 2 .F M dθ θ ε ε−  

Similarly, when 0, 0,F Mz z> <  { ( , ), 1,2,..., ... 2, 1}F M F Mz z z zε = = − −  is an enumeration of 

the realizations of a Poisson process with intensity measure 2 .F dθ ε ε−  The latter Poisson 

process corresponds to the distribution of taste shifters across combinations of available jobs 

for the female and non-market opportunities for the male. The taste-shifters for the case where 

0, 0F Mz z< >  are also realizations of a Poisson process with intensity measure 2 .M dθ ε ε−  

Finally, the case where 0, 0F Mz z< <  are realizations of a Poisson process with intensity 

measure 2 .dε ε−  All four Poisson processes are assumed to be independent. The combinations 

of offered hours and wage rates to the female are assumed independent of the offered hours 

and wage rates to the male. The respective opportunity densities given by 

1 2( ) ( | )F F F F Fg h g w h  and 1 2( ) ( | ).M F M M Mg h g w h   

Let ( ), , , |F F M Mh w h w Iϕ  be the joint density of hours of work and wage rate for 

female and male in the household, given household non-labor income I. Then, model (2.2a, b) 

can be generalized to 
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(C.2)

( ) ( ) 1 2 1 2( , , ), , ( ) ( | ) ( ) ( | )
, , , | .F F M M F M F F F F F F M M F M M M

F F M M

v f w h w h I h h g h g w h g h g w h
h w h w I

M

θ θ
ϕ =

for 0, 0F Mh h> > , and 

(C.3)       ( ) ( )(0,0, ),0,0
0,0,0,0 |

v f I
I

M
ϕ =  

for 0Fh =  and 0Mh = , where 

(C.4) ( ) ( ) ( ) 1 2

0

(0,0, ),0,0 (0, , ),0, ( ) ( | )M M M
x D

M I v f I v f xy I x g x g y x dyθ
∞

∈

= +   

( ) 1 2

0

( ,0, ), ,0 ( ) ( | )F F F
x D

v f xy I x g x g y x dyθ
∞

∈

+ 

( )
1 2

1 1 2 2 1 2 1 1 2 1 1 1 2 2 2 2 1 2
, 0 0

( , , ), , ( ) ( | ) ( ) ( | )F M F F M M
x x D

v f x y x y I x x g x g y x g x g y x dy dyθ θ
∞ ∞

∈

+   
. 

Generalization of model (2.4a,b) to the case of married couples is similar. 

 

Empirical model specification: 

The job availability indexes θk ,k=M, F, are assumed to depend on the wages solely through 

the amount of schooling. Specifically, we assume that 

(C.5)                         1 2log k k kf f Sθ = + , 

where S is the length of education. Furthermore, we specify the deterministic part of the 

utility function ( )v ⋅  to be of the form 

(C.6)           

14
0

1 2 2
1

(10 ( ) 1) ((1 / ) 1) ((1 / ) 1)
log ( , , )

((1 / ) 1) ((1 / ) 1)

M F

M F

M F
F M M F

M F

M F

M F

C C h M h M
v C h h

h M h M

α β β

β β

γ γ γ
α β β

μ
β β

− − − − − − −= + +

− − − −+
 

where                    ( )2

2 5 6 7 8 9log log 6 6F F FA A CU COγ α α α α α= + + + + , 

                      2
2 10 11 12 13 14log (log ) 6 6M M MA A CU COγ α α α α α= + + + + , 
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0C  is the subsistence level of disposable income, kA  is the age for gender k, k = F, M,  

divided by 1014, CU6 and CO6 are the number of children below or equal to and above the 

age of six respectively, C is given by the budget constraint similarly to the case of single 

household. M is the maximum available hours of work, which is set as 3650 hours for a year. 

This corresponds to about 14 hours per day reserved for sleep and rest. We have chosen C0 to 

be approximately NOK 40,000 N , where N is the number of persons in the household. 

Disposable income, C, is measured as the sum of the annual household wage incomes after 

tax, household capital income after tax, and child allowances. Furthermore, it is assumed that 

2 2( | ) ( )F F F F Fg w h g w=  and 2 2( | ) ( ).M M M M Mg w h g w=  

 

 

 

 

Table C.1. Estimates of wage equations, men and women, 1997 

 Men Women 
 Standard Mincer Selection corrected Standard Mincer Selection corrected 
 Estimate Std Estimate Std Estimate Std Estimate Std 
Constant 4.112 0.030 4.117 0.035 4.132 0.030 4.149 0.036 
Education in years 0.043 0.002 0.043 0.002 0.038 0.002 0.037 0.002 
Experience in years/10  0.217 0.018 0.217 0.018 0.135 0.016 0.129 0.018 
(Experience in years/10)2 -0.036 0.004 -0.036 0.004 -0.021 0.003 -0.020 0.004 
Dummy for married  0.053 0.009 0.052 0.010 -0.022 0.008 -0.019 0.009 
logP   0.104 0.442   0.038 0.044 
Std of Error term 0.302  0.302  0.275  0.275  
No. Observations 5446  5446  5072  5072  
R square 0.15  0.15  0.10  0.10  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

                                                      
14 To avoid possible multi-colinearity, we have subtracted the mean of log(Ak) in estimation.  
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Table C.2. Estimates of the parameters of the utility function. Married couples, 1997.  

 Model 1 Model 2 
 (wage varies only over jobs) (wage varies only across individuals) 

Preferences:     
Consumption     
    Exponent 0.460 0.087 0.595 0.058 
    Scale 10�4 1.488 0.444 2.299 0.485 

    Subsistence* 40000 N   40000 N   

Female leisure     
    Exponent -2.622 0.239 -0.710 0.204 
    Constant 1.365 0.839 7.365 1.978 
    Log(age/10)** 1.886 1.060 2.730 0.638 
   Log(age/10) squared 7.859 3.901 7.008 1.980 
   No. children below or equal 6 years 

0.165 0.176 0.915 0.187 

   No. children above 6 years 0.029 0.106 0.726 0.139 
Male leisure     
    Exponent -0.454 0.562 0.495 0.212 
    Constant 1.365 0.839 10.876 3.135 
    Log(age/10)** 1.886 1.060 4.362 1.609 
    Log(age/10) squared 7.859 3.901 16.030 5.518 
   No. children below or equal 6 years 

0.165 0.176 0.379 0.374 

   No. children above 6 years 0.029 0.106 0.037 0.262 
     
Leisure interaction    0.228 0.163 3.247 1.342 
     

The parameters log Fθ ;     

    Constant -3.420 0.346 -3.264 0.417 
    Education/10 1.621 0.303 1.195 0.362 

The parameters log Mθ ;      

    Constant -1.181 2.184 -0.247 2.398 
    Education/10 -0.309 1.735 -0.843 1.886 
     
     
Opportunity density of offered 
hours      

    Male full-time peak 3.121 0.101 3.072 0.109 
   Female full-time peak 1.249 0.082 1.340 0.078 
   Male part-time peak 0.231 0.276 0.384 0.282 
    Female part-time peak 0.467 0.067 0.412 0.067 
     
Number of Observations  2515  2515  
Log likelihood -5309.44  -5242.71  

* N is the size of the household. ** To avoid potential multi-colinearity, we have used the deviation from the 
mean of log(age/10). 
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Appendix D 

Simulation of changes in the opportunity distribution of offered hours of work 

Recall that in our framework, 1 ( )Fg h  represents the proportion of jobs with hours of work, h, 

that are available to the wife, whereas the parameter Fθ  is a measure of job availability to the 

wife. Note that there are two peaks in the estimated offered hour distribution when ph h=

(part-time) and fh h= (full-time). The proposed reform can be interpreted as a change in the 

opportunity distribution of hours for the women, obtained by removing the part-time peak and 

increasing the full-time peak (since the part-time jobs are replaced by full-time ones) while 

keeping the job availability unchanged (i.e. Fθ is unchanged). Denote the new opportunity 

distribution by 1 ( ).Fg h∗  After the part-time peak has been removed, the offered hours are 

uniformly distributed apart from a peak at the full-time interval. Since there are five intervals 

for which the new opportunity density is constant we must have that 

                                    *
1 1 1( ) (1 ( ) ( )) / 5F F p F fg h g h g h= − −  

for .fh h≠  In addition, the sum of jobs in part-time and full-time intervals is the same before 

and after reform: 

                                    * *
1 1 1 1( ) ( ) ( ) ( ).F F p F F F F F p F F Fg h g h g h g hθ θ θ θ+ = +  

From these two equations it follows that  

1 1 1( ) (6 ( ) 6 ( ) 1) / 5.F f F p F fg h g h g h∗ = + −   

One can apply the model to simulate the corresponding realized labor supply distribution by 

replacing 1 ( )Fg h  with 1 ( ).Fg h∗  
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