von Brasch, Thomas

Working Paper

The cost-of-living index with trade barriers: Theory and evidence

Discussion Papers, No. 751

Provided in Cooperation with:
Research Department, Statistics Norway, Oslo

Suggested Citation: von Brasch, Thomas (2013) : The cost-of-living index with trade barriers: Theory and evidence, Discussion Papers, No. 751, Statistics Norway, Research Department, Oslo

This Version is available at:
http://hdl.handle.net/10419/192733

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Thomas von Brasch

The cost-of-living index with trade barriers
Theory and evidence

Abstract:
The standard cost-of-living index hinges on the assumption that there is free trade. Applying it to situations where trade barriers are present yields biased results with respect to a true cost-of-living index. Import price indices are particularly vulnerable to this bias since many of the goods included in these indices are characterised by either explicit or implicit trade barriers. In this article I generalise the cost-of-living index to also allow for barriers to trade in the form of quantity constraints. Further, I develop an upper bound index to the true cost-of-living index when trade barriers are present. The upper bound index has an intuitive interpretation and it is easy to calculate. In the case of clothing imports to Norway the mean annual upper bound cost-of-living bias due to trade barriers is between 0.9 - 1.5 percentage points. It is also shown that average prices, which is often used in the literature, is not a measure of cost-of-living and the annual underestimation of how trade liberalisation has impacted inflation from using average prices was at least 0.8 percentage points.

Keywords: Index numbers, Cost-of-living, Price level, Trade barriers.

JEL classification: C43, E31, F14

Acknowledgements: Thanks are due to Pål Boug, Frida von Brasch, Ådne Cappelen, John Dagsvik, Erling Holmøy, Håvard Hungnes and Terje Skjerpen for useful comments. The usual disclaimer applies.

Address: Thomas von Brasch, Statistics Norway, Research Department. E-mail: thomas.vonbrasch@ssb.no, vonbrasch@gmail.com
Discussion Papers comprise research papers intended for international journals or books. A preprint of a Discussion Paper may be longer and more elaborate than a standard journal article, as it may include intermediate calculations and background material etc.

© Statistics Norway
Abstracts with downloadable Discussion Papers in PDF are available on the Internet:
http://www.ssb.no
http://ideas.repec.org/s/ssb/dispap.html

For printed Discussion Papers contact:
Statistics Norway
Telephone: +47 62 88 55 00
E-mail: Salg-abonnement@ssb.no

ISSN 0809-733X
Print: Statistics Norway
Sammendrag

Vanlige prisindekser kan kobles til økonomisk teori. Denne koblingen forutsetter at det ikke er handelsbarrierer blant de godene som inngår i prisindeksen. Hvis det er handelsbarrierer kan de vanlige prisindeksene være misvisende. Dette gjelder eksempelvis for importprisindekser ettersom mange av de godene som importerer er kjennelegnet ved enten eksplisitte eller implisitte handelsbarrierer.

Et enkelt eksempel illustrerer problemet med bruken av vanlige prisindekser når det er handelsbarrierer. Anta at Norge importerer skjorter fra to land: Kina og Tyskland. Prisen på skjorter produsert i Kina er mye billigere enn prisen på skjorter produsert i Tyskland, men på grunn av handelsbarrierer har ikke nordmenn anledning til å importere så mange skjorter de ønsker fra Kina. Selv om prisen på en skjorte i Kina er lavere enn i Tyskland, så antar vi at inflasjonen, dvs. den relative endringen i prisen på en skjorte i Kina er høyere enn inflasjonen på skjorter produsert i Tyskland. Dette kan for eksempel skyldes at kinesiske produsenter ser at de kan ta høyere betalt for skjortene som selges fordi prisdifferansen mot skjorter produsert i Tyskland fremdeles er stor. Etter hvert som tiden går reduserer handelsbarriereene og flere billige kinesiske skjorter blir importert. Dette fører til at utgiftenes nordmenn har på skjorter reduseres – levekostnadene går ned. Denne reduksjonen i levekostnader burde gjenspeiles i importprisindeksen, men paradoksalt nok vil importprisindeksen i dette tilfellet vise at prisen på skjorter har økt. Dette skyldes at vanlige prisindekser er et vektet gjennomsnitt av inflasjonsrater (prisrelativer). Siden vi antok at inflasjonen i Kina var høyere enn i Tyskland, og da nordmenn importerte flere skjorter fra Kina, vil den høye inflasjonsraten i Kina vektes tyngre i prisindeksen. Selv om levekostnadene for nordmenn er redusert vil prisindeksen altså vise en økning.

1 Introduction

In contrast to the axiomatic approach to index numbers, the cost-of-living index is based on economic theory. The point of departure is a consumer minimising the expenditure necessary to reach a particular level of utility for a given set of prices. Given this minimum expenditure level, the cost-of-living index is defined as the ratio of the expenditures required to attain a particular indifference curve under two price regimes. Within this framework, it is assumed that the consumer is free to choose between all goods - there are no barriers to trade. If one applies the standard cost-of-living framework to situations where there are barriers to trade, it will not represent the true cost-of-living index. To illustrate this, consider the following paradox.

A country imports shirts from country L and H. Let p_{Lt} and p_{Ht} denote the price level in country L and H respectively. It is assumed that country L is a low cost country while country H is a high cost country ($p_{Lt} < p_{Ht}$). Moreover, inflation in country L is assumed somewhat higher than inflation in country H, i.e., $\Delta \ln p_{Lt} > \Delta \ln p_{Ht}$, where Δ is the first difference operator. Due to trade barriers such as quantity constraints, consumers cannot import as many shirts from country L that they would like to. Gradually, trade barriers are reduced, and more low cost shirts are imported from country L. This new availability of low cost shirts reduces the price consumers have to pay for shirts and increase their utility. The cost-of-living has been reduced. But the cost-of-living index would increase. To see this, consider the aggregate inflation rate from a Törnqvist price index. This index approximates the cost-of-living index with second order accuracy (Theil 1967, Diewert 1976). The aggregate inflation rate ($\Delta \ln p_t$) is given as a weighted average of the inflation rates in country L and H:

$$\Delta \ln p_t = \overline{s}_{Lt} \Delta \ln p_{Lt} + (1 - \overline{s}_{Lt}) \Delta \ln p_{Ht},$$ \hspace{1cm} (1)

where the overscore above a variable represents the moving average operator between two time periods, $\overline{s}_{Lt} = 1/2(s_{Lt} + s_{L,t-1})$, and where s_{Lt} is the value share of imports from the low cost country. The increased imports of shirts from country L, due to reduced trade barriers, increases the weighting of the inflation rate in country L, and reduces the weighting of the inflation rate in country H. Since inflation was assumed somewhat higher in country L than H, the overall inflation rate increases. That the cost-of-living index can increase, when the true cost-of-living has decreased, is a paradox. The paradox is caused by the fact that the standard cost-of-living framework implicitly assumes free trade.

The literature analysing how a gradual lowering of trade barriers and an increased integration of low cost countries into the world economy have put downward pressure on inflation rates try to circumvent this
problem by looking at a weighted sum of price levels. The geometric average price level is defined by:

\[
\ln p_t = s_{Lt} \ln p_{Lt} + (1 - s_{Lt}) \ln p_{Ht}.
\]

(2)

Pain et al. (2006) apply this framework to identify the impact of imports from emerging markets on inflation in OECD economies; Nickell (2005) and Coille (2008) use the framework to analyse the evolution of inflation in the United Kingdom; and Benedictow and Boug (2012) use empirically a similar framework to calculate foreign price impulses to Norwegian import prices of clothing. Using an arithmetic average instead of the geometric average, Kamin et al. (2006) study the impact of Chinese exports on import prices in 26 OECD countries. Røstøen (2004) applies the arithmetic average price framework to identify external price impulses to imported consumer goods in Norway. To see how the framework can be used to identify the impact from a gradual lowering of trade barriers on inflation, apply the quadratic approximation lemma (Diewert 1976, p. 118) to the geometric average price level (2) to get the inflation rate:

\[
\Delta \ln p_t = s_{Lt} \Delta \ln p_{Lt} + (1 - s_{Lt}) \Delta \ln p_{Ht} + \Delta s_{Lt} \left(\ln p_{Lt} - \ln p_{Ht} \right).
\]

(3)

The difference between the inflation rate from the Törnqvist index (1), and the inflation rate from the geometric average price level (2), i.e., the term \(\Delta s_{Lt} \left(\ln p_{Lt} - \ln p_{Ht} \right) \), is interpreted as the bias from applying the cost-of-living index to situations where trade barriers are present. If the value share of imports from the low cost country increases due to lowering of trade barriers, the bias is negative and the increased integration of low cost countries into the world economy is interpreted to have put downward pressure on inflation. The main problem with this approach is that average prices or geometric average prices are not measures of cost-of-living.\(^1\) It is therefore difficult to interpret results from these studies. A different approach is needed to identify a bias that can be interpreted as showing the cost-of-living effects from trade liberalisation.

The literature on index numbers has not focused on the cost-of-living bias arising from trade barriers in the form of quantity constraints. For example, The Boskin Commission highlighted four sources of bias in the Consumer Price Index: the new good bias, the outlet bias, the quality bias and the substitution bias (Boskin et al. 1996). Several articles have reviewed the results of the Boskin Commission, and others have provided ways to deal with these biases, see e.g., Diewert (1998) and Hausman (2003). Many articles have also linked a bias in the import price index to these biases. For example, Feenstra (1994) accounts

\(^1\)The inflation rate (3) is consistent with a cost-of-living index from a time varying Cobb Douglas utility function \(u_t = x_{Lt}^{\alpha_t} x_{Ht}^{1-\alpha_t} \), where \(x_{Lt} \) and \(x_{Ht} \) are the goods from the low cost and high cost country respectively, and \(\alpha_t \) is a time varying preference parameter equal to \(s_{Lt} \) in equilibrium. However, within this model, an increase in the import share is not caused by lowering of trade barriers, but it is caused by how preferences change towards the low cost country. This use of geometric average prices is therefore not suitable if the purpose is to analyse how a gradual lowering of trade barriers has impacted inflation.
for the new good bias in a constant-elasticity of substitution aggregate of import prices, and Feenstra and Shiells (1996) provide an international analogue to the outlet bias in the import price index, where foreign suppliers take the role of low cost outlets. The difference between these studies and the paradox mentioned above is that they assume tangency between the indifference curve and the budget line at some point. In the example above however, the indifference curve and the budget line are not tangent since trade barriers hinders consumers from importing the number of shirts they would like to. Taking account of cost-of-living effects from situations where the standard first-order conditions do not hold requires a modification of the original cost-of-living framework.

It is the purpose of this paper to generalise the original cost-of-living framework to also allow for barriers to trade. In Section 2, I introduce the cost-of-living framework, and then generalise it to allow for barriers to trade. This generalisation encompasses the new good bias, i.e., the welfare gain that consumers experience when a new product appears. The new good bias represents two extremes: the time before the new good is introduced can be viewed as a situation of infinitely high trade barriers, and the time after the good is introduced can be viewed as there being no trade barriers. The main concern of this paper is the situation between these two extremes, i.e., the case when there are some trade barriers that are gradually removed. The cost-of-living bias arising from trade barriers (henceforth trade barrier bias) is distinctly different from the new good bias in two important respects: first, identification of the new good bias is possible since one can estimate the demand curve for the new good and calculate the virtual price that sets demand equal to zero, see e.g., Hausman (1999). In contrast, the trade barrier bias cannot be identified from price and quantity data alone, since the utility function is not in any state tangent to the budget line when trade barriers are present - consumption patterns will not reveal the form of the utility function. Second, the introduction of a new good will in itself signal a potential new good bias since the quantity level goes from zero to positive. In contrast, the presence of a trade barrier bias cannot be identified from price and quantity data since the product not traded freely is in the sample at all time periods. It is only external knowledge about the existence of trade barriers that can signal a potential bias.

Calculating the welfare effects of barriers to trade in the form of quantity constraints dates at least back to the literature on rationed households which began during the Second World War when the essentials of life were rationed in many countries. Important contributions are Rothbarth (1941), Tobin (1952) and Howard (1977). Ahlheim (1998) provide an excellent textbook introduction. As with the identification of the new good bias, welfare measurement with quantity constraints in general, based on either compensating variation or a distance function, hinges on the availability of data from a period without quantity constraints. For example, the method developed by Breslaw and Smith (1995) requires knowledge of the unconstrained Marshallian demand function. Only if data from a period without quantity constraints are available can the
unconstrained Marshallian demand function be estimated and the welfare effects of quantity constraints be identified. In many cases, the state of no quantity constraints has not been reached, and the standard means of identifying welfare effects can not be applied.

This paper takes a different route to identity the cost-of-living effects from trade barriers. The purpose is not to provide an unbiased estimate of the true cost-of-living index, but it is to provide an upper bound to the true cost-of-living index. An upper bound index can be applied also when the state of free trade has not yet been reached. In Section 3, an index that serves as an upper bound to the true index with CES preferences is constructed. This index is based on goods being perfect substitutes, but it exclude the cases when perfect substitute preferences will no longer serve as an upper bound to CES preferences in general. The upper bound index has an intuitive interpretation and it is easy to calculate.

The upper bound index developed in Section 3 is applied in the empirical application in Section 4. Using data on imports of textile and clothing to Norway, I identify an upper bound of the true cost-of-living in the case of imports of clothing from China to Norway between 1988 and 2012. In most of the time period, the price of clothing from China was between 40% - 80% lower than the price of clothing from other countries. Due to a gradual removal of trade barriers, the expenditure share of clothing from China increased from about 3% to about 50% over the sample period. Using a Laspeyres or a Paasche index yields a price level in 2005 that is about the same as the price level in 1988. In contrast, if the quality of Chinese clothing is between 80% and 100% compared with clothing from other countries, an upper-bound to the cost-of-living index shows that the price of clothing was between 20% and 30% lower than the level indicated by the Laspeyres-Paasche band. This corresponds to an average annual bias between 0.9 - 1.5 percentage points. The empirical application illustrates that even a conservative estimate of the trade barrier bias yields results of first order importance. Moreover, the upper bound index is compared with the geometric average price index (2) and the corresponding average price index. In contrast to a valid measure of cost-of-living, these average price indexes yields a higher inflation rate than the inflation rate from the upper bound of the cost-of-living index. Since the true cost-of-living index is below the upper bound index, the yearly underestimation of how trade liberalisation has impacted inflation from using average prices is at least between 0.6 - 0.8 percentage points. The last section concludes.

2 The cost-of-living index

I proceed by first defining the standard cost-of-living index and then, in the second part, I generalise the framework to allow for changes in the index due to lowering of trade barriers.
2.1 The standard index

Consider a utility maximising consumer. Let \(x'_t = (x_{1t}, x_{2t}, \ldots, x_{nt}) \) denote a vector of quantities at time \(t \) and let \(p'_t = (p_{1t}, p_{2t}, \ldots, p_{nt}) \) be the corresponding price vector where ‘ indicates the transpose operator. Further, let \(u_t = f(x_t) \) denote the consumer’s utility function as a function of quantities and let \(c(p_t, u_t) \) be the expenditure function. The expenditure function \(c(p_t, u_t) \) represents the minimal amount of income necessary to achieve the utility level \(u_t \) at prices \(p_t \):

\[
c(p_t, u_t) = \min_{x_t} \{ p'_t x_t : u_t = f(x_t) \}. \tag{4}
\]

A cost-of-living index is the ratio of the expenditures required to attain a particular level of utility under two price regimes. In particular, the standard Konüs (1939) cost-of-living index \(I^K_t \) is defined as

\[
I^K_t \equiv c(p_t, u_t - 1)/c(p_{t-1}, u_{t-1}). \tag{5}
\]

Together, (4) and (5) constitute the cost-of-living framework. The index shows the change in the minimal cost necessary to sustain a given level of utility when prices change between period \(t - 1 \) and \(t \). From this definition, it is obvious that if prices remain unchanged between the two time periods, the cost-of-living index is unity. If the consumer behaved optimally in period \(t - 1 \), and if prices remain constant, the consumer will not change behaviour between time periods for a given utility level. The numerator and denominator are equal. Any change in the cost-of-living index is therefore caused by a change in prices.

The cost-of-living framework hinges on the assumption that the consumer is free to choose between all goods. There are no restrictions on the availability of goods in the definition of the expenditure function (4). As a consequence, the index (5) yields a biased estimate of cost-of-living when there are barriers to trade.

2.2 The index with trade barriers

In the previous section, it was shown that any change in the cost-of-living index must be caused by a change in prices. However, increased imports from low cost countries is not a phenomenon caused by changing relative prices or changing income. It is caused by increased availability of low cost goods and services. This increase in availability allows consumers to enjoy a plethora of new products which increase their utility even when income and prices remain unchanged. A cost-of-living index that takes the effects of trade liberalisation into account should therefore decrease when the amount of available goods increases.

To be more precise, a cost-of-living index should show the ratio of the expenditures required to attain a
particular indifference curve under two price regimes and between two different time periods:\footnote{This definition is similar to the one adopted by Feenstra (1994). It is also equivalent to equation (4) in Balk (1989), who studied time-varying preferences. If preferences are time-varying, (6) implies a cardinal interpretation of utility. In the context of this paper, however, the utility function is assumed constant across time periods, and thus represents an ordinal entity.}

\[I_t \equiv c_t(p_t, u_{t-1})/c_{t-1}(p_{t-1}, u_{t-1}). \]

(6)

Observe that the difference between this definition and the cost-of-living index (5) is the time subscript on the expenditure functions. Even when prices are unchanged, and utility is kept constant, this index can change due to exogenous factors such as lowering of trade barriers. Moreover, note that allowing the cost-of-living index to change, when prices are unchanged, violates one of the axiomatic requirements for price indexes: the identity property explicitly states that if prices are constant over the two periods being compared, then the price index should equal one (Balk 2012, p. 58). The purpose of this article is to identify the welfare gains from trade liberalisation; gains that occur irrespective of price changes. To allow for such welfare gains in a cost-of-living index, the identity property must be violated.

I proceed by defining an economy with restrictions on trade. Let the index \(j \in J \) run across goods where such restrictions apply. The consumption of any good \(j \) cannot exceed a predefined level \(\bar{x}_{jt} \): \(x_{jt} \leq \bar{x}_{jt} \). The nature of the process \(\bar{x}_{jt} \) is exogenous. It represents the restriction that hinder the consumer from choosing freely between goods. Such restrictions can be due to direct quota restrictions or it can be due to the sluggish response of supply from the gradual removal of trade barriers. Incorporating these trade barrier restrictions yields a new definition of the expenditure function:

\[c_t(p_t, u_t) \equiv \min_{\dot{x}_t} \{ p'_t \dot{x}_t : u_t = f(x_t), x_{jt} \leq \bar{x}_{jt}, j \in J \}. \]

(7)

It shows the minimal expenditure necessary to reach a particular level of utility, given prices, a utility function and possible restrictions on availability. Together, (6) and (7) constitute the generalisation of the cost-of-living index framework (4) and (5). If there are no trade barriers, i.e., \(\bar{x}_{jt} = \infty \), \(j \in J \), this expenditure function is equivalent to the expenditure function in the previous section. With respect to the topic of this paper, the cost-of-living framework (4) and (5) can thus be interpreted as a situation of free trade between countries.

The new good bias is also encompassed by this framework. Assume that a new good, say \(x_{jt} \), is introduced in period \(t = s \). Before period \(s \), there cannot be consumption of good \(j \), i.e., \(\bar{x}_{jt} = 0 \) when \(t < s \). When the new good is introduced to the market, there is no restriction on the consumption of the good, i.e., \(\bar{x}_{jt} = \infty \) when \(t \geq s \). This highlights the difference between the bias resulting from the introduction of new goods and
the bias resulting from gradual removal of trade barriers. The former is a one time change in availability, while the latter is a gradual change in availability.

This difference between the new good bias and the trade barrier bias is crucial in terms of identification. Consider for example how Hausman (1999) identified the new goods bias of cellular telephones. After these telephones were introduced to the market, Hausman (1999) estimated the demand curve and then solved for the expenditure function using Roy’s identity. He identified the bias of cellular phones by solving for the price which causes the demand for cellular phones to be zero. Note that only if consumers are free to choose between all products will their pattern of consumption reveal their underlying preferences. This approach therefore depends on consumers being free to choose between the new good and other goods, i.e., \(x_{jt} = \infty \), after the new good has been introduced, \(t \geq s \). The impact from trade barriers is different in this respect since the state of free trade (\(x_{jt} = \infty, j \in J \)) has not yet been reached. We have moved gradually from a state with trade restrictions to a state with less trade restrictions. In terms of identification this is a problem. If observed consumption patterns are the result of increased availability, and not the result of income changes and relative price changes, consumption patterns will not reveal the form of the utility function.

This is illustrated graphically in Figures 1a and 1b. Point \(A \) in Figure 1a shows the situation before the new good \(x_1 \) has been introduced. This is tantamount to a situation of autarky in the international trade literature. If \(x_1 \) cannot be imported, it is only \(x_2 \) that is consumed. The indifference curve labeled \(U_A \) corresponds to the level of utility reached at point \(A \). When the economy opens up to trade, and there are no restrictions on the imports of \(x_1 \), the optimal consumption level will be at point \(B \). Opening up for trade increases the utility of the consumer, as shown by the outward movement of the indifference curve to \(U_B \). Feenstra (1994) shows how to incorporate this movement from autarky to free trade into a cost-of-living index when using a CES utility function. Feenstra and Weinstein (2010) show how to do it from a Translog expenditure function. The concern of the current paper is the situation shown in Figure 1b. Point \(\bar{A} \) shows the consumption level when some trade restrictions are present. Point \(\bar{B} \) shows the consumption level when fewer trade restrictions are present. The movement from \(\bar{A} \) to \(\bar{B} \) increases the utility of the consumer, i.e., the indifference curve moves outwards from \(U_A \) to \(U_B \). However, the indifference curves are not in any of the states tangent to the budget line. Since the trade barrier restriction holds, the standard means of identifying compensating variation based on observed prices and quantities cannot be applied.

Figure 1 also illustrates another important difference between the new good bias and the trade barrier bias. The new goods bias refers to the welfare increase when the new product is included in the cost-of-living index: In period \(A \), the good \(x_1 \) is not included in the index and in period \(B \), it is included in the index. In other words, the introduction of a new good into the index signalises a potential bias. In contrast, there is no such signal of a bias arising from a gradual removal of trade barriers. The good \(x_1 \) is included in
the index in both time periods. It is only outside knowledge about the existence of trade barriers that can signal a potential bias. For example, it is a historical fact that the Multi-Fibre Arrangement imposed quota restrictions on imports of textiles from China. This fact is utilised in the empirical analysis in Section 4 to evaluate the size of the bias in the case of textile imports to Norway.

3 An upper bound to the true cost-of-living index

The purpose of this section is to develop an index that will serve as an upper bound to the true reductions in cost-of-living from a gradual lowering of trade restrictions. To this end, I consider a constant elasticity of substitution (CES) utility function over \(n \) goods. The index \(j \in J = \{1, 2, \ldots, n-1\} \) runs across the \(n-1 \) goods with trade restrictions. Since CES utility is weakly separable, I let the \(n \)th good, \(x_n \), represent an aggregate good of all the goods that are traded freely. The expenditure function (7) in the CES economy with barriers to trade can then be written:

\[
\begin{equation}
c_t(p_t, u_t) = \min_{x_t} \left\{ p_t' x_t : u_t = \left(\sum_{i} \delta_i x_{it}^p \right)^{1/p}, x_{jt} = \bar{x}_{jt} < x_{jt}^* \text{ for } j \in J \right\}
\end{equation}
\]

\[
= \sum_{j \in J} p_{jt} x_{jt} + \frac{p_{nt}}{\delta_n} \left(u_t^0 - \sum_{j \in J} \delta_i x_{jt}^p \right)^{1/p}. \tag{8}
\]

The parameter \(\delta_i \) in the CES utility function can be thought of as a quality parameter for good \(i \) and the elasticity of substitution is defined by \(\sigma = 1/(1-\rho) \). \(x_{jt}^* \) denotes the optimal consumption of good \(j \) when there are no barriers to trade, i.e., the cost minimising consumption of good \(j \) in (4). Since the first \(n-1 \) goods are characterised by binding trade restrictions, the second equality follows from substituting the utility
function for the nth good in the budget constraint. Utilising that $y_{t-1} = c_{t-1}(p_{t-1}, u_{t-1})$, we can write the cost-of-living index (6) in the CES economy as a function of observed prices, quantities and income:

$$I_t^{CES} = \left(\sum_{j \in J} p_{jt} x_{jt} + p_{nt} \left(x_{nt,t-1}^{p} - \sum_{j \in J} (\delta_j/\delta_n)(x_{jt}^{p} - x_{jt,t-1}^{p}) \right) \right)^{1/\rho} / y_{t-1}, \quad (9)$$

where the numerator is equation (8), evaluated at u_{t-1}.\(^3\) To clarify concepts further, I follow how Diewert (1998, p. 51) defined the outlet substitution bias and define the cost-of-living bias due to trade barriers (B_t^{CES}) as the difference between the true index I_t^{CES} and the Laspeyres index I_t^L:

$$B_t^{CES} \equiv I_t^{CES} - I_t^L. \quad (10)$$

The case of perfect substitutes ($\rho = 1$) is of particular interest, for three reasons: the bias has an intuitive interpretation, it is easy to calculate, and the case of perfect substitutes will normally represent an upper bound to the true index (I_t^{CES}). It follows from (9) that the index when goods are perfect substitutes (I_t^{PS}) is given by:\(^6\)

$$I_t^{PS} = I_t^L + \sum_{j \in J} B_{jt}^{PS}, \quad (11)$$

where the good specific bias (B_{jt}^{PS}) is given by:\(^7\)

$$B_{jt}^{PS} = \frac{(p_{jt} - (\delta_j/\delta_n)p_{nt})}{y_{t-1}} \Delta x_{jt}. \quad (13)$$

The numerator represents the quality adjusted price difference between the low cost and the high cost good. The whole fraction represents the quality adjusted amount saved per unit of the low cost good with respect to the expenditure level in the previous period. In total, the bias when goods are perfect substitutes is defined as the (quality adjusted) amount saved from the new availability of low cost goods relative to the previous periods expenditure level. For example, consider the case when $n = 2$ and assume that prices do not change between two consecutive time periods. The Laspeyres index is then unity. If the total budget is

\(^3\)That is, $u_{t-1}^{n} = \sum_{j \in J} \delta_j x_{jt,t-1}^{p}$ is inserted for u_{t-1}^{n} in (8).

\(^4\)It is assumed that changes in \hat{x}_{jt} are such that $x_{nt,t-1}^{p} - \sum_{j \in J} (\delta_j/\delta_n)(x_{jt}^{p} - x_{jt,t-1}^{p}) > 0$.

\(^5\)The Laspeyres index is defined as $I_t^L = \frac{(\sum_{j \in J} p_{jt} x_{jt})}{(\sum_{j \in J} p_{jt} x_{jt,t-1})} = \frac{\sum_{j \in J} s_{jt,t-1} (p_{jt}/p_{jt,t-1})}{\sum_{j \in J} s_{jt,t-1} (p_{jt,t-1}/p_{jt})}$ for $i \in J \cup \{n\}$.

\(^6\)See Section 6.1 in the Appendix.

\(^7\)The formula (13) cannot be used directly to calculate the bias when comparing aggregates and not price levels of specific goods. For a given spatial index, (p_{jt}/p_{nt}), and temporal indices, $(p_{jt}/p_{jt,t-1})$ and $(z_{jt}/z_{jt,t-1})$, the bias can be written in a more usable form:

$$B_{jt}^{PS} = ((p_{jt}/p_{jt,t-1}) - (\delta_j/\delta_n)(p_{jt}/p_{nt})(p_{jt}/p_{jt,t-1})) (z_{jt}/z_{jt,t-1}) s_{jt,t-1}, \quad (12)$$

where $s_{jt,t-1}$ is the cost share of good j in period $t-1$.

\(^{(12)}\)
\[y_{t-1} = 500, \text{ the quality adjusted price difference between the goods is } (p_{1t} - (\delta_1/\delta_2)p_{2t}) = 10, \text{ and five more low cost goods are purchased } (\Delta x_{1t} = 5), \text{ the bias is } B^{PS}_t = -0.1. \text{ The true index is in this case } I^{PS}_t = 0.9.\]

The purpose of the following is to establish conditions when the index \(I^{PS}_t \) and the bias \(\sum_{j \in J} B^{PS}_{jt} \) represents a conservative approach to identifying the true index \(I^{CES}_t \) and the bias \(B^{CES}_t \). The index \(I^{PS}_t \) is said to represent an upper bound to the true index \(I^{CES}_t \) if \(I^{PS}_t - I^{CES}_t > 0 \). To provide some intuition, it is appropriate to first consider the case when \(n = 2 \):

Proposition 1 (Upper bound, \(n = 2 \)) Consider the cost-of-living index (9) when \(n = 2 \). Let the lowering of trade barriers be small, i.e., \(x_{1,t} = \epsilon_1 x_{1,t-1} \) where \(\epsilon_1 \) is greater than, but close to unity, and let \(MRS^{CES}_{1,t} \) denote the marginal rate of substitution of the CES utility function: \(MRS^{CES}_{1,t} \equiv \frac{\delta_1}{\delta_2} \frac{x^1_{2,t-1}}{x^2_{2,t-1}}. \) The index \(I^{PS}_t \) represent an upper bound to the true index \(I^{CES}_t \) if, and only if

\[
MRS^{CES}_{1,t} > MRS^{PS}_{1,t-1}. \tag{14}
\]

Proof: See the appendix, Section 6.2.

It follows from Proposition 1 that the index \(I^{PS}_t \) represents an upper bound to the true index \(I^{CES}_t \) only if \(x_{1,t-1} < x_{2,t-1} \). The intuition underlying this result is illustrated in Figure 2a. In this static presentation,

Figure 2 - Trade barrier bias - perfect substitutes as an upper bound: \(I^{PS}_t - I^{CES}_t > 0.\)

it is assumed that prices and income are unchanged between the two periods. \(U^{CES} \) shows the indifference curve for a CES utility function and the line \(U^{PS} \) represents the indifference curve when goods are perfect substitutes. Both indifference curves intersect the budget line at point \(A \). When availability is restricted beyond this point, i.e., \(x_1 < x_{1A} \), the marginal rate of substitution for \(U^{CES} \) is higher than for \(U^{PS} \):
$MRS^{CES} > MRS^{PS}$. A consumer with preferences U^{CES} is willing to give up more units of x_2 in exchange for a unit of x_1, compared with a consumer with preferences U^{PS}. As a result, a lowering of trade barriers leads to a larger increase in utility, and a lower cost-of-living, when preferences are U^{CES}, compared with that of perfect substitutes U^{PS}. The index I^{PS}, which is based on U^{PS}, will thus represent an upper bound to the true index I^{CES} based on preferences U^{CES}. When the available amount of x_1 exceeds x_{1A}, the situation changes. The marginal rate of substitution for U^{CES} is then lower than the marginal rate of substitution for U^{PS}. In this case the index I^{PS} represents a lower bound to the true index I^{CES}. The line going from the origin through point B is the expansion path connecting the optimal consumption bundles as the budget increases. For the CES utility function, the expansion path is given by:

$$x^*_2 = f(x^*_1) = \left(\frac{\delta_1 p_1}{\delta_2 p_2} \right) x^*_1.$$

It will be to the right of the 45° degree line if $p_1/p_2 < \delta_1/\delta_2$.

Figure 2b illustrates the case when the expansion path is to the left of the 45° degree line, i.e., when x_1 is the high priced good, taking quality into account: $p_1/p_2 > \delta_1/\delta_2$. The indifference curve U^{PS} shows that it is optimal to only consume x_2. However, if the lowering of trade barriers leads to a movement from x_{1A} to x_{1B} for the true underlying preference function, this will be interpreted as a decrease in the level of utility and an increase in cost-of-living: the trade barrier bias B_{j}^{PS} (13) is positive. The index I^{PS} when goods are perfect substitutes is still an upper bound, but for the wrong reasons. Creating an index that serves as an upper bound to the true index when trade barriers are reduced should exclude the case illustrated in Figure 2b.

Some adjustments must be made to the index (11) to make it an upper bound to the true index in the n good case. As illustrated in Figure 2a, the index I^{PS} represents a lower bound if $x_1 > x_{1A}$. To exclude this case, an intuitive approach is to set the good specific bias B_{j}^{PS} to zero for all goods that lie between x_{1A} and x_{1B}:

Proposition 2 (Upper bound, n) Consider the cost-of-living index (9) when $p_{j,t-1}/p_{n,t-1} < \delta_j/\delta_n$ for $j \in J$. Let the lowering of trade barriers be small, i.e., $x_{j,t} = \epsilon_j x_{j,t-1}$ where ϵ_j is greater than, but close to unity. Further, separate the $n-1$ goods that are characterised by trade barriers by dividing the set $J = \{1, 2, \ldots, n-1\}$ into two complement sets $A_t = \{j \in J : 0 \leq x_{j,t-1} \leq x_{n,t-1}\}$ and $A^*_t = \{j \in J : x_{n,t-1} < x_{j,t-1} < x^*_j,t-1\}$. The cost-of-living index

$$I^L_t + \sum_{j \in A_t} B_{j}^{PS}$$

is an upper bound to the price index I^{CES}_t if $MRS_{j,t-1}^{CES} > p_{j,t}/p_{n,t}$ for $j \in A^*_t$, where $MRS_{j,t}^{CES}$ denote the marginal rate of substitution of the CES utility function: $MRS_{j,t}^{CES} = \frac{\delta_j}{\delta_n} \frac{x_{j,t}^{\rho-1}}{x_{n,t}^{\rho-1}}$. Proof: See the appendix,
The condition in Proposition 2 is not restrictive and it is far from necessary. Since \(x_{j,t-1} < x^*_{j,t-1} \), the marginal rate of substitution is greater than or equal to the price ratio at time \(t - 1 \):
\[
MRS^C_{j,t-1} > \frac{p_{j,t-1}}{p_{n,t-1}}.
\]
The condition will thus hold if
\[
MRS^C_{j,t-1} > MRS^C_{j,t},
\]
which is equivalent to an increase in the relative consumption of the restricted good: \(\Delta (\frac{x_{j,t}}{x_{n,t}}) > 0 \). Alternatively, it will hold if the relative price decreases or remains unchanged between the two time periods:
\[
\Delta (\frac{p_{j,t}}{p_{n,t}}) \leq 0.
\]

The use of the index (15) in Proposition 2 to calculate how trade barriers have impacted cost-of-living requires knowledge about differences in quality \(\delta_j/\delta_n \). Since preferences are not known, and since we cannot use the standard means of identifying compensating variation when trade barriers are present, an alternative is to identify how the cost-of-living index in Proposition 2 has evolved for plausible differences in quality. It is to this I now turn.

4 Empirical application

The purpose of this section is to illustrate the importance of the trade barrier bias in the case of clothing imports from China to Norway. The data used in this analysis are based on the two digit SITC from the external trade statistics published by Statistics Norway.\(^9\) Let \(x_{1t} \) represent the amount of imported clothing from China (measured in tonnes), and \(x_{2t} \) represent the amount of imported clothing from all other countries and let \(p_{1t} \) and \(p_{2t} \) be the corresponding unit values. Because these measures of quantity are not adjusted for differences in quality or other characteristics, unit values are considered less reliable than price surveys, see e.g., Silver (2010). For example, the unit values of audiovisual equipment would typically be unreliable since it has gone down in weight at the same time as technological advances has been considerable. For clothing however, where technological advance has been less pronounced, it is assumed that unit values are indicative of movement in trade prices. Figure 3 shows how the relative price level \(\frac{p_{1t}}{p_{2t}} \) and quantity level \(\frac{x_{1t}}{x_{2t}} \) have developed between 1988 and 2012.\(^{10}\) In 1988, the price level on imported clothing from China was about 40% compared with the price of clothing from other countries. Over the time period, the relative price level has about doubled to 80% in 2012. The relative level of imported goods from China has also increased during this time period, from a level of about 8% in 1988 to 120% in 2012. This massive increase in imports from China, together with the price surge, begs the question: why has imports from

\(^8\) \(\Delta (\frac{p_{j,t}}{p_{n,t}}) \leq 0 \) imply that \(\frac{p_{j,t-1}}{p_{n,t-1}} \geq \frac{p_{j,t}}{p_{n,t}} \).

\(^9\) Data are taken from the external trade statistics, Table 08809, see https://www.ssb.no/en/utenriksokonomi. Only countries with a positive level of imports across the sample are included. In the end, the data set holds 51 countries. On average, these countries account for 96% of the value of clothing imports to Norway.

\(^{10}\) The spatial index is calculated as \(\frac{p_{1t}}{p_{2t}} = \sum_{C \in C} x_{it} (p_{1t}/p_{it}) \), where \(i \) run across all other countries than China, \(C \), and the weights are the import shares: \(w_{it} = p_{it} x_{it} / \left(\sum_{C \in C} p_{it} x_{it} \right) \). The index \(\frac{x_{it}}{x_{2t}} \) is calculated residually, from the product rule:
\[
\frac{y_{1t}}{y_{2t}} = \frac{p_{1t}}{p_{2t}} \frac{x_{1t}}{x_{2t}},
\]
where \(y_{1t} = p_{1t} x_{1t} \) and \(y_{2t} = p_{2t} x_{2t} \)
China risen so much when imports from China have become so much more expensive?

Figure 3 – Imports of clothing: \((p_{1t}/p_{2t}) \) and \((x_{1t}/x_{2t}) \)

Within the standard cost-of-living index framework, Figure 3 is consistent with clothing produced in China being a Giffen good, i.e., a good that people paradoxically consume more of as the price rises. Another, and more plausible explanation, is that this surge in imports is due to a gradual removal of trade restrictions. After six years of bilateral trade negotiations, Norway rejoined the Multi-Fibre Arrangement (MFA) in 1984. The MFA governed world trade in textiles and garments from 1974 through 2004 by imposing quotas on the amount developing countries could export to developed countries. These quota restrictions came in addition to already high tariff rates, ranging from 17% to 25%. Both quota restrictions and tariffs were gradually reduced during the 1990s and the quota arrangement on clothing expired in 1998 (Wilhelmsen and Høegh-Omdal 2002). This historical fact tells us that in the first ten years of the sample period, there were indeed restrictions on availability.

Further, and maybe more importantly, the general lowering of trade barriers has led to an increase in supply of clothing from China. At the 8th round of multilateral trade negotiations, known as the Uruguay round, the Agreement on Textiles and Clothing (ATC) ended the MFA and began the process of integrating textile and clothing products into GATT/WTO rules. China entered the WTO on December 11 2001 and on January 1, 2005, the ATC, and all restrictions thereunder, were terminated. This lead to a surge in Chinese exports of textile and clothing. For example, China’s share of U.S. imports jumped threefold, from 10 to 33 %, between the time it joined the WTO and the end of the ATC regime. Consistent with a terms-of-trade effect, most of this growth was in existing varieties (the intensive margin) (Brambilla et al. 2010). In line with these findings, Figure 3 shows that the relative demand for Chinese clothing continued to increase also in Norway after China joined the WTO.

These historical restrictions on trade in the textile industry, together with the massive increase in imports
from China, support the hypothesis that consumption of clothing from China has been less than under a free trade regime.

\[\text{Figure 4 – Cost-of-living and the trade barrier bias} \]

The upper bound index follows from Proposition 2 and equals \(I_t^L + B_{1t}^{PS} \) before 2005 and since \(x_{1t-1} > x_{2t-1} \) for \(t \geq 2005 \), it equals \(I_t^L \) after 2005, where the good specific bias is defined by \(B_{1t}^{PS} = \left(\frac{x_{1t}}{x_{2t}} - \frac{\delta_1}{\delta_2} \right) \Delta x_{1t} \). It is drawn for both \(\delta_1/\delta_2 = 1 \) (the lower part of the band) and \(\delta_1/\delta_2 = 0.8 \) (the upper part of the band).

Figure 4 shows the development in the cost-of-living index with trade barriers compared with the Laspeyres-Paasche band. It is well known that the true cost-of-living index lies within the Laspeyres-Paasche band when preferences are homothetic and when there are no barriers to trade. The difference between the true cost-of-living index and either the Laspeyres or Paasche index represents a substitution bias, i.e., the bias from not taking account of how consumers switch away from goods that have become relatively more expensive and toward goods that have become relatively less expensive. By comparing the trade barrier bias with the Laspeyres-Paasche band yields a visual picture of its importance with respect to the substitution bias.

If the increase in imports from China is caused by substitution and income effects, and there have been no restrictions on availability during this time period, the standard cost-of-living framework (4)-(5) is valid, and the true index lies somewhere within the Laspeyres-Paasche band. The Laspeyres-Paasche band shows that the standard cost-of-living index was about at the same level in 2005 as in 1988, and it was about 30% higher in 2012 than in 1988.

On the other hand, if the increase in imports is a result of increased availability due to lowering of trade barriers and an increase in supply, the cost-of-living index with trade barriers in Proposition 2 should be applied. The lower part of the band is the index (15) when clothing from China and clothing from other countries are assumed to be of equal quality: \(\delta_1/\delta_2 = 1 \). In the upper part of the band the value \(\delta_1/\delta_2 = 0.8 \) have been imposed. The interpretation is that the quality of Chinese clothing is 80% compared with clothing
The upper bound index is equation (15) given in Proposition 2, using $\delta_1/\delta_2 = 1$. The average price index and the geometric average price index are chained from the index p_t/p_{t-1}, where the price levels are defined by $p_t = s_{1t} p_{1t} + (1 - s_{1t}) p_{2t}$ and $\ln p_t = s_{1t} \ln p_{1t} + (1 - s_{1t}) \ln p_{2t}$ respectively.

from other countries. From the conditions of Proposition 2, the goods specific bias (B_{PS}^t) is only subtracted from the Laspeyres index if $x_{1t-1} < x_{2t-1}$. This does not mean that the trade barrier bias is not present when $x_{1t-1} > x_{2t-1}$. From Figure 2a and Proposition 2 it follows that the trade barrier bias is also present when $x_{1A} < x_1 < x_{1B}$, but the index I_{PS}^t no longer constitute an upper bound. In Figure 3 it can be seen that the case of perfect substitutes is an upper bound until $t = 2005$. The shaded area in Figure 4 marks the part of the sample when this condition do not hold. From 2005 to 2012 the upper bound index is the Laspeyres index. It is therefore in the period prior to 2005 that the discrepancy between the Laspeyres-Paasche band and the band of the upper bound index occurs. In 2005, the upper bound index is between 70% and 80% of the Laspeyres-Paasche band. This amount to a mean annual inflation rate bias between 0.9 - 1.5 percentage points between 1988 and 2005.

In Figure 5 the upper bound index (15) is compared with the average price indexes often used in the literature, see e.g., Pain et al. (2006) and Kamin et al. (2006). The average price index is calculated from the average price level $p_t = s_{1t} p_{1t} + (1 - s_{1t}) p_{2t}$ and the geometric average price index is calculated using the geometric average price level $\ln p_t = s_{1t} \ln p_{1t} + (1 - s_{1t}) \ln p_{2t}$. What is striking about this comparison is that the average price indexes both lie above the upper bound index. Since the true cost-of-living index, for any value of the elasticity of substitution σ, lies below the upper bound index, an alternative measure of the impact of trade liberalisation on cost-of-living should, at a minimum, also lie below the upper bound index. That the average price indexes lie above the upper bound index illustrates how average prices is not a measure of cost-of-living effects from trade liberalisation. The mean inflation rate between 1988 and 2005 of the average price index was -1.1% and the mean inflation rate of the geometric average price was
-1.3%. In contrast, the mean inflation rate of the upper bound index was -1.9%. In other words, the annual underestimation of how trade liberalisation has impacted inflation from using average prices or geometric average prices was at least 0.8 and 0.6 percentage points respectively.

5 Conclusion

The main contribution of this paper is the construction of a cost-of-living index that can be applied also when there are barriers to trade. In contrast, the standard cost-of-living index assumes that there is free trade. Applying it to situations where trade barriers are present yields biased results. Import price indices are particularly vulnerable to this bias since many of the goods included in these indices are characterised by either explicit or implicit trade barriers. Moreover, this trade barrier bias is distinctly different from the four biases discussed by the Boskin Commission (Boskin et al. 1996) and it is only external knowledge about the presence of trade barriers that can signal a potential bias.

Average prices have often been used to measure the impact of trade liberalisation on inflation to circumvent the problem of how the standard cost-of-living index implicitly assumes free trade. As is shown in this article, average prices is not a measure of cost-of-living, and it was shown to greatly underestimate the effect of trade liberalisation on inflation in the case of clothing imports to Norway.

The index constructed in this article represents an upper bound to the true cost-of-living index when preferences are of CES form. It thus provides a conservative estimate of the reductions in cost-of-living from trade liberalisation.
References

Brambilla, I., Khandelwal, A. and Schott, P.: 2010, China’s Experience under the Multi-Fiber Arrangement (MFA) and the Agreement on Textiles and Clothing (ATC), China’s Growing Role in World Trade, 1 edn, University of Chicago Press, pp. 345–387.

Appendix

6.1 The cost-of-living bias due to trade barriers when goods are perfect substitutes

When goods are perfect substitutes, \(\rho = 1 \), the index (9) can be written:

\[
I_{PS}^t = \left(\frac{\sum_{j=1}^{n-1} p_{jt} x_{jt} + p_{nt} x_{nt} - p_{nt} \sum_{j=1}^{n-1} (\delta_j/\delta_n) (x_{jt} - x_{j,t-1})}{\sum_{j=1}^{n-1} (\delta_j/\delta_n) (x_{jt} - x_{j,t-1})} \right) \big/ y_{t-1}
\]

\[
= \left(\frac{\sum_{j=1}^{n-1} p_{jt} x_{jt} + p_{nt} x_{nt} - p_{nt} \sum_{j=1}^{n-1} (\delta_j/\delta_n) \Delta x_{jt} + \sum_{j=1}^{n-1} p_{jt} x_{j,t-1} - \sum_{j=1}^{n-1} p_{jt} x_{j,t-1}}{\sum_{j=1}^{n-1} (\delta_j/\delta_n) \Delta x_{jt} + \sum_{j=1}^{n-1} p_{jt} x_{j,t-1}} \right) \big/ y_{t-1}
\]

\[
= \left(\frac{\sum_{j=1}^{n} p_{jt} \Delta x_{jt} - p_{nt} \sum_{j=1}^{n-1} (\delta_j/\delta_n) \Delta x_{jt} + \sum_{j=1}^{n} p_{jt} x_{j,t-1}}{\sum_{j=1}^{n-1} (\delta_j/\delta_n) \Delta x_{jt} + \sum_{j=1}^{n-1} p_{jt} x_{j,t-1}} \right) \big/ y_{t-1}
\]

\[
= \frac{I_t^L + \sum_{j=1}^{n-1} B_{PS}^t}{y_{t-1}}.
\]

6.2 Proof: Proposition 1

The cost-of-living index when goods are perfect substitutes, defined in (11), represents an upper bound to the true index \(I_t^{CES} \) if \(I_t^{PS} - I_t^{CES} > 0 \). It follows from (9) that

\[
I_t^{PS} - I_t^{CES} = \frac{P_{nt}}{y_{t-1}} \left[(\delta_1/\delta_2) x_{1,t-1} + x_{2,t-1} - (\delta_1/\delta_2) x_{1,t} - ((\delta_1/\delta_2) x_{1,t-1} + x_{2,t-1} - (\delta_1/\delta_2) x_{1,t})^{1/\rho} \right].
\]

This expression is positive only if

\[
(\delta_1/\delta_2) x_{1,t-1} + x_{2,t-1} - (\delta_1/\delta_2) x_{1,t} > ((\delta_1/\delta_2) x_{1,t-1} + x_{2,t-1} - (\delta_1/\delta_2) x_{1,t})^{1/\rho}.
\]

Without loss of generality, I define the following relationships: \(c_1 \equiv x_{1,t-1}/x_{2,t-1} \) and \(d_1 \equiv x_{1,t}/x_{2,t-1} \). Inserting these relationships into (16), and taking the natural logarithm, yields

\[
\ln [1 + (\delta_1/\delta_2) (c_1 - d_1)] > (1/\rho) \ln [1 + (\delta_1/\delta_2) (c_1^\rho - d_1^\rho)].
\]
When the increase in availability of \(x_{1t} \) is small, i.e., \(\epsilon_1 = d_1/c_1 \) is close to unity, it follows, from a first-order Taylor approximation, that\(^{11}\)

\[
(c_1 - d_1) > (1/\rho)(c_1^\rho - d_1^\rho).
\]

Inserting \(c_1 = x_{1,t-1}/x_{2,t-1} \) and \(d_1 = x_{1,t}/x_{2,t-1} \) yields

\[
\left(\frac{x_{1,t-1}}{x_{2,t-1}} - \frac{x_{1t}}{x_{2,t-1}}\right) > (1/\rho) \left(\frac{x_1^\rho}{x_{1,t-1}^\rho} - \frac{x_1^\rho}{x_{2,t-1}^\rho}\right).
\]

Inserting \(x_{1t} = \epsilon_1 x_{1,t-1} \), and rearranging, yields

\[
1 < \frac{x_{1,t-1}^{\rho-1}}{x_{2,t-1}^{\rho-1}} \frac{1 - \epsilon_1^\rho}{(1 - \epsilon_1)} (1/\rho),
\]

where \(x_{1,t-1}^{\rho-1} \) is the relative marginal rates of substitution: \(MRS_{CES,1,t-1}^{CES} / MRS_{PS,1,t-1}^{PS} \) and \(\frac{1 - \epsilon_1^\rho}{(1 - \epsilon_1)} (1/\rho) \) goes towards unity when \(\epsilon_1 \) goes towards unity by L'Hôpital’s rule. The opposite relationship, \(MRS_{CES,1,t-1}^{CES} < MRS_{PS,1,t-1}^{PS} \), implies that \(I_{PS,t-1} - I_{CES,t-1}^{CES} < 0 \), by the same arguments.

6.3 Proof: Proposition 2

Define the auxiliary variables \(\epsilon_i \equiv x_{it}/x_{i,t-1} \), \(c_i \equiv x_{i,t-1}/x_{n,t-1} \) and \(d_i \equiv x_{it}/x_{n,t-1} \). The sets \(J, \ A \) and \(A^c \) are given by \(J = \{1, 2, \ldots, n - 1\} \), \(A_i = \{j \in J : 0 \leq x_{j,t-1} \leq x_{n,t-1}\} \) and \(A_i^c = \{j \in J : x_{n,t-1} < x_{j,t-1} < x_{j,t-1}^*\} \). The bias (10) can then be written

\[
B_{i,t-1}^{CES} = \frac{x_{n,t-1}}{y_{t-1}} \left(\sum_{i \in J} p_{it}(d_i - c_i) - p_{nt} + p_{nt} \left(1 - \sum_{i \in J} (\delta_i/\delta_n)(d_i^p - c_i^p) \right)^{1/\rho} \right)
\]

The sum of individual biases when goods are perfect substitutes, for goods \(i \in A \), is given by

\[
\sum_{i \in A} B_{i,t}^{PS} = \frac{x_{n,t-1}}{y_{t-1}} \left(\sum_{i \in A} (d_i - c_i) (p_{it} - (\delta_i/\delta_n) p_{nt}) \right)
\]

\(^{11}\ln(1 + z) \approx z \) around \(z = 0 \).
The index I_t^{PS} is said to represent an upper bound to the true index I_t^{CES} if $I_t^{PS} - I_t^{CES} > 0$. Since

$$I_t^{PS} - I_t^{CES} = \sum_{i \in A} B_t^{PS} - B_t^{CES}$$

$$= \frac{x_{n,t-1}}{y_{t-1}} \left(- \sum_{i \in A} (d_i - c_i)(\delta_i/\delta_n)p_{nt} - \sum_{i \in A'} (d_i - c_i)p_{nt} - p_{nt} \left(1 - \sum_{i \in J} (\delta_i/\delta_n)(d_i^p - c_i^p) \right)^{1/p} \right),$$

the index I_t^{PS} is an upper bound if:

$$1 - \sum_{i \in A} (d_i - c_i)(\delta_i/\delta_n) - \sum_{i \in A'} (d_i - c_i) \frac{p_{nt}}{p_{nt}} > \left(1 - \sum_{i \in J} (\delta_i/\delta_n)(d_i^p - c_i^p) \right)^{1/p}.$$

When the changes in trade barriers are small, i.e., d_i/c_i is close to unity for all i, it follows, from a first-order Taylor approximation, that 12

$$\frac{1}{\rho} \sum_{i \in A'} (c_i - d_i)(\delta_i/\delta_n) + \frac{1}{\rho} \sum_{i \in A} (c_i - d_i) \frac{p_{nt}}{p_{nt}} > (1/\rho) \sum_{i \in J} (\delta_i/\delta_n)(c_i^p - d_i^p).$$

This is positive if the following conditions both hold

\begin{itemize}
 \item[i)] $(c_i - d_i) > (1/\rho)(c_i^p - d_i^p)$ for $i \in A$,
 \item[ii)] $(c_i - d_i) \frac{p_{nt}}{p_{nt}} > (1/\rho)(c_i^p - d_i^p)$ for $i \in A'$.
\end{itemize}

i) follows from Proposition 1 and equation (17). Since $c_i^p - d_i^p = x_{n,t-1}/x_{n,t} - x_{n,t-1}^{-1}(1 - \epsilon_i^p)$, it follows that ii) can be written as

$$MRS_{i,t-1}^{CES} > \frac{p_{nt}}{p_{nt}} \text{ for } i \in A'_t,$$

since $\frac{1-c_i}{(1-c_i)}(1/\rho)$ goes towards unity when ϵ_i goes towards unity.

\[^{12}\ln(1 + z) \approx z \text{ around } z = 0.\]