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Abstract: 
This paper examines the performance of a particular method for predicting poverty. The method is a 
supplement to the approach of measuring poverty through a fully-fledged household expenditure 
survey. As most developing countries cannot justify the expenses of frequent household expenditure 
surveys, low cost methods are of interest, and such models have been developed and used. The 
basic idea is a model for predicting the proportion of poor households in a population based on 
estimates from a total consumption regression relation, using data from a household expenditure 
survey. As a result, the model links the proportion of poor households to the explanatory variables of 
the consumption relation. These explanatory variables are fast to collect and are easy to measure. 
Information on the explanatory variables may be collected through annual light surveys. Several 
applications have shown that this information, together with the poverty model, can produce poverty 
estimates with confidence intervals of a similar magnitude as the poverty estimates from the 
household expenditure surveys. There is, however, limited evidence for how well the methods 
perform in predicting poverty from other surveys. 
 
A series of seven household expenditure surveys conducted in Uganda in the period 1993-2006 are 
available, allowing us to test the predictive ability of the models. We have tested the poverty models 
by using data from one survey to predict the proportion of poor households in other surveys, and vice 
versa. All the models predict similar poverty trends, whereas the respective levels are predicted 
differently. Although in most cases the predictions are precise, sometimes they differ significantly 
from the poverty level estimated from the survey directly. A long time span between surveys may 
explain some of these cases, as do large and sudden changes in poverty. 
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1 Introduction 
The widely accepted approach for measuring poverty is through measurement of household 

expenditure during a twelve month survey. If policymakers demand annual estimates, and register data 

are not available, a country has to run a continuous household expenditure survey program. However, 

hardly any country can afford or justify such expenses. A cheaper alternative is to base a household 

survey program on a twelve month household expenditure survey every fifth or seventh year, and then 

supplement with light, two-month, surveys on an annual, or bi-annual, basis for the years in between. 

If the light surveys are combined with a poverty model, such program can give model based poverty 

estimates with confidence intervals of a similar magnitude as the poverty estimates from the household 

expenditure surveys. The main test, however, is whether the model predicts the same poverty as new 

twelve months household budget surveys. Hence, this paper is outlined to examine the predictive 

ability of a poverty model.  

 

The method applied is developed in Mathiassen (2007). The basic idea of this method is to estimate a 

consumption model from a household expenditure survey, linking consumption per capita and poverty 

to variables that are fast to collect and easy to measure. Information on the explanatory variables in the 

poverty model is then collected through the annual light surveys. This information, together with the 

estimated model, is used to predict poverty rates and their standard errors for years where there is no 

household expenditure survey. The method in Mathiassen (2007) as well as related ones, such as those 

of Simler et al, (2003), Stifel and Christiansen (2007)1 and Datt and Jolliffe (2005), have now been 

applied in several countries. Empirical evidence shows that the models are able to predict poverty 

levels well within the sample, with standard errors at similar levels as in the traditional household 

expenditure survey estimates of poverty. There is, however, limited evidence for how well the 

methods perform in predicting poverty levels outside the sample.2   

 

In this paper we want to test how well the model approach performs in predicting poverty over time. 

The assumption that there is a stable relation between per capita expenditure and the poverty 

indicators is critical because one may expect that the parameters change over time. In order to test the 

                                                      
1 Simler et al. (2003) and Stifel and Christiansen (2007) are modifications of the Poverty Mapping method, see Elbers et al. 
(2003). The Poverty Mapping method is designed to combine a Census with a household expenditure survey to produce small 
area estimates of poverty,  but can be adapted to combine a light survey with a household expenditure survey. 
2 There are two recent papers that examine the performance of the poverty mapping method, Elbers et al. (2008) and 
Demombynes et al. (2007). The results from these analyses indicate that the method produce small area estimates of welfare 
that are in line with the actual values. 
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performance of the model, a comparison between predicted poverty rates and the “actual” poverty 

rates estimated directly from the household expenditure aggregates are necessary. Thus, to test the 

assumption on stable model parameters, one needs at least two household expenditure surveys with 

comparable household expenditure aggregates.  

 

Fortunately, a series of seven household expenditure surveys from Uganda are available, allowing us 

to test the assumption of stable parameters. The surveys were undertaken in the period 1993-2006, a 

time period where Uganda experienced strong growth with more than twenty percentage point 

decrease in poverty. The surveys are well suited to our purpose as the questionnaires and sampling 

methods have been kept more or less unchanged over the time period in question. Moreover, 

significant work has been done to ensure comparable household expenditure constructs and poverty 

estimates from the survey (see Appleton et al., 2001). It is in fact rather unique that an African country 

has so many high-quality household expenditure surveys available over such a short time span.  

 

The test of the paper is organized as follows: The next section outlines the methodology applied. In 

section three we describe the data and the setting. The following sections are concerned with the 

empirical testing, and the paper concludes with a discussion of the results. 

2 The method 
In this section, we outline the main features of the methodology for predicting poverty rates. Readers 

looking for further references should consult Mathiassen (2007). 

2.1 A predictor for the poverty headcount ratio 
An individual is considered poor if his or her consumption or income falls below a certain threshold. 

This threshold defines the poverty line. We wish to predict the headcount ratio, i.e., the proportion of 

individuals with consumption below a given poverty line.3 

  

Let iY  denote the consumption of individual i. Consumption typically consist of the aggregated 

consumption of food items, non-food items, consumer durables and housing4. Because the unit in the 

survey is the household, one needs to adjust total household consumption for the number of members 

in each household. The simplest solution is to adjust for the number of individuals living in the 

                                                      
3 We will return to the data requirement and definitions of these concepts in the next section. 
4 There can be considerable variation in the design of questionnaires across countries so that the consumption constructs not 
always contains the same items, see Deaton and Zaidi (2002) for guidelines.  
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household. Another approach is to adjust for the number of adult equivalents in the household, i.e. one 

applies a system of weights that depends on size of household and age and sex of the individual 

household members.5 In the following we refer to iY  as household consumption per capita. Let z 

denote the poverty line. Let 1=iy  if individual i is poor, i.e. when zYi ≤ , and zero otherwise. The 

population is Ω  and it consists of NH households. The population can, for example, refer to a region 

within a country. Let is be the number of members in household i, and let N be the number of 

individuals in the population. Hence, the share of poor individuals in Ω  is estimated by   

(1) ∑
Ω∈

=
i

ii ys
N

y 1 . 

  

We wish to use a model to predict y  for a given set of household variables (indicators). To this end we 

assume that: 

(2) iii XY σεβ +=ln , 

where Xi is a vector of selected poverty indicators, β  is a vector of unknown parameters and iε , 

i=1,2,…, are i.i.d. error terms with unit variance. The parameter σ  represents the standard deviation 

of iσε . Assume further that the ε  and X are uncorrelated. The log transformation of the consumption 

variable serves to reduce the usual asymmetry in the distribution of the error term and stabilizes the 

variance.6  

  

Model (2) postulates that log consumption per capita depend on a systematic, as well as a stochastic 

component. Due to the stochastic component all individuals have a non-zero probability of being poor. 

Thus, rather than counting the number of individuals with predicted consumption below the poverty 

line, we use the average probability that an individual is poor as the predicted estimator for the 

headcount ratio. The probability that individual i’s consumption falls below the poverty line, z, is 

found by inserting the regression model in a probability function: 

(3) ( ) ( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛ −
Φ=<+=<=<=

σ
βσεβ i

iiiii
Xz

zXPzYPzYPP
ln

lnlnln  

where ( )Φ  denotes the standard cumulative normal distribution function.7 

                                                      
5 There are two main arguments for using adult equivalents: First, there are economies of scale in household consumption of 
household public goods. Second, one may argue that the needs of children are less than those of adults, in particular when 
food expenditure constitutes a large share of the households’ budgets. 
6 One should test for homoscedasticity in the empirical analyses, and if necessary apply the method allowing for 
heteroscedasticity as outlined in Mathiassen (2007). 
7 Other distribution function can be applied if it seems more reasonable. 
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Let n denote the number of individuals in the sample. Then our predictor for the headcount ratio in (1) 

is then given by: 

(4) ∑
∈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
Φ=

Si

i
i

Xz
s

n
P

σ
β

ˆ

ˆln1ˆ . 

It can be shown that this predictor is biased due to the errors in the estimates β̂  and σ̂ . Hence, we 

will use the formula for the unbiased predictor given in (6) in the Appendix.8  

2.2 The standard error of the poverty predictor 

The prediction error is the deviation between the poverty level predicted by our model and the true 

poverty level in the population. One way to decompose the prediction error is: 

(5) 
.ˆ1ˆ1ˆ1111

ˆ11

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+
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⎣

⎡
−+
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⎦

⎤

⎢
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⎣

⎡
−

=−

∑∑∑∑∑∑

∑∑
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∈Ω∈

Si
ii

i
ii

i
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i
ii

i
ii

i
ii

Si
ii

i
ii
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n
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N
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N

Ps
N

Ps
N

ys
N

Ps
n

ys
N

 

The first term on the right-hand side of (5) is the difference between the actual and expected 

population poverty levels. This term captures how the headcount ratio in the population deviates from 

its expected value. This component will generally be very small when we provide predictions for large 

samples. 

  

The second term in (5) is the difference between the expected poverty level and the poverty level 

predicted by the estimated model for the entire population, Ω . This term captures uncertainty from 

the error in the estimate, β̂ . 

  

The last term in (5) is the difference between the predicted poverty level in the population Ω  and the 

predicted poverty level in sample S. This term captures uncertainty due to S being a finite random 

sample. All error components are also affected by the variation of the X-vector in the sample. 

 

The expression of the variance of the prediction error given in (5) is given in (8) the Appendix.  

                                                      
8 When calculating the standard error of the predictor below, it is however the simpler predictor in (4) that is used. This is 
reasonable as using the biased corrected predictor substantially increases the complexity of the calculations, and because the 
error caused by using the unbiased predictor is marginal. 
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3 The household surveys and constructs  

3.1 Comparability of the household expenditure surveys 
Fortunately, Uganda, as probably the only country in Sub-Sahara Africa, has had a recent large scale 

household survey program. It began in 1992 and covers eight households expenditure surveys up to 

the most recent survey in 2005.  

 

To test the models predictive ability it is critical that the consumption aggregates are comparable 

between the surveys9 and that there are sufficiently identical indicators (explanatory variables). As the 

Uganda household surveys rely on similar sampling procedures and questionnaires, and substantial 

work has been done to ensure comparability (see Appleton et al., 2001), they are suitable for our 

testing. The 1992 survey, however, differs too much with respect to core indicators, and it is therefore 

not used in the analyses.10  

 

Table 1 shows the period and number of households covered in each of the surveys. We will in the 

following refer to the survey by the year when it started.  

Table 1. Survey round, 1993-2006 
Survey Round Dates Households covered 

Monitoring survey 1 (MS-1) Aug. 1993 – Feb. 1994 4,925 

Monitoring survey 2 (MS-2) Jul. 1994 – Mar. 1995 4,925 

Monitoring survey 3 (MS-3) Sep. 1995 – Jun. 1996 5,515 

Monitoring survey 4 (MS-4) Mar. 1997 – Nov. 1997 6,654 

Uganda National Household survey 1 (UNHS-1) Aug. 1999 – Jul. 2000 10,696 

Uganda National Household survey 2 (UNHS-2) May 2002 – Apr. 2003 9,711 

Uganda National Household survey 3 (UNHS-3) May 2005 – Apr. 2006 7,400 

Source UBoS (2006). 

 

As can be seen from the tables, the monitoring surveys from 1993, 1994 1995 and 1997 did not cover 

an entire calendar year. Because consumption will vary over the year, the fact that most consumption 

                                                      
9  Modelling approaches have also been used to ensure comparable poverty estimates between incomparable surveys, see 
Deaton, 2003. In this case one may also use expenditure variables for which the definition and question has not changed 
between the survey. 
10 In particular the household consumption expenditure on food is based on a 30 days recall period compared to 7 days in the 
other surveys.  
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goods is recorded only over a short period (food is reported for one week), without adjustments, 

implies that the inflated annual consumption aggregates may be affected by seasonality. Depending on 

whether it is an above or below annual average season that is covered by the survey, the poverty level 

may be over- or underestimated, as compared to when the entire calendar year is covered. For the 

purpose of replicating the estimated poverty figures by using a model, we might get a biased 

prediction if we do not adjust for the months covered. We will return to this in the empirical section. 

 

The poverty line was computed on the basis of the 1992 survey, and it has remained fixed in real terms 

up to 2005, allowing for comparison of changes in poverty. It is an absolute poverty line anchored in a 

minimum required caloric intake; see Appleton et al. (2001) for details on the construction of the 

poverty line. 

3.2 Poverty estimates from the household expenditure surveys 
To familiarize the reader with the Ugandan setting we will briefly discuss the trends in the actual11 

poverty levels.  Figure 1 shows the national and rural/urban poverty estimated from the surveys in the 

period12. Uganda experienced a substantial decrease in poverty in the period and the national 

headcount ratio fell from about 52 percent in 1993 to 31 percent in 2005. 

Figure 1. Poverty estimated from household expenditure surveys. National and Rural/Urban. 
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11 We will throughout the paper refer to the poverty level estimated in the traditional way by using the per capita 
consumption from the household expenditure surveys as the actual poverty level. 
12 Due to security problems parts of districts in Northern and Western region were excluded in some of the surveys 
(Bundibugyo, Kasese, Gulu, Kitgum and Pader). Thus, for comparability these districts are also excluded from the other 
surveys. 
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The rural poverty trend follows the national trend closely as the major share of the population lives in 

these areas (85 percent in 2005, UBOS (2005)).  Poverty fell more in rural than in urban areas, both in 

absolute and relative terms.  

 

Some papers have addressed the poverty trends up to 2002 (see Kappel et al., 2004, Obwona et al., 

2006 and Okidi et al., 2005), and the brief summary of the key factors behind the development in 

poverty given below, refers to these papers. As the 2005 survey is still fresh there is as yet (to the 

author’s knowledge) no publication addressing the further development in poverty.  

 

The decrease in national poverty from 1992 to 1999, took the form of a period with strong growth in 

average per capita consumption, and only small changes in the income distribution (at least up to 

1997) (see Table 2 on Gini indices). From 1999 to 2002 growth slowed down, and at the same time 

inequality widened, resulting in an increase in poverty. From 2002-2005 poverty reduction was again 

on the right track, due to reduction in poverty in rural areas.  

 

Agriculture, being the most important sector for the rural poor, has played an important role in the 

poverty reduction in Uganda in the 1990s. The reduction in poverty up to 1999 has been associated 

with a structural shift towards increased cash crops production. Trade liberalization in the early 90s 

and increased world market price on coffee, the main cash crop in Uganda, are important explanations 

for this shift. Diversification into non-agricultural activities with high growth rates further benefited 

many poor households. From 1999 till 2002, however, poverty among subsistence farmers increased 

considerably. The price of coffee started to fall after 1994, and in 2001 reached a level of only ten 

percent of that of 1994. Also prices on other important cash crops; cotton, tobacco and tea fell in this 

period, which together with slow growth in the subsistent agriculture are likely to be key factors 

behind the increase in poverty. UBOS (2006) suggests the recovery of coffee prices13 to be important 

for the improvements of poverty from 2002 to 2005. 

 

Figure 2 shows that similar poverty trends are found in all regions, except in the Northern region. The 

war-affected Northern region continues to suffer from long-term instability. The poverty level was 

initially high and has only slightly decreased from about 70 to 60 percent during the period. The 

Central region has the lowest poverty level both at the beginning and the end of the period, and faced a 

reduction in poverty of about 15 percentage points. This is the region with the highest level of 

urbanization. The Western part of Uganda has experienced the largest improvements in poverty with a 

                                                      
13 The coffee prices increased from $0.56/kg in 2002/03 to $1.38/kg in 2005/06. 
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decrease at nearly 35 percentage points. East, the second poorest region, has also seen large 

improvements with a reduction in poverty at nearly 25 percentage points. 

Figure 2. Regional Poverty in Uganda 
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3.3 The explanatory variables 
Since the aim is to test whether a model could be used in years where no household expenditure 

survey is available, we focus on the types of indicators that are feasible to include in a light survey. 

That is indicators that are easy to measure and collect. It is important that the indicators are exactly 

identical in the two surveys. Thus, it is both necessary that the question is identical; that the method 

for getting the information is the same (for example recall versus diary), and that the reference period 

is the same. In the case of the Uganda dataset, the recall method was always used to obtain the 

information about food consumption and the report period for consumption variables were the same in 

all questionnaires.  

 

We identify the common set of indicators in pairs of household surveys and select among these a 

smaller set of indicators by comparing estimated models with various combinations of poverty 

indicators, including square and log-linear transformation of variables. Based on statistical criteria, we 

choose the set of indicators that constitute the “best” model for predicting the poverty headcount 

ratio.14 Since the poverty indicators normally are collected in light surveys there should not be too 

                                                      
14 One may do this through automated stepwise procedures. 
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many indicators, although a sufficient number of variables should be selected to ensure that the 

marginal gain of including additional variables is low. Typically, around twenty indicators enter into a 

model.  

The following groups of indicators were included;  

• Demography: Indicators comprising variables like dependency ratio15, number of members in 

household, marital status, and age distribution among members in household.  

• Education: Indicators comprising education level and literacy.   

• Labour market: Indicators capturing type of work done by head defined by industry and whether 

head is employed or self-employed.16  

• Housing: for example type of roof and lightening. In the available data material for 1994 and 1995 

housing variables are not available.   

• Consumption of food: Binary “yes/no” variables on household consumption of food like for ex-

ample meat, sugar and rice the last seven days. 

• Expenditure of non-durables: “yes/no” variables on expenditure of non-durables like for example 

energy, transport and bathing soap the last thirty days. 

• Expenditure of semi-durables: “yes/no” variables on household expenditure on semi-durables like 

for example clothes, shoes and furniture the last year. 

• Welfare indicators: for example number of meals per week and ownership of shoes. 

• Regional control: Dummies capturing regional differences. Included only in the national and ru-

ral/urban models. 

• Seasonal adjustment: Dummies accounting for seasonal variability in food consumption. Good 

periods will normally be after harvest while food will be scarcer prior to harvest17. These control 

variables can only be included when we estimate models based on surveys covering the whole cal-

endar year, thus not for 1993, 1994, 199518 and 1997.  

                                                      
15 Defined as the ratio of children below 15 and old above 65 relative to the total number of members in the household. 
16 In the 2005-survey the definitions of the labour market variables are slightly different compared to the other surveys and 
could therefore not be used in our analyses. 
17 “There are two agricultural seasons in a year in most part of the country. The first one is between January and June, while 
the second one lasts from July to December.  Harvesting of the crop planted in one season usually extends to another season. 
For example the crop planted during the first season may be harvested in July-September. On the other hand, the crop planted 
during the second season may be harvested in January-March of another agricultural year. Agriculture in Uganda is rain-fed 
which determines whether to plant early or late depending on when the rain starts. This in turn dictates the extent to which 
harvesting will be pushed into the following season.” UBoS (2005). We have added one month to the harvest time as one 
may expect food to be relatively plentiful shortly after harvest., and accordingly divided the calendar year into the following 
four periods; January-April, May-June, July-October, and November –December. Thus, we expect the first and third period 
listed to be better than the two others. 
18 For 1995-survey we lack information on date of interview. 



12 

• Community variables: Indicators accounting for location specific effects, such as access to mar-

kets, infrastructure and availability of electricity may be included. Due to various problems in 

data, we have only been able to link up the community information for two household surveys 

(2002 and 2005).   

 

The explanatory variables are the driving forces behind the prediction results. They are correlated with 

the household consumption, and one should expect them to change with changes in the poverty level. 

For example, lower poverty levels are associated with higher education levels, better housing 

standards and a larger share of population consuming the non-inferior goods. As people may switch to 

more expensive calories as they become wealthier, one could also expect that consumption of some, 

inferior, goods decrease.   

 

The types of variables have different “roles” in the model. Demographic and education variables tend 

to change slowly, and will thus reflect long-term improvements. Consumption variables, to the 

contrary, are able to reflect sudden changes, or shocks to the household, for example due to a 

household head loosing his work and poor weather affecting the harvest. Housing variables are in-

between, and change as conditions improve, but are normally not able to capture short term 

fluctuations in income.  

 

One potentially important group of variables, assets, was not available for the analyses, because 

households were asked about the total value of a large group of assets rather than availability and 

value of specified assets. Thus, we were neither able to include indicators for single assets19, nor to 

construct an asset index based on the number of assets in the household.  This is unfortunate as 

changes in the asset stocks may capture coping strategies for the poor as they may sell off assets in bad 

times, while building up the stock in good times. 

 

Thus, reasons that one survey model do not predict well for another survey, given that the modelling 

assumptions are reasonable, may be that important variables are omitted from the model and/or that 

some model parameters have changed. The parameters could change as a population become 

wealthier, for example at a certain level of welfare in a country whether people eat meat or not are not 

a result of income but rather whether one is a vegetarian. Also, one can expect that the parameters 

change as new food varieties and technologies are introduced leading to shifts in the demand curves.  

                                                      
19 Except for ownership of bicycle included in the three last surveys (1999, 2002 and 2005). 
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4 Empirical results 
After identifying the joint set of variables in two surveys, we estimate a consumption model for one of 

the surveys. The model is then used to predict consumption per adult equivalent and thus the poverty 

level in the other survey. We use a t-test to compare model-predicted poverty to the actual poverty 

estimates. It is not feasible to include the estimation results for all models here. Therefore, we will 

rather discuss some general findings, before moving on to the prediction results.  

4.1 Some general modelling results  
The estimated models 

We estimate models for urban and rural areas separately, as the underlying economic structures in 

these domains may differ substantially. R-square adjusted is about 0.6-0.7 for the urban models and 

about 0.5-0.6 for the rural models. The models were inspected for heteroscedasticity by visual 

interpretation of plots of the residual versus predicted expenditure per capita as well as by formal 

tests.20 Because the pattern looks reasonably random, we did not correct for heteroscedasticity.21 After 

inspecting the distribution of the residuals, we chose to apply the normal distribution function for 

estimating the poverty predictor.  

 

Indicators from each group of the explanatory variables; demography; education; labour; housing; 

consumption of food; consumption of non-durables; consumption of semi-durables and welfare indica-

tors, entered into almost every model. Community indicators, from two surveys were available, but 

were not selected in any of these survey-models. This may have to do with too little variation in these, 

or that we do not have the relevant community variables at hand. Seasonal adjustment did not seem to 

have an effect. It could be that seasonality is captured by other variables (for example the binary vari-

ables for food consumption).  

 

Some surveys did not cover the entire calendar year. It would thus have been formally correct to limit 

the samples to the joint field work months covered by pairs of surveys. For the sake of presentation we 

have used the full sample in all cases.22 We have, however, in some cases predicted poverty also when 

                                                      
20 Formal tests (White test and Breusch Pagan, see for example Wooldridge, 2002) reject the assumption on constant variance 
of the error term (homoscedasticity) for most of the models. These tests are, however, sensitive to the number of observations 
as with a large number of observations a small deviation leads to rejection of the hypothesis. Thus, when we use a smaller 
randomly drawn sample (down to about 1000 observations for some models) the hypothesis on constant variance is no longer 
rejected. 
21 We have tested the impact on the prediction and the standard error of adjusting for heteroscedasticity in some of the 
models, but this has very little impact on the prediction results. We will return to this below. 
22 If the sample sizes for a given survey is reduced, the actual poverty estimate that is compared will change as well, and thus 
the presentation of the results will be rather messy. 
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adjusting the sample size to correct for differences in coverage, but it does not seem to be important. 

The three last surveys cover the entire year and thus, no adjustments of the samples are necessary in 

comparisons among these surveys. 

 

Standard errors of the predictions 

All standard errors incorporate the two-stage sampling design, and for the survey poverty estimates, 

sampling is the only source for the standard error. For the model predictions, however, the standard 

error comprises three components.23 At sample sizes as at the national, rural/urban and sub regional 

levels in the Uganda surveys, the largest share is due to the estimated parameters. As could be 

expected, total standard errors are larger for the model predictions than for the survey estimates. 

However, the sub-component of the model standard error due to sampling is smaller than the sampling 

error of the survey estimate.24 For some predictions at the sub-regional level, the standard errors of the 

model-based estimates are actually lower than of the actual ones. Thus, if one accepts the confidence 

interval of the survey based estimates, there is no need to reject the model based predictions due to 

their confidence interval. However, the critical question whether the model is valid from one survey to 

another remains, because it is not reflected in the magnitude of the standard errors. We use t-tests for 

the change in the poverty level to judge whether the model prediction and the survey based estimates 

are statistically different.  

4.2 Predicted poverty trends 
For each survey, we estimate models that are used to predict rural and urban poverty for other surveys. 

This is repeated for all pairs of surveys, which yields the seven predicted poverty trends in Figure 3 

and Figure 4. For example, the solid line labelled the Rural 93-model shows the predictions made by 

models from 1993 onto each other survey from 1994 to 2005. It also includes the actual poverty level 

in 1993.25 The thick lines show the actual poverty trends for rural and urban domain in the same 

period.   

 

Figure 3 and Figure 4 show rural and urban predictions, respectively. A first glance at the figures 

shows that the models are able to predict the poverty level quite well. No rural model predicts poverty 

                                                      
23 Uncertainty due to sampling of the indicators; uncertainty due to the estimated model parameters; as well as uncertainty 
due to an idiosyncratic component (which will be relatively small as we predict for large domains). See also equation (5). 
24 This is because information about the dependent variable is a priori given by the model, and for a given level of sampling 
uncertainty one needs fewer observations when using a model compared to when one estimates poverty by using the 
consumption aggregates directly. 
25 We will refer to a model estimated on data for a given survey by the survey year. For example the 93-model refers to a 
model estimated on data for the 1993-survey. 
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at the urban level and vice versa. The predicted poverty trends for urban areas follow more closely the 

actual trend than in rural areas. All rural models are, however, able to capture the decline in poverty 

over the period26. Even though none of the models predicts the entire 25 percentage points fall in 

actual poverty, the predicted fall in poverty is near to 20 percent for most survey-models, and lowest 

for the 1999 survey-model predicting a 15 percentage points fall in poverty from the beginning to the 

end of the period.  

 

The predicted poverty trends are fairly similar for each model. Thus, focusing on changes in poverty 

over the period, all survey-models give nearly the same result. This suggests that the relation between 

the consumption aggregates and the set of explanatory variables are consistent in predicting the 

poverty trend. The bias may be due to omitted variables or conditions that are more important for 

some years than others.  

 

Some models estimated from surveys with relatively low poverty, like 1999 and 2005, tend to predict 

lower poverty for a given year compared to predictions from models based on surveys with higher 

poverty levels. This feature is particularly visible for urban models. For the rural domain the models 

estimated on data for 1993, 1994, 1997 and 2002 produce fairly similar predictions over the entire 

period, even though the actual poverty levels in these surveys differ substantially.  

 

Figure 3. Rural poverty, actual and predicted by seven models 
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26 Poverty fell from about 57 to 34 percent in the period 
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Figure 4. Urban poverty, actual and predicted by seven models 
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Predictions for 2005 seem to indicate that the time which has elapsed from the model base survey to 

the prediction is important. All surveys predict too high poverty level for 2005, and older surveys tend 

to predict farther off from the actual prediction for 2005 than newer ones. Time, however, is not 

important when predicting for 2002. For example models estimated on data for 1993 predict as well 

for 2002 as the models estimated on data for 2005. Rather, the combination of time elapsed and large 

fall in poverty level may be factors contributing to break down of the models. 

Even though the rural models capture the overall trend of decreasing poverty, they do not capture the 

variability within the overall trend. In particular, none of the models are able to capture the strong fall 

in actual poverty from 1997-1999 with the following increase to 2002. The large deviations from the 

actual values are mainly due to predictions made by and for the surveys in 1995 and 1999. While the 

1999 model produces the lowest predicted poverty levels for all the surveys, the 1995 survey predicts 

a substantially higher poverty level than the other models. Correspondingly, all models predict too low 

poverty level for 1995. Also the 1999-survey is problematic when it comes to predicting poverty levels 

for the urban areas.  

 

Neither adjustment for seasonality nor accountancy for heteroscedasticity improved on the bad 

predictions for, and by, 1995 and 1999. Reducing the samples in 1999, 2002 and 2005 to allow for the 

correct comparison with 1995 does not improve on the results.27 Similarly, reducing the sample in 

                                                      
27 July and August, normally two good months in terms of food availability, were not included in the 1995 survey. Taking out 
these months from the samples in 1999, 2002 and 2005 to allow for the correct comparison with 1995, gives only minor 
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1999 to account for the difference in monthly coverage compared to 1993 and 1997 does not improve 

on the results.28 The degree of heteroscedasticity seems to be so small that it hardly has any impact on 

the predictions and the standard error in the case tested.29 Figure 5 shows that when the troublesome 

1995 and 1999 surveys are taken out, the predictions are more in line with the actual poverty trend.  

Figure 5 Poverty trends, predicted and actual for 5 surveys 
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Table 3 shows t-values for the test on difference in model-based and actual poverty levels. 22 of the 42 

rural predictions are unfortunately significantly different from the actual poverty level, but most of 

these have to do with predicting for, or by, 1995 and 1999. Also, it seems to be rather problematic to 

predict for 2005, and it is only the 1999-model that predicts non-significantly different poverty rate in 

2005. All other predictions made by and for the 1993, 1994, 1997 and 2002 surveys are not 

significantly different than the actual ones.   

 

                                                                                                                                                                      
changes in the difference between the predicted and the actual poverty level: predicting rural and urban poverty for 1995, 
reduce the difference in predicted and actual poverty rates by about a half percentage points or less in the six cases tested.  
28 We have not done any more analyses to account for differences in monthly coverage in two surveys, as it does not seem to 
play any role for our results.  
29 The predictions by the 1999-models for the rural and urban domain in 2002 are respectively 35.0 (1.6) and 11.4 (1.6) when 
applying the heteroscedasticity model compared to 35.4 (1.6) and 12.7 (1.8) with no correction for heteroscedasticity 
(standard errors in parenthesis). The predictions by the 1995-models for the rural and urban domain in 1997 are respectively 
58.4 (2.8) and 22.7 (2.5) when applying the heteroscedastic model compared to 58.2 (2.7) and 22.9 (2.6) with no correction 
for heteroscedasticity. And, finally the predictions by the 2002-models for the rural and urban domain in 2005 are 
respectively 41.1 (2.0) and 18.0 (2.2) when applying the heteroscedastic model compared to 40.4 (1.9) and 16.5 (2.2) with no 
correction for heteroscedasticity. 
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The urban models seem to do better. Seven out of the 42 predictions are significantly different than the 

actual estimate. This applies to when using models from 1993, 1994 and 1995 to predict for 1999 and 

2005, as well as when using the 1997 model to predict for 1999. No other predictions differ 

significantly from the actual value.   

 

So why is it that the modelling approach seems to work for most of the surveys but not for all?  By 

gathering more evidence at the sub-regional level we will explore further to which extent this can be 

explained by the time elapsed between surveys, and/or large changes in poverty levels. In particular it 

will be explored whether the models are able to capture sudden changes in the poverty level. Further, 

one may suspect that the reason that a model fits well at high level of aggregation is that errors at sub-

regional neutralize each other. Alternatively, low prediction capability at the rural or urban level could 

be caused by a bad predictions for only one sub-region rather than for all.  

4.3 Sub-regional level predictions 
Is the time elapsed important? 

From Figure 3 and Figure 4we have seen some indication that time elapsed between surveys are 

important as early models had lower predictive power for 2005 than for 2002. The 1993-model 

predicts almost perfectly for 2002, while the predictions at both urban and rural domain significantly 

differ from the actual poverty level when applying the 1993-model for 2005. This picture is confirmed 

by the predictions at the sub-regional level: the 1993 model reproduces the actual poverty estimates 

very well for 2002, while the predictions differ significantly for most sub-regions in 200530 (Table 4 

and Table 5). Note also that the sub-regional predictions confirm the earlier finding that the models 

tend to produce rather conservative estimates, underestimating the changes in poverty.  

 

Predictions at the sub-regional level for 2005 by the 1997- and 2002-models give some further support 

to the “time” hypothesis (Table 5). The reason that the 2002-model predicts significantly higher rural 

poverty rate than the actual one in 2005, is due to one single prediction. The problem is to predict for 

Rural West, which also is the rural region that had the largest fall in poverty between the two 

surveys.31 Thus, from the sub-regional predictions we can conclude that the 2002-model does not 

predict too badly for 2005. The sub-regional figures, when using the 1997-model to predict for 2005, 

                                                      
30 Except for Northern region for both domains as well as for urban Central ( 
Table 5). The Northern region is the region with lowest fall in poverty. 
31 When we re-run the rural model and predict for all rural regions except West, we find that the prediction are no longer 
significantly different from the actual one. The predicted poverty level for the three remaining regions is 42,4 percent as 
compared to the actual poverty level at 39,3 percent. 
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show the same pattern. The problem is again to predict for the Western region. The differences in the 

predicted values and the actual one are, however, larger when using the 1997-models compared to 

using the 2002-models. This pertains also to the urban models.  

 

Thus, the sub-regional predictions for 2005 give some indications that time elapsed between surveys 

are important as 2002-models perform better than 1997-models which again perform better than the 

1993-models in predicting poverty for 2005. The 1993-models do not, however, seem to be outdated 

in the same way when predicting for 2002. One reason may be that there is a substantially higher fall 

in rural poverty in 2005 compared to 2002, but this does not hold for urban areas for which the poverty 

level is about the same in 2002 and 2005. One may, however, expect that structural changes in the 

consumption pattern are introduced gradually, and that there is some time lag before it becomes 

visible.  

 

Is it more difficult to predict large changes in poverty? 

The above results suggest that a more important factor for explaining when the model “does not work” 

seems to be large and/or sudden changes in the poverty level. We will explore this further by looking 

at predicted poverty trends in the rural regions. We have used the 1997-survey as the base for 

estimating the models, because it is in the middle, and because it performs well in predicting for most 

surveys.  

 

West was the most dynamic region, in the sense that it had the largest fall in poverty. In rural areas the 

actual poverty level fell by 34 percentage points from 1993 to 2005, while the model predicts about 25 

percentage points decrease in poverty (Figure 6). The predictions are significantly different from the 

actual ones in the survey years 1999 and 2005 that experienced the most dramatic fall in poverty32 

(Table 6). 

 

 

 

 

 

 

 

 

                                                      
32 1999 and 2005 showed, respectively, 17 and 11 percentage point reduction in poverty from the previous survey. 
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Figure 6. Poverty trend for Rural West, actual and predicted by 1997 model 
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The model is not able to capture the fall in poverty level in Central regions at 10 percentage points 

from 1997 to 1999 (Figure 7 and Table 6). In fact, the model predicts increased poverty between these 

two surveys.    

Figure 7. Poverty trend for Rural Central, actual and predicted by 1997 model 
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In the Eastern region poverty fell with more than 20 percentage points over the period. Here the model 

predicts far too low poverty in 1995, and it was not able to predict the almost 20 percentage points fall 

in poverty from 1997 to 1999 (Figure 8 and Table 6).  

 

 

 

 

 



21 

Figure 8. Poverty trend  for Rural East, actual and predicted by 1997 model 
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Finally, for the North the model works fine except for 1995. There was a substantial increase in 

poverty this year which is not captured by the 1997-model (Figure 9 and Table 6). 

Figure 9. Poverty trend for Rural North, actual and predicted by 1997 model 
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Overall, the predicted poverty trends for the rural regional are to a large extent in line with the actual 

poverty trends. Most cases when it fails coincide with large falls, i.e. more than 10 percentage points 

in poverty compared to the previous survey. Worryingly, in some of these cases we unexpectedly 

predict an increase in poverty. Also the 1995 survey is problematic in a couple of the regions, the bad 

predictions can in these cases not be explained by large changes in the poverty levels.   

 

Thus, adding evidence from more disaggregated levels suggest that the elapsed time may be an 

important factor when the models does not predict well. Furthermore, the models have trouble 

capturing sudden and large changes in the poverty level. 
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4.4 The variables behind the predictions 
In this section we examine trends in the explanatory variables in the surveys, and compare them to the 

poverty trend. The crude picture is that the poor performance of the 1995 and 1999 surveys can be 

attributed to the levels of core explanatory variables relative to the poverty levels, as compared to the 

other surveys. Table 7 and Table 8 show the weighted averages of the selected explanatory variables 

for each survey, for the rural and urban areas respectively. We have selected variables to represent 

each group included in the model; demography, education, employment and housing.33 From each 

group we have tried to report on indicators that typically enter into a model.  

 

The strong fall in actual poverty from 1997 to 1999, followed by the increase in poverty in 2002 and a 

subsequent fall in poverty in 2005 are not reflected in the variables in the consumption model, in 

particular for the rural domain. The developments of the housing variables reflect a steady 

improvement. Even indicators which are prone to change fast, like consumption variables, do not 

reflect the marked dip in poverty in 1999. Rather, the figures in Table 7 indicate a steady 

improvement, and 2002 seems to be a relatively good year in terms of the share of the population that 

consumed food, non- and semi durable goods like meat and bathing soap. This holds not only for the 

variables included in the table, but for all consumption variables in our dataset. This finding is also 

confirmed when looking at the welfare quintiles separately, and at the sub-regional level. From 1999 

to 2002 the growth in mean consumption per capita was negative, and only among the upper 20 

percentile there was an increase in per capita consumption, Kappel et al. (2005). The variables in 

Table 7, however, are not variables that one associate to be consumed only by the wealthiest, and thus 

the improvements in these are not in accordance with what one could expect from the fall in 

consumption per capita in this period.34 

 

 

                                                      
33 As the questions used as welfare indicators changed between the surveys, exactly identical welfare variables were only 
identified in two or three surveys. Thus, although this group of variables is important in the models, we cannot produce 
trends for these variables. 
34 Three adjustments to the total household consumption variables in the surveys were made; correction for inflation; 
correction for regional differences in food prices and re-evaluation of home consumption of food into market prices, 
Appleton and Ssewanyana, 2003. If other approaches for the adjustments were taken one may rather find that mean 
consumption per capita for all quintiles increased from 1999 to 2002. First, if the food-CPI rather than the composite CPI  
was used to adjust the food group for inflation, real consumption will be relatively higher in 2002 than in 1999 (because food 
constitute the major expenditure group and food prices fell between with about five percentage points from 1999 to 2002). 
The two further adjustments that were made both have the effect of lowering the estimate of real growth, Appleton and 
Ssewanyana, 2003. It is not obvious why one should re-evaluate home-consumption into market-prices (see Deaton and 
Zaidi, 2002). Nevertheless, if this is approach is chosen, there seems to be one factor that erroneously influence the 
comparison between the surveys: the food-section in the 2002-survey has been cleaned for extreme values/outliers of prices, 
while the same section in the 1999 survey has not been cleaned. Extreme values on the prices may influence the median value 
when there are few observations, which sometimes is the case for the market price for typically home-produced goods.  
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Examining the rural domain of the 1995-survey, which is the other troublesome part of our dataset, we 

see that even though poverty gradually declined from 1993 to 1997, the shares of the population that 

consumed core commodities are considerably higher in 1995 than in the previous and subsequent 

surveys, 1993, 1994, and 1997. This pertains to all food indicators available for the analyses, not only 

the ones shown in Table 7. This holds also for all non-durables, and for all semi-durables,35 in both 

1993 and 1994. The same picture is found when examining the wealth quintiles as well as the rural 

regions separately. The high level on the consumption variables relative to the poverty level in 1995 

might explain why the 1995-models predict too high poverty levels for the other surveys and why the 

other survey models predict too low poverty levels for 1995. As the 1995 dataset, and thus the models 

to predict for and by 1995, does not include housing variables, the consumption variables may be 

assigned a higher weight than in models which include housing variables.  

 

Thus, the low poverty level in 1999 does not coincide with “high scores” on the poverty correlates, 

and the “high scores” on the poverty correlates in 1995 do not correspond to the poverty level in 1995. 

A follow-up could be to examine whether other types of indicators develop in the same manner as the 

indicators chosen for these analyses. In particular, it would be relevant to follow amounts consumed, 

as a supplement to the share that consumed the goods, as well as the value of the household assets.36 

Looking at the value of assets could have an additional purpose, namely to see whether there is some 

indication that the households obtained a high consumption level in 1995 by depleting their asset 

stocks, and vice versa in 1999. 

5 Conclusion 
In this paper we have tested the predictive ability of poverty models relative to poverty figures 

estimated directly from consumption aggregates. Altogether, we have had seven comparable 

household expenditure surveys from Uganda from 1993 to 2006 at our disposal. Using poverty models 

estimated from each of these surveys in turn, we have been cross-testing the models onto the other 

surveys. 

 

In most cases this simple modelling approach produces predictions at rural/urban and sub-regional 

levels that are in line with the poverty levels estimated from surveys in the traditional way. The 

method is as good at sub-regional as at aggregate levels, and there is no tendency that good predictions 

                                                      
35 Except furniture. 
36 Unfortunately, we do not have all the information required for such analyses. 
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at an aggregate level hide poor predictions at the sub-regional level. On the contrary, bad predictions 

at aggregate levels are sometimes due to a single bad prediction in one region.  

 

The difference in the ability to predict poverty stems from differences in levels predicted, while the 

models, independent of which surveys they were based on, predicts approximately similar changes in 

poverty level over time. The model predictions carry forward their “base poverty” level:  A model 

based on a survey with low poverty tends to predict lower poverty than a model based on a survey 

with high poverty. 

 

Sometimes, however, the model approach gives significantly different poverty estimates than poverty 

obtained directly from the survey. Such cases may be attributed to the long time elapsed between 

surveys. Furthermore, the model approach does not work well with sudden and large changes in 

poverty. One hypothesis may be that the model parameters are able to capture most of the change, but 

the faster the change is, the more is explained by other factors.  

 

However, when scrutinising the data we find that more importantly for poor predictive ability seems to 

be some divergence in the data. The two surveys that are problematic seem to be at variance with the 

other surveys with respect to the development in the explanatory variables. This finding may suggest 

that the bad prediction is a result of survey issues.  

 

Thus, even though the overall testing results are encouraging, one will not be able to evaluate the 

results when predicting poverty for a new, light-survey. If one had only one of the Uganda expenditure 

surveys at hand to serve as the base for the model, one could risk that it was one of the problematic 

ones, producing significantly different predictions compared to the actual level. The good news is that 

all models tend to predict the same changes in poverty level, thus one get similar trend in poverty 

independent of which of the seven surveys that is available. If two expenditure surveys are available, 

and there is less than ten years between each survey and the new light-survey, one could join the two 

samples to estimate the consumption models on basis of the merged sample. It is also important to 

keep in mind that this is a second-best, low-cost solution in years when no household expenditure 

survey is available, and one should be willing to update the poverty predictions when a new 

expenditure survey becomes available. This could be done by predicting backwards using the new 

survey and combining the current and the previous predictions offsetting the differences in the level 

predicted by each survey separately.  
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Finally, one should try to improve the models as much as possible. This could be done by including 

additional important variables in the model. In the case of Uganda, for example, that would mean to 

include questions in the surveys on number and type of assets. Elber et al. (2008) and Demombynes et 

al. (2007) find that the ability of the small area estimates approach to reproduce that actual welfare 

indices depends on whether locality-level explanatory variables are included or not. Even though one 

should not expect these variables to be as critical when predicting at aggregate levels, one should aim 

to identify good community variables, and if possible combine the survey data with information on 

climatic and location specific issues from other sources.  
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Appendix 

Methodological appendix 
In this section, we present results of the mathematical derivations of the bias and the variance of the 

predictor. The reader may wish to consult Mathiassen (2007) for further details, as well as Green 

(2003) and Wooldridge (2002) for a presentation of the econometrics used. 

 

Let iw denote the sampling weight of household i. It can be shown that an unbiased predictor for 

predicting the headcount ratio is given by: 
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It can be shown that the variance of the error in (5) can be written as follows: 
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Here HN  denotes the number of households in the target population and Hn  the number of 

households in the light survey. In this expression, we have assumed simple random sampling. We 

allow for other sampling designs by adjusting the last term of the right-hand side of (8). See 

Mathiassen (2007) for the simulation procedure to estimate the variance.  
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Table Appendix 

Table 2. Gini Indices, Uganda 

  National Rural Urban 

1993 0.345 0.296 0.365 

1994 0.365 0.320 0.396 

1995 0.366 0.325 0.373 

1997 0.347 0.311 0.345 

1999 0.395 0.332 0.426 

2002 0.428 0.363 0.483 

2005 0.408 0.363 0.432 

 

Table 3. t-values for the difference in actual and predicted poverty level 

  
1993-
model 

1994-
model

1995-
model 

1997-
model

1999-
model

2002-
model

2005-
model

Rural               

1993  -0.9 -2.1 0.0 2.1 0.0 0.6 

1994 -0.1  -1.8 0.9 4.7 0.0 2.2 

1995 1.5 1.4  2.6 6.4 2.1 4.5 

1997 -1.1 -1.2 -3.0  2.6 -0.4 1.7 

1999 -4.4 -4.3 -6.4 -3.3  -3.8 -1.5 

2002 -0.4 -0.9 -2.1 0.5 3.7  1.9 

2005 -3.2 -2.5 -5.0 -2.2 0.0 -2.8   

Urban               

1993  -0.6 -0.9 0.0 0.6 0.0 0.4 

1994 -1.2  -1.3 -0.6 1.0 -0.1 0.4 

1995 -0.2 -0.4  0.2 1.4 0.7 1.1 

1997 -0.6 -1.2 -1.8  1.1 0.4 0.6 

1999 -2.4 -2.8 -3.4 -2.3  -1.6 -1.1 

2002 -0.7 -1.3 -1.9 -0.8 0.8  0.0 

2005 -2.5 -2.5 -3.6 -1.7 -0.4 -1.0   

For t-test concerning comparison of shares in two populations see for example Battacharyya and Johnson (1977) 
pp. 308-312. 
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Table 4. 1993 models predicting for 2002 

        Rural  Urban  
  National Rural Urban Central East West North Central East West North

Actual 2002                     

Poverty 38.3 42.7 14.4 27.6 48.3 34.3 65.0 7.9 17.9 18.6 38.9 

St.error 1.0 1.2 1.1 2.2 2.0 1.9 2.4 1.3 1.9 2.2 4.0 

1993-model                     

Poverty 40.0 44.1 16.2 28.9 53.8 37.5 67.1 10.8 25.3 18.4 45.3 

St.error 2.1 2.9 2.4 3.7 4.7 4.0 3.7 3.2 4.3 3.1 5.0 

t-value -0.7 -0.4 -0.7 -0.3 -1.1 -0.7 -0.5 -0.8 -1.6 0.1 -1.0 

 

Table 5. Predicting Poverty for 2005 

        Rural  Urban  
  National Rural Urban Central East West North Central East West North

Actual 2005                     

Poverty 31.1 34.3 13.7 20.9 37.5 21.4 64.2 5.5 16.9 9.3 39.7 

St.error 1.0 1.0 1.6 1.8 1.6 1.9 1.9 1.3 2.7 1.2 5.2 

2002-model                     

Poverty 36.2 40.4 16.5 22.7 40.8 35.8 68.1 8.3 22.4 15.4 43.4 

St.error 1.9 1.9 2.2 2.9 3.8 3.2 3.6 1.9 3.7 2.5 6.1 

t-value -2.4 -2.8 -1.0 -0.5 -0.8 -3.9 -1.0 -1.2 -1.2 -2.2 -0.5 

1997-model                     

Poverty 36.4 40.4 18.5 26.7 44.6 30.8 57.5 11.0 23.3 20.2 42.6 

St.error 2.2 2.6 2.4 3.5 4.0 4.2 4.1 2.4 3.4 3.4 5.0 

t-value -2.2 -2.2 -1.7 -1.5 -1.6 -2.0 1.5 -2.0 -1.5 -3.0 -0.4 

1993-model                     

Poverty 38.7 44.2 21.5 29.5 50.4 38.2 66.9 11.5 30.3 17.1 49.9 

St.error 2.3 2.9 2.7 3.9 5.0 4.3 3.7 2.8 4.5 2.5 5.5 

t-value -3.0 -3.2 -2.5 -2.0 -2.5 -3.6 -0.6 -1.9 -2.6 -2.8 -1.3 

 

 

 

 

 

 

 



31 

Table 6. t-values for the difference in actual and predicted poverty levels. Rural regions when applying 
models from 1997 

  Rural 
  Central  East West North 

1993 0.2 -0.4 0.2 -0.2 

1994 0.1 1.8 1.0 0.5 

1995 0.7 2.1 1.1 2.0 

1999 -2.9 -2.7 -2.8 0.2 

2002 -1.5 -0.2 1.4 1.8 

2005 -1.5 -1.6 -2.0 1.5 

For t-test concerning comparison of shares in two populations see for example Battacharyya and Johnson (1977) 
pp. 308-312. 
 
Table 7. Weighted household average of selected indicators, Rural 

  1993 1994 1995 1997 1999 2002 2005

Poverty level 57 55 54 49 37 43 34

Household size 4.8 4.9 5.1 5.1 5.4 5.3 5.3

Education level. head 3.9 3.9 4.1 4.1 4.2 5.0 5.0

Head works in primary sector 0.83 0.85 0.82 0.74 0.78 0.63  

Walls of burnt bricks 0.05   0.06 0.12 0.18 0.28

Floor made of earth 0.92   0.90 0.87 0.86 0.83

Cooking with wood 0.97   0.90 0.95 0.90 0.89

Ate bread last week 0.05 0.06 0.12 0.08 0.06 0.12 0.15

Ate sugar last week 0.42 0.48 0.59 0.58 0.59 0.60 0.58

Ate meat last week 0.33 0.34 0.38 0.28 0.33 0.41 0.38

Ate onions last week 0.40 0.49 0.53 0.45 0.53 0.66 0.65

Bought toothpaste last month 0.09 0.10 0.16 0.20 0.21 0.36 0.39

Bought bathsoap last month 0.09 0.14 0.22 0.26 0.24 0.29 0.32

Bought charcoal last month 0.18 0.30 0.42 0.55 0.56 0.66 0.73

Bought shoes last year 0.33 0.42 0.53 0.51 0.55 0.61 0.69
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Table 8. Weighted household average of selected indicators, Urban 

  1993 1994 1995 1997 1999 2002 2005 

Poverty level 20 22 22 17 10 14 14 

Household size 4.1 4.3 4.6 4.4 4.4 4.1 4.6 

Education level. head 7.9 7.4 7.4 7.6 7.9 8.0 7.9 

Head works in primary sector 0.20 0.22 0.24 0.12 0.12 0.10  

Walls of burnt bricks 0.34   0.43 0.57 0.61 0.65 

Floor made of earth 0.35   0.30 0.27 0.27 0.30 

Cooking with wood 0.31   0.21 0.20 0.21 0.23 

Ate bread last week 0.40 0.36 0.45 0.40 0.38 0.41 0.40 

Ate sugar last week 0.85 0.85 0.86 0.88 0.88 0.85 0.79 

Ate meat last week 0.56 0.56 0.52 0.50 0.52 0.57 0.51 

Ate onions last week 0.80 0.79 0.80 0.79 0.81 0.81 0.80 

Bought toothpaste last month 0.51 0.57 0.66 0.72 0.74 0.79 0.80 

Bought bathsoap last month 0.29 0.35 0.42 0.52 0.47 0.51 0.58 

Bought charcoal last month 0.42 0.60 0.57 0.70 0.72 0.74 0.82 

Bought shoes last year 0.67 0.64 0.72 0.72 0.82 0.81 0.80 
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