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1 Introduction

The job search model stipulates that labor markets are frictional, in the sense that they are char-

acterized by incomplete information about the location of vacancies and searching workers, and

by transaction costs. This has two interrelated implications: first, jobs of different quality may

co-exist in the same market (Burdett and Judd, 1983 and Burdett and Mortensen, 1998). Second,

a worker’s labor market career can be described as a continuous process of search for (better) jobs,

both when he is unemployed and when he is employed (Burdett, 1978). The frictions are typically

operationalized by shock processes that govern the frequencies of job offers and job destruction. It

is standard to assume that: (i) events occur according to Poisson processes such that the duration

between shocks is exponential distributed with a fixed rate parameter common across all individ-

uals;1 (ii) a job offer is defined by a job quality or productivity (sometimes simply a wage) that is

fixed over time and drawn from a known distribution.2 Variants of this model framework have been

applied to a variety of classic topics in labor economics: wage dispersion (Bontemps, Robin and van

den Berg, 2000; Bunzel et al., 2001; Postel-Vinay and Robin, 2002; Mortensen, 2003; Christensen

et al., 2005), income inequality (Flinn, 2002; Bowlus and Robin, 2004), individual wage dynamics

and wage growth (Postel-Vinay and Turon, 2006; Bagger et al., 2006), discrimination (Bowlus and

Eckstein, 2002) and the discouraged worker problem (van den Berg, 1990a; Rosholm and Toomet,

2005; Bloemen, 2005).

In this paper we are concerned with the adequacy of assuming that durations are exponentially

distributed. In particular, we investigate whether a job search model with exponential distributed

durations between events can be made consistent with observed job hazard functions by introducing

individual level heterogeneity in job destruction and job offer arrival rates. Observed heterogeneity

is accounted for by stratification on education and by the use of two sample types: a flow sample

of labor market entrants and a stock sample of “mature” workers with 10-11 years of experience at

the time of sampling. Hence, a second contribution of this paper is to document the importance

of life cycle effects in the job search model’s structural parameters.3 A third contribution is that

we evaluate the job search model’s performance using comparable data for two countries, Denmark

and Norway. These countries are culturally and economically similar, but differ in terms of certain

labor market institutions, most notably the strictness of Employment Protection Legislation (EPL).

By using two different data sources we also obtain a more solid foundation for concluding on the

importance of model structure versus data for goodness of fit. Some previous studies have examined
1This assumption can be traced back to Mortensen (1970).
2In equilibrium search models this distribution is endogenized; in partial equilibrium models it is not. We are con-

cerned with partial equilibrium models, although we compare some methods and results to applications of equilibrium
models.

3We do not formally consider a non-stationary environment (as is done in e.g. van den Berg, 1990b). Separating
heterogeneity from structural duration dependence is an important empirical issue (Heckman, 1991), but not one
that we will consider in this paper.
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cross-country differences in labor market structures within a job search model framework, see

Flinn (2002), Ridder and van den Berg (2003), and Jolivet, Postel-Vinay and Robin (2006). To

our knowledge we are the first to estimate structural job search models using Norwegian register

based panels on individual labor market histories. Finally, we also consider heterogeneity across

individuals and life cycle effects in wages, although these effects are of secondary importance for

this paper.

Compared to the number and range of applications of the job search model, and even though

transitions between labor market states are at the core of this model, few works have addressed

its ability to explain observed job durations. Bowlus and Seitz (2000) use PSID (Panel Study of

Income Dynamics) data for estimating an equilibrium search model and find that the model over-

predicts average job durations, although this may stem from a very high rate of right-censoring.

Bowlus, Kiefer and Neumann (2001) use NLSY (National Longitudinal Survey of Youth) data and

an equilibrium model with heterogeneous firm productivity and identical workers, and also find that

the model generates more long jobs than observed. Using data from the Dutch Socio-Economic

Panel with self-reported job search activity, Bloemen (2005) estimates a model with endogenous

search intensity, allowing for observed heterogeneity in job offer arrival rates and in search costs, in

addition to unobserved heterogeneity in search costs. Bloemen finds that the model fails to fit the

low exit rates at long durations. Rosholm and Svarer (2004) estimate a search model on Danish

data endogenizing the decision to train workers, and find a poor fit to job durations. Finally,

Jolivet, Postel-Vinay and Robin (2006) use data for ten countries to estimate a job search model

and conclude that “... in some cases there seems to be more negative duration dependence in the

data than the model can predict” (p. 896). Hence, studies that have used different data sources,

various age, education and gender groups, and different model specifications, arrive at the same

conclusion: the job search model fails in fitting job durations and the data are likely to contain

variation that has not been accounted for in the model.

We obtain more detailed insight into where the model may fail than previous studies by address-

ing the fit to destination-specific hazard functions within a competing risks framework (job-to-job

and job-to-nonemployment), and by specifically considering the role of heterogeneity in generating

acceptable fit to job durations. We find that the search model with heterogeneous parameters pro-

duces acceptable, though not perfect, fits to observed job-to-job and job-to-nonemployment hazard

functions. The fit is better for entrants than for mature workers, especially for the job-to-job hazard

function. Moreover, we find significant differences in structural parameters between entrants and

mature workers, suggesting that life-cycle effects in structural parameters is an important empir-

ical issue when applying the job search model to long panels. Finally, relative to Denmark, the

Norwegian labor market is characterized by lower job offer arrival rates for both employed and

nonemployed workers and higher job destruction risks. This pattern is stable across education
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groups and between samples of entrants and mature workers.

The remainder of the paper is organized as follows: section 2 presents the theoretical model.

Section 3 contains a brief description of Danish and Norwegian Employment Protection Legislation

and wage setting institutions. Section 4 presents the data and section 5 develops the empirical

model. The estimated models are discussed in section 6 and we evaluate goodness-of-fit in section

7. Section 8 concludes the paper. Appendices A, B and C provide technical details.

2 The job search model

Setup. The labor market consists of a demand side represented by a continuum of firms and

a supply side represented by a continuum of workers. The measures of firms and workers are

normalized to unity. Time is continuous and is discounted at a constant rate ρ. Without loss of

generality we state all income related variables in logs and assume that workers’ preferences are

represented by an instantaneous utility function u(·) of wages. Workers can be either employed

or nonemployed, i.e. we do not distinguish between nonparticipation and unemployment and refer

to these out-of-work states as nonemployment. We make no distinction between a firm and a job

but refer to the demand side of the market as being populated by firms. Hence, workers and firms

match one-to-one, but must engage in a search process to locate a potential match partner. Firms

produce a multipurpose consumption good using a constant-returns-to-scale technology with labor

as the only variable input. The matching process is such that nonemployed workers receive job

offers at a Poisson rate λ0, whereas employed workers receive job offers at rate λ1. Existing jobs

are destroyed at rate δ and workers retire (i.e. vanish from the population) at rate µ. To maintain

a constant labor force we assume that nonemployed workers are born at rate µ.4 We treat job offer

arrival rates, job destruction rates and retirement rates as fixed parameters from the perspective

of workers. Workers cannot recall offers rejected in the past.

Wage setting and match quality. Firms post real log wage contracts of the form

w∗(a, x) = y(a) + x, (1)

where w∗(a, x) is the log wage, x is a time-invariant log match quality and y(·) is some function of the

worker’s experience a ≥ 0 with y(0) = 0. Experience is assumed transferable across jobs and labor

market states. Newborn workers have a = 0 and only employed workers accumulate experience.

There is an experience level A beyond which the worker’s productivity remains constant:

y(a) =
{

y(a) 0 ≤ a ≤ A
y∗ a > A

. (2)

4The constant retirement rate µ should be considered a technical assumption needed to secure the existence of
proper steady state distributions needed for our analysis. See Appendix B.
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Nonemployment is treated as employment in a match of log quality b such that nonemployed

workers receive log flow income y(a)+ b.5 Let F be the sampling distribution of log match qualities

x on [x, x) with x possibly extending to ∞. In partial equilibrium we take F as given.6 We define

F (x) ≡ 1− F (x).

The log-additivity of y(a) and x in (1) simplifies the characterization of workers’ optimal strate-

gies. One way of rationalizing (1) is to assume that firms post piece-rate contracts (following

Barlevy, 2003 and Bagger et al., 2006). When a worker and a firm form a match, a fraction

exp(x̃) ∈ [0, 1] of the match’s produce is assigned to the worker. From the worker’s perspective, a

job offer is thus a draw from a distribution of piece-rates exp(x̃) ∈ [0, 1]. Let the worker’s produc-

tivity be exp(ỹ(a)). Then, the log wage is a function of the piece-rate contract and labor market

experience (through productivity): w∗(x̃, a) = ỹ(a) + x̃. Because piece-rates and productivity are

not observed, x̃ and ỹ(a) are only identified up to scale and our wage equation (1) ensues by

normalizing by exp(ỹ(0)). That is, y(a) = ỹ(a)− ỹ(0) and x = x̃ + ỹ(0).

Labor market flows. Whereas job destruction and retirement shocks are exogenous to the work-

ers, the decision of whether or not to accept a job offer is endogenous. Proposition 2.1 characterizes

workers’ optimal strategies.

Proposition 2.1 A worker’s optimal strategy has the reservation quality property. Let V1(x, a)

and V0(a) be the expected present discounted value of employment in a match of log quality x and

nonemployment, respectively, for a worker with experience a. Let V∗1 (x) ≡ V1(x,A) and V∗0 ≡ V0(A).

For 0 ≤ a < A the unemployed search reservation log quality ru(a) exists and solves:

V1(ru(a), a) = V0(a).

For a ≥ A the unemployed search reservation log quality ru,∗ exists and solves V∗1 (ru,∗) = V∗0 . It is

defined by:

ru,∗ = u−1

(
u(y∗ + b) + (λ0 − λ1)

∫ x

ru,∗

F (s)1(s ≥ x)
ρ + µ + δ + λ1F (s)

ds

)
.

The on-the-job search reservation log quality re(x) of a worker in a match of log quality x exists

and is independent of the worker’s labor market experience. It solves V1(re(x), a) = V1(x, a) and

V∗1 (re(x)) = V∗1 (x) for 0 ≤ a < A and a ≥ A, respectively, and is given by the unit function:

re(x) = x.

Proof See Appendix A ¥
5A partial justification for this assumption can be found in the fact that unemployment insurance depends on

previous earnings in both Denmark and Norway.
6In a setup similar to ours, Burdett and Mortensen (1998) show that the unique Nash equilibrium offer distribution

in a game where firms post match qualities, is continuous, non-degenerate and bounded from below.
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Proposition 2.1 and the assumption of Poisson arrival rates generate a continuous time expo-

nential competing risks duration model for job durations with three transitions: retirement (with

hazard rate µ), job-to-nonemployment (hazard rate δ), and job-to-job transitions. The job-to-job

hazard is the product of the arrival rate of offers λ1 and the probability that the quality of the offer

exceeds the worker’s current match quality. Conditional on current log match quality x, the latter

event occurs with probability F (x), producing the conditional job-to-job hazard rate λ1F (x).

Let T er, T eu and T ee be the latent durations until retirement, job destruction and a job-to-job

transition, respectively. In the absence of censoring, observed job duration T e = min{T er, T eu, T ee}
with realization te.7 Let Der, Deu and Dee be binary random variables whose realizations der, deu

and dee indicate transitions into retirement, nonemployment and another job, respectively. We will

condition the data used for the empirical analysis on no retirement in the sample period. This

is equivalent to conditioning on no retirement during each separate spell (that is, der = 0 for

each job and nonemployment spell). To save on notation we do not make the condition der = 0

explicit. It follows that the joint density of (T e, Deu, Dee), conditional on x (and der = 0), denoted

pe(te, deu, dee|x), is a competing risks exponential distribution:

pe(te, deu, dee|x) = δdeu
[λ1F (x)]d

ee
e−[δ+λ1F (x)]te . (3)

Let T ur and T ue be the latent durations until a nonemployed worker retires and transits into

employment, and let Dur and Due be binary random variables whose realizations dur and due

indicate transitions into retirement (hazard rate µ) and employment (hazard rate λ0F (ru(a)),

respectively. We assume that nonemployed workers accept all job offers, implying that F (ru(a)) = 1

for all a ≥ 0 such that the nonemployment-to-job hazard rate is λ0. Hence, conditioning on no

retirement in each nonemployment spell, in the absence of censoring, the joint density of observed

nonemployment duration T u = T ue (with realization tu) and Due, is

pu(tu, due) = λdue

0 e−λ0tu . (4)

The assumption that nonemployed workers accept all job offers relates to a fundamental identi-

fication problem of the partial equilibrium model: the reservation log match quality of nonemployed

workers, ru(a), is an endogenous variable, whereas the match quality sampling distribution F is

taken as exogenous. If ru(a) exceeds the lower point of the support of F , the left tail of F is never

observed, leaving F nonparametrically unidentified (Flinn and Heckman, 1982). The assumption

that F (ru(a)) = 1 for all a ≥ 0 restricts the set of admissible match quality sampling distributions

to those with an estimable lower point of support and also rules out endogenous quitting into

nonemployment as it implies that V1(x, a) > V0(a) for all a ≥ 0 and x ∈ [x, x).8

7Random censoring is routinely handled in a competing risks framework. See for example Lancaster (1990).
8When introducing heterogeneous shock processes in a partial equilibrium setting as the one considered in this

paper, one should also consider heterogeneity in the lower point of support of the sampling distribution F . We do so
in the empirical analysis.
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Distribution of match qualities. In our empirical analysis we will use employment spells sam-

pled from stock, i.e. jobs that are active on a given date. Due to the selection mechanism working

through workers’ reservation strategies (Proposition 2.1), match qualities are not distributed ac-

cording to F in such a sample. However, imposing a steady state on the model yields a set of

balanced-flow restrictions that can be used for deriving the cross-section log match quality dis-

tribution conditional on experience. The labor market is in a steady state when the inflow and

outflow to any given state or set of workers (e.g. nonemployment, workers with experience a, work-

ers earning w or less, etc.) balance. We use a number of such steady state conditions to prove the

following proposition:

Proposition 2.2 The steady state distribution of log match qualities x in a cross section of workers

with labor market experience a, G(x|a), is:

G(x|a) =
F (x)

δλ0 + (µ + λ0)λ1F (x)

[
δλ0 + (µ + λ0)λ1F (x)e−[µ+δ+λ1F (x)]a

]
.

Proof See Appendix B ¥

As a approaches 0, the distribution of match qualities G(x|a) approaches F (x): inexperienced

workers have not yet had the time to climb the “job-ladder”. Conversely, G(x|a′) > G(x|a′′)
for a′ < a′′: the distribution of match qualities among more experienced workers stochastically

dominates that of less experienced workers, because more experienced workers have made more

job-to-job transitions since the latest nonemployment period, on average.

3 Institutions

When evaluating the ability of the job search model to reproduce observed transition rates it is

important to confront the model with data on workers who act in different environments and to

use different data sources. We do this using data for Denmark and Norway (described in detail

in section 4). The two countries are similar in terms of income levels and the form and scope of

welfare states, but differ with respect to certain labor market institutions.

Employment protection An important difference between the labor markets of Denmark and

Norway is the strictness of EPL. OECD (1999) compared EPL for a number of countries and ranked

Denmark 7 and Norway 15 among 27 countries on overall strictness of protection against individual

dismissal in the late 1990s (a higher rank indicates stricter EPL in the sense that workers are more

protected). Norwegian EPL is particularly strict on the definition of “unfair dismissal”, i.e. it is

harder to fire individual employees in Norway than it is in Denmark and the other 27 countries.

In Norway, individual dismissal requires some form of disloyalty or other breach of contract. Legal
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practice has established that individual lay-off for economic reasons is only allowed if the job has

become redundant and the worker could not be retained in some other position. In Denmark it is

generally possible to dismiss an individual worker whose job has become redundant. Reinstatement

is more frequent in Norway and compensation for unfair dismissal slightly more generous. Severance

payments are not required by law in Norway (but agreed for older workers in the private sector)

or for blue collar workers in Denmark, but last up to three months for white-collar workers in

Denmark.9 Denmark also has longer notice periods for white-collar workers, whereas notice periods

are similar for blue collar workers in Denmark and Norway (slightly longer for Norwegian blue-collar

workers with long tenure). Both countries are in the middle of the distribution within the OECD

for strictness of regulations of collective dismissals.

Wage setting Both countries are characterized by a high degree of centralization in wage set-

ting and a high degree of coordination between employer and employee organizations. There is

bargaining at several levels and at two year intervals, with collective agreements setting minimum

standards for wage increases tied to education, formal skills and job types. Wages may increase

above this amount through negotiation at lower levels. Mortensen (2003) asserts that 85 percent

of all central agreements in Denmark in 1993 allowed for local (i.e. firm level) determination of

wages and working conditions. This fraction is likely to have risen since then. In Norway, blue

collar workers are typically covered by minimum wage agreements (with a wage drift due to lo-

cal negotiations), whereas for white collar workers, only wage setting procedures and not wages

per se are negotiated at the collective agreements. In 1994 the union densities were 76 and 58 in

Denmark and Norway, respectively. However, due to wider coverage of non-members in Norway,

total collective bargaining coverage rates (the percentage of workers whose terms of employment

are determined by a collective agreement) are similar, with 69 percent in Denmark and 74 percent

in Norway (OECD, 1997).10

4 Data

The data used for the empirical analysis are based on two comprehensive matched employer-

employee panel data sets from Denmark and Norway and contain information on wages, labor

market transitions and worker characteristics.

Data for Denmark. The main source of the Danish data is a collection of individual labor

market histories (spells) recorded on a weekly basis over the period 1985-2001 and covering the full
9In our empirical analysis we will stratify the data according to educational attainment rather than using the blue

collar/white collar distinction.
10OECD (1997) mentions data problems and unionized workers working in non-covered firms as possible reasons

that unionization exceeds coverage in Denmark.
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Danish population aged 16-70 and all firms. The spell data are constructed from administrative

registers with information on public transfers, earnings as well as start and end dates for all jobs

reported by firms to the Danish Tax Authorities, and mandatory employer pension contributions.

We supplement the spell data with annual background information on individuals (for this study:

educational attainment and experience) and firms (for this study: a public sector indicator) from

IDA.11 Labor market experience is deduced from mandatory pension payments related to the

number of hours worked and dates back to 1964. Employers are identified both at the firm and

establishment level. We construct job spells using the firm identifiers, i.e. we do not treat job

changes between establishments within the same firm as labor market transitions. Because we are

not specifically interested in the differences between unemployed and non-participating workers,

we pool unemployment and nonparticipation together in the single state, nonemployment. We

observe within-year average wages that are calculated from job-specific annual earnings and a

rough calculation of the number of hours worked in each job (based on mandatory pension payments

related to the number of hours worked). Hence, the wage measure incorporates bonus pay, overtime

pay etc.

Data for Norway. The Norwegian data derive from administrative registers for firms, establish-

ments and individuals. The data are collected by various authorities for different administrative

purposes and cover the entire Norwegian population of persons and firms, with most information

being available from 1992. Consistent use of establishment and person identifiers across registers

facilitates linking of different data sets. The data sources used for constructing individual labor

market histories are the employer-employee register and the LTO register, the Norwegian Tax Di-

rectorate’s register of wage sums, available since 1995. The employer-employee register is part of

the social security system, and employers report information on employment relationships to this

register at the establishment level. Apart from very short jobs and self-employment, these data

include all jobs in the Norwegian economy. We obtain information on annual earnings for each job

from the LTO-register. All employers are required to report paid wages to the Tax Directorate with

one report for each contract of employment each year. The reporting is done at the firm level. The

earnings measure includes pecuniary compensation including bonuses and overtime pay. Working

hours are coded in three intervals, resulting in errors in the calculated hourly wages. As with the

Danish data, we define the Norwegian job spell data using the firm identifier, and define nonem-

ployment periods as periods when not registered as employed. Actual labor market experience is

calculated using individual earnings histories from 1967 onwards, see Hægeland (2001) for details.

Length of highest completed education is taken from the National Education Database (NUDB).
11IDA: Integreret Database for Arbejdsmarkedsforskning (Integrated Database for Labour Market Research) is

constructed and maintained by Statistics Denmark.
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4.1 Sample selection

We use the period 1997-2003 for the Norwegian data and 1995-2001 for the Danish data and restrict

attention to men in order not to confound the analysis with fertility and household production issues

usually deemed more relevant for women.12 Both the Norwegian and the Danish data include

information on highest completed education in a given year. We assume that labor market entry

occurs on January 1 in the year following graduation from highest completed education. Because

workers under 18 years are subject to different rules regarding employment conditions and wages

than adult workers, we do not use information on careers that occur before age 18. For individuals

graduating from a highest completed education before turning 18, we re-define labor market entry

to occur January 1 in the year the worker turns 19. Durations of the entry spells (employment or

nonemployment) are measured from January 1 in the entry year irrespective of the actual starting

date of the spell. These definitions of entry jobs are similar to those applied by Topel and Ward

(1992). In order to narrow the data to a sample of workers who can be assumed to behave in

accordance with the theoretical model, we exclude persons who disappear from our records, who

are observed to be self-employed, who receive transfers related to disability or retirement, and who

are observed in public sector jobs, any time during the data periods. This sample selection rule is

similar to that applied by van den Berg and Ridder (1998) and Flinn (2002).

If a person is employed in the same firm during two separate periods that are less than 12

weeks apart we aggregate these jobs into a single job, thus interpreting the nonemployment spell

as a temporary dismissal with behavior as if continuously employed. In both data sets there are

a number of very short nonemployment spells (shorter than 4 weeks). We suspect that many

of these spells are waiting periods when the start date of a new job has already been agreed.

Consequently, we eliminate nonemployment periods shorter than four weeks and instead record a

job-to-job transition. Bowlus, Kiefer and Neumann (2001) use a two-week threshold in a similar

spell definition.

We stratify the data into three groups according to workers’ education length: 7-10, 11-13 and

14-20 years, corresponding to lower secondary school, upper secondary school or tertiary education.

For sake of brevity we refer to the three levels as low, medium and high education.

Wages. The theoretical model assumes a dynamically stable distribution of wage offers. This

implies the absence of technological improvements and other macro shocks that might shift the wage

distribution. We therefore de-trend the nominal wage observations in each stratum to the 2001

level by regressing wage observations on a set of year-dummies (and a constant), and retrieve the

de-trended wage observations as the residuals (plus the constant). For the de-trending regression

we use all jobs in the private sector for a sample of workers who satisfy the criteria for sample
12Because of errors in the 1996 earnings data for Norway, we only use data from 1997.
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selection outlined above. We then ensure that the data are balanced across years by imposing

a uniform age distribution in each year.13 We remove the top and bottom 2.5 percent of wage

observations in each year before wages are de-trended.

Labor market entrants. We sample a cohort of Danish workers who entered the labor market

in 1996 (i.e. who graduated during 1995) and a cohort of Norwegian workers who entered in 1998

(graduating during 1997). All workers are followed for 6 years, i.e. until the end of 2001 and 2003,

respectively. We impose two additional requirements on the samples of entrants: first, labor market

experience at entry should be no more than 5 years (many workers accumulate experience before

completing education). Second, age at entry cannot fall below years of education plus 5 (19 for

workers entering the labor market before turning 18) and cannot exceed years of education plus 15.

Mature workers. The sample of mature workers consists of a cross section of workers who have

between 10 and 11 years of labor market experience at a particular date. For the Danish sample

we take a cross section of workers on January 1, 1996. For the Norwegian sample we select workers

on January 1, 1998. As with the labor market entrants all workers are followed for 6 years and an

age requirement is imposed: age at sampling time cannot fall below years of education plus 15 and

cannot exceed years of education plus 25.

Employment cycles. The likelihood function that we derive from the job search model is built

using the notion of employment cycles. An employment cycle is a sequence of consecutive jobs

where the first job in the cycle follows a transition from nonemployment, and the last job ends

in either a transition back to nonemployment or in censoring. Inspection of both the Norwegian

and the Danish data reveals that a non-trivial fraction of jobs ends in the last week in December

in each of the years covered by the samples (10-15 percent of the jobs). The clustering occurs in

both countries when employers fail to report start and ending dates of jobs. Although labor market

mobility is likely to exhibit some seasonality, the clustering of job terminations is so pervasive that

we decided to truncate employment cycles at entry to a job that ends in the last week of December.

Note that we truncate employment cycles and not labor market histories, a practice that is in

accordance with the search model’s stipulation that nonemployment periods “reset” labor market

histories.

For computational reasons (see section 5) we censor individual trajectories at exit from the

third observed employment cycle,14 and we censor the employment cycles at transition to the third
13To be precise, we randomly select 100 individuals in each age-year cell. In case 100 individuals cannot be selected

for a given age-year cell we sample with replacement.
14The third observed employment cycle may in reality be the fourth, fifth, etc. due to the truncation of cycles that

contain jobs that end in the last week of December. Given our model, where nonemployment periods neutralize all
differences between workers, there is no difference between behavior and outcomes in a worker’s third and subsequent
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job in the cycle (but record that a job-to-job transition occurred). Note that we do not censor

jobs, apart from jobs that are ongoing at the end of the observation period. Also note that the

censoring implies that some workers will have no employment spells. These workers contribute

only to the identification of the parameter governing nonemployment-to-job transitions that is of

no particular interest to us, and are therefore discarded. Hence, the final samples consist of labor

market histories with a maximum length of 6 years, covering up to three employment cycles, each

of the observed employment cycles containing up to the two first jobs in the cycle.

4.2 Descriptive analysis

The business cycle. We begin by briefly considering the state of the Danish and Norwegian

labor markets during our sample periods. Figure 1 plots unemployment rates for men in Denmark

and Norway 1994-2005. These numbers relate to the macro level of the labor market and are not

representative for our samples due to the data manipulations and sample selection rules imposed

above, but are still informative about the environment in which individuals in our sample act.

The unemployment rate increased in Norway throughout the data period, whereas the Danish

unemployment rate first decreased, then stabilized. Although the unemployment rates were not

constant within our windows of observation, it may still be reasonable to assume steady state, as

is done in order to derive the distribution of match qualities for mature workers. For instance,

research by Jolivet, Postel-Vinay and Robin (2006) suggests that labor markets move rapidly from

one steady state to another in response to external shocks.

< Figure 1 about here. >

Job durations and transitions. Table 1 describes the amount of data and transitions. There

are only few workers in the lowest education groups, especially for entrants. Part of the reason is

that we have excluded persons who retire from the labor market permanently. Remember that the

number of cycles and the number of jobs are truncated at three cycles per worker and two jobs

per cycle, and that employment cycles are truncated at entry into a job with an end-date the last

week of December. This makes it difficult to interpret differences between strata. Also note that

any comparison of the raw numbers in Table 1 of entrants and mature workers is rendered difficult

by the increase in average education levels between the cohorts.

< Table 1 about here. >

In our empirical model we will allow for heterogeneity between individuals in the job destruction

rate δ and in the job offer arrival rate when employed, λ1. Identification of this heterogeneity rests

on the observation of multiple employment cycles (for δ), and multiple jobs within the same cycle

(for λ1) for the same individual. The numbers reported in Table 1 suggest that the number of

employment cycles.
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repeated spells are sufficiently high to estimate heterogeneity distributions.

We describe transition patterns in Figure 2 and Figure 3 using nonparametric kernel estimates

of the transition specific hazard functions (Ramlau-Hansen, 1983). The hazard function estimates

have been corrected for the downward bias near the boundary of the support (Nielsen, 1998). For

entrants we plot the hazard function estimated on each entrant’s first observed job (that is, we

consider the flow of entry jobs), and for mature workers we plot the hazard function of jobs that

were active at the time of sampling (that is, for a stock sample of jobs). The use of different

samples makes it difficult to compare entrants and mature workers based on Figures 2 and 3.

Neglected heterogeneity in duration models manifests itself as spurious duration dependence in the

hazard function (see e.g. Lancaster, 1990). In single risk models the bias goes towards too much

negative duration dependence. In competing risks models it is not possible to sign the bias without

restricting the distribution of unobservables. Estimates of the unconditional hazard function are

thus indicative of unobserved heterogeneity in the parameters that govern the job destruction

process and the empirical relevance of conditioning on a match quality in the job-to-job transition

process. In fact, with homogeneous λ1 the job-to-job hazard function is a mixture of exponentials

with the distribution of match qualities as the mixing distribution (Ridder and van den Berg, 2003).

< Figures 2 and 3 about here. >

The hazard functions are monotonically declining in all samples, except perhaps for Danish

high educated entrants. The negative duration dependence is most pronounced for entrants, the

low-educated and for the job-to-nonemployment transitions. This supports the inclusion of hetero-

geneity in transition parameters. There is more duration dependence in the job-to-nonemployment

hazard among entrants than among mature workers, and there is more duration dependence in the

job-to-nonemployment hazard than in the job-to-job hazard. In fact, the hazard for transitions to

nonemployment exceeds the hazard for direct job change at short durations for several samples (all

but one Norwegian sample).

Overall, the job-to-job hazard rates are higher in Denmark and the job-to-nonemployment

hazard lower, especially for entrants. Dale-Olsen and Rønningen (2000) conclude that flow rates

are higher in Denmark than in Norway, and in particular, Danish worker churning flow rates (worker

flows above that needed for generating observed job flows) are larger than the Norwegian churning

rates. Our data suggest that this is due to higher job-to-job mobility in Denmark. Given the

stricter protection against individual dismissal and temporary employment in Norway we expected

higher job-to-nonemployment mobility in Denmark. Differences in the states of business cycles may

be part of the explanation for the seemingly higher job destruction risk in Norway.

The hazard functions reveal that mobility decreases with education and that the bulk of this

decrease is in terms of a reduced risk of nonemployment. Using Danish administrative register data

similar to the data used here, Bunzel et al. (2001) report that the job destruction rate decreases
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with education level for workers aged under 30. This pattern is also in line with studies of displaced

workers, where low educated workers face a higher risk of displacement. See e.g. the cross-country

studies in Kuhn (2002) for international evidence.

Wages. Table 2 shows the means and standard deviations of the log-wage distribution in jobs

that follow non-employment (and the first jobs observed for entrants).15 Average starting wages

increase with education and experience as expected. Between 39 and 55 percent of job-to-job

transitions involve a wage cut. Jolivet, Postel-Vinay and Robin (2006) report frequencies of wage

cuts within the same range, and in van den Berg and Ridder (1998) the corresponding frequency is

11 percent (their footnote 15, p. 1202). The model presented in section 2 is in fact consistent with

job-to-job transitions with wage cuts when y′(a) < 0. However, we expect y(a) to be increasing

and the experience effect is not likely to explain the observed level of wage cuts. The job search

literature has pointed to a number of alternative explanations of job-to-job transitions with wage

cuts. First, workers may accept a wage cut if they are compensated by higher expected future

wage growth (like in Postel-Vinay and Robin, 2002). Second, workers who expect to be laid off

or have received advanced notice of a lay-off may lower their reservation wage below their current

wage. Third, there might be compensating differentials in wages: if workers value nonpecuniary

job attributes, and if the ranking of jobs based on wages differs from the ranking based on wages

and nonpecuniary attributes, then job-to-job transitions with wage cuts will occur. Fourth, it is

likely that we measure hourly wages with error, primarily due to inaccurate measures of hours of

work. We disregard structural explanations, and treat the wage cuts as a pure data issue. Hence,

we maintain the assumptions of the basic model but allow for measurement error in wages in our

empirical model.

5 The empirical specification

In this section we derive the likelihood function associated with the job search model of section 2 as

the joint distribution of wages and destination-specific durations.16 The data description demon-

strated that wage observations are missing and that unobserved heterogeneity and measurement

errors in wages are likely to be important. We adapt the empirical model to take these observa-

tions into account. We first specify functional forms for experience effects in wages, match quality

distributions and introduce measurement errors. We then derive the likelihood function.
15The average exchange rate (DKK/NOK) was 92.6 in 2001.
16Ridder and van den Berg (2003) develop unconditional inference techniques for the job search model’s transition

parameters where no restrictions are imposed on the distribution of match qualities. Their techniques are thus
applicable in situations where one is unwilling to impose parametric restrictions on the sampling distribution F or
where wage data are absent or seriously flawed. Although we utilize their ideas for jobs with missing wage data, we
do estimate the wage and transition parameters jointly.
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Experience effects, match quality and measurement errors. Individual log wages are

additive in (normalized) individual log productivity y(a), where a is years of experience, and a log

match quality x. In the empirical implementation we specify y(a) as a linear spline function with

two knots, a∗1 and a∗2:

y(a) =





γ1a a ≤ a∗1
γ1a

∗
1 + (γ1 + γ2)(a− a∗1) a∗1 < a ≤ a∗2

γ1a
∗
1 + (γ1 + γ2)(a− a∗1) + (γ1 + γ2 + γ3)(a− a∗2) a ≥ a∗2

, (5)

The knots are set at 3 and 6 years for labor market entrants and at 12 and 14 years for mature

workers. Whereas mature workers all have between 10 and 11 years of labor market experience

when entering the sample, entrants have between 0 and 5 years of experience. Because we follow

all workers for 6 years the range of experience values is 0-11 years for entrants and 10-17 years for

mature workers. We assume that pre-entry experience is as useful as post-entry experience in gen-

erating wage/productivity growth, and include pre-entry experience in our measure of experience.

Equation (5) entails the implicit assumption that A > 17 years, where A is the experience level

after which further experience does not raise productivity.

Next we need to parameterize the distribution of log match qualities F . Keeping in mind that

we have restricted the set of admissible F ’s to have an estimable lower point of support, we assume

that F is the three parameter Weibull distribution:

F (x) = 1− e−(x−α
ν )η

. (6)

The Weibull distribution contains as a special case the truncated exponential distribution (η = 1),

which in turn is equivalent to the Pareto distribution for match qualities in levels. It can also

resemble the normal distribution.

As described above the calculated wages are surely infected by measurement errors. We account

for this in estimation.17 Observed log wages w are given as

w = w∗ + ε = y(a) + x + ε, (7)

where ε is a classical measurement error, i.e. independent of a and x and with ε ∼ N (ξ, σ2).

Clearly, (α, ν, η) and (ξ, σ) are not separately identified from wage observations and we impose the

normalization E[exp(w)|a, x] = exp(y(a) + x), implying that ξ = −σ2/2. Hence, the density of

observed log wages conditional on x and a is

h(w|a, x) = φ

(
w − y(a)− x + σ2/2

σ

)
1
σ

, (8)

where φ(·) denotes the standard normal density.
17Previous studies have also accounted for measurement errors in job search models: Wolpin (1987), van den Berg

and Ridder (1998), and Flinn (2002) use normal distributed errors, whereas Christensen and Kiefer (1994) and Bunzel
et al. (2001) assume that errors are distributed according to Pearson type 5 distribution.
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A note on identification of the parameters in the match quality distribution is warranted here:

our stock sample of mature workers all have 10-11 years of experience at the time of sampling. This

implies that the first order moment in the match quality distribution F (x) for mature workers is

unidentified, since it confounds the true mean of offered log match qualities α + Γ(1 + 1/η)/ν (Γ(·)
is the gamma function) with the effect of experience accumulated prior to stock sampling.

The likelihood function. Recall that an employment cycle is a sequence of consecutive job

spells where the first job in the cycle follows a transition from nonemployment, and the last job

ends in either a transition back to nonemployment or in censoring. Let subscripts c = 1, ..., C

represent a worker’s employment cycles, and let j = 1, ..., Jc represent the jobs within employment

cycle c for each c. We have annual observations on wages and experience levels for each job. Let

k = 1, ...,Kcj for each c, j denote observations on job j in cycle c, where Kcj ≤ 6. Furthermore,

C ≤ 3 because we have restricted the analysis to cover at most three employment cycles for a given

individual, and Jc ≤ 2 because we truncated employment cycles at entry into the third job in the

cycle. A worker’s nonemployment spells are indexed by n = 1, ..., N ≤ 4.

Let {tecj , deu
cj , dee

cj , {wcjk, acjk}Kcj

k=1} be the data for the j’th job in cycle c, and let Qcj(x) be the

associated likelihood contribution, conditional on the log match quality x:

Qcj(x) = pe(tecj , d
eu
cj , dee

cj |x)×



Kcj∏

k=1

h(wcjk|acjk, x)mcjk


 , (9)

where mcjk takes the value 1 if wcjk is non-missing and the value 0 otherwise. The first term on

the right-hand side of (9) is the joint density of job durations and transition indicators, conditional

on the match quality x. This is given by (3). The second term is the density of observed log wages,

conditional on experience and the match quality x. The likelihood contribution of an unemployment

spell is given by (4).

Log match quality is unobserved to the econometrician and is treated as a random effect. The

assumption that nonemployed workers accept all job offers implies that the density of log match

qualities in the first job of an employment cycle is f(x), the sampling density of log match qualities.

Because workers only move to better jobs, the density of log match qualities in the second job,

conditional on the quality of the first job, is f(x2)/F (x1), with x2 > x1.

We assume that we observe the first job for every labor market entrant, such that the log

quality of initial jobs is distributed according to F (x). For mature workers who are employed at

the sampling date, the stock sampling scheme, together with the assumption that the labor market

for mature workers is at a steady state, implies that match qualities in mature workers’ initial jobs

are distributed according to G(x|a0) given by Proposition 2.2, where a0 ∈ [10, 11). Define sc as an

indicator equal to 1 if the first job in the cycle was stock sampled and 0 otherwise, and let χc be
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an indicator equal to one if the cycle c has (at least) two jobs, zero otherwise. We can then write

the unconditional likelihood contribution from an employment cycle with two observed jobs as
∫ ∞

α
Qc1(x1)

[∫ ∞

x1

Qc2(x2)
dF (x2)
F (x1)

]χc

dG(x1|a0)sc dF (x1)1−sc . (10)

If the last job in a cycle has no wage observations the inner integral in (10) can be solved analytically

(Ridder and van den Berg, 2003). Clearly, if none of the jobs in a cycle have wage observations

the full likelihood contribution from that cycle admits a closed form solution. We solve remaining

integrals by numerical integration using Gauss-Legendre quadrature techniques (see e.g. Judd,

1998), using 40 quadrature nodes in each dimension.

The descriptive statistics hinted at important unobserved heterogeneity in the job destruc-

tion rate δ and the job offer arrival rate λ1. We incorporate this insight into the model using

a random coefficient approach. Following the discrete distribution approach of Heckman and

Singer (1984), a fraction 0 < πv < 1 of workers are of type v with parameters (δv, λv
1, α

v),

for v = 1, ..., V , with
∑V

v=1 πv = 1. We remind the reader that α is the lower point of sup-

port of F . The remaining parameters are common for all workers. We might interpret the dis-

crete heterogeneity distribution as an approximation of an unknown heterogeneity distribution

but we will use the worker type interpretation.18 As the type of a worker cannot be conditioned

upon, it is integrated out of the likelihood function. Hence, the structural parameter vector is

ξ = (λ0, ν, η, γ1, γ2, γ3, σ, {δv, λv
1, α

v; v = 1, 2, ..., V }, {πv; v = 1, 2, ..., V − 1}) and the full likelihood

contribution for an individual is

L(ξ) =
V∑

v=1

πv
N∏

n=1

pu(tun, due
n )

C∏

c=1

∫ ∞

αv

Qv
c1(x1)

×
[∫ ∞

x1

Qv
c2(x2)

dF v(x2)
F

v(x1)

]χc

dGv(x1|a0)sc dF v(x1)1−sc , (11)

where pu(·, ·) is given by (4), and superscript v denotes that the object depends on the parameters

that are specific for worker type v.

As noted above, our sample design implies that the retirement rate µ factors out of the con-

ditional likelihood contribution (9). However, the retirement process has been maintained in the

model to secure the existence of a proper distribution of experience, and thus of wages conditional

on experience (see Appendix B), which enters the likelihood function for mature workers. We set

µ equal to 1/(40× 12), such that the expected duration of a labor market career is 40 years.
18Gaure, Røed and Zhang (2007) show within a non-parametric mixed proportional hazards model with competing

risks that different combinations of mass points and associated parameters may result in observationally equivalent
distributions of random parameters. Hence, specific mass points are not identified, and a worker type interpretation
is not valid.
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6 Results

For each of our 12 samples, we have estimated the model without unobserved heterogeneity (V = 1),

and with two and three worker types (V = 2 and V = 3) by maximizing the sum of the individual

log likelihood contributions (11). Table 3 reports the log likelihood value of each model. The null

hypothesis of V −1 worker types versus V types (for V = 2, 3) is on the boundary of the parameter

space, invalidating the classical likelihood-based tests. Instead, we use the Akaike Information

Criterion for model selection, also reported in Table 3. Among the estimated models, the preferred

model features three worker types for every sample. Further analysis might show that a higher

V is optimal for some samples, but we stopped at V = 3 in order to cap estimation time. The

parameter estimates of the preferred models are presented in Table 4 and Table 5.19

< Tables 3, 4 and 5 about here. >

Transitions. To ease comparison between the two countries and the different samples we frame

the discussion of the estimated transition parameters in terms of expected durations between events.

These are presented in Table 6. The type specific expected durations measured in months are

E[T λ|v] = 1/λv and E[T δ|v] = 1/δv for job offers and job destructions, respectively. The population

averaged expected durations between job offers and job destructions are E[T λ] =
∑V

v=1 πv/λv
1 and

E[T δ] =
∑V

v=1 πv/δv.

< Table 6 about here. >

Consider first the expected durations between job offers. Table 6 shows that Norwegian labor

market entrants can expect to wait approximately twice as long as their Danish counterparts for job

offers, whereas Norwegian mature workers’ expected durations are only slightly longer than those

of Danish mature workers. Eight out of eighteen type specific expected durations are 10 months

or shorter among the Danish workers, whereas all of the Norwegian type specific durations exceed

one year. Mature workers must wait longer than entrants, up to four times longer in Denmark. In

other words, the frequency of job offers declines as workers age. This finding corroborates those of

Bunzel et al. (2001) and Rosholm and Svarer (2004) on Danish data. Finally, durations increase

with education among entrants, perhaps reflecting that education implies specialization and thus

a thinner market for job search. The estimated job finding rates for nonemployed workers (λ0) are

almost twice as high in Denmark as in Norway, except among low educated workers (see Table 4

and Table 5).

Turning now to the job destruction process, Table 6 reveals that Danish workers face a lower

risk of job destruction than Norwegian workers, except for medium educated mature workers. A

sizeable fraction of Danish workers face effectively no risk of job destruction. This is also true
19Estimates for the rejected models can be obtained from the authors.
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for Norway, albeit to a lesser extent.20 Mature workers face considerably lower job destruction

risk than entrants: durations between job destructions are between two and five times longer

for mature workers than for entrants (omitting high educated Norwegians). Job destruction risk

declines substantially with education in Denmark, and among Norwegian entrants.

The lower job offer arrival rates and higher job destruction rates in Norway are in line with

the descriptive evidence from section 4 (Figure 2 and Figure 3). However, given the lower degree

of protection against dismissal in Denmark we might have expected job destruction to be more

prevalent in Denmark as compared to Norway. We offer here two possible (mutually consistent)

explanations for the higher Norwegian job destruction rate: first, the worse development in the

unemployment rate during the sample period in Norway is likely to inflate (deflate) the estimated

job destruction (job offer) rates for Norway relative to Denmark. Indeed, a rise in unemployment

has to come from rising job destruction or slower job finding (or both). Second, we cannot rule

out that part of the cross-country difference in our estimated job destruction and job offer rates

is driven by our definition of job-to-job transitions combined with differences in job offer arrival

rates. Suspecting that many short nonemployment spells do not reflect genuine nonemployment,

we eliminated nonemployment spells shorter than four weeks. This may lead us to overestimate λ1

and underestimate δ.21 If the job offer arrival rate for the nonemployed is higher in Denmark than

in Norway, which it appears to be in our data, a larger share of genuinely nonemployed Danish

workers (than of genuinely nonemployed Norwegian workers) find a new job within four weeks of

leaving their previous job. This will induce a stronger downward (upward) bias in the estimated

job destruction (job offer) rates in Denmark than in Norway. Moreover, if workers on advance

notice for lay-off receive job offers at a higher rate in Denmark than in Norway, which we would

expect based on our estimates of λ0 and λ1, a higher fraction of Danish than Norwegian workers

on advance notice will find a new job before entering nonemployment. This too will induce relative

stronger downward (upward) bias in estimated job destruction (job offer) rate for Denmark. We

note in passing that the advance notice period is longer in Denmark than in Norway for white collar

workers. Although inconclusive, this discussion illustrates that differences in the true behavioral

processes may lead to different impacts of the same data error in different samples.

Previous studies have found that gross job creation is substantially higher in Denmark than in

Norway (which is consistent with our estimates of λ1 and λ0 in the two countries), whereas job

destruction rates are similar or only slightly higher in Denmark, see Salvanes (1997) for manu-

facturing and Dale-Olsen and Rønningen (2000) who report rates for the whole economy, private

sector, and manufacturing, respectively. Their data periods do not overlap ours.
20A formal test of the null δv = 0 is rejected for all types in all samples except for one type among medium educated

Danish entrants.
21This bias is possibly smaller in absolute terms than the bias that would result from not eliminating short nonem-

ployment spells.
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Labor market friction index. Following Ridder and van den Berg (2003) we calculate the

labor market friction index, κv = λv
1/δv, and the average friction index κ =

∑V
v=1 πvλv

1/δv. κv

measures the expected number of job offers during an employment spell for worker type v, and can

be regarded as a summary measure of the degree of frictions in the labor market for this worker

type. A large number indicates a low degree of frictions. All estimates of the κ’s, and most of

the estimates of the κv’s reported in Table 6, are in the range of 1 to 10 for Norway. The κ’s

are larger for the Danish samples, between 6 and 26, which gives evidence that the Danish labor

market is a low-friction labor market.22 The labor markets of entrants are more frictional than

those of comparable mature workers. This result is driven by job destruction rates that decline

faster relative to the job finding rate as workers age. Moreover, high educated workers act in less

frictional markets than do lower educated workers. Again, this result arises because job destruction

rates decline more rapidly than job finding rates as one considers markets for progressively higher

educated workers.

Match qualities. We imposed a three-parameter Weibull distribution on the sampling distri-

bution of log match qualities. The Weibull distribution with shape parameter η = 1 yields the

exponential distribution. We reject the hypothesis η = 1 for all but one sample. Note that the

negative estimates of the location parameters for high-education mature workers in Norway are

not at odds with the model. These estimates merely imply that the lower bounds of the match

offers are close to zero, but the shape of the estimated function ensures that offers “close to” zero

occurs with very small probability: the first half-percentiles in the type-specific log match quality

sampling distributions are 4.32, 4.66 and 5.03.

The wage equation delivers a natural decomposition of the variation of log wages, net of experi-

ence effects, into the three components: Within-type log match quality variance, between-type log

match quality variance and measurement error variance,

Var(x + ε)︸ ︷︷ ︸
Total

= E[Var(x|v)]︸ ︷︷ ︸
Within-type

+ Var(E[x|v])︸ ︷︷ ︸
Between-type

+ Var(ε)︸ ︷︷ ︸,
Measurement error

(12)

where

E[Var(x|v)] = ν2Γ(1 + 2/η)− (νΓ(1 + 1/η))2, (13)

Var(E[x|v]) =
V∑

v=1

πv

(
αv −

V∑

v=1

πvαv

)2

, (14)

22Our estimated κ’s for Denmark are somewhat higher than what has been reported in previous studies: The
estimates of Rosholm and Svarer (2004) imply friction indices in the range of 2 to 5 for a number of samples, and
the equilibrium model of Bunzel et al. (2001) produces indices below 1 for most samples and models. Ridder and
van den Berg (2003) estimate friction indices in the range 1 to 5 for France, and Jolivet, Postel-Vinay and Robin
(2006) report (modified) friction indices between 0.4 and 2 for a number of countries within a model with reallocation
shocks. We are not aware of other studies that report labor market friction indices for Norway.
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and

Var(ε) = σ2. (15)

The decomposition is reported in Table 7. The identification of the measurement error process

relies on differences between the predicted and actual relationship between wages and job transi-

tions, most importantly the proportion of wage cuts in job-to-job transitions. However, as argued

above, these wage cuts are rationalized in other (but similar) models, and our estimate of the mea-

surement error process is likely to pick up effects of these other sources of between-job downward

wage flexibility. Measurement errors account for 21 to 68 percent of log-wage variance, least for

mature workers and high-educated workers. This is within the range of previous estimates using

variants of job search models (but different data), see Wolpin (1987), Christensen and Kiefer (1994),

van den Berg and Ridder (1998) and Flinn (2002). Table 7 shows no clear pattern concerning the

relative importance of within-type and between-type dispersion.

< Table 7 about here. >

In addition to decomposing wage variance, we also calculate a measure of match quality disper-

sion, which affects the scope for wage growth through job search (of course, the total scope for gains

through search also depends on λ1 and λ0). Table 7 reports our dispersion measure, the difference

between the 90th and the 10th percentile in the distribution of log match quality offers. This differ-

ence is larger for the Norwegian samples, particularly for entrants, larger for mature workers than

for entrants, and particularly small for Danish entrants. For example, according to our estimates a

high educated Danish entrant gains 1 percent in match quality when moving from a match quality

at the 10th percentile to a match quality at the 90th percentile. The corresponding figures for the

remaining samples (excluding Danish entrants) in both Denmark and Norway are more plausible,

between 25 and 50 percent. We stress that these numbers are closely related to the heterogeneity

specification, and may not warrant a structural interpretation. In fact, with homogeneous match

sampling distributions, the scope for search would probably be larger for every sample, because

larger variance in the match sampling distributions would be needed to fit the variance in wages.

Wage-experience profiles. In addition to wage gains through job mobility, the empirical model

allows for non-search related wage growth tied to experience. Figure 4 shows the estimated wage-

experience profiles. Overall, the returns to experience increase with education and are higher for

entrants than for mature workers. This could be due to a higher rate of accumulation of human

capital in the early years of careers, and confirms previous findings in Bagger et al. (2006). Figure 4

shows similar experience effects in Denmark and Norway for low-educated23 and medium educated

workers, but faster wage growth for high-educated in Denmark than in Norway. This holds both for

entrants and mature workers. Because our model is not explicitly intended for disentangling various
23The very large experience effect for low-educated Norwegian entrants may be due to small sample size.
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sources of wage growth, we leave an analysis of wage growth and career earnings in Denmark and

Norway for future studies.

< Figure 4 about here. >

Unobserved heterogeneity. The worker type fractions and associated parameters are estimated

with good precision for most samples. The small sample of low-educated Norwegian entrants forms

a notable exception. Table 8 shows the correlations of the random parameters. Job destruction

rates and job offer arrival rates are positively correlated in all samples but one, and job offer

arrival rates tend to be positively correlated with wage levels. This correlation hints at the need

for modelling unobserved heterogeneity in order to estimate models with endogenous search effort

(as in Christensen et al., 2005): if some workers have higher latent mobility and draw better

match qualities than other workers, then we observe more job-to-job moves among high-wage jobs

than predicted by a model that assumes identical workers. This may prohibit estimation of a

well-behaved search cost function because endogenous search entails that search effort decreases in

match quality.

< Table 8 about here. >

7 Goodness-of-fit

We now proceed with an assessment of the ability of the model to re-produce observed job du-

rations and transitions, and wage distributions. The assessment of the fit to job durations is

rendered difficult by the presence of right-censored durations and unobserved heterogeneity. We

use goodness-of-fit analysis by visual inspection, comparing nonparametric unconditional hazard

function estimates from the data to the corresponding model predicted hazard functions. Specifi-

cally, we plot observed and predicted job-to-job hazard functions for labor market entrants including

pointwise 95 percent confidence bands. The hazard rates implied by the model with homogeneous

workers (V = 1) are included for comparison.

The relevant hazard functions differ between entrants and mature workers due to differences in

sampling schemes. For entrants we use the job duration for the first job of each worker, forming

a single-spell flow sample of jobs. For mature workers we use the jobs that were active at the

sampling time. These samples are identical to those used for producing Figure 2 and Figure 3 in

section 4. The theoretical hazard functions are derived in Appendix C. Note that these hazard

rates are complicated because the composition of match qualities changes with elapsed duration,

and because of heterogeneity, which implies that the composition of survivors changes as elapsed

job duration increases. For mature workers, we face the additional problem of deriving the worker

type composition in the initial stock sample of employed workers with a given level of experience.24

24As the hazard functions for mature workers do not admit a closed form solution we resort to numerical integration
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Fit to durations and transitions. Consider first the job-to-job hazard functions for labor

market entrants. In terms of point estimates, Figure 5 shows that the predicted job-to-job hazard

functions lie above the observed ones in all samples of entrants. Considering the degree of overlap

between the confidence bands on the observed and the predicted hazard functions reveals a good

fit to the job-to-job hazards for Danish medium and high educated entrants (and, trivially, for the

very small sample of Norwegian low educated entrants). There is significant discrepancy between

the data and the model prediction in the other entrant samples. However, the discrepancy is in

terms of the level of the job-to-job hazard functions, whereas we capture the amount of duration

dependence fairly well in all samples. Not surprisingly, the model with unobserved heterogeneity

outperforms the homogeneous model in most samples.

Figure 6 displays job-to-nonemployment hazards for entrants. The fit is generally good, albeit

with a tendency for over-prediction in terms of point estimates. The confidence bands of observed

and predicted hazards overlap considerably, with medium educated Norwegian workers being the

exception. In this latter sample, we significantly over-predict job-to-nonemployment transitions at

low durations, but fit the hazard better at longer durations. Note that the heterogeneity specifi-

cation does well in generating the observed sharp drop in job-to-nonemployment hazard functions

within the first 24 months in the job (except for high educated Danes). The homogeneous specifi-

cation is, by construction, unable to match this feature of the data.

< Figures 5 and 6 about here. >

Figure 7 displays the job-to-job hazards for mature workers. Contrary to entrants, we under-

predict mature workers’ job-to-job hazard rates at all seniority levels and in all samples (except for

seniority exceeding 70 and 50 months for Norwegian medium and high educated workers, respec-

tively). Moreover, the confidence bands of observed and predicted job-to-job hazard functions do

not overlap, except for low educated Norwegians. Our models for high educated mature workers

also generate too little duration dependence in the job-to-job hazard function.

Turning now to the job-to-nonemployment hazard functions, Figure 8 shows that the model

prediction tends to be above that obtained from the data. However, there is considerable overlap

between predicted and observed job-to-nonemployment hazard functions’ confidence bands in all

samples of mature workers, except the one of low educated Danes. The model captures the flat

job-to-nonemployment hazard function for Danish high educated mature workers.

< Figures 7 and 8 about here. >

Overall, we produce a better fit to both job-to-job and job-to-nonemployment hazard functions

in the entrants samples as compared to the fit in samples of mature workers, albeit there is room for

improvement in both types of samples. The improvement of the fit to hazard functions from allowing

unobserved heterogeneity in parameters is particularly pronounced, and empirically important, for

in the computation using Gauss-Legendre quadratures with 40 nodes (Judd, 1998).
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job-to-nonemployment transitions. Note that we have imposed a steady state assumption on the

samples of mature workers, which may restrict the model’s parameters in undesirable ways in

terms of fitting transitions out of jobs. The steady state assumption was not imposed on the

models of entrant. Of course, any problem of fit may also reflect that the data generating processes

contain more heterogeneity than we have allowed for. Finally, lack of fit could also point to

more fundamental mis-specifications. For example, the data generating process may feature job-

reallocations unrelated to the quality of the job (Nagypal, 2008), or structural non-stationarity in

the job mobility process. Indeed, the differences in the estimated structural parameters between

entrants and mature workers suggest some sort of non-stationarity in the job mobility process.

Differences in data, model specification and the goodness-of-fit measures make it difficult to compare

our findings to those obtained in other studies (see references in the introduction).

Fit to wages. Let W̃ be the log wage net of non-search related experience effects with realizations

w̃. The structure of the model (see equations (5) and (7)) implies that

w̃ = x + ε = w − γ̂1a− γ̂2(a− a∗1)1(a > a∗1)− γ̂3(a− a∗2)1(a > a∗2), (16)

where (γ̂1, γ̂2, γ̂3) are estimated parameters.

For entrants we focus on the distribution of W̃ in the first job after entry. The distribution is

a convolution of the type specific distributions of log match qualities F v(·) and the distribution of

log measurement errors Hε(·):

P[W̃ ≤ w̃] =
V∑

v=1

πv

∫ w̃

−∞

∫ ∞

αv

fv(z)hε(s− z) dz ds, (17)

The dotted line in Figure 9 plots equation (17) (in levels) using the estimated parameters. We also

plot the data counterpart, i.e. observed wages where we have subtracted the estimated experience

component. Furthermore, we plot the averaged distribution of match qualities
∑V

v=1 πvF v(x)

in levels in the same graph, for illustration of the impact of measurement errors. The model

fits observed distributions of match qualities well in all samples except for high educated Danes,

although there is a tendency to over-predict mass in the lower end of the distributions. This may

relate to truncation, as we have dropped the lowest 2.5 percent of wages. The assumption of a log

normal distribution of measurement errors therefore cannot hold exactly.

< Figure 9 about here. >

For mature workers we focus on the distribution of W̃ at the time of sampling. The distribution

is obtained as

P[W̃ ≤ w̃] =
V∑

v=1

π̃v

∫ w̃

−∞

∫ ∞

αv

gv(z|a0)hε(s− z) dz ds, (18)
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where g(x|a0) is given by Proposition 2.2, a0 = 10.5 years, and π̃v is the steady state fraction of type

v workers among the employed (see Appendix C for details). Figure 10 displays the data version

and the predicted values of (18) together with the predicted steady state cross section match quality

distribution
∑V

v=1 π̃vGv(x|a0) (all in levels). Because the lower point of support in the sampling

distribution of match qualities is unidentified (see section 5), we re-center the model prediction

for mature workers at the observed average match quality. Figure 9 reveals that the fit to mature

workers match distributions is good, even in the tails. In particular, Figure 9 does not indicate

serious departures from the steady state assumption. This contrasts the relatively poor fit to job-to-

job hazard functions in mature samples. The overall good fit to observed match quality distributions

across all samples suggests that the combination of the three-parameter Weibull distribution and

normal measurement errors (in wage levels) is sufficiently flexible to accommodate the data.

< Figure 10 about here. >

8 Conclusion

We have shown that the assumption of exponential durations between events in a job search model

can be reconciled with data on job durations and transitions when we allow for heterogeneity

between individuals. The fit to duration and transition data is better in flow samples of labor

market entrants than in stock samples of mature workers. This may indicate that the steady state

restrictions imposed on the samples of mature workers are not supported by the data, although

the fit to steady state wage distributions is good. Unlike previous studies, we evaluate the fit to

destination-specific hazard rates (job-to-job and job-to-nonemployment hazards). Both types of

job hazards exhibit more negative duration dependence than can be accounted for with homoge-

neous parameters. The heterogeneous model does very well in explaining the extent of duration

dependence in both types of job hazards in most samples. That said, we observed a tendency to

over-predict (under-predict) the hazard functions among entrants (mature workers). The predic-

tion error is non-negligible in some samples, in particular for mature workers’ job-to-job transitions.

This may indicate the need for a richer heterogeneity specification but could also indicate more

serious shortcomings of the estimated model.

In terms of differences between labor market entrants and mature workers (with 10 years of

experience at the time of sampling) our results mirror previous findings regarding the change in

labor market behavior and outcomes over the life cycle (Topel and Ward, 1992): labor market

entrants are more mobile than mature workers, earn lower wages and have higher non-search re-

lated wage growth. Overall, labor market entrants act in labor markets that are more frictional

than mature workers. Indeed, there are important differences in structural transition parameters

between entrants and mature workers. This suggests that non-stationarity in parameters is an

important empirical issue when applying the job search model to long panels, or when computing,
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say, permanent income measures from estimated models (see e.g. Flinn, 2002).

Finally, to our knowledge this paper represents the first estimation of a structural search model

on Norwegian data. Relative to Denmark, the Norwegian labor market is characterized by lower

job offer arrival rates for both employed and nonemployed workers, and higher job destruction

risks. This pattern is stable across education groups and between samples of entrants and mature

workers. The higher job destruction rate in Norway may partly reflect differences in business cycles,

but puzzles us, given the stricter EPL in Norway. We offered an alternative explanation relating

to sample selection but more research is required to further clarify this issue.
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APPENDIX

A Present discounted values and reservation strategies

The model’s state space consists of the pair (x, a) ∈ [x, x)×{0}∪R+ for employed workers and a ∈ {0}∪R+

for unemployed workers. Denote the expected present discounted value (EPDV) to a worker with experience

a ≤ A of being in a match of quality x by V1(x, a). The EPDV of employment in a match of quality x to a

worker with experience a > A is denoted by V∗1 (x) ≡ V1(x,A).25 The worker’s EPDV of being unemployed

is denoted by V0(a) when a ≤ A and V∗ when a > A.

A.1 Stationary environment (a > A)

When a > A the environment is stationary and the model reduces to the standard case which has been

implemented and analyzed extensively elsewhere. We include it here for completeness.

Employed job search. The EPDV of employed search in a match of log quality x, V∗1 (x) is given as

(ρ + µ + δ)V∗1 (x) = u(y∗ + x) + δV∗0 + λ1

∫ x

x

max{V∗1 (z)− V∗1 (x), 0}dF (z). (A1)

V∗1 (x) is everywhere increasing in x: Suppose there are x′, x′′ ∈ (x, x) such that x′ < x′′ and V∗1 (x′) ≥ V∗1 (x′′).

Then, u(y∗ + x′) + λ1

∫ x

x
max{V∗1 (z)− V∗1 (x′), 0}dF (z) < u(y∗ + x′′) + λ1

∫ x

x
max{V∗1 (z)− V∗1 (x′′), 0}dF (z),

thus producing the contradiction V∗1 (x′) < V∗1 (x′′). As a consequence, employed workers invoke a simple

reservation quality strategy: any alternative matches of higher (lower) quality than the worker’s current

match are accepted (rejected). Hence, when a ≥ A the reservation log quality of an employed worker is

re(x) = x.

Now, (A1) can be restated (using integration by parts to simplify the integral) as

(ρ + µ + δ)V∗1 (x) = u(y∗ + x) + δV∗0 + λ1

∫ x

x

F (z)
ρ + µ + δ + λ1F (z)

dz. (A2)

Note that ∂V∗1 (x)/∂x = 1/[ρ + µ + δ + λ1F (x)] > 0.

Unemployed job search. The structure of the model implies that the EPDV of unemployed search

once the environment has become stationary is given by

(ρ + µ)V∗0 = u(y∗ + b) + λ0

∫ x

x

max{V∗1 (z)− V∗0 , 0}dF (z). (A3)

Since V∗1 (x) is everywhere increasing in x and V∗0 is independent of x, the unemployed worker applies a

reservation wage strategy and accepts all match offers of log quality ru,∗ or higher and rejects all offers with

a quality below ru,∗, where ru,∗ is such that V∗1 (ru,∗) = V∗0 . This implies that

ru,∗ = u−1

(
u(y∗ + b) + (λ0 − λ1)

∫ x

ru,∗

F (z)1(z ≥ x)
ρ + µ + δ + λ1F (z)

dz

)
. (A4)

25Recall that A is the experience level after which the workers productivity remains constant.
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A.2 Non-stationary environment (a ≤ A)

When a ≤ A a worker’s wage still evolves according to labor market experience, making the environment

nonstationary. Since the model’s stochastic events occur according to Poisson processes, in any small time

interval, the probability of each of the events is proportional to the length of that interval.26

Employed job search. Let da be the length of a small time interval. Then, the value of employed

search for a worker with experience a in a match of log quality x, V1(x, a), solves the functional equation:

V1(x, a) =
1

1 + ρda

[
u(y(a) + x)da + δdaV0(a + da)

+λ1da

∫ x

x

max{V1(z, a + da),V1(x, a + da)}dF (z) + (1− µda− δda− λ1da)V1(x, a + da)

]
. (A5)

Under the assumption that V1(x, a) is increasing in x for all a ≤ A, which we shall assert below, we can

re-write (A5) in the following manner

V1(x, a + da)− V1(x, a)
da

= [µ + δ + λ1F (x)]V1(x, a + da) + ρV1(x, a)

− u(y(a) + x)− δV0(a + da)− λ1

∫ x

x

V1(z, a + da)dF (z), (A6)

and taking the limit as da → 0, and applying integration by parts, we obtain the following first order ordinary

differential equation (ODE)

(ρ + µ + δ)V1(x, a) = u(y(a) + x) + δV0(a) + λ1

∫ x

x

∂V1(z, a)
∂z

F (z) dz +
∂V1(x, a)

∂a
. (A7)

Taking the derivative of (A7) with respect to x yields a first order ODE in x:

∂2V1(x, a)
∂a∂x

− [ρ + µ + δ + λ1F (x)]
∂V1(x, a)

∂x
= −u′(y(a) + x), (A8)

which can be solved for ∂V1(x, a)/∂x, using the terminal condition that ∂V1(x,A)/∂x = ∂V∗1 (x)/∂x =

1/[ρ + µ + δ + λ1F (x)] to pin down the constant of integration. Doing so produces

∂V1(x, a)
∂x

=
1

ρ + µ + δ + λ1F (x)

+
∫ T

0

e−[ρ+µ+δ+λ1F (x)](s−T )u′(y(s) + x) ds−
∫ t

0

e−[ρ+µ+δ+λ1F (x)](s−t)u′(y(s) + x) ds. (A9)

Insofar that u′(·) ≥ 0, (A9) asserts that V1(x, a) is indeed strictly increasing in x for all a ≤ A. This implies

that employed workers exercise a reservation quality strategy when conducting on-the-job search and that

the on-the-job search reservation log quality for a worker employed in a match of log quality x is simply x.

That is, re(x) = x for a < A.

26Here,“small” is such that the probability of any two of the events occurring within the period is negligible.
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Finally, solving (A7) for V1(x, a), using V1(x,A) = V∗1 (x) to pin down the constant of integration, yields

V1(x, a) = V∗1 (x) +
∫ a

0

e−[ρ+µ+δ](s−a)B(x, s) ds−
∫ A

0

e−[ρ+µ+δ](s−A)B(x, s) ds, (A10)

where V∗1 (x) is given by (A2), where

B(x, a) = u(y(a) + x) + δV0(a) + λ1

∫ x

x

∂V1(z, a)
∂z

F (z) dz, (A11)

and where ∂V1(x, a)/∂x is given by (A9).

Unemployed job search. Again, consider a small time interval of length da. The structure of the

model implies that the value of unemployed search V0 solves the functional equation27

V0(a) =
1

1 + ρda

[
u(y(a) + b)da + λ0da

∫ x

x

max{V1(z, a)− V0(a)}dF (z) + (1− µda− λ0da)V0(a)

]
. (A12)

Since V1(x, a) is strictly increasing in x for all a, and V0(a) is independent of x, the unemployed worker’s

problem has the reservation quality property: an unemployed worker accepts any job offer with a log match

quality x above his or her reservation log quality ru(a) and rejects offers with quality falls short of ru(a),

where ru(a) is implicitly defined by V1(ru(a), a) = V0(a). Hence, by integration by parts,

(ρ + µ)V0(a) = u(y(a) + b) + λ0

∫ x

ru(a)

∂V1(z, a)
∂z

F (z)1(z ≥ x) dz. (A13)

The model does not admit a closed form solution to the reservation log quality of unemployed job seekers.

B Steady state relations

Nonemployment rate. Let q denote the steady state nonemployment rate. Because the measure of

workers in the labor market is normalized to unity, q is also the stock of nonemployed workers. Balancing

the inflow and outflow to this stock of workers we arrive at the following useful characterization of the steady

state nonemployment rate:
q

1− q
=

µ + δ

λ0
. (B1)

Experience. Recall that a denotes experience. Let `0(a) and `1(a) be the densities of experience a in a

cross section of nonemployed and employed workers, respectively. Balancing the flows into and out of the

stock of nonemployed workers with a > 0 years of experience restricts `0(a) in the following way:

(µ + λ0)`0(a)q = δ`1(a)(1− q). (B2)

Likewise, balancing flows related to the stock of employed workers with a + da > 0 years of experience

(da > 0 being “small”), yields

(1− q)`1(a + da) = `1(a)(1− q) (1− µda− δda) + `0(a)qλ0da (B3)

27Recall that experience remains constant during an unemployment spell.
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Now, from (B2) and (B3) we obtain (using (B1))

`1(a + da)− `1(a)
da

= −µ(µ + δ + λ0)
µ + λ0

`1(a). (B4)

Taking the limit as da → 0, and solving the resulting ODE, pinning down the constant of integration by

the restriction
∫∞
0

`1(a)da = 1, we find that experience among employed workers follows an exponential

distribution:

`1(a) =
µ(µ + δ + λ0)

µ + λ0
e−

µ(µ+δ+λ0)
µ+λ0

a, a > 0. (B5)

For completeness, consider next the distribution of experience among the nonemployed. First note that the

balancing flow condition for a = 0 implies that

`0(0) =
µ(µ + δ + λ0)

(µ + δ)(µ + λ0)
. (B6)

Then, using (B5) and (B1) in (B2), we find that

`0(a) =
δλ0

(µ + δ)(µ + λ0)
`1(a), a > 0. (B7)

As a consistency check, notice that `0(0) + lima→0

∫∞
a

`0(τ) da = 1. Also notice that lima→0 `0(a) 6= `0(0),

so `0(a) has a mass-point at a = 0.

Match qualities conditional on experience. Let G(x, a) = G(x|a)`1(a) be the share of employed

workers who have experience a and a log match quality less than x. The balanced flow equation for G(x, a)

is

(1− q)G(x, a + da) = (1− q)G(x, a)
(
1− µda− δda− λ1daF (x)

)
+ q`0(a)λ0daF (x), (B8)

for a “small” da. Substituting from (B1) and (B2) we find

G(x, a + da)−G(x, a)
da

=
(
µ + δ + λ1F (x)

)
G(x, a) +

λ0δ

µ + λ0
F (x)`1(a). (B9)

Again, taking the limits of (B9) for da → 0 results in an ODE that can be solved for G(x, a). The constant

of integration is determined using the initial condition that the cross section distribution of match qualities

among labor market entrants is the sampling distribution of log match qualities: limda→0 G(x|a) = F (x).

Since G(x, a) = G(x|a)`1(a) we obtain the following expression for G(x|a):

G(x|a) =
F (x)

δλ0 + (µ + λ0)λ1F (x)

[
δλ0 + (µ + λ0)λ1F (x)e−[µ+δ+λ1F (x)]a

]
. (B10)

C Hazard functions

In this appendix we derive the unconditional job hazard functions as predicted by the theoretical model in

our two types of cross section (i.e. single spell) samples: A flow sample of labor market entrants (subscript

“E-flow”) and a stock sample of mature workers (viz. workers with a0 years of experience at the time of

sampling, subscript “M-stock”).
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Flow of labor market entrants. By construction, all entrants eventually find a job and the distri-

bution of intrinsic heterogeneity in the flow of labor market entrants at entry (t = 0) coincides with the

distribution of intrinsic heterogeneity in the full population: types (v1, v2, ..., vV ) with associated population

distribution (π1, π2, ..., πV ). Random matching and the maintained assumption that unemployed workers

accept any job offer implies that the distribution of match qualities x among the flow of entrants of type v

is F v(x) for v = 1, 2, ..., V .

Conditional on log match quality x, and conditional on not retiring (no µ-shock), the probability that a

type v match survives until t is e−[δv+λv
1F

v
(x)]t. Because the distribution of log match qualities in the flow

of entry jobs occupied by type v workers is F v(x), the unconditional type specific survival probability is
∫ x

x

fv(x)e−[δv+λv
1F

v
(x)]tdx = e−δvt[1− e−λvt]/λvt. (C1)

Hence, the distribution of types in matches surviving seniority t, denoted by {π̃v
E-flow(t), v = 1, 2, ..., V }, is

π̃v
E-flow(t) =

πve−δvt[1− e−λv
1t]/λv

1∑V
s=1 πse−δst[1− e−λs

1t]/λs
1

for v = 1, 2, ..., V. (C2)

Consider now the job-to-nonemployment hazard function. The type specific job-to-nonemployment haz-

ard is constant at δv. Using (C2), it follows that the unconditional job-to-nonemployment hazard rate at

seniority t, denoted θeu
E-flow(t), is

θeu
E-flow(t) =

V∑
v=1

π̃v
E-flow(t)δv. (C3)

Next, consider the job-to-job hazard function. Conditional on type v and log match quality x, the job-to-

job hazard rate is constant at λv
1F

v
(x). To arrive at the unconditional job-to-job hazard we must therefore

first integrate out the match qualities conditional on worker type v, and second, integrate over the relevant

distribution of types (given by (C2)). The type specific density of log match qualities among matches that

have survived until seniority t, denoted fv
E-flow(x|t) is easily derived. At seniority t = 0 the match quality

density is fv(x). Conditional on log match quality x, a fraction e−[δv+λv
1F

v
(x)]t of entry matches survive

seniority t. Hence,

fv
E-flow(x|t) =

fv(x)e−[δv+λv
1F

v
(x)]t

∫ x

αv fv(x)e−[δv+λv
1F

v
(x)]tdx

= fv(x)
λv

1te
−λv

1F
v
(x)t

1− e−λv
1t

. (C4)

Note that limt→0 fv
E-flow(x|t) = fv(x): at zero seniority, no selection has taken place. Using (C4) to integrate

out the distribution of match qualities from the type specific job-to-job hazard function, one obtains,

θee,v
E-flow(t) =

∫ x

αv

λv
1F

v
(x)fv

E-flow(x|t)dx =
1
t
− λve−λv

1t

1− e−λv
1t

. (C5)

Finally, using the marginal distribution of types in surviving matches at seniority t, (C2), one obtains the

unconditional job-to-job hazard function that can be confronted with the data:

θee
E-flow(t) =

V∑
v=1

π̃v
E-flow(t)

[
1
t
− λve−λv

1t

1− e−λv
1t

]
. (C6)
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Stock of mature workers. The techniques applied to obtain the unconditional hazard functions for

mature workers are similar to those applied above for labor market entrants. However, a couple of com-

plications arise from the imposition of a steady state and the complicated structure of the cross section

distribution of match qualities (see Proposition 2.2).

The first complication has to do with the distribution of types among a cross section of employed workers

when the labor market is in a steady state. Conditioning, as we do in the data, on individuals not leaving the

sample (i.e. retire), the type specific employment rate is λ0/(δv + λ0) (see Appendix B). Hence, in steady

state, the fraction of employed workers that is of type v is given as:

π̃v
M-stock =

πv
∏

s 6=v(δs + λ0)∑V
r=1 πr

∏
s 6=r(δs + λ0)

. (C7)

The distribution of types among employed workers differs from the population distribution of types due to

different job destruction rates across types.

The next complication has to do with the derivation of the relevant heterogeneity distributions. At the

time of sampling (i.e. at t = 0), the type specific distribution of log match qualities in the stock sample

of mature workers is Gv(x|a0) (see proposition 2.2). The unconditional (on match quality) probability that

a type v match survives seniority t is thus
∫ x

αv e−[δv+λv
1F

v
(x)]tdGv(x|a0), which does not admit a closed

form solution. The distribution of types in matches surviving seniority t, denoted by π̃v
M-stock(t|a0), is then

obtained as

π̃v
M-stock(t|a0) =

π̃v
M-stock

∫ x

αv e−[δv+λv
1F

v
(x)]tdGv(x|a0)

∑V
s=1 π̃s

M-stock

∫ x

αs e−[δs+λs
1F

s
(x)]tdGs(x|a0)

for v = 1, 2, ..., V, (C8)

where π̃v
M-stock is given by (C7).

The unconditional job-to-nonemployment hazard function for the stock sample of mature workers is

θeu
M-stock(t|a0) =

V∑
v=1

π̃v
M-stock(t|a0)δv, (C9)

where π̃v
M-stock(t|a0) is given by (C8).

To obtain the unconditional job-to-job hazard function we first need the density of log match quality

conditional on elapsed seniority t and type, denoted gv
M-stock(x|t, a0). At seniority t = 0 the match quality

density is gv(x|a0). Conditional on log match quality x, a fraction e−[δv+λv
1F

v
(x)]t of stock sampled matches

survives seniority t (again, this is also conditional on not retiring). Hence,

gv
M-stock(x|t, a0) =

gv(x|a0)e−[δv+λv
1F

v
(x)]t

∫ x

αv gv(s|a0)e−[δv+λv
1F

v
(s)]tds

. (C10)

It follows that the type specific job-to-job hazard function is given by

θee,v
M-stock(t|a0) =

∫ x

αv

λv
1F

v
(x)gv

M-stock(x|t, a0)dx for v = 1, 2, ..., V. (C11)

The unconditional job-to-job hazard function is thus obtained as:

θee
M-stock(t|a0) =

V∑
v=1

π̃v
M-stock(t|a0)θee,v

M-stock(t|a0) =
V∑

v=1

π̃v
M-stock(t|a0)

∫ x

αv

λv
1F

v
(x)gv

M-stock(x|t, a0)dx. (C12)
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Figure 1: Average unemployment rate for men in Denmark and Norway (source: OECD Factbook
2007). Dark shaded area is Danish data period. Light shaded area is Norwegian data period

37



Denmark Low education Medium education High education

Ent. Mat. Ent. Mat. Ent. Mat

Number of workers 816 2751 4232 8408 1101 1522

Number of workers with 1 employment cycle 425 2180 3312 7356 964 1443

Number of workers with 2 employment cycles 195 343 633 753 114 66

Number of workers with 3 employment cycles 196 228 287 299 23 13

Number of employment cycles 1403 3550 5439 9759 1261 1614

Number of employment cycles with 1 job 870 2246 2522 5678 624 969

Number of employment cycles with 2 jobs 533 1304 2917 4081 637 645

Number of jobs 1936 4854 8356 13840 1898 2259

Norway Low education Medium education High education

Ent. Mat. Ent. Mat. Ent. Mat

Number of workers 375 1301 8211 7846 2621 1701

Number of workers with 1 employment cycle 116 935 3957 6196 1779 1406

Number of workers with 2 employment cycles 126 263 2370 1209 616 258

Number of workers with 3 employment cycles 133 103 1884 441 226 37

Number of employment cycles 767 1770 14349 9937 3689 2033

Number of employment cycles with 1 job 583 1247 10285 6774 2457 1344

Number of employment cycles with 2 jobs 184 523 4064 3163 1232 689

Number of jobs 951 2293 18413 13100 4921 2722

Table 1: Summary statistics of observations and spells
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Figure 2: Smoothed monthly job hazard functions for entrants. Shaded areas show 95% point-wise
confidence bands
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Figure 3: Smoothed monthly job hazard functions for mature workers. Shaded areas show 95%
point-wise confidence bands
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Denmark Low education Medium education High education

Ent. Mat. Ent. Mat. Ent. Mat

Share of jobs with missing wage 0.19 0.06 0.10 0.05 0.06 0.04

Average log wage offer (log-DKK) 4.84 5.03 4.94 5.12 5.14 5.38

Std. dev. log wage offer 0.40 0.39 0.32 0.37 0.27 0.39

Share of jj -transitions with wage cut 0.43 0.42 0.47 0.49 0.55 0.53

Norway Low education Medium education High education

Ent. Mat. Ent. Mat. Ent. Mat

Share of jobs with missing wage 0.18 0.15 0.16 0.14 0.16 0.14

Average log wage offer (log-NOK) 4.62 4.87 4.69 4.92 4.94 5.27

Std. dev. log-wage offer 0.29 0.34 0.31 0.32 0.33 0.35

Share of jj -transitions with wage cut 0.49 0.43 0.42 0.39 0.41 0.39

Table 2: Summary statistics of wages
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Denmark Low education Medium education High education

Ent. Mat. Ent. Mat. Ent. Mat

Hom. parameters, 10 parameters

Log-likelihood −12422 −6349 −39900 −27004 −8545 −5515

Akaike Information Criterion −24865 −12718 −79821 −54028 −17109 −11050

Het. parameters, 2 mass points, 14 pars.

Log-likelihood −12159 −6173 −38904 −26264 −8378 −5311

Akaike Information Criterion −24346 −12375 −77837 −52556 −16784 −10651

Het. parameters, 3 mass points, 18 pars.

Log-likelihood −12083 −6126 −38686 −26049 −8276 −5254

Akaike Information Criterion −24202 −12288 −77408 −52135 −16587 −10545

Norway Low education Medium education High education

Ent. Mat. Ent. Mat. Ent. Mat

Hom. parameters, 10 parameters

Log-likelihood −10887 −10718 −60012 −50370 −11459 −9957

Akaike Information Criterion −21795 −21457 −120044 −100760 −22938 −19933

Het. parameters, 2 mass points, 14 pars.

Log-likelihood −10712 −10610 −59026 −49541 −11245 −9746

Akaike Information Criterion −21452 −21248 −118079 −99110 −22518 −19520

Het. parameters, 3 mass points, 18 pars.

Log-likelihood −10679 −10501 −58844 −49000 −11120 −9658

Akaike Information Criterion −21394 −21038 −117725 −98036 −22275 −19353

Table 3: Log-likelihood value and Akaike information Criterion for different models

42



Parameter Low education Medium education High education

Ent. Mat. Ent. Mat. Ent. Mat.

λ0 (monthly nonemployment-to-job rate) 0.0583
(0.0018)

0.0974
(0.0028)

0.1238
(0.0027)

0.1091
(0.0024)

0.1089
(0.0050)

0.0934
(0.0063)

δ1 (monthly job destruction rate, type 1) 0.1543
(0.0255)

0.0098
(0.0023)

0.0001
(0.0004)

0.0031
(0.0003)

0.0024
(0.0005)

0.0010
(0.0004)

δ2 (monthly job destruction rate, type 2) 0.0987
(0.0139)

0.0020
(0.0002)

0.0540
(0.0048)

0.0010
(0.0001)

0.0099
(0.0025)

0.0013
(0.0002)

δ3 (monthly job destruction rate, type 3) 0.0011
(0.0051)

0.0507
(0.0075)

0.0027
(0.0002)

0.0087
(0.0006)

0.0029
(0.0008)

0.0012
(0.0003)

λ1
1 (monthly job offer arrival rate, type 1) 0.3475

(0.0569)
0.1385
(0.0128)

0.1018
(0.0098)

0.0655
(0.0040)

0.0521
(0.0032)

0.0459
(0.0052)

λ2
1 (monthly job offer arrival rate, type 2) 0.1298

(0.0166)
0.0138
(0.0009)

0.2543
(0.0157)

0.0114
(0.0007)

0.0999
(0.0142)

0.0151
(0.0010)

λ3
1 (monthly job offer arrival rate, type 3) 0.0615

(0.0077)
0.1231
(0.0110)

0.0369
(0.0016)

0.1038
(0.0048)

0.0440
(0.0047)

0.0489
(0.0037)

η (sampling distribution, shape) 0.7546
(0.0956)

1.5110
(0.0794)

0.5869
(0.0371)

1.9223
(0.0828)

0.2068
(0.0444)

6.9791
(1.7042)

ν (sampling distribution, scale) 0.0242
(0.0802)

0.3138
(0.0179)

0.0430
(0.0076)

0.3299
(0.0136)

0.0002
(0.0004)

1.0128
(0.2258)

α1 (sampling distribution, location, type 1) 5.2998
(0.0599)

4.9984
(0.0254)

4.9958
(0.0236)

5.1702
(0.0149)

5.0262
(0.0217)

4.9567
(0.2198)

α2 (sampling distribution, location, type 2) 4.6556
(0.0293)

4.7523
(0.0155)

4.8461
(0.0237)

4.7332
(0.0122)

5.3262
(0.0290)

4.2837
(0.2249)

α3 (sampling distribution, location, type 3) 4.7351
(0.0338)

4.6210
(0.0217)

4.7337
(0.0208)

4.7553
(0.0143)

4.7992
(0.0237)

4.5390
(0.2232)

σ (std. dev. log measurement errors) 0.2899
(0.0050)

0.2195
(0.0015)

0.2325
(0.0014)

0.2091
(0.0008)

0.2116
(0.0023)

0.1949
(0.0009)

γ1 (parameter in experience spline fct.) −0.0038
(0.0099)

−0.0166
(0.0042)

−0.0052
(0.0072)

−0.0023
(0.0023)

0.0590
(0.0080)

0.0400
(0.0055)

γ2 (parameter in experience spline fct.) 0.0377
(0.0146)

0.0107
(0.0070)

0.0511
(0.0085)

0.0105
(0.0038)

−0.0019
(0.0102)

−0.0283
(0.0091)

γ3 (parameter in experience spline fct.) −0.0350
(0.0252)

0.0124
(0.0078)

−0.0287
(0.0036)

−0.0015
(0.0042)

−0.0231
(0.0063)

0.0206
(0.0098)

π1 (fraction, type 1) 0.1216
(0.4848)

0.1624
(0.0726)

0.2446
(0.1047)

0.1540
(0.1108)

0.5864
(0.0348)

0.1193
(0.2903)

π2 (fraction, type 2) 0.4555
(0.0128)

0.6126
(0.0001)

0.2634
(0.0852)

0.5038
(0.0160)

0.1255
(0.3145)

0.5032
(0.0219)

Table 4: Estimation results—Denmark. Standard errors in parentheses
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Parameter Low education Medium education High education

Ent. Mat. Ent. Mat. Ent. Mat.

λ0 (monthly nonemployment-to-job rate) 0.0587
(0.0017)

0.0433
(0.0016)

0.0601
(0.0008)

0.0446
(0.0008)

0.0436
(0.0014)

0.0357
(0.0015)

δ1 (monthly job destruction rate, type 1) 0.0066
(0.0016)

0.0029
(0.0011)

0.0037
(0.0005)

0.0379
(0.0029)

0.0016
(0.0008)

0.0044
(0.0004)

δ2 (monthly job destruction rate, type 2) 0.0988
(0.0067)

0.0385
(0.0086)

0.0852
(0.0040)

0.0010
(0.0002)

0.0830
(0.0113)

0.0031
(0.0004)

δ3 (monthly job destruction rate, type 3) 0.0127
(0.0067)

0.0084
(0.0012)

0.0498
(0.0054)

0.0067
(0.0004)

0.0068
(0.0007)

0.0050
(0.0008)

λ1
1 (monthly job offer arrival rate, type 1) 0.0297

(0.0031)
0.0128
(0.0019)

0.0310
(0.0010)

0.0537
(0.0034)

0.0218
(0.0022)

0.0136
(0.0012)

λ2
1 (monthly job offer arrival rate, type 2) 0.0535

(0.0047)
0.0674
(0.0148)

0.0451
(0.0025)

0.0135
(0.0005)

0.0422
(0.0058)

0.0271
(0.0022)

λ3
1 (monthly job offer arrival rate, type 3) 0.0101

(0.0080)
0.0314
(0.0042)

0.0733
(0.0072)

0.0415
(0.0022)

0.0359
(0.0026)

0.0339
(0.0042)

η (sampling distribution, shape) 0.5653
(0.0551)

12.0823
(4.6769)

3.6041
(0.5742)

6.1328
(0.5161)

1.1806
(0.1495)

66.9472
(8.5866)

ν (sampling distribution, scale) 0.0568
(0.0152)

2.1059
(0.7684)

0.6038
(0.0834)

1.0498
(0.0776)

0.1975
(0.0333)

9.8298
(1.2282)

α1 (sampling distribution, location, type 1) 4.6384
(0.0234)

2.7831
(0.7661)

4.1397
(0.0814)

3.7486
(0.0763)

4.6421
(0.0372)

−4.7676
(1.2279)

α2 (sampling distribution, location, type 2) 4.5066
(0.0162)

2.6667
(0.7667)

4.0078
(0.0800)

3.8971
(0.0776)

4.4320
(0.0286)

−4.4215
(1.2280)

α3 (sampling distribution, location, type 3) 4.0541
(0.0904)

3.2340
(0.7653)

4.5264
(0.0795)

4.2531
(0.0762)

4.9648
(0.0309)

−4.0505
(1.2278)

σ (std. dev. log measurement error) 0.2274
(0.0044)

0.1860
(0.0022)

0.2176
(0.0016)

0.1644
(0.0007)

0.1831
(0.0024)

0.1625
(0.0016)

γ1 (parameter in experience spline fct.) 0.0108
(0.0062)

−0.0006
(0.0051)

0.0285
(0.0028)

−0.0031
(0.0021)

0.0372
(0.0058)

0.0066
(0.0044)

γ2 (parameter in experience spline fct.) 0.0028
(0.0114)

−0.0084
(0.0085)

−0.0174
(0.0044)

−0.0080
(0.0034)

−0.0209
(0.0079)

0.0108
(0.0071)

γ3 (parameter in experience spline fct.) 0.0556
(0.0364)

0.0412
(0.0100)

−0.0007
(0.0056)

0.0306
(0.0034)

0.0174
(0.0071)

0.0003
(0.0071)

π1 (fraction, type 1) 0.3039
(2.6699)

0.5392
(0.0137)

0.4404
(0.0604)

0.2173
(0.0069)

0.3066
(0.0664)

0.4021
(0.0116)

π2 (fraction, type 2) 0.6814
(4.6423)

0.2787
(0.0579)

0.4546
(0.0637)

0.5844
(0.0050)

0.2587
(0.0944)

0.4333
(0.0036)

Table 5: Estimation results—Norway. Standard errors in parentheses
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Denmark Low education Medium education High education

Ent. Mat. Ent. Mat. Ent. Mat

E[T λ|lowest λv
1 ] 16.3 (0.42) 72.4 (0.61) 27.0 (0.49) 87.4 (0.50) 22.7 (0.2) 66.3 (0.50)

E[T λ|medium λv
1 ] 7.7 (0.46) 8.1 (0.23) 9.8 (0.24) 15.3 (0.15) 19.2 (0.59) 21.8 (0.12)

E[T λ|highest λv
1 ] 2.9 (0.12) 7.2 (0.16) 3.9 (0.26) 9.6 (0.34) 10.0 (0.13) 20.5 (0.38)

E[T λ] 10.7 47.3 16.8 49.7 19.1 43.7

E[T δ|lowest δv] 197.4 (0.42) 509.9 (0.61) ∞ (0.24) 967.3 (0.50) 422.4 (0.59) 971.8 (0.12)

E[T δ|medium δv] 10.1 (0.46) 102.3 (0.16) 366.3 (0.49) 324.0 (0.15) 346.9 (0.29) 818.3 (0.38)

E[T δ|highest δv] 6.5 (0.12) 19.7 (0.23) 18.5 (0.26) 114.4 (0.34) 101.3 (0.13) 746.8 (0.50)

E[T δ] 88.9 333.4 244.6 576.4 360.4 800.6

Lowest κv 1.3 (0.46) 2.4 (0.23) 4.7 (0.26) 11.1 (0.50) 10.1 (0.13) 11.3 (0.50)

Medium κv 2.3 (0.12) 7.0 (0.61) 13.5 (0.49) 11.9 (0.34) 15.3 (0.29) 40.0 (0.38)

Highest κv 12.1 (0.42) 14.2 (0.16) ∞ (0.24) 21.2 (0.15) 22.0 (0.59) 44.6 (0.12)

κ 6.0 7.2 10.4 12.9 18.6 26.1

Norway Low education Medium education High education

Ent. Mat. Ent. Mat. Ent. Mat

E[T λ|lowest λv
1 ] 99.0 (0.01) 78.1 (0.54) 32.3 (0.44) 74.3 (0.58) 45.9 (0.31) 73.6 (0.40)

E[T λ|medium λv
1 ] 33.7 (0.30) 31.9 (0.18) 22.2 (0.45) 24.1 (0.20) 27.9 (0.43) 36.8 (0.43)

E[T λ|highest λv
1 ] 18.7 (0.68) 14.8 (0.28) 13.6 (0.11) 18.6 (0.22) 23.7 (0.26) 29.5 (0.16)

E[T λ] 24.4 52.1 25.7 52.2 32.3 50.4

E[T δ|lowest δv] 150.7 (0.30) 347.0 (0.54) 272.3 (0.44) 1042.3 (0.58) 617.8 (0.31) 324.0 (0.43)

E[T δ|medium δv] 78.7 (0.01) 119.4 (0.18) 20.1 (0.11) 149.0 (0.20) 147.3 (0.43) 226.2 (0.40)

E[T δ|highest δv] 10.1 (0.68) 25.9 (0.28) 11.7 (0.45) 26.4 (0.22) 12.1 (0.26) 199.3 (0.16)

E[T δ] 53.8 216.1 127.4 644.4 256.6 264.2

Lowest κv 0.5 (0.68) 1.8 (0.28) 0.5 (0.45) 1.4 (0.22) 0.5 (0.26) 3.1 (0.40)

Medium κv 0.8 (0.01) 3.7 (0.18) 1.5 (0.11) 6.2 (0.20) 5.3 (0.43) 6.8 (0.16)

Highest κv 4.5 (0.30) 4.4 (0.54) 8.4 (0.44) 14.0 (0.58) 13.5 (0.31) 8.8 (0.43)

κ 1.7 3.6 4.1 9.7 6.6 6.2

Table 6: Estimated expected durations until events, and friction index κ. Estimated worker type
fractions πv in parentheses
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Figure 4: Estimated wage-experience profiles. Shaded areas show 95% point-wise confidence bands

Denmark Low education Medium education High education

Ent. Mat. Ent. Mat. Ent. Mat

Corr(δ,λ1) 0.90 0.53 0.94 0.94 0.98 −0.70

Corr(δ,α) 0.70 −0.66 −0.12 −0.21 0.88 −1.00

Corr(λ1,α) 0.94 0.28 0.21 0.14 0.95 0.74

Norway Low education Medium education High education

Ent. Mat. Ent. Mat. Ent. Mat

Corr(δ,λ1) 0.86 0.98 0.40 0.82 0.78 0.13

Corr(δ,α) 0.25 −0.54 −0.17 −0.62 −0.76 0.33

Corr(λ1,α) 0.70 −0.37 0.84 −0.07 −0.18 0.98

Table 8: Correlations of random parameters between worker types
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Figure 5: Fit: Job-to-job hazard functions for entrants. Shaded areas show 95% point-wise confi-
dence bands (not shown for homogeneous model)
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Figure 6: Fit: Job-to-nonemployment hazard functions for entrants. Shaded areas show 95%
point-wise confidence bands (not shown for homogeneous model)
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Figure 7: Fit: Job-to-job hazard functions for mature workers. Shaded areas show 95% point-wise
confidence bands (not shown for homogeneous model)
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Figure 8: Fit: Job-to-nonemployment hazard functions for mature workers. Shaded areas show
95% point-wise confidence bands (not shown for homogeneous model)
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Figure 9: Fit: Sampling distributions of match qualities and wages (net of experience effects), for
entrants
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Figure 10: Fit: Steady state distributions of match qualities and wages (net of experience effects)
conditional on experience = 10.5 years for mature workers
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