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Introduction 
Concentration of greenhouse gases in the atmosphere influences the climate, i.e., temperature, wind, 

rain, snow, etc. Climate changes then alter the amount of primary energy for countries or regions 

where hydropower and wind power constitute important parts of the energy supply. Increasing 

temperature also influences energy demand because of less need for heating or more demand for 

cooling. In this article, we estimate the simultaneous climate change and electricity market effect in a 

regionalized, hydropower-dominated electricity market. Since most energy demand is located a long 

way from the primary energy supply (waterfalls and wind), climate change may stress the transmission 

network system and thus alter the requirement for investment in new transmission capacity. To our 

knowledge, nobody in the literature seems to have integrated the climate issue and the electricity 

market effects in a simultaneous energy market model. 

 

A large literature from the natural sciences looks into the relationship between emissions, climate 

change and important supply-side effects in power systems based on hydro energy, wind energy, solar 

energy etc; see, for example, Bergström, Andrèasson et al. (2003), Kuusisto (2004) and Beldring, 

Roald et al. (2005) for some recent studies. The Swedish Meteorological and Hydrological Institute 

(SMHI) has developed a Water Balance Model that is used in more than 40 countries all over the 

world, see Bergström (1976) and Bergström, Harlin et al. (1992). The model is very detailed at the 

water catchments scale, with hourly or daily observations, and includes precipitation, snow balance, 

temperature, evaporation, runoff, and subbasins and lakes. Kaczmarek, Somlyòdy et al. (1996) 

document the so-called “delta change” approach, which transforms the climate change variables to 

hydrological models. Several other studies like Lemmelä and Helenius (eds.) (1998), Lettenmaier, 

Wood et al. (1999), and Reynard, Prudhomme et al. (2001) offer variations on the same subject. For a 

full reference list, see Bergström, Andrèasson et al. (2003). Examples of other models on the same 

subject are the IRMB model (Gellens and Roulin, 1998), the CLASSIC model (Reynard, Prudhomme 

et al., 2001), the ARC/EGMO model (Müller-Wohlfeil, Bürger et al., 2000) and the HSPF model 

(Middelkoop, Daamen et al. 2001). 

 

In our article, we address the climate change effect on important explanatory variables for estimating 

the inflow and wind, the supply effect on hydropower and wind power capacity, and the electricity 

market impact. Our climate model does include the same variables as the SMHI water balance model, 

however it is slightly refined since it operates on a regional and seasonal level, see Gabrielsen (2005) 

and Beldring, Engeland et al. (2003). Our model produces comparable results for the hydrological 
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balance in the reservoirs, which is suitable for the linkage of the climate model and the electricity 

market model. 

 

The RegClim project in Norway and the SWECLIM project in Sweden, (Bergström, Andrèasson et al., 

2003), which study the relationship between emission of greenhouse gases and important climate 

change indicators, constitute important inputs to our study. The starting point is the climate scenario 

ECHAM/OPYC3 (Bjørge, Haugen et al., 2000), which relies heavily on the emission scenario IS92a 

from The Intergovernmental Panel of Climate Change (IPCC). This emission scenario indicates a 1% 

increase in the emissions of greenhouse gases per year from 1990 until 2050 (IPCC, 2000). RegClim 

has developed a regional climate scenario based on dynamic downscaling of ECHAM/OPYC3, 

HIRHAM (RegClim. 2, 2002). Based on climate variables from this scenario and observed inflow 

series to the hydropower system, we estimate a supply model for the hydropower and wind power 

system in the four Nordic countries (Norway, Sweden, Finland and Denmark). The climate scenario 

also reports on possible outdoor temperature changes, which we combine with estimations of the 

temperature influence on demand, see Johnsen and Spjeldnæs (2005). We establish an electricity 

equilibrium market model for these countries (see Johnsen, 1998) and analyze the effect of climate 

changes on supply, demand, trade and transmission in the Nordic electricity market during the next 40 

years. 

 

The rest of the paper is organized as follows. In section 2, we derive the three formal models: the 

climate model, the temperature model and the electricity market model. In section 3, we discuss the 

data, and in section 4 we present the empirical results on the estimated climate and temperature model. 

Section 5 discusses the simulated market effects, and section 6 concludes. 

The model 
The complete model used in our analyses comprises three elements; a climate model, a temperature 

model and an electricity market model. The climate model concerns the shifts in primary energy 

supply due to climate changes. The temperature model looks into the partial demand-side effect of 

climate change. The electricity market model integrates economic activity, the energy supply-side and 

demand-side effects, cost-minimizing expansion of production capacity, transmission capacity 

constraints, and market-clearing mechanisms (perfect competition). 
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The climate model 

The climate model consists of two parts: one part defines the relationship between the development of 

climate change variables and inflow to the hydropower reservoirs. The second part describes the link 

between wind speed and production capacities in windmills. In this section, our main focus is on the 

climate inflow model, while we comment briefly on the wind model at the end of the section. 

The inflow model 

Water inflow into the hydropower reservoirs is the basis for hydropower production. The inflow varies 

because of rainy seasons in the spring and the autumn, cold weather and snow accumulation during 

winter, and snow melting in the spring, etc. We assume that inflow at time t, It, is influenced by the 

direct effect of rain at that time Rt, the runoff into the reservoir, Pt, which may be due to accumulated 

snow and rain in the surrounding ground. We deduct evaporation Et, following Bergström, Andrèasson 

et al. (2003). Our model is linear in the variables: 

 

(1) tttt EPRI 000 ��� Š+=   

 

and there is no constant term as there is no inflow without rain and runoff1. The runoff is explained by 

rain as an indicator of the humidity in the soil and snow melting from the storage of snow, St. 

 

(2) ttt SRP 10 �� +=  

 

In the seasonal pattern of inflow, the effects from snow and rain differ. Rain will contribute to 

increased inflow with almost no lag, but will depend on the water content of the surrounding soil. The 

snow needs to melt before it is measured as inflow, i.e., the � 1 parameter is zero for most of the year 

except for the melting period. During winter, almost all snow accumulates. When temperature 

increases in the spring, the snow starts melting. The melting speed is also influenced by the amount of 

rain during the melting period, i.e., the rain has different impacts on inflow during the melting period 

and during the rest of the year. If the temperature is high while the weather is rainy, the melting could 

also become overflow, i.e., all the inflow may not be captured in the reservoirs. According to the data 

series from RegClim, the typical melting period in Norway and Sweden, which constitutes the largest 

share of the hydropower capacity in the Nordic countries, is weeks 17–23. To include the effect of 

snow melting, we create a multiplicative dummy for every week of the average snow-melting period, 
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with a one-week lag. Each dummy accounts for the melting in one particular week in the period. To 

account for the particular effect of rain on inflow in the snow-melting period, we add multiplicative 

dummies (D) for rain in the same weeks. 

 

(3) �¦�¦
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Š ++=
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The *
tS  variable accounts for the effect of daily snow directly into the reservoirs. Putting equation (2) 

and (3) into equation (1) and rearranging and redefining the coefficients results in:   
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where we have added a normally distributed stochastic term � t with a constant variance2. Temperature 

is only included in the inflow model by its effect on rain, snow melting and runoff. If the temperature 

is high, more snow is melting, but as the ground might be dryer, the inflow can be somewhat reduced. 

Wind speed 

The production potential for wind power, Wt, depends on the wind speed, WSt, and the amplitude of 

the wind. The windmill stops when the wind speed is low, and it also stops when the wind speed is 

very high, as the load on the mill becomes too high. The RegClim scenarios do not report the change 

in the wind amplitude as climate changes, but the change in wind speed is calculated. As the wind 

speed increases, the increased production potential in the windmills is cubed, i.e.: 

 

(5) 
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where At, represents all other factors, except wind speed, that define the production capacity in 

windmills. The windmill capacity is higher during winter than during summer, as the average wind 

                                                                                                                                                                      
1 We tested a model with a constant term, but the R2 of 0.40 was rejected against an R2 of 0.64 in the model without a 
constant term. 
2 For comparison, the SMHI model is formulated as: P–E–Q = d/dt SP+SM+UZ+LZ+lakes, where P = precipitation, E = 
evapotranspiration, Q = runoff, SP = snow pack, SM = soil moisture, UZ = upper groundwater zone, LZ =lower groundwater 
zone, lakes = lake volume. 
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speed is higher. The RegClim scenario also predicts that the wind speed will increase most during 

winter. This is the time when the capacity utilization of all the power plants and the transmission 

networks is at its highest, which may be of importance in the market clearing between periods. 

The temperature model 

Increasing outdoor temperature because of climate changes may influence the demand for electricity 

in two ways: the need for heating and the need for air-conditioning. The cold climate in the Nordic 

countries means that a significant part of the electricity consumption concerns heating. A future higher 

temperature may influence the use of electricity for air-conditioning during summer. Since there is no 

long history of air-conditioning in the Nordic countries, the possibility of identifying the magnitude of 

this effect in time series data is meager. The amount of heating varies greatly over the seasons in the 

Nordic countries. To separate the temperature effect from price effects, economic activity, season, etc. 

when estimating from historic data, we need a detailed model:  

 

(6) ),,,,,( HDWYPPfE FEtt =  

 

where Et is the electricity demand, PE the electricity price, PF the fuel oil price, and Y is the activity 

level, W is the wind speed, D is the day length, H is holiday dummies, and HDD is a variable for 

heating degree-days. Heating degree-days are defined as the sum of the differences between 17 °C and 

the average daily temperatures for all days colder than 17 °C. Johnsen and Spjeldnæs (2005) estimated 

such a model based on an error correction model specification, where a change in the natural 

logarithm of weekly consumption is the dependent variable. The demand for electricity is then: 

 

(7) 
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The error term,� , is assumed to be normally distributed with an expected value of zero and constant 

variance. 

 

Estimations on high-frequency data should take into account the fact that prices of electricity and 

equilibrium supply and demand are set simultaneously, i.e., prices are not exogenous to the consumer 

(see Bye and Hansen, 2005). Typically, a high level of demand and high prices are correlated, which 

intuitively contradicts the theory of a downward-sloping demand curve. Demand shifts upward and 
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downward because of temperature changes, business cycles, etc. The slope of the demand curve may 

also vary as the substitution possibilities vary with temperature. During winter, more than half of the 

consumption is related to heating, where fossil fuel or wood stock may be perfect substitutes for 

electricity. During summer, almost all electricity is related to technical end uses where the substitution 

possibilities are negligible. The supply curve is increasing in the marginal production, which is 

typically stepwise in a thermal system.  

 

In a hydropower-dominated system, the water value depends on the marginal cost curve of the 

alternatives (typically thermal plants). The supply shifts in the short run because of outages, 

transmission constraints and inflow variability. As both demand and supply shift, we cannot presume 

that prices are exogenous variables. The price equation may now be formulated as described in 

Johnsen and Spjeldnæs (2005): 

 

(8) ������ ++++�+=� ŠŠŠ )ln()ln()ln()ln()ln( 14131210
E
tttt

E
t pZEEp  

 

where Z is the hydrological balance working as an instrument for the increasing marginal cost in 

production. 

 

In our simulations later on, we will only consider the first-order effects of changing temperatures, i.e., 

equation (7), which indicates that demand for electricity is reduced when the temperature increases. 

Equation (8) shows that the price will fall when demand decreases; consequently, prices drop when the 

temperature increases. In the electricity demand model (7), both effects are accounted for. In our 

simultaneous approach, the price equation (8) is substituted by the equilibrium price in the detailed 

electricity market model. 

The electricity market model 

So far we have discussed the possible implications for the primary energy supply and the isolated 

temperature effect on electricity demand from climate changes. To analyze the total impact of climate 

changes on the electricity markets, we need a full market model. As inflow increases, the supply of 

energy increases at a lower unit cost because of decreasing marginal cost at the plant level. The 

increasing temperature reduces demand, but this effect will be counteracted by the reduced price. 

Since waterfalls are rarely located at the demand site, transmission capacity and constraints affect the 

market equilibrium in a region. To capture all these effects we need a detailed market model. 
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Such a model is outlined in figure 1. The main exogenous elements are a description of the future 

economic activity, the existing production and transmission capacities, the marginal cost of expansion 

of the capacity elements, and the prices in the “third countries” that may possibly influence the Nordic 

electricity market clearance. The core of the model is the market clearing mechanism equalizing 

wholesale prices between customers, utilizing the existing capacities, clearing regional prices when 

transmission capacities are fully used, and expanding capacities when prices exceed long-term 

marginal cost. This model outline follows Johnsen (1998) and Rogers and Rowse (1989). 

 

The model describes the Norwegian, Swedish, Danish and Finish markets in three seasons (winter 1, 

summer and winter 2) and four load blocks (peak, high, medium and base load) under the assumption 

of perfect competition. According to Førland, Roald et al. (2000), the winter season becomes less 

stable and the pronounced snowmelt peak in runoff is replaced by more evenly distributed runoff 

during winter in many areas when the climate changes. This clearly calls for a seasonal model 

capturing the storing possibilities and capacities in a hydropower-dominated area when analyzing the 

effect of climate changes. 

 

The Nordic area is divided into 14 regions (see figure 2), which are based on the geographical position 

of the existing power plants and the capacities of the transmission net. The thickness of the lines 

indicates the capacities of the transmission system between countries in the short run. Norway is 

divided into eight regions, Sweden into three, Denmark into two, and Finland is one region. 

 

Figure 1: The core of the electricity market model    Figure 2: A split of Nordic countries 
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Demand 

The customers in each region are divided into five different segments: metal, pulp and paper, other 

manufacturing, services and households. This is important for the model solution because of the 

different demand elasticities and consumption patterns in the regions. The average price elasticity for 

electricity in the whole area is – 0.3. Over time, the size of different sectors changes, which also 

changes the aggregate elasticities. Demand for electricity depends on electricity prices and activity 

level: 

 

(9) sijtjtsijtsijtsijtsijt wPCZ 210 ��� ++=
 

 

where sijtZ  is sector j’s power demand (MWh) for season s, load period i and country t. The end user 

price is PCsijt (N.øre/kWh), and wsijt indicates the activity level in each sector. Linear demand 

equations imply price-dependent elasticities. The end users’ electricity purchase price is the sum of a 

common market wholesale price (Psi), a consumer-dependent electricity tax (tjt) and a transmission and 

distribution margin (msijt) that varies among consumers. Some sectors are also charged a multiplicative 

value added tax, 	 jt. 

 

(10) 
{ }( )jtsijtjtsisijt mtPPC 	+++= 1

 

 

When there is no constraint in the transmission network between regions, the wholesale price is 

common. When there is a network constraint, the wholesale price in each region must clear the market 

in that region, i.e., different area prices occur, and Psijt and the purchaser prices follow: 

(11) 
{ }( )jtsijtjtsijtsijt mtPPC 	+++= 1

 

Supply 

The producers are grouped according to generation technology (hydropower, thermal coal, nuclear, 

CHP etc.) and location (region). Each generation technology is represented by cost parameters and a 

number of physical and technical constraints, which restrict the system operation possibilities in each 

period (season and load). If a constraint is binding, a shadow price associated with the constraint 

becomes positive. The vector of production by technology, season and load in each region istX is: 

 

(12) ),,,,,( *
tisististististist CAPTDPFXPfX 
=   
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a function of the electricity purchaser price, a vector of production capacities by technology, 
*

istX , in 

the region at the time, a vector of primary energy fuel prices by region, istPF , at the time, a vector of 

other operating cost by technology and region, istD , at the time, and a matrix of transmission 

capacities between regions, tisCAPT 
 . 

 

Whether investments in production or transmission capacities are made, they depend on the realized 

equilibrium electricity prices, differences in the area prices, and the costs related to the capacity 

expansion. There is an upper limit for investments, istK , when the basic resource is limited by 

scarcity or environmental or political reasons. 

 

(13) ),,,,(*
istististististist KEDPFPgX =  

 

The details of the supply model are elaborated in Appendix A (see also Johnsen, 1998). 

The electricity trade between countries, Xs,i,l,mXs,i,m,l, is limited by transmission capacities, (CAPTl,m), 

between each pair of countries, l and m: 

 

(14) ml,lm,i,s,ml,i,s, CAPT  XX �  

 

where Xs,i,l,m is the trade in seasons and load block i between countries l and m. Within one load block, 

the trade is restricted to only one direction. We assume one unit transmission price (l,m� ) between 

countries l and m. Aggregated transmission costs are a product of the unit transmission cost, the power 

trade and the length of the load period (si
 ). 

 

(15) CT = s,i l,m s,i,l,m
s i l m

X
 ��¦�¦�¦�¦  

 

All the Nordic countries have network connections to non-Nordic countries. The export and import 

through these connections are determined exogenously. The load and season prices in the “third 

country” follow the observed distribution, while the price level follows the primary energy cost in 

thermal plants. 
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Market equilibrium 

There is one unique equilibrium condition for each load block. In each load block, the power 

generation (supply) plus import must be greater or equal to the sum of domestic demand and export: 
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Electricity imported to a region is a perfect substitute for regional generation. 

Solution of the model 

The solution of the model is found by maximization of the sum of the consumer (CS) and producer 

surpluses (PS) for all regions, i.e., the whole Nordic electricity market, less the transmission costs 

between each pair of regions. This corresponds with the assumption of perfect competition. All 

electricity producers and purchasers face the same electricity price, unless area prices are influenced 

by transmission constraints. The prices equal the marginal cost of electricity, and the price differences 

across regions result from transmission costs and eventually shadow prices of transmission capacities: 

 

(20)
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where Psijl(u) is the inverted demand equation (9), and where taxes and transportation margins are 

subtracted. 
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Data 
NWE (Norwegian Water Resources and Energy Directorate) data cover weekly inflow to the 

Norwegian hydro storages in the period 1931–2004. The inflow series is based on estimations of the 

amount of water that would have been available in today’s water reservoirs week by week in the 

period. In the estimations we have utilized data from 1980 to 1999, as this is the period of RegClim 

historic data3. 

 

RegClim provided data series concerning precipitation, accumulated snow storage, daily snowfall, 

runoff and evaporation for the periods 1980–1999 and 2030–2049. The data series originates from an 

experiment where RegClim compared the periods 1980–99 and 2030–49 with regard to certain climate 

indicators (Bjørge, Haugen et al., 2000). The data series reflects observations at 444 geographical 

points in the Nordic region. The map in figure 3 shows how the observations are described by the 

inflow model’s grid system. 

 

Figure 3: The data grid for climate variables 

 

                                                      
3 Unfortunately, our inflow data cover just the Norwegian part of the hydrological system. However, the three Nordic 
countries—Norway, Sweden and Finland—have similar inflow patterns. We then estimate an inflow model for expected 
inflow based on historical data on total inflow in Norway, and we assume that the estimated coefficients can be used to 
simulate inflow in regional Norway, Sweden and Finland. (The climate variables are different). Denmark has almost no 
hydropower. 
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Every grid in the system represents an area of 55*55 km, which indicates that it is a coarse description 

of the terrain. Each grid intersection indicates one observation point and is described by latitude and 

longitude. The data set includes daily observations for all variables at each point. As inflow is 

described on a weekly basis, we aggregate the observations of each climate variable to weekly 

numbers4. 

 

In the electricity market model, the Nordic area is split into 14 regions (see map in figure 2). We 

aggregate climate variable k, rain (R), snow (S, S*), evaporation (E)) from square i to region j, Zij
k, by 

a set of weights, � ji
k: 

 

(21) �¦
=

=
kn

i

k
ji

k
ji

k
j ZZ

1

�  

 

where nk is the number of observations in region j. Any observation measured along the coast is given 

less weight than an inland or mountain observation, as it gives less inflow to the reservoirs. 
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The climate scenario from RegClim is based on the global model ECHAM4/OPYC3 from the Max 

Planck Institute. The IPCC scenario IS92a that drives this model (RegClim.2, 2002) is based on the 

assumption that CO2 emissions will increase annually by 1% from 1990 (IPCC 2000). This indicates a 

doubling in the CO2 concentration by 2050. The IS92a scenario is not necessarily the most likely 

scenario, as there is no objective way to assign likelihood to any of the scenarios developed by IPCC 

(Nakicenovic, Alcamo et al., 2002). According to RegClim, the model gives a realistic picture of the 

current climate and is therefore chosen as the basis for dynamic downscaling (Bergström, Andrèasson 

et al., 2003) to a regional basis. 

 

                                                      
4 By doing this aggregation, we assume that there will not be any structural changes over the time period. This may include, 
for example, changes in the cloud systems. The data material from RegClim includes 30 days each month, i.e., the last week 
of every year has only three days. To obtain an approximation to a normal week, this week of the year is multiplied by 7/3. 
Evaporation, precipitation, snowfall and runoff are then described as the total amount during each week. Accumulated snow, 
temperature and wind are described as an average weekly observation. 
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The global climate models typically have a coarse spatial resolution and are not capable of including 

regional differences as to give a realistic description of the region (Benestad, 2003). RegClim achieved 

the regional climate scenario by using a model for atmospheric dynamic downscaling, HIRHAM. The 

climate scenarios obtained from HIRHAM, are better suited to attending to geographical differences 

(mountains, fjords, forests, etc.) in the Nordic region (RegClim.2, 2002). There are differences 

between the computed data and the observed average variables. This is due partly to the coarse spatial 

resolution but also to inadequacies in the regional model. The results from this analysis are based on 

one of many scenarios, meaning that the model data for one historical day cannot be directly compared 

with the observed weather situation of that specific date. 

 

RegClim has provided historical data (1980–99) for the estimation of the inflow model and has 

projected values for the period 2030–49 that are utilized to simulate inflow into the reservoirs in the 

future. As the RegClim values in one specific year are stochastic, e.g., the stochastic weather, we 

estimate the linear trend in inflow during 2001–2040. We estimate the average weekly inflow during 

1980–1999, and the average inflow during 2030–2049. The linear trend is found by: 
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The increased inflow into the electricity market model is represented by the simulated inflow values in 

the period 2001–2040. 

 

We apply the temperature data from RegClim to calculate the partial effect on energy demand. 

Scenarios 
We produce one base scenario for the development of the Nordic electricity market, where the 

simulated effects of climate change are excluded, and one scenario where the changes are included, 

and we compare these two scenarios. The assumptions on activity growth in our partial electricity 

market model are based on simulations on macroeconomic models (see Aune, Bye et al., 2005). In the 

base scenario, we assume the annual growth in income of the household and services sector to be 

1.8%. In terms of energy-intensive industries, there is an annual reduction in production of 0.5%. As 

for the rest of the industry sector, the analysis is based on a 1% annual growth rate. The production 
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technologies are specified by future cost (see Aune, Bye et al., 2005). The price pattern over loads and 

periods outside the Nordic area follow the historic price pattern (2001/2002), while the price level 

follows the long-term marginal cost of expansion. Approaching 2010, the price increases gradually to 

equal the total cost of investing in new gas power in Germany in 2010. In addition, Finland is 

importing electricity from Russia. The Russian price is low enough for Finland to import the 

maximum amount in the entire period (transmission constrained). Some of the power-producing 

technologies will emit greenhouse gases and will face permit prices on their emissions. The CO2 

permit price is set to 125 NOK/ton emitted in both scenarios, as we assume that the Nordic emissions 

are too modest to influence the international quota price (Aune, Bye et al., 2005). 

Results 
This analysis comprises three parts: the estimation and simulation of the climate model (inflow and 

wind), the simulation of the partial temperature effect, and the simulation of the total electricity market 

model. Since all three elements are based on separate model exercises, we report on each of them 

separately below. 

Inflow model 

Some variables in the inflow model turned out to be not significant at a 5% significance level, for 

instance, evaporation probably due to high correlation with rain. Engeland, Engen-Skaugen et al. 

(2004) state that there are great challenges in developing models to intercept the effect of evaporation. 

The effect of rain in weeks 17, 18, 19 and 20 and the effect of snow melting dummies in weeks 20, 21 

and 22 are not significant and are therefore excluded from the model. Our data series shows that rain 

and snow melting are negatively correlated, i.e., that snow melting is correlated to the negative change 

in the stock of snow. When there is heavy rain, there is more snow melting. The correlation between 

rain and snow melting is more than 0.45 in 50% of the time, and more than 0.7 in half of this 

observation period. Figure 4 shows the relationship between rain and snow melting in Norway in the 

period 1985–1995. There seems to be a lag on snow melting through runoff from soaked soil, and the 

model estimates showed that snow melting is significant with a one-week lag. 
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Figure 4: Rain and snow melting in Norway 1985–1995 
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Equation (23) illustrates the final inflow model. 
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The partial R2s in table 1 show that rain (� 0) has the greatest influence on inflow (0.535). The snow 

dummies are negative, as a negative change in accumulated snow indicates melting. Increased 

amounts of melting will increase inflow. 

 

The melting is greatest in the first weeks and fades out in the last week, i.e., even if the estimated 

coefficient is higher in the last week, less inflow shows up in the reservoirs. The large coefficient in 

week 23 may be due to the correlation between rain and snow, as this is the only week in which both 

parameters occur. 
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Table 1: Estimation results from the regression model 

 Coefficient Std. Error t-value t-prob Partial R2 
Rain      

0�  0.89 0.02 31.7 0.000 0.535 

1�  2.01 0.25 7.95 0.000 0.067 

2�  1.93 0.204 9.44 0.000 0.093 

3�  1.43 0.167 8.61 0.000 0.078 

Snow      

1�  –11.17 3.86 –2.89 0.004 0.009 

2�  –18.65 4.09 –4.56 0.000 0.023 

3�  –25.45 3.62 –7.02 0.000 0.053 

4�  –437.91 79.47 –5.51 0.000 0.033 

 

Figure 5 shows the model-estimated inflow in 1980–2000 and the actual inflow reported from NWE in 

the same period. As the data series on rain and snow from RegClim is rather stochastic, the estimated 

model will simulate a stochastic inflow. The figure illustrates that the estimated inflow and the actual 

inflow in this period follows the same pattern. 

 

Figure 5: Observed and model-fitted inflow (TWh) 1980–2000 
 

1 9 8 0  1 9 8 5  1 9 9 0 1 9 9 5 2 0 0 0

0  

2  

4  

6  

8  

1 0  

In f l o w  F i t t e d   

 

 

In figure 6 we show the simulated inflow for Norway in the period 1980–2040. The figure illustrates 

in some detail how well the model simulates inflow relative to the actual inflow each week in two 

random years, 1980 and 1999, the estimated trend over these years extended to 2040 (the stapled line), 

and the model-simulated trend for the period 2001–2040 (the solid line). Although the historic fit 
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seems to be close over the whole year, there are some important discrepancies with respect to the 

periods within a year. The estimated peak inflow seems to shift somewhat leftward compared with the 

actual inflow during the melting period. For the electricity market simulations, this is a minor problem, 

since aggregation over model periods apparently eliminates the problem. Whether this constitutes a 

fundamental climate model problem is a more complex issue. 

 

The extended 1980–2000 trend to 2000–2040 is substantially lower than the model-simulated inflow 

trend. This shows that the climate variables are not linear in the RegClim forecasting data, and may 

represent a downward bias in the linear estimated climate model (cf. the estimated trend over 

stochastic variables in section 3). Figure 6 shows that climate changes will increase inflow in Norway 

by approximately 10% in the following 40 years. 

 

Figure 6: Inflow in Norway 1980–2040 

 

 

 

 

 

 

 

 

 

Based on the RegClim forecast for the climate change variables, we now simulate the potential 

seasonal changes in inflow development, to be implemented in the electricity market model. Season 1 

includes weeks 1–17, season 2 includes weeks 18–35, and season 3 includes weeks 36–52. For 

Norway, the inflow model predicts that inflow in existing hydro reservoirs will increase in all seasons 

from 2001 to 2040. The aggregation from percentage increase in weeks to season is based on historical 

data of weekly inflow as weights. Season 1 will normally have 11%, season 2 will have 71%, and 

season 3 will have 18% of the annual inflow. The total effect of climate changes is now calculated to 
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be an increase in inflow of 10.3%. Sælthun, Aittioniemi et al., (1998) concluded that total runoff 

values after 100 years could increase by some 20% in the western regions but decrease in the southern 

regions. The impact of hydropower production in the total Nordic area was estimated to +2.5%. Our 

results for the next 40 years seem to be at the upper limit. However, they are based on revised climate 

projections, which will also increase the Sælthun et al. results. The increased inflow is explained 

directly by rain and snow melting, and indirectly by increased temperature and runoff. Most of the 

eight Norwegian regions will have an increase of more than 5% in inflow in the following 40 years; 

region 5 is the only exception with an expected increase by only 4.5%. In general, the western and 

northern regions in Norway will face the largest increases in inflow. Region 8, the upper northern part, 

is expected to face an increase of 19.5% from 2001 to 2040. 

 

The inflow model is estimated for Norway, but we assume the same fundamentals when simulating 

inflow in the other Nordic countries, although all the climate change factors are calculated separately 

in RegClim. The total increase in inflow in Sweden is 6.1% from 2001 to 2040. The northern region 

shows the largest increase in inflow, but only slightly over the average. 

 

In Finland, total inflow increased by 14.6% from 2001 to 2004. This is the largest percentage increase 

in the Nordic region, but Finland is a minor contributor to the total hydro capacity in the Nordic 

countries. The change only amounts to 1.8 TWh in 2040. 

Wind speed 

According to RegClim’s data series, the increase in wind speed in Norway is 1.2% to 2040. Some 

regions will experience a stronger growth in wind speed than others. The coastal regions, 3, 4, 7 and 8 

(see figure 1) will face the greatest increase. This means that the same regions face increasing wind 

speed and increased inflow. Renewable energy production adds up in a few regions with limited 

demand and puts a greater stress on the transmission networks. 

 

Sweden is expected to experience more wind in all seasons until 2040. The increase to 2040 will be 

1%. The wind speed is highest in region 1. The average wind speed in Finland is the lowest in the 

Nordic region. Climate change indicates fewer strong winds in season 2, but the rest of the year will 

experience stronger winds, and the annual increase in wind speed is 0.5% from 2001 to 2040. 

Denmark has significantly stronger wind than the other Nordic countries. The annual increase in 2040 

is 0.8%, and the wind speed will increase most in the season 2 and least in season 1. Although the 
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amount of wind power production is relatively small, this implies that the production in season 2 

increases and thus implies another demand for water storage handling. 

Temperature model 

The estimated temperature model is reported in table 2 (see Johnsen and Spjeldnæs, 2005). 

 

Table 2: Estimation results 

Demand equation Coefficients Standard deviations 

Constant 3.52 (0.33) 

ln (Et–1) –0.66 (0.06) 

� HDDt 0.03 (0.002) 

� HDDt–1 0.02 (0.002) 

� ln (Wt) 0.02 (0.006) 

ln (Wt–1) 0.02 (0.008) 

� ln (Dt) –0.14 (0.04) 

ln (Dt–1) –0.06 (0.01) 

� ln (pt) –0.19 (0.09) 

ln (pt–1) –0.03 (0.008) 

D275t*ln(pt–1) –0.009 (0.001) 

ln(pft–1) 0.06 (0.01) 

ln(Yt–1) 0.21 (0.06) 

+ Holiday dummies   

S (standard devia-

tion) 

0.0296  

R2 0.86  

 

We simulate the effect on demand for electricity of changing temperature by holding constant all 

variables other than temperature. According to RegClim, the average temperature over the year in both 

Norway and Sweden increases by 0.9 °C from 2001 to 2040. The temperature model simulates a 3% 

reduction in demand due to increased temperature. The major temperature increase will be in the 

northern part of the country. Finland will have a total reduction in demand of 4% from 2001 to 2040. 

The annual temperature in Finland is expected to increase by 1.2 °C in the next 40 years. Denmark is 

expected to face a reduction in annual demand of 2.5%, as there will only be an increase in 

temperature of approximately 0.75 °C in the following 40 years. 
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The total electricity market 
We produced one base scenario excluding the simulated changes in inflow, temperature-dependent 

demand and wind, and one scenario where the climate changes were included. Table 3 shows the 

results from these scenarios in 2040 with regard to supply, demand, trade and electricity prices. The 

simulations indicate that the Nordic region is expected to have an increase in supply of electricity of 

1.8% (8.1 TWh) in 2040 because of climate change. 

 

This increase seems small compared with the total increase in primary energy (water and wind). 

However, hydropower only amounts to approximately 50% of total production in the Nordic region. 

Besides, an increase in hydropower production at low cost substitutes marginal thermal production 

(gas-fired power) in Sweden and Finland. In addition, as the supply of “cheap” electricity increases in 

the climate scenario, the electricity price drops. This reduces new investments in power production 

capacity in general over the time period (cf. the increasing marginal cost of investment). 

 

Total demand for electricity is predicted to increase by 1.4% (6.3 TWh), despite the reduced effect of 

increased temperature on demand. The increased supply of electricity reduces the average electricity 

price by 2.4 N.øre/kWh or approximately 10% of the wholesale price. The price effect then offsets the 

temperature effect. In addition, some demand is temperature independent. 

 

There will be an increase in net exports from the Nordic area to the rest of Europe of 22% (1.8 TWh) 

in 2040. The prices in the Nordic area are less than the “third country” price, but even stronger exports 

are limited by effective bounds on transmission. 

 

In Norway, climate changes will increase the supply of electricity relatively more than demand. This 

implies more net exports to neighboring countries and the rest of Europe. In both Sweden and Finland, 

supply of electricity is reduced until 2030 relative to the base scenario, as investments in gas power 

plants are postponed because of unprofitability when cheaper hydropower may be imported from 

Norway. After 2030, exports from Sweden to its Nordic neighbors and the rest of Europe increase 

again because of increased production of hydropower and gas power compared with the base scenario. 

Denmark reduces its coal production and imports more from the south of Norway and Sweden, but at 

the same time increases exports to Europe. As Sweden, Finland and Denmark will postpone new 

investments and will periodically reduce production, the capacity of the reservoirs and electricity 

production in Norway will be challenged. 
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Table 3: The effect of climate changes in 2040: A comparison of the base and climate scenario 
from Normod-T 

 Supply Demand Trade Price 1) 

 % TWh % TWh % TWh øre/KWh 

Norway 8.4 12.5 3.2 4.6 136.0 7.9 –5.32) 

Sweden –0.03 –0.5 0.5 0.9 –29.8 –1.4 –1.6 

Finland –5.0 –4.0 0.8 0.7 –131 4.7 -1.5 

Denmark 0.3 0.1 0.5 0.2 –11.0 –0.1 –1.0 

The northern region 1.8 8.1 1.4 6.3 21.9 1.8 –1.0 
1) Price (N.øre/KWh) weighted with consumption 
2) Region 7 and 8 contribute strongly to the reduction, as this is where the largest increase in inflow is expected to occur and 
transmission out of these regions is restricted. If these regions are excluded, approximately 2 N.øre/KWh reduces the 
Norwegian price 

 

There are two important effects of climate changes on the transmission network. First, effective 

bounds on transmission occur more often because of more exchange of electricity, and second, as the 

pressure on the transmission grid is larger, the shadow price of the capacity constraint increases. This 

implies higher prices for the surplus areas and lower prices for the excess areas. There are effective 

bounds on transmission capacities both within each country and between the countries. In Norway, 

transmission from the western regions to the eastern regions is restricted in the winter seasons because 

of a significantly greater supply of electricity in the western regions. The northern regions in Sweden 

are hydropower abundant, and the cables from north to south are increasingly overloaded in the winter 

seasons when inflow increases. In the climate scenario, the cables from Norway to Denmark, Sweden 

and Finland will be overloaded in all seasons from 2010. This is a few years earlier than in the base 

scenario. There will be an effective limit on transmission from Sweden (SW2) to Denmark (DEN1) in 

all seasons. The time perspective is not influenced by the climate changes, but the shadow price is 

higher because of greater pressure on the effective limit. The transmission line between Finland and 

Sweden (SW2) will also face an effective limit in winter from 2030 to 2040. This is a few years earlier 

than in the base scenario. Several other cables will be overloaded for short time periods. The cables 

between each country and the rest of Europe will also be full for longer because of climate changes. If 

a transmission-restricted region is hydropower abundant, the pressure on the upper limit of the 

reservoir will increase, and the limit may be effective and may result in a positive shadow price. 

Effective limits and increasing shadow prices may indicate profitable investments in capacity, but the 

analysis of the potential profitability is left for further studies. 
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Summary and conclusions 
We applied detailed information from natural science research on climate change to estimate a climate 

model that captures changes in inflow and wind speed when climate changes. Changing outdoor 

temperature also influences energy demand. We incorporated all the partial effects on supply and 

demand into an electricity market model for the Nordic countries and simulated the outcome on total 

supply of energy, prices, and demand and transmission constraints between regions. 

 

The increase in primary energy from 2001 to 2004 is approximately 10%. However, the unit cost of 

hydropower and wind power production is reduced as a consequence of increased returns to scale in 

plant, so prices of energy decrease. This reduces the profitability of investing in thermal power plants. 

In addition, hydropower and wind power constitute only 50% of the total Nordic Supply. The total 

climate effect on production in 2040 is then less than 2%. 

 

Increased temperature initially reduces the temperature-based energy demand by approximately 3%. 

However, reduced prices of energy increase demand, and this overrides the temperature effect. The 

total change in demand is an increase of 1.5%. 

 

Since large consumers are located far from the hydropower and wind power plants, increased demand 

and a more skewed distribution of the supply imply more frequent and more important transmission 

constraints. In the next stage, this may trigger new investments in network capacity. 
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Appendix A 

A. The supply model 

In this appendix, we explore some of the details on the supply side of the electricity market model (see 

Johnsen, 1998). 

A.1. Supply from thermal plants 

In a thermal power plant, the operating costs (OCh,k,l) for load mode h, technology k and country l is: 
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The first term is a fuel cost, which depends on the fuel price (qk,l) and the conversion efficiency 

(0< k,lµ < 1). The second term is a variable non-fuel cost (k1� ), which includes different materials, and 

labor costs. The third term is an additional non-fuel cost (h,k2� ), which reflects costs associated with 

the start of a plant in any load mode other than base load. 

 

Heat may be seen as a by-product of electricity generation. 

 

The operation cost (OCs,h,k,l) for combined heat and power technologies is season, mode, technology 

and country specific. 
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The mode-specific prices of heated water are weighted averages of the market price of heated water in 

the different load blocks. The total conversion efficiency, k,lµ , is the total output of energy. 

 

In the short term, thermal plants may face both capacity and fuel constraints. For technology k and 

country l, the annual energy output is the sum over seasons (s) and modes (h) of the product of the 

load generation (Ys,h,k,l) and the number of hours (s,h� ). One year includes 8,760 hours, and s,h�  and 

k,l�  are measured in 100 hour increments. The annual number of hours less the number required for 



29 

maintenance and repair (k,l� ) multiplied by the capacity (CAP) limits the annual energy output from 

each technology. 

 

(A.1.3) s,h s,h,k,l k,l k,l
s h

Y (87,6 )CAP� � Š ��¦�¦  

 

When a plant is stopped for maintenance and repair, it is not disposable in any load modes. The 

constraint is: 

 

(A.1.4) s s,k,l k,l k,l
s

MR CAP� � ��¦
 

 

where � s is the number of hours in season s, and MRs,k,l is the amount of capacity out of service for 

periodic maintenance and repair in season s. The sum of actual generation and capacity out of service 

each season will be restricted by the available generation capacity. 

 

(A.1.5) s,h,k,l s,k,l k,l
h

Y MR CAP+ ��¦
 

 

We introduce an exogenous, national security margin (l� ) that determines how large the national 

generation capacity in a season is to be compared with domestic peak generation. 

 

(A.1.6) (1+ l� ) ( )s,h,k,l s,k,l k,l
h k k

Y MR CAP+ ��¦�¦ �¦
 

 

It might be profitable to operate with reduced capacity through low-price periods, rather than to stop 

the plant. The capacity utilization is restricted by: 

 

(A.1.7) k s,k,lcu U l� �  

 

where kcu is the lower limit for capacity utilization. 

 

Limitations in the availability of fuel r in country l are written as: 
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The left side indicates the annual demand for fuel, r. The coefficient k,s,l�  connects technology k with 

its fuel, and b is the annual fuel quantity available. BL, ML, HL and PL represent base load, medium 

load, high load and peak load. BB is the base block 

A.2 Hydropower capacity constraints 

The short-term marginal fuel cost of production in a hydropower plant is zero as the water is free, but 

the rest of the short-term marginal cost in equation A.1.1 prevails. Optimizing the value of running the 

hydropower plants bring about a water value that reflects the opportunity cost of producing power by 

the other technologies at any time. For the hydropower plants, the constraints in A.1.3, A.1.5 and 

A.1.6 prevail. 

 

In each season, s, the base load (BL) hydropower (HP) generation in country l (Ys, BL..HP, l) should be 

equal to or greater than a lower limit (l� ), i.e.: 

 

(A.2.1) Ys, BL..HP,l � l�  

 

Even though hydropower production can be regulated at low cost, there may be some physical 

constraints on the variation over the day, or between the base and peak generation: 

 

(A.2.2) ( )sh,HP,l l s,BL,HP,l
h

Y 1 Y� + ��¦  

 

where l�  is the upper limit on the increase in hydropower generation from base load to peak load 

mode within a day. There is an upper limit on the reservoir capacity,l� , in the two winter seasons.  

The constraint on the reservoir capacity is: 

 

(A.2.3) ( )w1,h,HP,l w1,h w2,h,HP,l w2,h l
h

Y Y� + � � ��¦   
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where sh� is the number of hours in load mode h in season s. The total amount of hydropower 

production must be less than or equal to the total inflow, � , to the system in the long run, although it 

may vary year by year. 

 

(A.2.4) ( ) ��++�¦ hwHPhwhwHPhShwHPhw YYY ,11,,,2,11,,,,11,,,1 ���  
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