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1 Introduction

In analysing a dynamic economic model we are often interested in identifying and

testing its long-run properties. The cointegrating vectors are examples of long run re-

lationships between different variables. However, also the underlying growth rates

(i.e. steady state growth rates) can be identified in cointegrated vector autoregres-

sive (VAR) models. Hungnes (2002) shows how these growth rates can be estimated

within a full information maximum likelihood framework, as well as how to test for

restrictions on these growth rates.

The growth rates tell us how much to expect (unconditionally) the variables in the

system to grow from one period to the next. If the system is used for forecasting, the

vector of growth rates will be very important in providing good forecasts. In fact, as

the forecasting horizon approaches infinity, the forecast will rely on this vector only.

Structural breaks often imply changes in the growth rates of the variables. With

many and frequent structural breaks in time series integrated of order 1, it will nor-

mally be best to estimate the system as if the variables in it were integrated of order 2.

With less frequent structural identification is possible.

Structural breaks have been discussed intensively in the context of univariate au-

toregressive time series. Perron (1989) suggests three models: Model A, a ’crash

model’, with change in intercept but where the slope of the linear trend is unchanged;

Model B, a ’changing growth model’, allows a change in the slope of trend function

without any sudden change in the level at the time of the break; and Model C, where

both intercept and slope are changed at the time of the break. Johansen et al. (2000)

present a generalization of model C in a multivariate framework, and allow for testing

hypotheses corresponding to Model A.

In this paper all deterministic terms in a cointegrated VAR model are decomposed

into interpretable counterparts. The corresponding coefficients describe the long run

(steady state) growth rates in the variables, and possibly shifts in level and growth
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rates (the latter depending on the type of deterministic variables that are included in

the system). Combined with the coefficients of the cointegrating vectors, they also

describe levels and trends (and possibly shifts in these) in the cointegrating vectors.

The decomposition therefore allows us to test all three types of structural breaks sug-

gested in Perron (1989). The paper presents a model C for a multivariate framework

where we allow for testing hypotheses corresponding to both A and B. In addition the

method presented here makes it possible to identify the growth rates and the size of

the different types of shifts.

Johansen et al. (2000) show how the traditional cointegration analysis can be used

in order to identify some types of structural breaks. They show that within their frame-

work they can identify (and test for) shifts in the trends in the cointegrating vectors,

but not in the levels of the cointegrating vectors. In order to use traditional cointegra-

tion analysis one needs to disregard observations following immediately after struc-

tural breaks by including impulse dummies. The number of impulse dummies after

the break corresponds to the number of lags in the system, and the inclusion of these

dummies implies a reduction in the effective sample.

An alternative could be to use a two step approach, where the coefficients of the

deterministic part are estimated in the first step and a traditional cointegration analysis

could be conducted on the de-trended time series in a second step. Saikkonen and

Lütkepohl (2000) suggest such a two-step approach. However, they only consider

testing the cointegration rank, and do not consider how to impose restrictions on the

system in order to test for different types of structural breaks.

The estimation approach suggested here therefore has three important advantages

compared to the alternatives. First, it allows testing for all the different types of struc-

tural breaks. Second, it utilizes all the information better by not disregarding observa-

tions after a break point. Third, it identifies interpretable coefficients of the different

types of structural shifts. On the other hand, a disadvantage with the approach sug-

gested here, is that it involves a more complicated maximizing problem. However, a
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program, GRaM (see Hungnes, 2005), has been developed to estimate these systems.

The estimation approach is illustrated by applying two data sets. In the first illus-

tration the same data set as in Johansen et al. (2000) is used, and it is shown that the

approach in the present paper can handle more types of breaks. In the second illustra-

tion a money demand system for Germany covering the period of the (re-) unification

is analysed. The data set is used to test for different types of structural breaks.

The estimation approach in the present paper does not consider identification of

the cointegrating rank. To determine the cointegrating rank in data series with struc-

tural breaks, the procedures in Johansen et al. (2000) or Saikkonen and Lütkepohl

(2000) can be applied.

Only situations where the break points are known are considered in this paper.

Lütkepohl et al. (2004) suggest an approach for identifying the break point and coin-

tegrating rank if the break points are unknown (but the number of breaks is known).

The paper is organized as follows: In Section 2 the model is formulated. Section

3 presents the estimation problem. In Section 4 the estimation procedure is used to

identify structural breaks on two different data sets. Section 5 concludes and describes

other situations where this procedure can be informative.

Throughout the paper we define the orthogonal complement of the full column

rank matrix A as A⊥ such that A′
⊥A = 0 and (A, A⊥) has full rank. (The orthogonal

complement of a nonsingular matrix is 0, and the orthogonal complement of a zero

matrix is an identity matrix of a suitable dimension.) Furthermore, for a matrix A

with dimension n × m (m ≤ n), we define A = A (A′A)−1.

2 Model formulation

2.1 Conventional formulation of cointegrated VAR

Let Yt be an n-dimensional vector of variables that are integrated of order one at

most. α and β are matrices of dimension n × r (where r is the number of cointegrat-
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ing vectors) and β′Yt is an r × 1 vector where all elements are I(0). Furthermore, Γi

(i = 1, 2, ..., p − 1) are n × n matrices of coefficients, where p is the number of lags. ∆

is the difference operator. D∗
t is a vector of deterministic variables. The errors εt are

assumed to be Gaussian white noise (εt ∼ NID (0, Ω)).

∆Yt = α
(

β′Yt−1
)
+

p−1

∑
i=1

Γi∆Yt−i + δD∗
t + εt, t = 1, 2, ..., T. (1)

It is common to distinguish between deterministic variables that are restricted to lie

in the cointegration space and those which are not. Let δD∗
t = δ0D∗

0,t + δ1D∗
1,t, where

D∗
0,t includes the deterministic variables restricted to lie in the cointegrating space (i.e

such that δ0 = αα′δ0 or equivalently α′⊥δ0 = 0). Disregarding different types of dum-

mies (such as impulse dummies, shift dummies and seasonal dummies), the most

common two specifications for these deterministic variables are
(

D∗
0,t, D∗

1,t

)
= (1, ∅)

(i.e. restricted constant, excluding a linear drift in Yt, labelled Hc) and
(

D∗
0,t, D∗

1,t

)
=

(t, 1) (i.e. restricted linear trend, excluding a quadratic trend in Yt, labelled Hl). If,

in practice there are trends in the data Hl is recommended, and in systems without

trends Hc is recommended.

Let us assume that the process in (1) is generated by hypothesis Hl. The system

grows at the unconditional rate E [∆Yt] = γ with long run (cointegration) mean levels

E
[
β′ (Yt − γ)

]
= µ. We can re-parameterize the system as

∆Yt − γ = α
(

β′Yt−1 − µ − ρ (t − 1)
)
+

p−1

∑
i=1

Γi (∆Yt−i − γ) + εt, (2)

where

ρ ≡ β′γ (3)

is the vector of trend coefficients in the cointegrating vectors. For the system to be

stable, the following restriction must hold:

6



Condition 2.1 Assume that n − r of the roots of the characteristic polynomial

A (z) = (1 − z) In − αβ′z −
p−1

∑
i=1

Γi (1 − z) zi

are equal to 1 and the remaining roots are outside the complex unit circle.

2.2 Alternative formulation of cointegrated VAR

Here we will present the cointegrated system slightly differently from Equation (1).

There are two reasons for changing the representation. First, it will be easier to inter-

pret. Second, it will be easier to formulate structural breaks in the system.

Let Dt be a vector of q deterministic variables, such as trend and seasonally dum-

mies. The system can then be written as

∆Yt − γ∆Dt = α
(

β′ (Yt−1 − γDt−1) − µ
)
+

p−1

∑
i=1

Γi [∆Yt−i − γ∆Dt−i] + εt, (4)

where γ is now an n × q matrix of coefficients.

If Dt = t, the system in (4) is equal to the system in (2). This is the case with linear

trend in the variables, i.e. Hl.

In the case where there are no trends in the variables, Dt vanishes from (4), and the

system can be written as

∆Yt = α
(

β′Yt−1 − µ
)
+

p−1

∑
i=1

Γi∆Yt−i + εt. (5)

In either case there is a one-to-one correspondence between the system written in

the conventional way, as in (1), and in the alternative way, as in (4) or (5). If the system

in (1) is estimated with e.g.
(

D∗
0,t, D∗

1,t

)
= (t, 1), we can always identify the coefficients

of (4).

Also, when seasonal dummies are included, (1) and (4) are statistically equivalent.
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Generally, however, when other deterministic variables are included in Dt there is no

such one-to-one relationship between the formulations in (1) and (4).

An alternative way to write the system, is to write the system where the determin-

istic components are removed. Let Yd be defined as Y with the deterministic compo-

nents removed, i.e.

Yd
t = Yt − γDt

with Dt as the vector of deterministic variables and γ as the corresponding matrix of

coefficients. Hence, the system can alternatively be written as

∆Yd
t = α

(
β′Yd

t−1 − µ
)

+
p−1

∑
i=1

Γi∆Yd
t−i + εt. (6)

We have the following theorem:

Theorem 2.1 (Granger’s representation theorem with deterministic variables) Under

Condition 2.1, Yt in (4) has the moving average representation

Yt = C
t

∑
i=1

εi + ι + γDt + Bt, (7)

where C = β⊥
(
α′⊥Γβ⊥

)−1
α′⊥ with Γ = In − ∑

p−1
i=1 Γi. The process Bt is stationary with zero

expectation. The level coefficients ι depends on initial values in such a way that

µ = β′ι. (8)

Proof. By using Yd
t = Yt − γDt (i.e. the system in (6)), the proof follows from the

proof of Theorem 4.2. in Johansen (1995).

By formulating the system as in (4) we achieve that the representation of the pro-

cess in (7) is valid in the whole sample. This is an advantage of this approach com-

pared to Johansen et al. (2000) where such a representation does not exist in the periods

after a break. (This is the reason why Johansen et al. (2000) exclude these observation
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points by including impulse dummies.)

2.3 Structural breaks

If there are structural breaks in the time series, there might be both level shifts and

trend shifts. A shift dummy picks up the level shift in a time series. A shift dummy is

a dummy equal to zero up till a specified period and unity afterwards. Both the shift

dummy and the corresponding broken trend are included in the vector of determinis-

tic variables, Dt.

A broken trend picks up the trend shift. The broken trend is constructed as the

accumulated value of the corresponding shift dummy. Therefore, the accumulated

shift dummy has no level shift. The advantage of defining the broken trend without

a shift in the levels, is that it becomes much easier to identify the different types of

structural breaks.

We first consider different types of structural breaks in the cointegration space. The

coefficient matrix ρ = β′γ contains information about these breaks. If the (vector of)

coefficients in ρ corresponding to the shift dummy are significantly different from zero,

this implies a change of the intercepts in the cointegrating space. Similarly, significant

coefficients of the accumulated shift dummy (i.e. the broken trend) implies a shift in

the slope of the trend in the cointegrating vectors. Therefore, according to the defi-

nitions in Perron (1989), the cointegration space follows a ’crash model’ (Model A) if

the coefficients of the shift dummy are significant whereas the coefficients of the bro-

ken trend are insignificant. On the other hand, the cointegrating vectors behave as a

’changing growth model’ (Model B) if the coefficients of the shift dummy are insignif-

icant whereas the coefficients of the broken trend are significant. If the coefficients of

both the level-shift and trend-shift dummies are significant, the cointegrating space

behaves as Model C.

The different types of structural breaks in the time series can be identified in similar

ways by examining the coefficient matrix γ. The time series follows a ’crash model’
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(A) if the corresponding coefficients of the shift dummy are significant whereas the

corresponding coefficients of the broken trend are insignificant. Correspondingly, the

time series follows a ’changing growth model’ (B) if the corresponding coefficients

of the shift dummy are insignificant whereas the corresponding coefficients for the

broken trend are significant.

If the time series follows a ’crash model’ (A), it is impossible to construct a linear

relationship of the time series of type B. Therefore, the coefficients of the broken trend

in the cointegrating space must be zero as well. Similarly, if the time series follows a

’changing growth model’ (B) none of the cointegrating vectors can be of type A.

However, the reverse implication does not apply. If there are no trend or level

shifts in the cointegrating vectors, this does not imply that there are no shifts in the

time series. The time series may still have trend and level shifts. If so, we say that the

cointegrating vectors also are co-breaking vectors.

The concept of co-breaking was introduced by Hendry and Mizon (1998). If deter-

ministic breaks in a system of equations can be removed by taking linear combinations

of the variables, the variables are said to co-break. Not many analysis on co-breaking

have been done. An important reason is that one needs at least as many breaks as

variables in the system. If not, there will always exists at least one linear combination

of the variables where the deterministic breaks can be removed. Hendry and Mizon

(1998) label such situations ’spurious co-breaking’.

Here we do not test if there are any linear combination that remove the determinis-

tic breaks. We only test if the cointegrating vectors also are co-breaking vectors. To be

precise, let sp (B′) denote the co-breaking space (as sp
(

β′) denotes the cointegrating

space). The hypothesis we are testing is if sp
(

β′) ∈ sp (B′).
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3 Estimation

3.1 Restrictions

There are different methods for imposing restrictions on the cointegrating vectors.

Here we will only consider restrictions on the cointegrating space. Let β∗ =
(

β′,−µ
)′

and X∗
t = (X′

t, 1)′, such that restrictions on the cointegration mean levels can also be

imposed. These restrictions on the cointegrating space can be written as

R′
ββ∗ = 0, (9)

where each column in Rβ represents a restriction on β∗. Equivalently, we can write

β∗ = Hβ · φβ, (10)

where Hβ =
(

Rβ

)
⊥. We may refer to φβ as the ’free parameters’ in β∗ under the

imposed restrictions. However, this is not entirely correct. The cointegration space,

and therefore φβ, is only unique up to a normalization and rotation of the cointegration

space. We may therefore introduce the normalization φβ = (Ir, φb).

Next, we look at how to impose restrictions on the n × q matrix γ (where q is the

number of deterministic variables). The restrictions we want to impose on γ can be

written as

R′
γγ′ = 0. (11)

These restrictions can be restrictions on both level and trend shifts. The restrictions on

γ can alternatively be written as

γ′ = Hγ · φγ, (12)

where Hγ = (Rγ)⊥ and φγ are the ’free parameters’ in γ.
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As discussed above, restrictions on γ imply restrictions on ρ. However, if we want

to test for different types of structural breaks in the cointegrating space, we have to

impose restrictions on ρ directly. Let these restrictions be written as

R′
ρρ′ = 0 ⇔ R′

ρ

[
γ′ Jβ∗] = 0, (13)

where J = (In, 0n×1). Since ρ = β′γ = β∗′ Jγ, restrictions on ρ therefore imply re-

strictions on the product of β and γ.1 (These restrictions may be transformed into

restrictions on β∗ or γ, see Section 3.3.)

3.2 The estimation problem

Next, we consider how to estimate the system. First, suppose we knew φb and φγ (and

therefore β∗ and γ). Then the remaining coefficients could be estimated by applying

OLS. Let l
(

α
(

φb, φγ

)
, Hβφβ, Hγφγ, Γ1

(
φb, φγ

)
, ..., Γp−1

(
φb, φγ

)
, Ω

(
φb, φγ

))
be the

corresponding log-likelihood value.

Problem 3.1 The maximum likelihood estimates of β∗, γ and ρ can be derived from (10),

(12) and ρ = β′γ respectively, where φγ and φb are given by the solution of the following

maximization problem

max
φγ,φb

{
l
(

α
(

φb, φγ

)
, Hβφβ, Hγφγ, Γ1

(
φb, φγ

)
, ..., Γp−1

(
φb, φγ

)
, Ω

(
φb, φγ

))

subject to R′
ρ

[
Hγφγ JHβφb

]
= 0

}
.

The estimation problem described above is solved using GRaM (an acronym for

’Growth Rates and cointegration Means’), which is programmed in Ox Professional

3.3 (see Doornik (2001)). Since it utilizes OxPack, the program is interactive and easy

to use.2

1If there are restrictions on ρ, φb and φγ are not the free parameters in β and γ. This is because the
restrictions imposed on ρ imply restrictions between φb and φγ.

2The program is still under development, and is expected to be made downloadable from my home-
page http://folk.ssb.no/hhu in April 2005. The program requires Ox Professional 3.3 (or later versions),
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3.3 Alternative formulations of the estimation problem

To apply Problem 3.1 we must use an algorithm that allows for maximizing under re-

strictions. However, many maximizing algorithms, such as BFGS (Broyden, Fletcher,

Goldfarb and Shanno) and SA (simulated annealing), does not allow for such restric-

tions. An alternative is to transform the restrictions on ρ into restrictions on β or γ.

(The restrictions might have to be updated for each iteration).3

If rank
(

Rβ

)
+ rank

(
Rρ

) ≤ n − r (i.e. the total number of restrictions on β and ρ

does not exceed the number of variables minus the number of cointegrating vectors),

the maximization problem could be simplified. Suppose we know φγ (and therefore

γ), we could construct the variables Yd
t = Yt − γDt (i.e. ’de-trended’ variables in (6)),

and estimate the remaining coefficients as suggested in e.g. Johansen (1995, Chap.

7.2.1), where the restrictions imposed on β now are the joint set of R′
β and R′

ργ′. The

joint restrictions could be written as

⎛
⎜⎝

R′
β

R′
ργ′ J

⎞
⎟⎠ β∗ = 0,

and the maximization problem could be written as

max
φγ

{
l
(

α
(

φγ

)
, β∗

(
φγ

)
, Hγφγ, Γ1

(
φγ

)
, ..., Γp−1

(
φγ

)
, Ω

(
φγ

))}
, (14)

where Hγ =
(

Rβ, J′γRρ

)
⊥. This alternative formulation can be used in most of the

empirical applications in this paper.

If there are many restrictions on β and γ, i.e. rank
(

Rβ

)
+ rank

(
Rρ

)
> n − r, the

restrictions on ρ can be transformed into restrictions on γ. The joint restrictions on γ

since it applies the function MaxSQP. MaxSQP implements a sequential quadratic programming tech-
nique to maximize a non-linear function subject to non-linear constraints.

3If BFGS or SA is chosen as maximizing algorithm in GRaM, the program identifies the appropriate
formulation based on the number of restrictions. (If SQP is chosen, GRaM applies Problem 3.1.)
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is then4 ⎛
⎜⎝

In ⊗ R′
γ

β ⊗ R′
ρ

⎞
⎟⎠ vecγ′ = 0.

By applying this form of the restriction on γ, the maximizing problem is equal to that

in Problem 3.1, but without the constraint (since the constraint is already imposed

on γ). (In this situation we use Hγ =
(

I ⊗ Rγ, β ⊗ Rρ

)
⊥ with vecγ′ = Hγ · φγ and

Hβ = (Rγ)⊥ with β = Hβ · φβ.)

3.4 Distribution of the likelihood tests

The distribution of most of the likelihood ratio (LR) tests that apply are shown in

the literature to be χ2-distributed. The LR test for the restrictions on β∗, as formu-

lated in (9), are known to be asymptotically χ2-distributed with r · rank
(

Rβ

)
degrees

of freedom, see e.g. (Johansen, 1995, Section 7.2.1). Johansen et al. (2000) shows that

(at least a subset of) the restrictions on γ, as formulated in (11), are asymptotically

χ2-distributed with n · rank (Rγ) degrees of freedom.5 The restrictions on β∗ and

γ are independent, so the total numbers of degrees of freedom is just the sum (i.e.

r · rank
(

Rβ

)
+ n · rank (Rγ)).

Restrictions on ρ can be reformulated into restrictions on β∗ or γ; so if restrictions

on β∗ and γ can be tested based on a χ2-distribution, restrictions on ρ can be tested

based on the same distribution as well. The appropriate degrees of freedom can also

be found by transforming these restrictions into restrictions on β∗ or γ.

4Here, ⊗ is the operator for the Kronecker product and vecA indicates that all columns in A are
stacked in one row vector.

5Johansen et al. (2000) only considers shifts in the trend.
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4 Empirical illustrations

4.1 Uncovered interest parity and the Italian/German exchange rate

Johansen et al. (2000) apply their method to analyse the uncovered interest parity

(UIP) hypothesis between Germany and Italy. We analyse the same data using our

method. The data used in the analysis are first differences of log consumer price

indices for Italy and Germany (∆pI
t , ∆pD

t ); the first difference of log nominal ex-

change rate between Italian Lira and German Mark (∆et+1) representing the rational

expectation to future exchange rates; and nominal interest rates on long-term treasury

bonds in both countries (iI
t , iD

t ). The data, Y′
t =

(
∆pI

t , ∆pD
t , ∆et+1, iI

t , iD
t

)
, is plot-

ted in the left part of Figure 1.6 Johansen et al. (2000) introduce two break points;

in 1980q1 and 1992q3. The former corresponds to the creation of the EMS (but is

also supposed to capture the oil price shock and the modification on the US mon-

etary policy), and the latter corresponds to the exit of Italy from the EMS and the

reunification of Germany. The vector of deterministic variables is therefore given by

Dt = (t, D1980q1t, D1992q3t, cum (D1980q1t) , cum (D1992q3t)). Here D1980q1t is a

step dummy equal to zero before 1980q1 and unity from 1980q1. D1992q3t is de-

fined similarly, and cum (D1980q1t) and cum (D1992q3t) are the variables for the cor-

responding broken trends.

In Figure 1 we see that there are trends in inflation and interest rates. Therefore, we

use the model Hl. The estimation period is 1973q4 - 1995q4, and the number of lags is

set to 2 (p = 2).

The cointegration rank test results are reported in Table 1. The significance proba-

bilities are computed according to Johansen et al. (2000). They are based on an approx-

imation using a Gamma distribution (suggested by Doornik, 1998) in the presence of

structural breaks. The reported significance probabilities suggest a rank of two.

6The data are available at http://www.blackwellpublishers.co.uk/ectj/dataset5.htm. Source: Jo-
hansen et al. (2000).
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Figure 1: Italian/German exchange rate data
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The time series in the left part: inflation in Italy (∆pI) and Germany (∆pD); interest rates in
Italy (iI) and Germany (iD); and log difference of LIT/DM exchange rate (∆e). In the right
part the three components we expect to be stationary are plotted.

Johansen et al. (2000), analysing the same data set but handling the breaks differ-

ently, find support of three cointegrating vectors. To be able to compare our results

with theirs, we continue the analysis with three cointegrating vectors.7

Following Johansen et al. (2000), we suggest the three stationary linear combina-

tions reported below, cf. the right part of Figure 1. They correspond to the UIP hy-

7However, the probability values are only asymptotically valid. Johansen (2002) shows that there
can be significant discrepancies between the true critical values and the asymptotical values.
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Table 1: Cointegration rank test
Rank: loglik Hypothesis Trace p-value
r = 5 1865.07
r = 4 1860.48 r ≤ 4 9.19 0.83
r = 3 1852.97 r ≤ 3 24.22 0.87
r = 2 1832.76 r ≤ 2 64.62 0.14
r = 1 1792.99 r ≤ 1 144.16 0.00
r = 0 1748.71 r = 0 232.74 0.00

pothesis, the German real interest rate, and the real interest rate differential:

y1t = iI
t −

(
iD
t + ∆et+1

)
,

y2t =
(

iD
t − ∆pD

t

)
,

y3t =
(

iI
t − ∆pI

t

)
−

(
iD
t − ∆pD

t

)
.

These suggested stationary components imply that the cointegration space should

span the space of the matrix reported below:

β′ ∈ sp

⎛
⎜⎜⎜⎜⎝

0 0 −1 1 −1

0 −1 0 0 1

−1 1 0 1 −1

⎞
⎟⎟⎟⎟⎠

.

The restrictions imposed on the cointegration space when the vector of variables is

augmented with an intercept (i.e. β∗′ =
(

β′,−µ
)
) is therefore

R′
β =

⎛
⎜⎝

1 1 0 1 1 : 0

1 0 1 1 0 : 0

⎞
⎟⎠ ,

where the left 2 × 5 matrix (which involve the restrictions on β) is orthogonal to the

cointegration space, and the right vector with zeros corresponds to that we have not

imposed any restrictions on the intercept in the cointegration space.

The restrictions implied by the suggested cointegration space are not accepted at

a 5 per cent level, see Table 2. In the following we test different types of breaks both
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Table 2: Restrictions on the cointegration space
Test loglik LR d.f. p-value
No restrictions 1852.97
Restrictions on coint. space 1844.74 16.45 6 0.012

Table 3: Test results for structural breaks in cointegrating vectors
Test loglik LR d.f. p-value
No restrictions 1852.97
No trend in first period 1848.68 8.58 3 0.035
No trend in second period 1845.56 14.81 3 0.002
No trend in third period 1834.72 36.49 3 0.000
No trend-break from 1st to 2nd 1847.72 10.50 3 0.015
No trend-break from 2nd to 3rd 1834.74 36.46 3 0.000
No level-break from 1st to 2nd 1845.39 15.15 3 0.002
No level-break from 2nd to 3rd 1838.20 29.53 3 0.000
Test loglik LR d.f. p-value
Restricted cointegration space 1844.74
No trend in first period 1838.15 13.19 3 0.004
No trend in second period 1843.33 2.83 3 0.419
No trend in third period 1826.34 36.81 3 0.000

with and without the suggested restrictions on the cointegrated space.

In the upper part of Table 3 different test of breaks in trends and levels in the coin-

tegration space are tested when the restrictions on the cointegration space are not im-

posed. Some of the tests are repeated in the bottom part of Table 3 when the cointe-

gration restrictions are imposed.

The first three hypotheses in Table 3 correspond to the hypotheses in Table 9 in

Johansen et al. (2000). For each of the three subperiods (1973q4 - 1979q4, 1980q1 -

1992q2, 1992q3 - 1995q4) the hypothesis of no trend is rejected at a 5 per cent level.

The reported significance probabilities are somewhat smaller than the corresponding

values reported in Johansen et al. (2000). The discrepancies stem from the fact that

they include impulse dummies in two periods after the breaks.8

In the next two lines of Table 3 hypotheses of no break between the different peri-

8In our framework we can produce test results that are approximately equal to those obtained in
Johansen et al. (2000) by extending the vector of deterministic variables with the impulse dummies
(I1980q2t, I1980q3t, I1992q4t, I1993q1t).
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Table 4: Test results for structural breaks in variables
Test loglik LR d.f. p-value
No restrictions 1852.97
No trend in first period 1846.47 13.00 5 0.023
No trend in second period 1845.34 15.25 5 0.009
No trend in third period 1834.06 37.81 5 0.000
Test loglik LR d.f. p-value
Restricted cointegration space 1844.74
No trend in first period 1836.72 16.04 5 0.007
No trend in second period 1843.12 3.25 5 0.662
No trend in third period 1825.79 37.91 5 0.000

ods are tested. Both hypotheses are rejected. These hypotheses could also be tested by

the method in Johansen et al. (2000).

However, tests of level-breaks can not be tested by the method suggested in Jo-

hansen et al. (2000). The test results reported in Table 3 show that such hypotheses are

rejected, using the procedure introduced in the current paper.

The three first restrictions are re-tested when the restrictions on the cointegration

space are imposed, see the last part of Table 3.9 10 Note that, at this stage of the testing,

the restrictions that there are no trends in the cointegration space are rejected for the

first and third period. For the second period, however, the restrictions are now far

from being rejected. This is consistent with the impression obtained when looking at

the right part of Figure 1: in the second period (1980q1-1992q2) there are no trends in

the suggested stationary relationships.

We can also test hypotheses about breaks in the trends of the variables. In Table

4 results from these tests are reported. Again we test both with and without the re-

stricted cointegration space.

From the upper part of Table 4 we see that the hypotheses that there is no trend

9We analyse the system also with these restrictions on the cointegrating space imposed even though
they were rejected (see Table 2), because they were included in the analysis of Johansen et al. (2000).
They found that these restrictions in the cointegration space could not be rejected when combined with
additional restrictions on the trends in the cointegrating space.

10Here rank
(

Rβ

)
= 2 and rank

(
Rρ

)
= 1. Therefore; rank

(
Rβ

)
+ rank

(
Rρ

)
= 3 ≥ n − r = 2, and the

alternative formulation of the maximizing problem in (14) can not be used. Therefore, one of the two
alternative formulation must be used.
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can be rejected for all the three periods, when no restrictions are imposed on the coin-

tegration space. When restrictions are imposed on the cointegration space, however,

we can not reject the hypothesis that there is no trend in the variables in the second

period.

4.2 Money demand in unified Germany

The unification of Germany in 1990 lead to dramatic shifts in German time series.

Lütkepohl and Wolters (1998) and Saikkonen and Lütkepohl (2000) use a data set cov-

ering the unification to estimate a model for money demand in Germany. They use

four variables; (log of) real money M3 (m), (log of) real GNP (y), an opportunity cost

of money (r) and inflation (Dp). The opportunity cost of money is defined as the dif-

ference between a long term interest rate and the own rate on M3. The data run from

1975q1 to 1996q4.11 The official date of unification is October 3, 1990. However, the

monetary unification took place July 1, 1990.

In the data series for money and income there is a significant shift in level from

1990q3, cf. Figure 2. For the opportunity cost of money there is no obvious shift in

level or trend. To take account for the shift in level for money and income we include

a shift dummy in our empirical analysis. This shift dummy is zero until 1990q2 and

one thereafter. In order to test for the different types of structural shifts suggested

by Perron (1989) we also include a broken trend, defined as the cumulate of the shift

dummy. Due to significant seasonal pattern, especially in income and inflation, we

also include (centered) seasonal dummies.

The cointegration rank test results are reported in Table 5, where the significance

probabilities are computed according to Johansen et al. (2000). The reported val-

ues suggest a rank of two, which is the same cointegration rank as Saikkonen and

Lütkepohl (2000) found.

11 The data are available at: ftp://141.20.100.2/pub/econometrics/germanm3.zip. Source: Lütke-
pohl and Wolters (1998).
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Figure 2: German money demand data
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The money stock (m), (real) income/gdp (y), real interest rate (r) and inflation quarter/quarter
(∆p) in Germany (West Germany until 1990q2 and unified Germany thereafter).

Table 6 reports the test for homogeneity between money and income in the two

cointegrating vectors. Homogeneity is clearly rejected.

Next, we test the different types of structural breaks, both in the cointegrating space

and for the variables. The test of no trend-break in the cointegrating space can not be

rejected, since the restriction implies only a slight reduction in the log-likelihood (cf.

Table 7). However, the hypothesis of no level-break is rejected at the conventional

Table 5: Cointegration rank test
Rank: loglik Hypothesis Trace p-value
r = 4 1237.15 r ≤ 4
r = 3 1232.21 r ≤ 3 9.86 0.41
r = 2 1223.65 r ≤ 2 26.99 0.26
r = 1 1208.66 r ≤ 1 56.97 0.04
r = 0 1178.72 r = 0 116.85 0.00
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Table 6: Test of restrictions on the cointegrating space
Test loglik LR d.f. p-value
No restrictions 1223.65
Restrictions on cointgration space 1217.00 13.30 2 0.001

Table 7: Tests of structural breaks
Test loglik LR d.f. p-value
No restrictions 1223.65
No trend-break in cointgrating space 1223.03 1.23 2 0.540
No level-break in cointgrating space 1218.82 9.67 2 0.008
No break in cointegrating space 1217.90 11.49 4 0.022
No trend-break in variables 1221.56 4.19 4 0.381
No level-break in variables 1160.16 126.97 4 0.000
No break in variables 1152.76 141.78 8 0.000
No break in cointegrating space &
no trend-break in variables 1217.07 13.16 6 0.040

levels of significance (since the significance probability is only 0.8 per cent). The joint

hypothesis, implying no breaks in the cointegration space has a significance probabil-

ity of 2.2 per cent. If we apply a 5 per cent significance level we reject these restrictions,

but with a 1 per cent significance level it can formally not be rejected.

Also for the variables we can not reject the hypotheses of no trend-break, but reject

the hypotheses of no level-break. Not surprisingly, also the joint hypothesis of no

structural breaks is clearly rejected.

In Table 7 also the results of a joint combined test of no breaks in the cointegration

space and no trend-break in the variables is reported. This has a significance probabil-

ity of 4 per cent, and whether we reject the hypothesis or not depends on the critical

level we choose to use.

5 Conclusions

In this paper I have shown how to decompose deterministic parts in cointegrated VAR

models into interpretable long run counterparts. The inference procedure includes

hypothesis testing on the corresponding coefficients. The procedure is applied on two
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data sets in which structural breaks are an important feature, and we show how to test

for different types of structural breaks in these two concrete settings.

It is important to note that structural breaks are only one type of problem this

method can be used to analyse. A decomposition of the deterministic terms into in-

terpretable counterparts will often be important even though there are no structural

breaks. For example, Hungnes (2002) used a simplified version of the procedure to

estimate a cointegrated VAR model where some variables were allowed to grow and

some were not. As mentioned in the introduction, the growth rates are important in

forecasting, and identifying the growth rates is important in order to judge the fore-

casting ability of a model.

Another application for the procedure is to test for ”zero-mean” convergence. ”Zero-

mean” convergence implies that the difference between two variables (say; output per

capita in two countries) is stationary with zero mean. To test if the mean is zero, the

deterministic terms must be decomposed.
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