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1. Introduction 
In the standard theory of decision under uncertainty it is assumed that the agent’s preference functional 

is deterministic. This assumption is also maintained in most of the recent theoretical and empirical 

literature. It has been recognized for some time, however, that even in seemingly identical repetitions 

(replications) of the same choice setting the decision maker often makes inconsistent choices. This 

means that the deterministic theory cannot be directly applied in an empirical context unless some 

additional stochastic “error” is introduced. As Fishburn (1976, 1978), Hey (1995), Carbone (1997), 

Loomes and Sugden (1995), (1998) and Starmer (2000) discuss, this raises the question of how the 

axiomatization of theories for choice under uncertainty should be extended to accommodate stochastic 

error. 

 This paper proposes an axiomatic foundation of probabilistic models for risky choice 

experiments that may be viewed as a generalization of the von Neumann-Morgenstern expected utility 

theory. This setting means that the agent’s choice behavior in replications of choice settings (with 

uncertain outcomes) is assumed to be governed by a probability mechanism. By now there is a huge 

literature on stochastic choice models with certain outcomes. In fact, it was empirical observations of 

inconsistencies, dating back to Thurstone (1927a,b), that led to the study of probabilistic theories in 

the first place. Thurstone argued that one reason for observed inconsistent choice behavior is bounded 

rationality in the sense that the agent is viewed as having difficulties with assessing the precise value 

(to him) of the choice objects. While probabilistic models for certain outcomes have been studied and 

applied extensively in psychology and economics it seems that there has been little interest for 

developing corresponding models for choice with uncertain outcomes. (For a summary of models with 

uncertain outcomes, see Fishburn (1998) and Starmer (2000, Section 6.2).) This is somewhat curious 

since one would expect that if an agent has problems with rank ordering alternatives with certain 

outcomes he would certainly find it difficult to choose among lotteries. The importance of developing 

theoretically justified stochastic choice models for uncertain outcomes has been articulated by Harless 

and Camerer (1994), and Hey and Orme (1994). For example, Hey and Orme, p.p. 1321-1322, 

summarize their view as follows: 

 “....., we are tempted to conclude by saying that our study indicates that behavior can be reasonably well 

modelled (to what might be termed a ‘reasonable approximation’) as ‘Expected utility plus noise’. 

Perhaps we should now spend some time thinking about the noise, rather than about even more 

alternatives to expected utility?” 

 One of the axioms we propose in this paper can be viewed as a probabilistic version of 

the so called Archimedean Axiom and two of the axioms can be viewed as probabilistic versions of the 

Independence Axiom in the von Neumann-Morgenstern theory of expected utility. These probabilistic 

versions extend the basic von Neumann-Morgenstern axioms in the following sense: While the 
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Archimedean and Independence may not necessarily hold in a single choice experiment, the 

probabilistic versions state that they will hold in an aggregate sense (to be made precise below) when 

the agent participates in a large number of replications of a choice experiment. The intuition is that the 

agent may be boundedly rational and make errors when he evaluates the value to him of the respective 

choice alternatives (strategies) in each single replication of the experiment but, on average (across 

replications of the experiment), show no systematic departure from the von Neumann-Morgenstern 

type of axioms. Alternatively, the probabilistic axioms may also be conveniently interpreted in the 

context of an observationally homogeneous population of agents that face the same choice 

experiment: While each agent’s behavior is allowed to deviate from the von Neumann-Morgenstern 

axioms, the “aggregate” behavior in the population is assumed to be consistent with these axioms. The 

latter type of interpretation is the most common one within the theory of discrete choice (see for 

example McFadden, 1981, 1984).  

 We first consider the case with comparisons between two lotteries. We demonstrate that 

different combinations of the probabilistic Archimedean and Independence axioms combined with 

other additional axioms, imply particular characterizations of the probabilities for choice among risky 

prospects as a function of the lottery outcome probabilities (given the choice). 

 Subsequently, we consider the multinomial case where the agent faces a choice set of 

several lotteries. In this case we apply different combinations of the axioms mentioned above together 

with Luce’s Choice Axiom: “Independence from Irrelevant Alternatives” (IIA). In this context, IIA 

yields a Luce model where the utility of a lottery is a general function of the lottery outcome 

probabilities associated with this lottery. 

 The choice probabilities implied by the proposed axioms are essential for establishing the 

link between theory and the corresponding empirical model. More precisely, the agents’ choices 

among lotteries are, from a statistical point of view, outcomes of a multinomial experiment with 

probabilities that are the respective choice probabilities mentioned above. Accordingly, when the 

structure of the choice probabilities has been obtained one can, in the context of empirical analysis, 

apply standard inference methods such as maximum likelihood estimation procedures and likelihood 

ratio tests, for example.  

 The first work on stochastic models for choice among lotteries occured in the sixties. 

Becker et al. (1963b) proposed a probabilistic model for choice among lotteries which they called a 

Luce Model for Wagers. Luce and Suppes (1965) considered a special case of the Luce model for 

wagers which they called the Strict Expected Utility Model. However, neither these authors nor more 

recent contributions discuss the issue of deriving a stochastic model from axiomatization. To the best 

of our knowledge the only contribution that provide a model that is founded on an axiomatic basis is 

Fishburn (1978) who develops the incremental expected utility advantage model. His model does, 

however, not contain the expected utility model as a special case, although it can be approximated by 

an incremental expected utility advantage model. As pointed out by Fishburn (1978), pp. 635-636, the 
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incremental advantage model seems extreme since it implies that there is a positive probability of 

choosing a $ 1 in a choice between $ 1 for certain or a gamble that yields $ 10 000 with probability 

.999 or $ 0 with probability .001. 

 The paper is organized as follows. In the next section we present some basic concepts and 

notation. In Section 3 we discuss different types of axiomatizations and characterizations for binary 

choice models. In Section 4 we consider axiomatizations and their implications for the multinomial 

choice setting. In Section 5 we specialize to the case with monetary rewards, and in Section 6 we 

discuss a random utility representation. Finally, we discuss an example in Section 7. 

2. Preliminaries 
The aim of this section is to introduce axioms that enable us to characterize choice among lotteries 

when there is some randomness in the agent’s choice behavior in the sense that if he faces several 

replications of a specific choice experiment he may choose different lotteries each time. The reason for 

this type of inconsistent behavior may be, as mentioned above, that he may have difficulty with 

evaluating the proper value (to him) of the respective lotteries. 

 Let X denote the set that indexes the set of outcomes, which is assumed to be finite and 

contains m outcomes, i.e. { }X 1,2,...,m≡ . In the following we shall assume, as is customary, that the 

agent’s information about the chances of the different realizations of lottery s can be represented by 

lottery outcome probabilities; 

  ( )s s s s: g (1),g (2),...,g (m)=g  

where gs(k) is the probability of outcome k, k X∈ ,  if lottery s is chosen. Let S denote the set of 

simple probability measures on the algebra of all subsets of the set of outcomes. Recall that by a 

preference relation it is meant a binary relation, , on S that is (i) complete, i.e. for all gr,  

either 

s S∈g

rg gs  or sg g r , and (ii) transitive, i.e. for all gr, gs, gt, in S, rg gs  and s t  implies g g

r tg g . A real-valued fu n ( )sL g  on S represents nctio  if for all gr, s S∈g , r sg g , if and

. Let  be the family of finite subsets of S that contain at least two elements. 

 only if 

( ) ( )r sL L≥g g B

 Consider now the following choice setting: The agent faces n replications of a choice 

experiment in which a set B of lotteries, B∈B , is presented in each replication. We assume that there 

is no learning. Since there is an element of randomness in the agent’s choice behavior he may choose 

different lotteries in different replications. We assume that the agent’s choices in different replications 

are stochastically independent. Let ( )B s sP , B,∈g g  be the probability that gs is the most preferred 

vector of lottery outcome probabilities in B. Let ( )r sP ,g g  be the probability that lottery gr is chosen 
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over gs, i.e., ( ) { } ( )
r sr s r,P , P≡ g gg g g . It then follows that ( ) ( )r s s rP , P ,>g g g g  if and only if 

. The argument above provides a motivation for the following definition: ( )r sP , 0.>g g 5

S

y if .g g  If 

 

 Definition 1 

 For , lottery g∈r s,g g r is said to be strictly preferred to gs in the aggregate sense, if 

and onl 0.5( ) >r sP , ( ) =r sP , 0.5,  then gg g  gs. r is, in the aggregate sense, indifferent to

 

 Thus, Definition 1 introduces a binary relation, , where  means that grg gs r is strictly 

preferred to gs (in the aggregate sense), while gr ~ gs means that gr is indifferent to gs. Note, however, 

that the relation is not necessarily a preference relation. The reason for this is that the binary relation 

 is not necessarily transitive. That is, for 1 2 3, , S∈g g g  the statement; ( )1 2P , 0.≥g g 5  and 

( )2 3P , 0.≥g g 5  imply ( )1 3P , 0.5≥g g , is not necessarily true.  

 Let . The mixed lottery, 1 2, ∈g g S ( ) [ ]1 21 , 0α + − α α∈g g ,1 , is a lottery in S yielding the 

probability ( )1(k) 1 (k)α + − αg 2g , of outcome k, k X∈ . Here we assume that the agents perceive the 

lotteries ( )1 21αβ + − αβg g  and ( ) ( )1 2 21 1α + − α ⎤ + − β⎣ ⎦β⎡ g g g , [ ]α β, ,∈ 0 1 , as equivalent. This 

property is known as the axiom of reduction of compound lotteries, cf. Luce and Raiffa (1957).  

 For sets, A,B such that A , let ∈B B⊆

  ( ) ( )
s

B B
A

P A P .
∈

≡ s∑
g

g  

The interpretation is that PB(A) is the probability that the agent shall choose a lottery within A when B 

is the choice set. 

3. Binary choice probabilities between lotteries 
In this section we shall extend the von Neumann-Morgenstern expected utility theory to a 

corresponding probabilistic theory, in the sense discussed above. We shall in this section only discuss 

the case of binary choice. We shall next introduce a set of behavioral axioms which will lead to 

different types of characterizations of the binary choice probabilities. The purpose of the first axiom is 

to impose necessary and sufficient conditions to insure that the binary relation given in Definition 1 is 

a preference relation. 
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 Axiom 1 (Weak Stochastic Transitivity) 

 Let . The binary choice probabilities satisfy ∈1 2 3, , Sg g g

(i) Weak stochastic transitivity; if ( ) ≥1 2
1P ,
2

g g  and ( ) ≥2 3
1P ,
2

g g , then ( ) ≥1 3
1P ,
2

g g . 

(ii) The Balance condition; ( ) ( )+ =1 2 2 1P , P ,g g g g 1 . 

 

 Note that the Balance condition is equivalent to completeness. It follows immediately that 

the binary relation given in Definition 1 is a preference relation provided it satisfies Axiom 1. 

  

 Axiom 2 (Archimedean) 

 For all , if ∈1 2 3, , Sg g g

 ( ) ( )> >1 2 2 3
1 1P , and P ,
2 2

g g g g  

then there exist ( ), 0,α β ∈ 1  such that 

 ( )( ) ( )( )+ − > + − >1 3 2 2 1 3
1 1P 1 , and P , 1
2 2

α α β βg g g g g g . 

 

 Axiom 2 is a probabilistic version of the Archimedean Axiom in the von Neumann-

Morgenstern expected utility theory since, by Definition 1, it is equivalent to the following statement: 

If  and , then there exists 1g g2 32g g ( ), 0,α β∈ 1  such that 

 ( )1 31α + − αg g 2g  

and 

 ( )2 1 1β + − βg g 3g

)

, 

cf. Karni and Schmeidler (1991), p. 1769. Note that Axiom 2 is weaker than the assumption that 

 is continuous. This is so because if ( r sP ,g g ( )r sP ,g g  is continuous in ( )r s,g g , then whenever 

( )1 2P , 1 2>g g  and ( )2 3P , 1 2>g g , continuity implies that 

 ( )( )1 3 2P 1 ,α + − α >g g g 1 2  

and 

 ( )( )2 1 3P , 1 1β + − β >g g g 2  

 7



for suitable α, .  (0,1)β∈

 

 Axiom 3 (Independence) 

 For all , and all ∈1 2 3, , Sg g g [ ]0,1α ∈ , if 

 ( ) ≥1 2
1P ,
2

g g  

then 

 ( ) ( )( )+ − + − ≥1 3 2 3
1P 1 , 1
2

α α α αg g g g . 

 

 Axiom 3 is a probabilistic version of the Independence Axiom in the von Neumann-

Morgenstern expected utility theory, because it is equivalent to the statement: If , then 1g g2

( ) ( )1 3 21 1α + − α α + − αg g g 3g , cf. Karni and Schmeidler (1991), p. 1769. 

 

 Theorem 1 (von Neumann-Morgenstern) 

 Let  be a binary relation. The following two conditions are equivalent: 

(i)  is a preference relation satisfying Axioms 2 and 3. 

(ii) There exists a function, , that is unique up to a positive affine transformation such that 

the function V :  defined by 

    

u : X R→

S R→

∈

= ∑
k X

V( ) u(k)g(k)g  

represents the preference relation. 

 

 Theorem 1 is the von Neumann-Morgenstern Expected Utility Theorem, cf. Karni and 

Schmeidler (1991), pp. 1769-70. 

 Recall that we cannot apply the result of Theorem 1 directly in our context since the 

binary relation of Definition 1 is not necessarily a preference relation. 

 Since the binary relation given in Definition 1 is a preference relation when it satisfies 

Axiom 1, the next corollary follows. 

 

 Corollary 1 

 Assume that Axioms 1, 2 and 3 hold. Then for 1 2, S∈g g , 
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 ( ) ( ) ( )1 2 1 2
1P , V V
2

≥ ⇔ ≥g g g g . 

Moreover, if either antecedent inequality is strict so is the conclusion. 

 

 Even if the binary relation given in Definition 1 satisfies Axioms 1, 2 and 3, we would 

still not be able to specify choice probabilities. We would at most be able to ascertain whether or not gr 

is preferred to gs (say) in the aggregate sense. Consequently, we need to provide additional theoretical 

building blocks so as to be able to ascertain precisely how the choice probabilities ({ )}r sP ,g g  can be 

represented by the lottery outcome probabilities gr and gs. This is crucial for establishing a link 

between the theoretical concepts introduced above and a model that is applicable for empirical 

modeling and analysis. The next axiom is useful in this respect. 

 

 Axiom 4 (Order-independence) 

 For all  1 2 3, , S∈g g g

 ( ) ( ) (1 2 1 3 2 3
1P , if and only if P , P ,
2

≥ ≥g g g g g g )

S

. 

 

 Axiom 4 is a special case of what is called the order-independence condition, see Suppes 

et al. (1989), p.p. 411-412. The intuition is that if g1 is chosen more frequently than g2, then the 

fraction of times g1 is preferred over g3 is higher than the fraction of times g2 is preferred over g3. 

 

 Theorem 2 

 For all , Axioms 2 to 4 hold if and only if ∈1 2,g g

(3.1) ( ) ( ) ( )( )=1 2 1 2P , F V ,Vg g g g  

where 

 ( ) ( ) ( )
∈

= ∑s s
k X

V u k gg k

)

, 

(2F : R 0,1→  is a function that is strictly increasing in its first argument and strictly decreasing in 

the second, and  is a function that is unique up to a positive linear transformation. →u : X R

 

 The proof of Theorem 2 is given in the Appendix. 
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 When  can be represented as a function ( 1 2P ,g g ) ( ) ( )( )1 2F f ,fg g , for some suitable 

scalar function f defined on S, and F is strictly increasing in its first argument and strictly decreasing 

in the second, the choice probabilities is said to be simply scalable, cf. Suppes et al. (1989), p. 410. 

They prove that Axiom 4 is equivalent to simple scalability. The representation (3.1) seems to be the 

weakest possible representation for choice under uncertainty one can think of. It would include any 

kind of probabilistic binary non-expected utility model since the function f is allowed to be completely 

general. Despite its generality simple scalability is violated in some choice contexts, see for example 

Problem 2 in Suppes et al. (1989), p. 413. 

 

 Axiom 5 

 Let . The binary choice probabilities satisfy 1 2 3 4, , , S∈g g g g

(i) The Quadruple condition; ( ) ( )1 2 3 4P , P ,≥g g g g  if and only if ( ) ( )1 3 2 4P , P ,≥g g g g . 

Moreover, if either antecedent inequality is strict so is the conclusion. 

(ii) Solvability; For any  and any (∈y 0,1) 1 2 3, , S∈g g g  satisfying ( ) (1 2 1 3P , y P ,≥ ≥g g g g ) here 

y

, t

exists a S∈g  such that ( 1P , ) =g g . 

(iii) The Balance condition; ( ) ( )1 2 2 1P , P , 1+ =g g g g . 

 

 Axiom 5 is due to Debreu (1958). The intuition of the Quadruple condition is related to 

the following example where the binary choice probabilities have the form 

 ( ) ( ) ( )( )1 2 1 2P , G f f= −g g g g  

where G is a strictly increasing cumulative distribution function on R, and f is a suitable mapping from 

S to R. Clearly, the choice model in this example satisfies the Quadruple condition. The example 

shows that when the average value of some lottery outcome probabilities g is represented by a scale 

function, f(g), in such a way that the propensity to prefer lottery outcome probabilities g1 over g2 is a 

function of the “distance”, , then the Quadruple condition must hold. Also the 

Solvability- and the Balance conditions are fairly intuitive. If G is continuous the Balance condition 

will also be fulfilled in the example above. 

( ) ( )1f f−g g2

 

 Theorem 3 

 Axiom 5 holds if and only if there exists a continuous and strictly increasing cumulative 

distribution function G with , and a mapping f from S to some interval I such that 

the binary choice probabilities can be represented as 

( ) ( )G x G x 1+ − =
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(3.2) ( ) ( ) ( ){ }1 2 1 2P , G f f= −g g g g  

for , where 1 2, ∈g g S

 { }( )= = ∈I x : x f , Sg g . 

The mapping f is unique up to a linear transformation. The c.d.f. G is unique in the sense that if G1 and 

G0 are two representations, then ( ) ( )0 1G x G ax= , where  is a constant. a 0>

 

 The proof of Theorem 3 is given in the Appendix. Similar results are obtained in 

Falmagne (1985) and Suppes et al. (1989). For the sake of completeness we shall, however, give the 

proof in the Appendix. 

 

 Theorem 4 

 For all , Axioms 2, 3 and 5 hold if and only if ∈1 2,g g S

(3.3) ( ) ( )( ) ( )( ){ }= −1 2 1 2P , G h V h Vg g g g  

where 

(3.4) ( ) ( ) ( )r r
k X

V u k
∈

= k∑g g , 

G is a continuous and strictly increasing cumulative distribution function defined on R with 

,  is strictly increasing and . G(⋅) and ( ) ( )G x G x 1+ − = h : R R→ →u : X R ( )( )h V ⋅  are unique in 

the sense that if ( ) ( ) ( )( )⋅ ⋅0 1 0 0G and G , h V ⋅  and ( )( )1 1h V ⋅  are two representations, then 

( ) ( )0 1G x G ax=  where  is a constant, a 0> ( ) ( )1 r 1 0 rV b V 1c= +g g  and ( ) ( )1 1 1 2 0 2h b x c b h x c+ = +  

where , , c1b 0> 2b > 0 1 and c2 are constants. 

 

 The proof of Theorem 4 is given in the Appendix. 

 

 Remark 

 Note that the formulation in (3.2) is equivalent to 

 ( ) ( )( ) ( )( )( )1 2 1 2P , G h V h V=g g g g  

where  is a continuous and strictly increasing c.d.f. on RG + and  is positive and strictly increasing. 

This follows immediately from (3.3) by defining 

h

( )xG(x) G e=  and . log h(x) h(x)=
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 Axiom 6 (Strong independence) 

 For all  and all ∈* *
1 2 1 2 3, , , , Sg g g g g [ ]∈ 0,1α , if 

 ( ) ( )≥ * *
1 2 1 2P , P , ,g g g g  

then 

 ( ) ( )( ) ( ) ( )( ).≥ * *
1 3 2 3 1 3 2 3P + 1- , + 1- P + 1- , + 1-α α α α α α α αg g g g g g g g  

 

 In other words, Axiom 6 states that if the fraction of replications where  is chosen over 

 is less than or equal to the fraction of replications where  is chosen over , this inequality still 

holds when g

*
1g

*
2g 1g 2g

j is replaced by ( )j 31− αg g *
jα +  and g  is replaced by ( )*

j 31α + − αg g , for  Note 

that in Axiom 6 it is not claimed that  is equal to 

j 1,2.=

( 1 2P ,g g ) ( ) ( )( )1 3 2P + 1 , + 1α − α α − α 3g g g g . 

 It follows that Axiom 6 implies Axiom 3. To realize this note that when , then *
1g g= *

2

( )* *
1 2P , 1=g g 2  and 

 ( ) ( )( )* *
1 3 2 3P 1 , 1α + − α α + − α =g g g g 1 2 . 

Thus, it follows from this and Axiom 6 that when 

 ( )1 2P , 1 2≥g g  

then 

 ( ) ( )( )1 3 2 3P 1 , 1α + − α α + − α ≥g g g g 1 2  

which we recognize as the Independence Axiom. 

 Axiom 6 is stronger than Axiom 3, because it makes a statement that involves 

comparisons between the degree to which a lottery is chosen over a second to the degree to which a 

third is chosen over a fourth. It is this strengthening that enables us to derive strong functional form 

restrictions on the choice probabilities, to be considered next. 

 

 Theorem 5 

 Axioms 2, 5 and 6 hold if and only if the choice probabilities have the form as given in 

Theorem 4 with 

 12



(3.5) ( )h x xβ κ= +  

where 0β >  and κ  are constants. 

 

 The proof of Theorem 5 is given in the Appendix. 

4. Multinomial choice probabilities between lotteries 
A crucial building block for the extension of our theory to the multinomial case is the following 

axiom. 

 

 Axiom 7 (IIA) 

 For given ∈ , s Sg ( ) ( )∈s rP , 0,1g g  for all ∈r Sg . Furthermore, for 

, then sg A B, A,B∈ ⊆ ∈B

 ( ) ( ) ( )B s A s BP = P Pg g A . 

 

 Axiom 7 was first proposed by Luce (1959) in the context of probabilistic choice with 

certain outcomes, and it is called “Independence from Irrelevant Alternatives” (IIA). As is well 

known, it represents a probabilistic version of rationality in the following sense: Suppose the agent 

faces a set B of feasible lotteries. One may view the agent's choice as if it takes place in two stages. In 

stage one he selects a subset from B, which contains the most attractive alternatives. In the second 

stage he chooses the most preferred alternative from this subset. In the second stage the alternatives 

outside the subset selected in stage one are irrelevant. Thus, rationality is associated with the property 

that the agent only takes into consideration the lotteries within the presented choice set. The 

probability that a particular set A (say) shall be chosen in the first stage is PB(A), and the probability 

that gs is chosen (when alternatives in B\A are irrelevant) is ( )A sP g . Thus, ( ) (B AP A P g )s  is the final 

probability of choosing gs. As indicated above, the crucial point here is that ( )A sP g  is independent of 

alternatives outside A. For the sake of interpretation let J(B) denote the agent’s chosen lottery from B. 

With this notation we can express IIA as 

 ( ) ( ) ( ) ( )B s s sP P J(B) P J(B) A P J(A)= = = ∈ =g g g . 

The conditional probability of choosing gs given that the choice belongs to A, equals 

 ( ) ( )
( )

s
s

P J(B)
P J(B) J(B) A

P J(B) A
=

= ∈ =
∈

g
g , 
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so that IIA can be rewritten as 

 ( ) ( )s sP J(B) J(B) A P J(A)= ∈ = =g g . 

While  is the probability of choosing g( sP J(A) = g ) s from a given choice set A, the conditional 

probability 

 ( )sP J(B) J(B) A= ∈g  

expresses the conditional probability of choosing gs from a given choice set B, and given that the 

choice from B belongs to A. Clearly, 

 ( )sP J(B) J(B) A= ∈g  

will in general be different from 

 ( )sP J(A) = g . 

They only coincides when IIA holds. 

 Since Axiom 7 is a probabilistic statement it means that it represents probabilistic 

rationality in the sense that lotteries outside the second stage choice set A may matter in single choice 

experiments but will not affect average behavior.  

 It follows from Luce (1959) that Axiom 7 holds if and only if there exists representative 

scale values, , for some function f, such that ( )sf g

(4.1) ( ) ( )( )
( )( )

r

s
B s

r
B

exp f
P

exp f
∈

=
∑
g

g
g

g
, 

provided ( ) ( )r sP , 0,1∈g g  for all . Thus, Axiom 7 implies that the relation given in 

Definition 1 is a preference relation. Hence, Axiom 4 or 5 are no longer needed, since they are implied 

by Axiom 7. Under IIA, the representation (4.1) is the weakest possible representation one can think 

of. It would include any kind of probabilistic non-expected utility model since the function f is 

allowed to be completely general. 

r s, S, B∈ ∈g g B

 

 Theorem 6 

 Assume that ( ) ( )∈r sP , 0,1g g  for all ∈r s,g g S . Then for ∈B B , Axioms 2, 3 and 7 

hold if and only if 
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(4.2)  ( )
( )( )( )

( )( )( )
r

s
B s

r
B

exp h V
P

exp h V
∈

=
∑
g

g
g

g
  

where 

(4.3)  ( )
∈

= ∑s
k X

V u(k)g (k)g s   

and  is strictly increasing and u . The function →h:R R : X R→ ( )( )⋅h V  is unique in the sense that if 

( )( )0 0h V ⋅  and  are two representations, then ( )(1 1h V ⋅ ) ( ) ( )1 r 0 rV bV c= +g g  and 

( ) ( )1 0h bx c h x d+ = +  where , c and d are constants. b 0>

 

 The proof of Theorem 6 is given in the Appendix. 

 

 The choice model obtained in Theorem 6 is a special case of the Luce model for wagers, 

proposed by Becker et al. (1963b). They postulated that 

(4.4) ( ) ( )( )
( )( )

r

s
B s

r
B

V
P

V
∈

ψ
=

ψ∑
g

g
g

g
 

where  is a strictly increasing mapping that is unique up to a multiplicative constant. By 

letting  we realize that (4.4) is equivalent to (4.2). 

: R R +ψ →

log (x) h(x)ψ =

 

 Corollary 2 

 Assume that ( ) ( )r sP , 0,1∈g g  for all r s, S∈g g . Then for B ∈B , Axioms 2, 6 and 7 hold 

if and only if 

 ( ) ( )( )
( )( )

r

s
B s

r
B

exp V
P

exp V
∈

=
∑
g

g
g

g
. 

 

 Proof: 

 Since Axiom 6 implies Axiom 3 it follows from Theorem 6 that (4.2) must hold. Consider the 

special case with { }1 2B ,= g g . In this case Theorem 5 applies and implies (3.5). Without loss of 

generality we can set  and  since κ cancels and β is absorbed in the utilities {0κ = 1β = }u(k)  in the 

expression for the choice probability. 

   Q.E.D. 
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5. Monetary rewards 
The next two axioms we shall discuss are somewhat different from the previous ones in that we focus 

on applications where money is involved. Specifically, we now assume that the index set of outcomes 

is replaced by , where W is a finite set of money amounts that takes values in K. Thus, the 

lottery outcomes of the choice experiment consists of pairs 

X W×

( )j, w X W∈ × . The corresponding 

probability of outcome (j,w) given strategy s is denoted by ( )sg j, w . The utilities are now given as 

{ }u( j, w) . Let S and B be defined as in Section 2, suitably extended to the present setting. What 

distinguishes the present setting from the previous one is that one component (money) of the outcome 

is an ordered variable. 

 Analogous to (3.4) let 

(5.1) ( ) ( ) ( )s s
(k,w) X W

V u k, w g k, wλ
∈ ×

= λ∑g  

where λ is a positive real number. 

 

 Axiom 8 

 Let , and suppose that (3.3) hold (suitably extended to the present 

context), with h(⋅) and u(k,⋅) continuous and strictly increasing on R

* *
1 2 1 2, , , S∈g g g g

+ for all k. Moreover, G is 

symmetric, continuous and strictly increasing. Then 

 ( )( ) ( )( )( ) ( )( ) ( )( )( )1 1 1 2 1 1G h V h V G h V h V− ≤ −* *
1 1g g g g  

if and only if 

 ( )( ) ( )( )( ) ( )( ) ( )( )( )1 2G h V h V G h V h Vλ λ λ λ− ≤ −* *
1 1g g g g  

for any 0λ > . 

 

 Axiom 8 means that if the fraction of individuals that prefer g1 over g2 is less than the 

fraction that prefers *
1g  over *

2g  then this inequality does not change if all the incomes are re-scaled by 

the same factor while the lottery outcome probabilities remain unchanged. 

 Before we state the next result we adopt the definition 

 x 1 log x
θ −

=
θ

 

when . The function (0θ = )x 1θ − θ  will then be differentiable and strictly increasing for all θ. 
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 Theorem 7 

 Axiom 8 holds if and only if the choice probabilities have the form as in (3.3) (suitably 

extended to the present context) with  

(i) ( ) ( ) ( )j
j

b w 1
h x x and u j,w c

ρ

β κ
ρ

−
= + = +  

or 

(ii) ( ) ( ) ( ) j

x 1
h x and u j,w b w

θ
ρ

β
κ

θ

−
= + =  

for , where ≥w 0 > 0β ,  and c>jb 0,κ j are constants. In case (i) cj may differ from jb ρ  while in 

case (ii) > 0ρ . 

 

 The proof of Theorem 7 is given in the Appendix. 

 

 Axiom 9 

 Let . If (3.3) holds, then ∈1 2,g g S

 ( )( ) ( )( )( ) ( )( ) ( )( )( )1 1 1 2 1 2G h V h V G h V h Vλ λ− = −g g g g  

for any real number > 0λ . 

 

 Axiom 9 is stronger than Axiom 8 because it postulates that the choice probabilities are 

invariant under scale transformations of the rewards. 

 Observe that Axioms 8 and 9 differ from the other axioms in that they are not 

“empirical”, i.e., they do not have direct empirical nonparametric counterparts. 

 

 Corollary 3 

 Axiom 9 holds if and only if the choice probabilities have the form as in Theorem 4 with 

(5.2) ( )h x log xβ κ= +  

for  where >u 0 > 0β  and κ  are constants. 
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 Proof: 

 Clearly Axiom 9 implies Axiom 8. By Theorem 7 it therefore follows that either (i) or (ii) 

of Theorem 7 must hold. Evidently (i) cannot hold under Axiom 9. Consider next (ii). In this case 

Axiom 9 yields 

 ( ) ( ) ( )1 21 2
x xx xθ θ θ θ−λ − λ

β ⋅ = β ⋅
θ θ

 

for all , where 0λ >

 ( ) ( )j j
(k,w) X W

x u k, w g k, w
∈ ×

= ∑  

for . The relation above implies that j 1,2= 0θ = , in which case h reduces to (5.3). 

  Q.E.D. 

 

 Note that when , the choice model in Corollary 3 reduces to the so-called Strict 

Expected Utility model for uncertain outcomes proposed by Luce and Suppes (1965).  

1β =

 There are two alternative interpretations of the Axioms 1 to 3 and 6, 8 and 9 which 

represent extensions of the corresponding von Neumann-Morgenstern axioms. The first interpretation 

goes as follows: Consider an agent that participates in a large number of replications of a choice 

experiment. He may be boundedly rational in the sense that he has difficulties with assessing the 

precise value (to him) of the strategies in each single replication. This may be so even if he has no 

problem with assessing the values of the outcomes, simply because the evaluations of the respective 

lottery strategies do not follow immediately from the values of the outcomes and the outcome 

probabilities. The axioms state that while the agent is allowed to make “errors” when selecting 

strategies in each replication of the experiment (in the sense that his behavior is not consistent with the 

von Neumann-Morgenstern theory) he will still⎯in the aggregate sense specified in the 

axioms⎯behave according to the respective versions of the probabilistic extension of the von 

Neumann-Morgenstern theory. 

 In the alternative interpretation we consider a large observationally homogenous 

population. In this setting each agent in the population face the same choice experiment. While the 

behavior of each individual agent may be inconsistent with the von Neumann-Morgenstern theory the 

axioms above state that aggregate behavior in the population will be consistent with the probabilistic 

version of the theory. 
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Figure 1. Overview of axioms 
 

Axiom 1 

        (i)   If ( )1 2
1P ,
2

≥g g  and ( ) ( )2 3 1 3
1 1P , P ,
2 2

≥ ⇒ ≥g g g g  

        (ii)  ( ) ( )1 2 2 1P , P ,+ =g g g g 1 
 

Axiom 2 

If ( ) ( )1 2 2 3
1 1P , and P ,
2 2

> >g g g g , 

there exists ( ), 0,α β∈ 1  such that 

( )( ) ( )( )1 3 2 2 1 3
1 1P 1 , and P , 1
2 2

α + − α > β + − β >g g g g g g  

 
Axiom 3 

( )1 2
1P ,
2

>g g  

⇓ 

( ) ( )( )
[ ]

1 3 2 3
1P 1 , 1
2

for all 0,1

α + − α α + − α >

α ∈

g g g g
 

 
Axiom 4 

( ) ( ) (1 2 1 3 2 3
1P , P , P ,
2

≥ ⇔ ≥g g g g g g )  

 
Axiom 5 

(i)    ( ) ( ) ( ) ( )1 2 3 4 1 3 2 4P , P , P , P ,≥ ⇔ ≥g g g g g g g g  

(ii)  For y such that ( ) ( )1 3 1 2P , y P , ,≥ ≥g g g g  there is a S∈g  

       such that  ( )1P , =g g y

(iii) ( ) ( )1 2 2 1P , P ,+ =g g g g 1 
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Figure 1 (cont). Overview of axioms 
 

Axiom 6 

( ) ( )* *
1 2 1 2P , P ,≥g g g g  

⇓ 

( ) ( )( ) ( ) ( )( )
[ ]

* *
1 3 2 3 1 3 2 3P 1 , 1 P 1 , 1

for all 0,1

α + − α α + − α ≥ α + − α α + − α

α ∈

g g g g g g g g
 

 
Axiom 7 (IIA) 

( ) ( )
( ) ( ) ( )

s s r r

B s A s B s

For given S, P , 0,1 for all S,

P P P A , A B, A,B

∈ ∈

= ∈ ⊂

g g g g

g g g B

∈

∈
 

 
Axiom 8 

( )( ) ( )( ){ } ( )( ) ( )( ){ }* *
1 1 1 2 1 1 1 2G h V h V G h V h V− ≤ −g g g g  

 

( )( ) ( )( ){ } ( )( ) ( )( ){ }* *
1 2 1G h V h V G h V h Vλ λ λ λ− ≤ −g g g 2g for all 0λ > , 

where ( ) ( )s s
(k,w) X W

V u k, w gλ
∈ ×

= λ (k, w)∑g  

 
Axiom 9 

( )( ) ( )( ){ } ( )( ) ( )( ){ }* *
1 1 1 2 1 2G h V h V G h V h V

for all 0

λ λ− = −

λ >

g g g g
 

 

 

Axiom 5 ⇒ Axiom 1 
Axiom 4 

   
Axiom 6 ⇒ Axiom 3 

   
Axiom 7 ⇒ Axiom 4 

Axiom 5 
   

Axiom 8 ⇐ Axiom 9 
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Figure 2. Relationship between axioms and binary choice probabilities 

Axioms 1, 2, 3 ⇔ 
Corollary 1. ( ) ( ) ( )1 2 1 2

1P , V V
2

≥ ⇔ ≥g g g g  

where ( )s s
k X

V u(k)g
∈

= (k)∑g  

   

Axioms 2, 3, 4 ⇔ 
Theorem 2. ( ) ( ) ( )( )1 2 1 2P , F V ,V=g g g g  for F 
strictly increasing in its first argument and strictly 
decreasing in the second  

   

Axiom 5 ⇔ 

Theorem 3. ( ) ( ) ( )( )1 2 1 2P , G f f= −g g g g , 

for some function f that is unique up to a positive 
linear transformation and a c.d.f. G that is strictly 
increasing and continuous 

   

Axioms 2, 3, 5 ⇔ Theorem 4. ( ) ( )( ) ( )( ){ }1 2 1 2P , G h V h V= −g g g g  

with h and G strictly increasing and G continuous 
   

Axioms 2, 5, 6 ⇔ Theorem 5. ( ) ( ) ( ){ }1 2 1 2P , G V V= −g g g g  
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Figure 3. Relationship between axioms and multinomial choice probabilities 

Axiom 7 ⇔ ( ) ( )( )
( )( )

r

s
B s

r
B

exp f
P

exp f
∈

=
∑
g

g
g

g
, for some f 

   

Axioms 2, 3, 7 ⇔ Theorem 6. ( )
( )( )( )

( )( )( )
r

s
B s

r
B

exp h V
P

exp h V
∈

=
∑
g

g
g

g
  

   

Axioms 2, 6, 7 ⇔ Corollary 2. ( ) ( )( )
( )( )

r

s
B s

r
B

exp V
P

exp V
∈

=
∑
g

g
g

g
 

 

Relationship between axioms and binary choice probabilities for the case with monetary 
rewards 

Axiom 8 ⇔ 

Theorem 7.  

h(x) x= β + κ  and 
( )j

j

b w 1
u( j, w) c

ρ −
= +

ρ
 

or 
( )x 1

h(x)
θβ −

= + κ
θ

 and ju( j, w) b wρ=   

   

Axiom 9 ⇔ 
Corollary 3.  
h(x) log x , 0= β + κ β >  
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 Figures 1-3 display a convenient overview and summary of the results obtained in the 

paper. It is an important feature of Axioms 1 to 7 that they have direct empirical counterparts. Figure 2 

emphasises the equivalences between sets of axioms and the structure of the respective choice 

probabilities. However, some of these choice probabilities depend on unknown functional forms (f, G, 

h). For example, all the binary choice probabilities depend on an unknown c.d.f. G. Only Theorem 5, 

Corollaries 2, 3, and Theorem 7 yield fully specified functional forms for the choice probabilities. As 

regards the results of Theorems 2 to 6 and Corollaries 1 and 2 the corresponding axioms can be used 

to test these models without relying on ad hoc functional form specifications. To carry out rigorous 

non-parametric tests of these axioms is in itself a complicated task. In fact, it seems that the general 

case with ordinal restrictions on choice probabilities of the type displayed in Figure 1 lies outside the 

scope of a large body of literature devoted to statistical hypotheses testing under ordinal constraints. 

As far as we know, only Iverson and Falmagne (1985) have explicitly addressed the challenge of 

developing test procedures for this type of setting. In particular, they discuss how one can test property 

(i) of Axiom 1 within a maximum likelihood setting. 

6. A random utility representation 
In this section we shall consider the problem of a random utility representation of the agent’s 

preferences over lotteries that yield choice probabilities that satisfy the Axioms 2, 3 and 7. From the 

theory of discrete choice we know that the Luce choice model is consistent with an additive random 

utility representation in which the error terms are independent (across alternatives) extreme value 

c.d.f., . Let ( xexp e−− ) S∈g  and let us for a moment assume there exists a random utility function 

U(g), , that satisfies the axioms above. Here, the setting is not as simple as in the standard 

discrete choice case because S is not countable. Therefore, U(g) is a multiparameter stochastic process, 

i.e., a random field. 

S∈g

 

 Theorem 8 (Random utility representation) 

 There exists a probability space and random variables ( ){ }∈, Sε g g  defined on it, such 

that , are independent for distinct  and ( ) =s , s 1,2,..., Sε g ∈sg 1 2, ,...,g g

(6.1) ( )( ) ( )−≤ = − y
sP y exp eε g  

for . The random utility representation ∈y R

(6.2) ( ) ( )( ) ( )sU = h V ε+g g g , 

for , is consistent with Axioms 2, 3 and 7, i.e., for ∈ Sg ∈B B  
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(6.3) ( ) ( ) ( )
( )( )( )

( )( )( )r

r

s
B s s rB

r
B

exp h V
P = P U = maxU =

exp h V∈

∈

⎛ ⎞
⎜ ⎟
⎝ ⎠ ∑g

g

g
g g g

g
.  

 

 Proof: 

 By applying a special case of Kolmogorov’s Theorem on the construction of random 

variables, the existence of the probability space on which the random field { }( ), Sε ∈g g  is defined 

follows. See for example the Corollary, page 18, in Lamperti (1966). This Corollary establishes the 

desired results for the case that is relevant in our context, namely when ( )s , s 1,2,...,ε =g  are i.i.d. The 

choice probability in (4.3) follows from a well known result in discrete choice theory, see for example 

McFadden (1984). The result now follows from Theorem 6. 

  Q.E.D. 

 

 The other results obtained in Sections 4 and 5 follow as special cases of Theorem 8. It is 

also possible to give a random utility representation of the model in (6.2) by using the result of 

Corollary 1 in Dagsvik (2003). However, the choice model established in Theorem 2 is not consistent 

with a Random Utility Model. 

 

 Remark 

 The distribution function given in (6.1) is a so called type III extreme value distribution.1 

In statistics the extreme value distributions arise as the asymptotic distributions of the maximum of 

i.i.d. random variables. Many authors have studied this distribution in the context of the theory of 

discrete choice and random utility models, see for example McFadden (1973), Yellott (1977) and 

Strauss (1979). Under different regularity conditions they have demonstrated that (6.1) is the only 

distribution that implies a random utility representation that is consistent with Axiom 7. 

7. An example 
Consider the following choice setting. The agent has the choice of working in either of two wage work 

sectors or in a self-employment sector, denoted by alternative one, two and three, respectively. In 

wage work sector j he receives earnings jw , j 1,2= , with perfect certainty. In sector 3 earnings are 

uncertain. Hours of work in each sector are given. An example of a self-employment activity with 

fixed hours of work is found in the business of running a café or a bar with fixed opening hours. We 

                                                      
1 There seems to be some confusion in the literature about the terminology. Some authors call (5.1) the type III extreme value 
distribution while other authors call it the type I extreme value distribution. Some authors also call it the Double Exponential 
Distribution. 
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assume that the agent has been running the business⎯or similar businesses⎯for many periods and 

consequently is able to calculate the empirical distribution of returns to his business. For simplicity we 

approximate this distribution with a discrete distribution. Let u(j,w) be the utility of working in sector j 

at wage income w. Let g3(w) be the lottery outcome probability that the agent receives wage w given 

that he chooses to work in the self-employment sector. The expected utilities of working in the wage 

sector reduce to  and , respectively, while the expected utility of working in sector 3 

equals 

( 1u 1, w ) )( 2u 2, w

 ( ) 3
w W

u 3, w g (w)
∈
∑ . 

Under the assumptions of Corollary 2 it follows that the probability of working in wage sector j equals 

(7.1) 
( )( )

( )( ) ( )

j
B 2

s 3
s 1 w W

exp u j, w
P ( j)

exp u s,w exp u 3,w g (w)
= ∈

=
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

∑ ∑
 

for , where B = {1,2,3}. The probability of working in sector 3 equals j 1,2=

(7.2) 
( )

( )( ) ( )

3
w W

B 2

s 3
s 1 w W

exp u 3,w g (w)
P (3) .

exp u s,w exp u 3,w g (w)

∈

= ∈

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞
+ ⎜ ⎟

⎝ ⎠

∑

∑ ∑
 

With convenient parametric specification of the utility function u(j,w) one can estimate the unknown 

parameters of the utility function by the method of maximum likelihood, provided data on agents’ 

choices are available. 

 Alternatively, under the assumptions of Theorem 6 it follows that the probability of 

working in sector j becomes 

(7.3) 
( )( )( )

( )( )( ) ( ) ( )

j

B 2

s 3
s 1 w W

exp h u j,w
P ( j)

exp h u s,w exp h u 3,w g w
= ∈

=
⎛ ⎞⎛ ⎞

+ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑
 

for , and similar expression for the probability of working in sector 3. Consequently, one can 

for example apply likelihood ratio tests procedures to test the hypothesis that h is linear against the 

alternative that h has the functional for given in Theorem 7. Recall that the maximum likelihood 

estimation procedure goes as follows: Let Y

j 1,2=

j denote the number of agents that have chosen to work in 

sector j as observed in the data, and assume for simplicity that the choice probabilities above do not 
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depend on observed individual characteristics. As is well known, the loglikelihood function can be 

expressed as 

                                                       j B
j

LogL Y log P ( j)= ∑  

 

from which the unknown parameters are obtained by maximization of logL. The general case with 

individual characteristics is completely analogous. We refer to Amemiya (1985), and Ben-Akiva and 

Lerman (1985) for details about inference methods for discrete choice models. 

 

8. Conclusion 
In this paper we have developed a theory of probabilistic choice for risky choices based on different 

combinations of particular axioms. Some of the axioms are probabilistic extensions of the 

Archimedean and Independence Axioms in the von Neumann-Morgenstern theory of expected utility. 

We have explored the relationship between sets of axioms and the structure of the corresponding 

choice probabilities. In particular, one set of axioms implies a complete characterization of the 

functional form of the choice probabilities. Since most of the axioms proposed are non-parametric 

they can be utilized to carry out non-parametric tests of the respective structures of the choice 

probabilities. Finally, to illustrate the potential for applications we have discussed a concrete example. 
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Appendix 
 

 Proof of Theorem 2: 

 When the choice probabilities in Theorem 2 holds then evidently Axioms 2 and 4 hold. 

Consider next the “only if” part of the proof. Suppes et al. (1989), p. 412, have proved that Axiom 4 is 

equivalent to the representation 

 ( ) ( ) ( )( )1 2 1 2P , F f ,f=g g g g  

for , where f is an ordinal scale function defined on S and F  is a function that is strictly 

increasing in its first argument and strictly decreasing in the second. Hence 

1 2, ∈g g S

 ( ) ( ) ( )1 2 1 2
1P , f f
2

≥ ⇔ ≥g g g g  

and { }f ( ), S∈g g  therefore represents the binary relation  given in Definition 1. Accordingly  is a 

preference relation so that 

 ( )f ( ) h V( )=g g  

for some strictly increasing function h. Hence 

 ( ) ( ) ( )( )1 2 1 2P , F V ,V=g g g g  

where 

 ( ) ( )F x, y F h(x),h(y)= . 

  Q.E.D. 

 

 Proof of Theorem 3: 

 Debreu (1958) has proved that Axiom 5 implies that there exists a cardinal representation 

, such that for  f ( ), S∈g g 1 2 3 4, , , S∈g g g g

(A.1) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 1 2 3 4P , P , f f f f≤ ⇔ − ≤ −g g g g g g g g , 

where the inequality on one side is strict if and only if the inequality on the other side is strict. From 

(A.1) it follows that g1, g2, g3 and g4 satisfy ( ) ( )1 2 3 4P , P ,=g g g g , if and only if 

( ) ( ) ( ) ( )1 2 3f f f f− = −g g g g4 . But this means that we can write 

 ( ) ( ) ( ){ }1 2 1 2P , G f f= −g g g g  
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for some suitable function G. Evidently, G(x) is strictly increasing and take values in [0,1]. Without 

loss of generality it can be chosen to be a cumulative distribution function. The Balance condition 

implies that G , which means that G is symmetric. Recall that a cumulative distribution 

function is continuous to the right. Since G is symmetric it must also be continuous to the left. Hence 

G is continuous. 

(x) G( x) 1+ − =

 Next we shall prove uniqueness of G. Suppose ( )0 0f ,G  and ( )1 1f ,G  are two 

representations of the binary choice probabilities. Then 

 ( ) ( )( ) ( ) ( )( )0 0 1 0 2 1 1 1 1 2G f f G f f− = −g g g g  

for any . Since f1 2, ∈g g S 0 and f1 are unique up to a linear transformation we can write 

 1 0f ( ) a f ( ) b= +g g  

for , where a and b are constants and a . This yields that S∈g 0>

 ( ) ( )( ) ( ) ( )( )( )0 0 1 0 2 1 0 1 0 2G f f G a f f− = −g g g g  

which demonstrates that . 0 1G (x) G (ax)=

 To prove that I is an interval, let 0 S∈g  be a fixed point of reference. Let  be such 

that , and let 
1 2, ∈g g S

1( ) ( )2f f≥g g ( ) ( )1 2x f ,f∈⎡ ⎤⎣ g g ⎦
( )

 be arbitrary. Hence, 

( ) ( ) ( ) ( )1 0 0 2f f x f f f 0− ≤ − ≤ −g g g g g , or equivalently 

 ( )( ) ( ) ( )( )1 1
1 0 0 2 0G P , x f G P ,− −≤ − ≤g g g g g  

which yields 

(A.2) ( ) ( )( ) ( )1 0 0 2 0P , G x f P ,≤ − ≤g g g g g . 

By Axiom 5(ii) there exists a  such that * S∈g ( ) ( )( )*
0 0P , G f x= −g g g . Thus, (A.2) implies that 

 ( ) ( )( ) ( ) ( )( )* *
0 0G f f P , G x f− = = −g g g g g0  

so that ( )*x f= g . Therefore, . Hence, we have proved that I is an interval. x I∈

  Q.E.D. 
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 Proof of Theorem 4: 

 When the choice probabilities in Theorem 4 holds then Axioms 2, 3 and 5 are satisfied. 

Consider the “only if” part. Debreu (1958) proved that Axiom 5 implies that there exists a mapping f 

from S to some interval such that for 1 2 3 4, , , S∈g g g g  

 ( ) ( )1 2 3 4P , P ,≥g g g g  

if and only if 

 ( ) ( ) ( ) ( )1 2 3f f f f− ≥ −g g g g4

4

. 

Thus, with  we get 3 =g g

 ( ) ( ) ( )1 2 1 2P , 0.5 f f≥ ⇔ ≥g g g g  

and  therefore represents ( ){f , S∈g g }  on S. Consequently,  is a preference relation. But then, by 

Theorem 1, Axioms 2 and 3 imply that ( )f g  must be a strictly increasing function h (say) of ( )V g ; 

that is 

(A.3) ( ) ( )( )f h V=g g . 

Since Axiom 5 implies Theorem 3 we can combine (A.3) and (3.2) from which we get the desired 

result. Furthermore, by Theorem 3, V(⋅) is unique up to a linear transformation. Since evidently f(⋅) 

must also be unique up to a linear transformation we obtain the restrictions on  stated in the 

theorem. 

(h V( )⋅ )

  Q.E.D. 

 

 Proof of Theorem 5: 

 Note first that when choice probabilities of Theorem 5 holds it follows readily that 

Axioms 2, 5 and 6 are satisfied. Note next that when Axiom 6 holds, then if 

(A.4) ( ) ( )* *
1 2 1 2P , P ,=g g g g  

then 

(A.5) ( ) ( )( ) ( ) ( )( )* *
1 3 2 3 1 3 2 3P 1 , 1 P 1 , 1α + − α α + − α = α + − α α + − αg g g g g g g g  

for  and . * *
1 2 1 2 3, , , , S∈g g g g g [ ]0,1α ∈

 To realize this, note that 
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 ( ) ( )* *
1 2 1 2P , P ,=g g g g  

is equivalent to 

 ( ) ( ) ( ) ( )* * * *
1 2 1 2 1 2 1 2P , P , and P , P ,≥ ≤g g g g g g g g . 

When applying Axiom 6 twice with the inequality sign reversed the second time we therefore obtain 

(A.5). 

 Let ( )j jx V , j 1,2,= =g 3 , where V(⋅) is given in Theorem 4. Then, since Axiom 6 implies 

Axiom 3, it follows that Theorem 4 holds. Accordingly, (3.3) yields 

(A.6) ( ) ( )( ) ( )( )
( )( )

1 3
1 3 2 3

2 3

h x 1 x
P 1 , 1 G

h x 1 x

⎛ ⎞α + − α
α + − α α + − α = ⎜ ⎟⎜ ⎟α + − α⎝ ⎠

g g g g  

where  and h  are defined by G ( )xG(x) G e=  and l . hog h(x) h(x)= ( ) 0⋅ >  is a strictly increasing 

function defined on R. 

 Recall that h is strictly increasing. By (A.4), (A.5) and (A.6) we have that whenever  

given by ,  satisfy 

*
jx

( )* *
j jx V= g *

j S, j 1,2,∈ =g

(A.7) 
( )
( )

( )
( )

*
11
*

2 2

h xh x
G G

h x h x

⎛ ⎞⎛ ⎞
⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

then it follows that 

(A.8) 
( )( )
( )( )

( )( )
( )( )

*
1 31 3
*

2 3 2 3

h x 1 xh x 1 x
G G

h x 1 x h x 1 x

⎛ ⎞α + − α⎛ ⎞α + − α
⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟α + − α α + − α⎝ ⎠ ⎝ ⎠

, 

for any . Without loss of generality we normalize V such that when [0,1α ∈ ] ( )0 1,0,0,...=g , 

( )0V =g 0 . In particular, when , 3 0=g g 3x 0= , it follows from (A.6) and (A.7) that whenever  and 

 are such that 

*
1x

*
2x

(A.9) ( )
( )

( )
( )

*
11
*

2 2

h xh x
h x h x

=  

then 
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(A.10) ( )
( )

( )
( )

*
11
*

2 2

h xh x
h x h x

αα
=

α α
. 

Note next that (A.9) and (A.10) imply that we can write 

(A.11) 
( )
( )

( )
( )

1 1

2 2

h x h x
f

h x h xα

⎛ ⎞α
= ⎜ ⎟⎜ ⎟α ⎝ ⎠

 

for some strictly increasing continuous function fα  that depends on α. To realize this observe that 

 ( )
( )

1

2

h x
h x

α

α
 

depends on  solely through 1 2x ,x

 ( )
( )

1

2

h x
h x

 

due to the fact that the value of  

 ( )
( )

1

2

h x
h x

α

α
 

is (by (A.10)) unchanged when  is replaced by ( 1 2x ,x ) ( )* *
1 2x , x  when (A.9) is satisfied. 

 Let , ( )1u h x= ( )21 v h x= . From (A.11) we then get 

(A.12) 
( )

( )
1

1

h h (u)
f uv .

1h h
v

−

α
−

α
=

⎛ ⎞⎛ ⎞α ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

From (A.12) it follows that fα(u) is strictly increasing in u. 

 By letting u and v successively be equal to one, (A.12) implies that 

(A.13) 1f (u) .
1f
u

α

α

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Hence, by (A.12) and (A.13) 

(A.14) ( ) f (u)f uv f (u)f (v)
1f
v

α
α α

α

= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

.α  
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Eq. (A.14) is a functional equation of the Cauchy type. Since fα(u) is strictly increasing the only 

possible solution of (A.14) is given by 

(A.15) c( )f (u) u α
α =  

where c(α) is a function of α, see for example Falmagne (1985), Theorem 3.4.  

 Recall that h  is only unique up to a multiplicative constant. Therefore, h  can be 

normalized such that . From (A.11) and (A.15), with 

( )⋅ ( )⋅

h(1) 1= 1x x=  and 2x 1= , we obtain that 

(A.16) ( )h x c( )h(x) h( )α = α + α  

where 

 , h(x) log h(x)=

and h is defined on [0,1]. In the following it will be convenient to organize the rest of the proof in two 

cases. 

 

Case 1. c(α) is a constant.  

 In this case (A.16) yields 

 ( ) ( )h x ch(x) h( ) h x ch( ) h(x)α = + α = α = α +  

and hence 

 ( ) ( )c 1 h(x) c 1 h( )− = − α , 

which must hold for all . This implies that [ ]x, 0,1α∈ c 1= . Thus, (A.16) reduces to a well known 

Cauchy type functional equation which only continuous solution is 

(A.17) h(x) log x= β + γ  

where β and γ are constants. 

 

Case 2. c(α) is not a constant.  

 In this case there is at least one α, say α0, such that ( )0c 1α ≠ . Hence, (A.16) leads to 

(A.18) ( ) ( ) ( ) ( ) ( )0 0 0 0 0h x c h(x) h h x c(x)h h(x)α = α + α = α = α + . 

The last equation yields 
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(A.19) ( ) 0h(x) c(x) 1 b= −  

where 

 
( )

( )
0

0
0

h
b

c 1
α

=
α −

. 

When (A.19) is inserted into (A.16) and terms are rearranged we obtain 

(A.20) ( )c x c( )c(x)α = α  

for . The only strictly increasing solution of (A.20) is [, x 0,1α ∈ ]

(A.21) c( ) κα = α  

for some constant κ (see Falmagne, Theorem 3.4). When (A.19) and (A.21) are combined we get 

(A.22) ( )0h(x) b x 1κ= −  

for [ ]x 0,1∈ . Note next that (A.7) and (A.8) imply that 

(A.23) ( )( ) ( )( ) ( )( ) ( )( )* *
1 3 2 3 1 3 2 3x 1 x x 1 x x 1 x x 1 x

κ κκ κ
α + − α − α + − α = α + − α − α + − α  

whenever 

(A.24) ( ) ( )* *
1 2 1 2x x x x .

κ κκ κ− = −  

Now keep  and x* *
1 2x , x 3 fixed and differentiate (A.23) with respect to x1 subject to (A.24). This gives 

(A.25) ( )( ) ( )( ) ( )( )
1

1 1 2 1
1 3 2 3 2 3

1 2

dx xx 1 x x 1 x x 1 x
dx x

κ−
κ− κ− κ− ⎛ ⎞

α + − α = α + − α = α + − α ⎜ ⎟
⎝ ⎠

1

2

. 

Suppose that . Then (A.25) implies that 1κ ≠ 1x x= , which is a contradiction. Also the solution 

given by (A.17) does not satisfy (A.25). We therefore conclude that 1κ = , i.e., 

(A.26) ( )0h(x) b x 1= − . 

Recall that the normalization h  we adopted above was made purely for notational convenience 

so that the general form of h is  where γ is an arbitrary constant. 

(1) 0=

0h(x) b x= + γ

 This completes the proof. 

  Q.E.D. 
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 Proof of Theorem 6: 

 It follows immediately that the “if” part of the theorem is true. Consider the “only if” 

part. From the theory of discrete choice (see for example McFadden (1984)) it follows that Axiom 7 

holds if and only if for any , B∈B

 ( ) ( )
( )

r

s
B s

r
B

a
P

a
∈

=
∑
g

g
g

g
 

where , is a positive scalar that depends solely on g( )s sa , ∈g g S s and is unique apart from a 

multiplicative positive constant. Let { }r sB ,= g g . Then 

 ( ) ( )
( ) ( ) ( ) ( )

s
s r

s r r

a 1P ,
a a 1 a a

= =
+ +
g

g g
g g g gs

.  

Thus 

  ( ) ( ) ( )s r s rP , 0.5 a a≥ ⇔ ≥g g g g  

and ( ){ }s sa , S∈g g  therefore represents  on S. Consequently,  is a preference relation. But then, 

by Theorem 1,  must be a strictly increasing function h (say) of ( )sa g ( )sV g . Hence, by Theorem 1 

  ( ) ( )( )s sloga h V=g g . 

  Q.E.D. 

 

 Proof of Theorem 7: 

 Note first that it follows immediately that when (i) or (ii) in Theorem 7 holds then Axiom 

8 is true. We shall next prove that (i), or (ii), also are necessary for Axiom 8 to be true. Without loss of 

generality we consider lotteries with only two outcomes and let { }* *
1 2 1 2W 0, w , w , w , w= , 

, ( )1 1g 1, w 0> ( )1g 2,0 0> , , ( )2 2g 1, w 0> ( )2g 2,0 0> , ( )* *
1 1g 1, w 0> , ( )*

1g 2,0 0> ,  and 

, while the remaining outcome probabilities on 

( )* *
2 2g 1, w 0>

( )*
2g 2,0 0> X W×  are equal to zero. Hence 

 ( ) ( ) ( ) ( ) ( )( ) ( )s s s s s sV V , w g 1, w u 1, w u 1,0 u 2,0λ λ= ≡ λ − +g g  

and 

 ( ) ( ) ( ) ( ) ( )( ) ( )* * * * *
s s s s s sV V , w g 1, w u 1, w u 2,0 u 2,0λ λ= ≡ λ − +*g g  
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for s 1 . Let  and h  be defined by ,2= G ( )xG(x) G e=  and l . Without loss of generality 

we let 

n h(x) h(x)=

( )s j sg j, w g ( j)=  and ( )* * *
s j sg j, w g ( j), j 1,2= = , be independent of the values of wj and , 

respectively. By Axiom 8, if 

*
jw

 ( )( ) ( )( )( ) ( )( ) ( )( )( )* * * *
1 1 1 1 2 2 1 1 1 1 2 2G h V , w h V , w G h V , w h V , w≤g g g g , 

then for all   0λ >

 ( )( ) ( )( )( ) ( )( ) ( )( )( )* * * *
1 1 2 2 1 1 2 2G h V , w h V , w G h V , w h V , wλ λ λ λ≤g g g g . 

We can now apply Theorem 14.19, p.338, in Falmagne (1985), which yields 

(A.27) 

( )( ) ( )( )( ) ( )( ) ( )( )( )
( ) ( )

1 1 1 1 2 2 1 1 1 1 2 2

1 1 2 2*

G h V , w h V , w G h V , w h V , w

b w 1 b w 1
F

ρ ρ

≡ −

⎛ ⎞− − −
⎜ ⎟=
⎜ ⎟ρ⎝ ⎠

g g g g

 

for some strictly increasing continuous function , where b*F 1, b2 and ρ are constants. As usual, we 

define 

 w 1 log w
ρ −

=
ρ

 

when . Let . Hence (A.27) yields 0ρ = 1 *M G F−=

(A.28) ( )( ) ( )( ) ( ) ( )1 1 2 2
1 1 1 1 2 2

b w 1 b w 1
h V , w h V , w M

ρ ρ⎛ ⎞− − −
⎜ ⎟− =
⎜ ⎟ρ⎝ ⎠

g g . 

With , (A.28) gives 2w = 1

(A.29) ( )( ) ( )( ) ( )1 1
1 1 1 1 2

b w 1
h V , w h V ,1 M

ρ⎛ ⎞−
⎜ ⎟= +
⎜ ⎟ρ⎝ ⎠

g g . 

Similarly,  gives 1w =1

(A.30) ( )( ) ( )( ) ( )2 2
1 2 2 1 1

b w 1
h V , w h V ,1 M

ρ⎛ ⎞− −
⎜ ⎟= −
⎜ ⎟ρ⎝ ⎠

g g . 

Let  and 1 =g g2
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( )j j

j

b w 1
x

ρ −
=

ρ
. 

It follows that (A.28), (A.29) and (A.30) imply that 

(A.31) ( ) ( ) ( ) ( )( ) ( )( ) ( ) (1 2 1 2 1 2 1 1 1 2M x x M x M x h V h V M x M x− = + − + − = + −g g ) . 

Hence (A.31) implies that 

(A.32) ( )M(x) M(y) M x y+ = +  

for x and y that belong to a suitable interval. Since M is continuous we must have that 

(A.33) M(x) bx=  

where b is a constant (see for example Falmange, 1985, Theorem 3.2). Consequently, we have 

established that for  we have ( )g j, w g( j)=

(A.34) ( )( ) ( ) ( )( )( )1
w 1h V , w h g(1) u 1, w u 2,0 b c

ρ⎛ ⎞−
= − = ⎜ ⎟ρ⎝ ⎠

g +  

where b and c may depend on g. Define z, f(⋅) and ( )ψ ⋅  by 

 and ( ) (z u(1, w) u(2,0), f g(1)z h g(1)z u(2,0)= − = + )

(A.35) w 1(z)
ρ −

ψ =
ρ

. 

The function ψ  is well defined and continuous because u(1,w) is strictly increasing and continuous. 

Hence we realize that (A.34) has a structure that is equivalent to the functional equation 

(A.36) ( ) ( ) ( )f gz c g(1) b g(1) (z)= + ψ . 

The solution of (A.36) can be found in Falmagne (1985), see case (iv) in Table 3.10, p. 89. The 

solution is given by 

(A.37) ( )0 1f (z) 1 zθ
2= β − + β + β , 

(A.38) ( ) ( )( )0 1c g(1) 1 g(1)θ
2= β + β − + β , 

(A.39) ( )0 1

3 3

(z) 1 zθβ β
ψ = − +

β β
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and 

(A.40) ( ) 3b g(1) g(1)θ= β  

where β0, β1, β2, β3 and θ are constants. Hence, we can write 

(A.41) ( )f (z) h z u(2,0) zθ= + = α + γ  

for suitable constants α and γ. If u(2,0) 0=  then clearly h(z) zθ= α + γ  with α and γ independent of 

u(2,0). If u  then evidently θ must be equal to one and γ must be independent of u(2,0) while 

. Furthermore, it follows from (A.39), together with the requirement that , that 

u(1,w) has the form 

(2,0) 0≠

u(2,0)α = γ (1) 0ψ =

(A.42) 
w 1u(1, w) b c

κ⎛ ⎞−
= +⎜ ⎟κ⎝ ⎠

 

where b 0, c>  and κ are suitable constants. 

 Hence the proof in complete. 

  Q.E.D. 
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