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1 Introduction

A number of statistical series are estimated on the basis of surveys that are repeated regularly.
The most common approach is to publish parameter estimates at regular intervals, say each
year, pooling surveys collected throughout the year but ignoring previous years. However, it is
natural to assume that most parameters of interest evolve slowly and smoothly. As this approach
ignores within period variation and previous observations, it is an inefficient use of the data.

The use of times series techniques to improve results from repeated surveys was suggested
by Jessen (1942) and studied in more detail by Gurney and Daly (1965). The methodology was
further improved by Blight and Scott (1973) and Scott and Smith (1974) who suggest using
statistical signal extraction methods to filter the time specific estimates of the parameters of
interest. See e.g. the survey by Binder and Hidiroglou (1988) for further details on subsequent
developments within this tradition. A more general theory of signal extraction using the Kalman
filter was suggested by Tam (1987) and further developed by e.g. Binder and Dick (1989),
Harvey and Chung (2000), and Pfeffermann (1991). The most common approach is to estimate
a parameter such as the mean on each individual survey and then apply the Kalman filter on
the estimates. However, there is a potential important loss of efficiency as a lot of information
contained in each cross section may be lost by this two step procedure. A more satisfactory
approach, which is the one taken by Tam (1987), is to integrate the time series model and the
modelling of the individual observations.

However, if we use the ordinary Kalman filter algorithm, this will lead to extremely large
matrices that has to be inverted hence causing severe computational problems unless each survey
is extremely small. In the present work I use an approach relatively similar to Tam’s and show
how the Kalman filter algorithm may be transformed to fit estimation on repeated surveys
without running into computational problems. It turns out that to estimate the mean of the
population, we only need the empirical first and second moments in each period, so both the
computational burden and the data requirements are small.

The model is presented in Section 2 and the computationally feasible version of the Kalman
filter suitable for the model in Section 3. The likelihood function of the problem and different
strategies for estimation of the parameters of the model are discussed in Section 4. Section 5
concludes. Some lengthy proofs are left to Appendix A whereas Appendix B outlines a computer
program to implement the routine.

2 Model framework

We study a series of repeated surveys where it is assumed that the parameters of interest change
relatively smoothly over time. We will present a model that makes this process more explicit.
However, instead of modelling the process of the period averages, we shall rather model the
evolution of each individual observation. This will assure efficient use of the data.

At a survey date t ∈ (1, . . . , T ) we observe Nt individuals. I assume that observations are
independent both within and between surveys. It is probably possible to extend the approach
to repeated observations of each individual, but that is outside the scope of the present paper.
Let yit denote the m-vector of observations on individual i at time t. We are going to focus on
estimating averages of the yit’s. We may write

yit = µit + εit (1)

where εij ∼ N (0m×1,Σt) denotes a stochastic vector of individual characteristics and possible
sampling errors and 0m×1 is a m × 1 vector of zeros. The variable of interest is then µit. It
is normally not particularly interesting do estimate a separate µ for every individual. One
approach is to assume that the µit’s are the same for all the individuals at a particular date,
but there are also cases where it is fruitful to group individuals into e.g. geographical regions
or household types, and assume that every group has their own µ. This is the approach we will
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pursue herein. Assume that there are G such groups, and an associated µgt for all g ∈ (1, . . . , G)
at every date.1 It will be useful to consider the stacked vector of all the means at date t

µt =
(
µ′

1t, . . . , µ
′
Gt

)′
. (2)

Expression (1) may now be written as

yit = Jg(i)tµt + εit (3)

where g is the function that associates to each individual i the group that it belongs to, and the
Gm×m matrix

Jgt =
(

0(g−1)m×m

... Im
... 0(G−g)m×m

)
(4)

selects the appropriate elements from the vector µt for individuals in group g. We make a slight
abuse of notation by letting g denote both the function that associates to each individual i its
group and a typical group.

It is probably reasonable to expect that µt does not make extreme changes over a relatively
short period of time. Particularly, we shall assume that there is a n-vector αt following a VAR(1)
process with Gaussian white noise, i.e.

αt = Fαt−1 + ξt, (5)

such that µt = Zαt where ξt ∼ N (0n×1, Q) and F is a n × n transition matrix. Since αt is
an unobserved vector, any finite-dimensional vector ARMA-process may be rewritten as such a
VAR(1) process. Defining

Jt =
(
J ′

g(1)t, . . . , J
′
g(Nt)t

)′
(6)

ε̃t =
(
ε′1t, . . . , ε

′
Ntt

)′ (7)

ỹt =
(
y′1t, . . . , y

′
Ntt

)′
, (8)

we can write the complete model as

ỹt = JtZαt + ε̃t

αt = Fαt−1 + ξt

ε̃t ∼ N (0Ntm×1, INt ⊗ Σt) (9)
ξt ∼ N (0n, Q)
α0 ∼ N (a0, Q0) ,

where we also added assumptions about the distribution of the initial state α0. Treating JtZ
as a single matrix transforming the state vector into the expectation of the observed data, it is
seen that this is a model on “almost standard” state space form2.

3 The Kalman filter

Let us initially assume that we know the vector of hyper-parameters

Θ =
({

vec (Σt)
′} , vec (Q)′ , a0, vec (Q0)

)
,

1The covariance matrix Σt is assumed the be identical for every group, but this assumption may easily be
relaxed.

2The term almost standard is used since the dimension of ỹt varies with time. Nevertheless, replacing ỹt with

ẏt ≡

(
ỹ′t

... 01×(maxt Nt)−Nt

)′

and Jt with J̇t ≡

(
J ′t

... 01×m[(maxt Nt)−Nt]

)′

would transform the model to standard

state space form. It is easily seen that this will not change any of the results below.

4



as well as the transition matrix F and the matrices Z and Jt. An optimal estimate of the α’s
and the µ’s may then be calculated by the means of the Kalman filter (see e.g. Fahrmeir and
Tutz (1994, ch. 8), Hamilton (1995 ch. 13) or Harvey (1989) for overviews to the Kalman filter).
At date t, the information set is defined as Yt = (ỹ′1, . . . , ỹ

′
t)
′. Let us denote the expectation of

the vector αt1 given the information set at date t2 as

at1|t2 ≡ E (αt1 |Yt2 ) ,

and its covariance matrix by

Vt||t2 = E
[(

αt1 − at1|t2
) (

αt1 − at1|t2
)′ |Yt2

]
.

The Kalman filter is calculated by the following recursion:

at|t−1 = Fat−1|t−1

Vt|t−1 = FVt−1|t−1F
′ + Q

at|t = at|t−1 + Kt

(
ỹt − JtZat|t−1

)
(10)

Vt|t = Vt|t−1 −KtJtZVt|t−1

Kt = Vt|t−1Z
′J ′

t

(
JtZVt|t−1Z

′J ′
t + INt ⊗ Σt

)−1
.

In their current form, these formulae are not particularly useful for larger surveys since the vector
ỹt, and consequently the matrix

(
JtZVt|t−1Z

′J ′
t + INt ⊗ Σt

)
, which is to be inverted, may be of

very high dimension, and hence require large amounts of calculation. However, due to the data
structure assumed above, it is shown in the appendix that the recursion in (10) may be written
as

at|t−1 = Fat−1|t−1

Vt|t−1 = FVt−1|t−1F
′ + Q (11)

Vt|t =
[
V −1

t|t−1 + Z ′ (NG
t ⊗ Σ−1

t

)
Z

]−1

at|t = at|t−1 + Vt|tZ
′ (NG

t ⊗ Σ−1
t

) (
ȳG

t − Zat|t−1

)
.

In these expressions, ȳG
t denotes the within group averages defined as

ȳG
t ≡


1

Ng
1

∑
g(i)=1 yit

...
1

Ng
G

∑
g(i)=G yit

 . (12)

The matrix NG
t is the matrix with the number of members of each group at date t along the

diagonal.
Using the recursion (11), we calculate estimates of αt given the information set Yt. This is not

normally optimal, since the complete information set YT normally contains more information
about αt than does Yt. To obtain estimates employing the full information set, we use the
so-called Kalman smoother. Define the sequence of matrices

Bt = Vt−1|t−1F
′V −1

t|t−1. (13)

The smoothed estimates of α are found by the backward recursion

at−1|T = at−1|t−1 + Bt

(
at|T − at|t−1

)
(14)

Vt−1|T = Vt−1|t−1 + Bt

(
Vt|T − Vt|t−1

)
B′

t. (15)

See e.g. Hamilton (1995: ch. 13) for a proof. Since all the expressions entering these expressions
are of low dimensionality, no transformations are necessary for our purposes.
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4 Estimation

The algorithm described above was based upon the knowledge of the hyper-parameters, as well
as the matrices F and Z. Since most of these parameters are normally not known, they will
have to be estimated. In the present work, I derive estimators for the hyper parameters, but
assume that F and Z are known matrices. It is straightforward to extend the framework to
allow for estimating selected parameters in these matrices.

In the present work, I will discuss estimation by the method of maximum likelihood (ML).
This is the usual approach in Kalman filter models. The likelihood of the data given a set of
parameter values is

f (YT ; Θ) = f (ỹ1) f (ỹ2|Y1) · · · f (ỹT |YT−1) . (16)

Furthermore, we know that
ỹt|Yt−1 ∼ N

(
JtZat|t−1,Ωt

)
(17)

where

Ωt = E
[(

JtZ
(
αt − at|t−1

)
+ ε̃t

) (
JtZ

(
αt − at|t−1

)
+ ε̃t

)′]
= JtZVt|t−1Z

′J ′
t + INt ⊗ Σt.

Consequently, we may write the log likelihood of the observed sample as

lnL = −
∑T

t=1 Nt

2
ln (2π)− 1

2

T∑
t=1

[
ln |Ωt|+

(
ỹt − JtZat|t−1

)′ Ω−1
t

(
ỹt − JtZat|t−1

)]
. (18)

Due to the high dimension of Ωt, calculation of |Ωt| by direct calculations is extremely time
consuming, and will not work on most computer systems. However, as shown in the appendix,
a factorization is possible. First of all, we may rewrite |Ωt| as

|Ωt| = |Σt|Nt−G
G∏

h=1

|Λh| (19)

where

Λh :=

{
Ng

1 J1ZVt|t−1Z
′J ′

1 + Σt if h = 1

Ng
h+1JhZ

[
V −1

t|t−1 +
∑h−1

i=1 Ng
i Z ′J ′

iΣ
−1
t JiZ

]−1
Z ′J ′

h + Σt if h > 1.

Furthermore, the appendix shows that

Ψt : =
(
ỹt − JtZat|t−1

)′ Ωt

(
ỹt − JtZat|t−1

)
=

G∑
h=1

tr
[
Ng

htΣ
−1 Covht yit

]
(20)

+
(
ȳG

t − Zat|t−1

)′
Ξt

{
IGm − Z

[
V −1

t|t−1 + Z ′ΞtZ
]−1

Z ′Ξt

} (
ȳG

t − Zat|t−1

)
.

where Ng
ht is the number of members of group h at data t, Covht (yit) denotes the intra-group

empirical variance-covariance matrix of the yits at date t without degrees of freedom-adjustment,
and Ξt = NG ⊗ Σ−1

t . ¿From equations (19) and (20) we can then calculate the likelihood value

lnL = −
∑T

t=1 Nt

2
ln (2π)− 1

2

T∑
t=1

[ln |Ωt|+ Ψt] . (21)

An analytical solution to the ML-problem is clearly not available, although it might be
possible to concentrate it with regard to the Σt’s. We will then have to use a numerical opti-
mization algorithm. Analytical derivatives are tedious to obtain, so it is probably desirable to
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rely on numerical derivatives in most applications. Since the likelihood function is often quite
ill-conditioned far from the optimum, my experience has been that it is useful to use robust al-
gorithm, for instance the Simplex algorithm, initially, and then switch to the more robust BFGS
algorithm then the former starts converging. If one has a good initial point, it is probably
possible to go directly to BFGS.

An alternative approach, which is very robust although somewhat slow, is the EM-algorithm
developed by Dempster et al. (1977), introduced to the estimation of state space models by
Engle and Watson (1983) and Shumway and Stoffer (1982). In some cases, this algorithm is
superior to Simplex initially, but it should be supplemented with a more efficient algorithm
when it starts converging. The idea of the EM-algorithm is to treat AT ≡ (α′

1, . . . .α
′
T ) as

missing data. From an initial estimate Θ0 of the hyper-parameters, we can use the Kalman
smoother to obtain estimates of the latent AT . Instead of considering the ordinary likelihood
function, the EM-algorithm employs the joint likelihood function, which for model (9) is

L (YT ,AT ; Θ) = −
∑T

t=1 Nt

2
ln (2π)−

∑
t Nt

2
ln |Σ|

− 1
2

T∑
t=1

Nt∑
i=1

(
yit − Jg(i)tZαt

)′ Σ−1
t

(
yit − Jg(i)tZαt

)
(22)

−
∑

t Nt

2
ln |Q| − 1

2

T∑
t=1

Nt∑
i=1

(αt − Fαt−1)
′ Q−1 (αt − Fαt−1)

− 1
2

ln |Q0| −
1
2

(α0 − a0)
′ Q−1 (α0 − a0) .

Having obtained estimates of At from an estimate Θj ,the next step in the algorithm is to
maximize the expected joint likelihood function with regard to Θ. In this case, we get

E
[
L (YT ,AT ; Θ)

∣∣Θi
]
∝ (23)

−
∑

t Nt

2
ln |Σ| − 1

2

T∑
t=1

Nt∑
i=1

tr
{

Σ−1
t

[(
yit − Jg(i)tZaj

t|T

) (
yit − Jg(i)tZaj

t|T

)′
+ Jg(i)tZV j

t|T Z ′J ′
g(i)t

]}

−
∑

t Nt

2
ln |Q| − 1

2

T∑
t=1

Nt∑
i=1

tr
{

Q−1

[(
aj

t|T − Faj
t−1|T

) (
aj

t|T − Faj
t−1|T

)′
]}

+V j
t|T + FV j

t−1|T F ′ − FBj
t V

j
t|T − V j

t|T Bj
t F

′
]

− 1
2

ln |Q0| −
1
2

tr
{

Q−1

[(
a0 − aj

0|T

) (
a0 − aj

0|T

)′
+ V j

0|T

]}
where Bj

t = V j
t−1|t−1F

′V j−1
t|t−1 and the parameters with superscript j are estimates from the

Kalman smoother conditional on Θj , the hyper-parameters from the j’th iteration of the EM-
algorithm. Calculating the first order conditions and simplifying, we obtain a new set of param-
eters Θj+1:

Σj+1
t =

1
Nt

Nt∑
i=1

[(
yit − Jg(i)tZaj

t|T

) (
yit − Jg(i)tZaj

t|T

)′
+ Jg(i)tZV j

t|T Z ′J ′
g(i)t

]
(24)

=
G∑

g=1

Ng
g

Nt

[
Cov

gt
(yit) +

(
ȳgt − Jg(i)tZaj

t|T

) (
ȳt − Jg(i)tZaj

t|T

)′
+ JgtZV j

t|T Z ′J ′
gt

]

7



Qj+1 =
1∑
t Nt

T∑
t=1

Nt

[(
aj

t|T − Faj
t−1|T

) (
aj

t|T − Faj
t−1|T

)′
(25)

+V j
t|T + FV j

t−1|T F ′ − FBj
t V

j
t|T − V j

t|T Bj
t F

′
]

aj+1
0 = aj

0|T Qj+1
0 = V j

0|T (26)

If Σ is time-invariant, an obvious estimator is

Σj+1 =
1∑T

t=1 Nt

T∑
t=1

NtΣ
j+1
t .

We can then go on to calculate a new estimate of At, a new expression for the expected joint
likelihood value from (23), and then calculate new estimates of the hyper-parameters from
(24-26). As shown by Dempster at al. (1977), each step in this iteration will increase the
likelihood value, and the estimated hyper-parameters will converge towards a local maximum of
the likelihood function.

It is clear that consistent estimates of a0 and Q0 are not available since we do not gain
further information on these parameters from a longer time series. Also, it seems that Q0 is
not well identified since it tends towards zero in most applications of the algorithm. Following
Shumway and Stoffer (1982: 257), it is then probably advisable to choose a reasonable value for
Q0 rather than trying to estimate it.

5 Conclusion

I have presented a modified Kalman filtering algorithm to perform calculations on repeated
samples by taking into account the particular structure of such data. The procedure makes
it possible to obtain efficient estimates of underlying estimates of the laws of motion of the
parameters of interest. By using the Kalman filter to smooth the estimates from each sample,
we get more precise estimates in each period. Hence even if each survey is small, we get reliable
estimates, so we can produce estimates with higher frequency than what has been possible so
far. By defining each group as a geographical area, the procedure is also applicable for small area
estimation. Finally, forecasting is simple to perform and have well-known properties when using
techniques based on the Kalman filter. At the present stage, the method only admits estimation
of sample means. An interesting extension would be to allow for estimation of repeated regression
coefficients as in Wangen and Aasness (2002), but by integrating the estimation of the regressions
with the Kalman filter.
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A Proofs

A.1 Proof of equation (11)

From the matrix inversion lemma (Lütkepohl 1996: 29), we have(
JtZVt|t−1Z

′J ′t + INt ⊗ Σt

)−1
(27)

= INt ⊗ Σ−1
t − INt ⊗ Σ−1

t JtZ
(
V −1

t|t−1 + Z′J ′t
(
INt ⊗ Σ−1

t

)
JtZ

)−1

Z′J ′t
(
INt ⊗ Σ−1

t

)
.

Furthermore,

J ′t
(
INt ⊗ Σ−1

t

)
Jt =

(
J ′g(1)t · · · J ′g(Nt)t

) Σ−1 · · · 0
...

. . .
...

0 · · · Σ−1


 Jg(1)t

...
Jg(Nt)t

 (28)

=

Nt∑
i=1

J ′g(i)tΣ
−1Jg(i)t,

and

J ′g(i)tΣ
−1Jg(i)t =



0m×m

...
Im

...
0m×m

Σ−1 ( 0m×m · · · Im · · · 0m×m

)
(29)

=



0m×m · · · 0m×m · · · 0m×m

...
. . .

...
. . .

...
0m×m · · · Σ−1 · · · 0m×m

...
. . .

...
. . .

...
0m×m · · · 0m×m · · · 0m×m


where the Σ−1 is in the g (i) × g (i)’th position. Let Ng

h denote the number of members in group h, and let
NG = diag (Ng

1 , . . . , Ng
G). Then

J ′t
(
INt ⊗ Σ−1

t

)
Jt = NG ⊗ Σ−1. (30)

Hence the Kalman gain may be written as

Kt = Vt|t−1Z
′J ′t

[
INt ⊗ Σ−1 −

(
INt ⊗ Σ−1) JtZ

(
V −1

t|t−1 + Z′
(
NG ⊗ Σ−1

)
Z
)−1

Z′J ′t
(
INt ⊗ Σ−1)]

= Vt|t−1

[
In − Z′

(
NG ⊗ Σ−1

)
Z
(
V −1

t|t−1 + Z′
(
NG ⊗ Σ−1

)
Z
)−1

]
Z′J ′t

(
INt ⊗ Σ−1) (31)

=
(
V −1

t|t−1 + Z′
(
NG ⊗ Σ−1

)
Z
)−1

Z′J ′t
(
INt ⊗ Σ−1) ,

and then

at|t − at|t−1 =
(
V −1

t|t−1 + Z′
(
NG ⊗ Σ−1

)
Z
)−1

Z′J ′t
(
INt ⊗ Σ−1) (ỹt − JtZat|t−1

)
. (32)

Since

J ′g(i)tΣ
−1 (yit − Jg(i)tZat|t−1

)
=



0m×1

...
yit − Jg(i)tZat|t−1

...
0m×1

 , (33)

where the yit − Jg(i)tZat|t−1 is in the g (i)’th position, we have

J ′t
(
INt ⊗ Σ−1) (ỹt − JtZat|t−1

)
=

Nt∑
i=1

J ′g(i)tΣ
−1 (yit − Jg(i)tZat|t−1

)
(34)

=
(
NG ⊗ Σ−1

)(
ȳG

t − Zat|t−1

)
where

ȳG
t ≡


1

N
g
1

∑
g(i)=1 yit

...
1

N
g
G

∑
g(i)=G yit

 (35)
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is the vector of stacked averages and we used the fact that (J ′1t, . . . J
′
Gt)

′
= IGm. Consequently, the Kalman

updating becomes

at|t = at|t−1 +
(
V −1

t|t−1 + Z′
(
NG ⊗ Σ−1

)
Z
)−1

Z′
(
NG ⊗ Σ−1

)(
ȳG

t − Zat|t−1

)
, (36)

which is only a function of group averages, and where the matrix to be inverted is of dimension n × n. The
expression for updating the covariance simplifies to

Vt|t = Vt|t−1 −
(
V −1

t|t−1 + Z′
(
NG ⊗ Σ−1

)
Z
)−1

Z′J ′t
(
INt ⊗ Σ−1) JtZVt|t−1

=

[
In −

(
V −1

t|t−1 + Z′
(
NG ⊗ Σ−1

)
Z
)−1

Z′
(
NG ⊗ Σ−1

)
Z

]
Vt|t−1 (37)

=
(
V −1

t|t−1 + Z′
(
NG ⊗ Σ−1

)
Z
)−1 [

V −1
t|t−1 + Z′

(
NG ⊗ Σ−1

)
Z − Z′

(
NG ⊗ Σ−1

)
Z
]
Vt|t−1

=
(
V −1

t|t−1 + Z′
(
NG ⊗ Σ−1

)
Z
)−1

.

It is seen that (36) may now be rewritten as

at|t = at|t−1 + Vt|tZ
′
(
NG ⊗ Σ−1

)(
ȳG

t − Zat|t−1

)
. (38)

A.2 Proof of expressions (19) and ( 20)

Assume that ỹt is constructed such that the first Ng
1 m elements belong to group 1, the following Ng

2 m elements
to group 2 and so on. Define for each group h ∈ (1, . . . , G)

Jg
h = 1N

g
h
×1 ⊗ Jh, (39)

so that

Eỹt|Yt−1 =

 Jg
1

...
Jg

G

Zat|t−1.

Then the upper left Ng
1 m×Ng

1 m-block of Ωt contains the covariance of the elements from group 1; call this
sub-matrix Ω1

t . The upper left (Ng
1 + Ng

2 ) m× (Ng
1 + Ng

2 ) m-block contains the covariance between the elements
from group 1 and 2; call this sub-matrix Ω1:2

t . Generally, the covariance matrix of the elements belonging to group
1 to h is

Ω1:h
t = Jg

1:hZVt|t−1Z
′Jg′

1:h + I(N
g
1 +...+N

g
h) ⊗ Σt

where

Jg
1:h =

 Jg
1

...
Jg

h

 .

Hence for each h ≥ 1

Ω1:h+1
t =

(
Ω1:h

t Jg
1:hZVt|t−1Z

′Jg′
h+1

Jg
h+1ZVt|t−1ZJg′

1:h Jg
h+1ZVt|t−1Z

′Jg′
h+ + IN

g
h+1

⊗ Σt

)
,

which means that∣∣∣Ω1:h+1
t

∣∣∣ = ∣∣∣Ω1:h
g

∣∣∣ ∣∣∣∣Jg
h+1ZVt|t−1Z

′Jg′
h+ + IN

g
h+1

⊗ Σt − Jg
1:hZVt|t−1Z

′Jg′
h+1

(
Ω1:h

t

)−1

Jg
h+1ZVt|t−1ZJg′

1:h

∣∣∣∣ . (40)

Furthermore, the matrix inversion lemma yields(
Ω1:h

t

)−1

= I(N
g
1 +...+N

g
h) ⊗ Σ−1

t −(
I(N

g
1 +...+N

g
h) ⊗ Σ−1

t

)
Jg

1:hZ
[
V −1 + Z′Jg′

1:h

(
I(N

g
1 +...+N

g
h) ⊗ Σ−1

t

)
Jg

1:hZ
]

×Z′Jg′
1:h

(
I(N

g
1 +...+N

g
h) ⊗ Σ−1

t

)
.
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Hence

Jg
1:hZVt|t−1Z

′Jg′
h+1Ω

−1
p Jg

h+1ZVt|t−1Z
′Jg′

1:h

= Jg
h+1ZVt|t−1Z

′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZVt|t−1Z
′Jg′

h+1

−Jg
h+1ZVt|t−1Z

′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
[
V −1

t|t−1 + Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

×Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZVt|t−1Z
′Jg′

h+1

= Jg
h+1ZVt|t−1Z

′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ{
In −

[
V −1

t|t−1 + Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ

}
Vt|t−1Z

′Jg′
h+1

= Jg
h+1ZVt|t−1Z

′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
[
V −1

t|t−1 + Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z′Jg′
h+1.

Consequently,

Jg
h+1ZVt|t−1Z

′Jg′
h+1 + IN

g
h+1

⊗ Σt − Jg
1:hZVt|t−1Z

′Jg′
h+1Ω

−1
p Jg

h+1ZVt|t−1Z
′Jg′

1:h

= Jg
h+1ZVt|t−1Z

′Jg′
h+1

+IN
g
h+1

⊗ Σt − Jg
h+1ZVt|t−1Z

′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
[
V −1

t|t−1 + Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z′Jg′
h+1

= Jg
h+1ZVt|t−1

{
In − Z′Jg′

1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
[
V −1

t|t−1 + Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1
}

Z′Jg′
h+1 + IN

g
h+1

⊗ Σt

= Jg
h+1Z

[
V −1

t|t−1 + Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z′Jg′
h+1 + IN

g
h+1

⊗ Σt.

It is difficult to calculate the determinant of this expression directly, but a Gauss-Jordan transformation yields∣∣∣∣Jg
h+1Z

[
V −1

t|t−1 + Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z′Jg′
h+1 + IN

g
h+1

⊗ Σt

∣∣∣∣
=

∣∣∣∣1N
g
h+1×N

g
h+1

⊗ Jh+1Z
[
V −1

t|t−1 + Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z′J ′h+1 + IN
g
h+1

⊗ Σt

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
Jh+1Z

[
V −1

t|t−1 + Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
J

g
1:hZ

]−1
Z′J′h+1 + Σt

.

.

. 11×N
g
h+1−1 ⊗ Jh+1Z

[
V −1

t|t−1 + Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
J

g
1:hZ

]−1
Z′J′h+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
N

g
h+1−1×1 ⊗ (−Σt)

.

.

. I
N

g
h+1−1 ⊗ Σt

∣∣∣∣∣∣∣∣∣
=

∣∣∣IN
g
h+1−1 ⊗ Σt

∣∣∣ ∣∣∣∣Jh+1Z
[
V −1

t|t−1 + Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z′J ′h+1 + Σt

−
(
Ng

h+1 − 1
)
Jh+1Z

[
V −1

t|t−1 + Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z′J ′h+1 (−Σt)Σ−1
t

∣∣∣∣
= |Σt|N

g
h+1−1

∣∣∣∣Ng
h+1Jh+1Z

[
V −1

t|t−1 + Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z′J ′h+1 + Σt

∣∣∣∣ .
Substituting into (40), we get

∣∣∣Ω1:h+1
t

∣∣∣ = ∣∣∣Ω1:h
t

∣∣∣ |Σt|N
g
h+1−1

∣∣∣∣∣∣Ng
h+1Jh+1Z

[
V −1

t|t−1 +

h∑
i=1

Ng
i Z′J ′iΣ

−1
t JiZ

]−1

Z′J ′h+1 + Σt

∣∣∣∣∣∣ . (41)

Furthermore, ∣∣Ω11
t

∣∣ =
∣∣∣1N

g
1×N

g
1
⊗ J1ZVt|t−1Z

′J ′1 + IN
g
1
⊗ Σt

∣∣∣
=

∣∣∣∣∣ J1ZVt|t−1Z
′J ′1 + Σt 11×N

g
1−1 ⊗ J1ZVt|t−1Z

′J ′1
1N

g
1−1×1 ⊗ (−Σt) IN

g
1−1 ⊗ Σt

∣∣∣∣∣ (42)

= |Σt|N
g
1−1

∣∣Ng
1 J1ZVt|t−1Z

′J ′1 + Σt

∣∣ .
Consequently, we may rewrite |Ωt| as

|Ωt| = |Σt|Nt−G
∣∣Ng

1 J1ZVt|t−1Z
′J ′1 + Σt

∣∣ G∏
h=2

∣∣∣∣∣∣Ng
h+1JhZ

[
V −1

t|t−1 +

h−1∑
i=1

Ng
i Z′J ′iΣ

−1
t JiZ

]−1

Z′J ′h + Σt

∣∣∣∣∣∣ , (43)

which is clearly a tractable expression.
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Next, we want to simplify the expression for Ψt. Using the result from (27), we get

Ψt =
(
ỹt − JtZat|t−1

)′ (
INt ⊗ Σ−1

t

) (
ỹt − JtZat|t−1

)
−
(
ỹt − JtZat|t−1

)′ (
INt ⊗ Σ−1

t

)
JtZ

[
V −1

t|t−1 + Z′J ′t
(
INt ⊗ Σ−1

t

)
JtZ

]−1

×Z′J ′t
(
INt ⊗ Σ−1

t

) (
ỹt − JtZat|t−1

)
.

Furthermore, yit − Jg(i)Zat|t−1 =
(
yit − ȳg(i)t

)
+
(
ȳg(i)t − Jg(i)Zat|t−1

)
where ȳgt is the average value of y in

group g at date t. Hence(
ỹt − JtZat|t−1

)′ (
INt ⊗ Σ−1

t

) (
ỹt − JtZat|t−1

)
=

Nt∑
i=1

[(
yit − ȳg(i)t

)′
Σ−1

t

(
yt− ȳg(i)t

)
+
(
ȳg(i)t − Jg(i)Zat|t−1

)′
Σ−1 (ȳg(i)t − Jg(i)Zat|t−1

)]
=

G∑
g=1

tr

[
Ng

g Σ−1 Cov
gt

yit

]
+
(
ȳG

t − Zat|t−1

)′ (
NG ⊗ Σ−1

t

)(
ȳG

t − Zat|t−1

)
where the last line uses the fact that the trace of a scalar is the scalar. ¿From (34) it follows that(

ỹt − JtZat|t−1

)′ (
INt ⊗ Σ−1

t

)
JtZ

[
V −1

t|t−1 + Z′J ′t
(
INt ⊗ Σ−1

t

)
JtZ

]−1

×Z′J ′t
(
INt ⊗ Σ−1

t

) (
ỹt − JtZat|t−1

)
=

(
ȳG

t − Zat|t−1

)′ (
NG ⊗ Σ−1

t

)
Z
[
V −1

t|t−1 + Z′J ′t
(
INt ⊗ Σ−1

t

)
JtZ

]−1

×Z′
(
NG ⊗ Σ−1

t

)(
ȳG

t − Zat|t−1

)
.

Consequently,

Ψt =

G∑
g=1

tr

[
Ng

g Σ−1 Cov
gt

yit

]

+
(
ȳG

t − Zat|t−1

)′ (
NG ⊗ Σ−1

t

){
IGm − Z

[
V −1

t|t−1 + Z′J ′t
(
INt ⊗ Σ−1

t

)
JtZ

]−1

(44)

× Z′
(
NG ⊗ Σ−1

t

)}(
ȳG

t − Zat|t−1

)
=

G∑
g=1

tr

[
Ng

g Σ−1 Cov
gt

yit

]

+
(
ȳG

t − Zat|t−1

)′ (
NG ⊗ Σ−1

t

){
IGm − Z

[
V −1

t|t−1 + Z′
(
NG ⊗ Σ−1

t

)
Z
]−1

(45)

× Z′
(
NG ⊗ Σ−1

t

)}(
ȳG

t − Zat|t−1

)
.

B A computer program

Below I give the main routines of a computer program to implement the algorithm described
above written in the programming language Ox (see Doornik (1999) for a description). The
procedure filter implements the Kalman filter for surveys as described in Section 2. The
procedure smooth is the associated Kalman smoother. Finally, the procedure loglikelihood
returns the log likelihood of the model and is used for maximum likelihood estimation. The full
program is available from the author upon request.

filter(const model,const a0, const Q0, const sigma, const Q, const data,
const a_pred_out, const V_pred_out, const a_filter_out, const V_filter_out)

{ decl G=model[0], T=model[1], m=model[2], n=model[3], F=model[4], Z=model[5],
y=data[0], Cov=data[1], N=data[2],
a_pred=array(M_NAN),
V_pred=array(M_NAN),
a_filter=array(a0),

13



V_filter=array(Q0),
t,NtS;

for (t=1; t<=T; ++t)
{ NtS=diag(N[t])**invertsym(sigma);

//Matrix with N_t along diagonal ** Sigma^-1
a_pred =a_pred |(F*a_filter[t-1]);
V_pred =V_pred |(F*V_filter[t-1]*F’+Q);
V_filter=V_filter|invertsym(invertsym(V_pred[t])+Z’NtS*Z);
a_filter=a_filter|(a_pred[t]+V_filter[t]*Z’NtS*(y[t]-Z*a_pred[t]));

}

if (a_pred_out) a_pred_out[0] =a_pred;
if (V_pred_out) V_pred_out[0] =V_pred;
if (a_filter_out) a_filter_out[0]=a_filter;
if (V_filter_out) V_filter_out[0]=V_filter;

}

smooth(const model, const a_pred, const V_pred, const a_filter, const V_filter,
const a_smooth_out, const V_smooth_out, const B_out)

{ decl G=model[0], T=model[1], m=model[2], n=model[3], F=model[4], Z=model[5],
a_smooth=new array[T+1],
V_smooth=new array[T+1],
B =new array[T+1],
t;

a_smooth[T]=a_filter[T];
V_smooth[T]=V_filter[T];
for (t=T; t>0; --t)
{ B[t]=V_filter[t-1]*F’invertsym(V_pred[t]);

a_smooth[t-1]=a_filter[t-1]+B[t]*(a_smooth[t]-a_pred[t]);
V_smooth[t-1]=V_filter[t-1]+B[t]*(V_smooth[t]-V_pred[t])*B[t]’;

}

if (a_smooth_out) a_smooth_out[0]=a_smooth;
if (V_smooth_out) V_smooth_out[0]=V_smooth;
if (B_out) B_out[0] =B;

}

Jg(const g, const G, const m)
// Returns m*Gm matrix with unit matrix in g’th postion
{ if (G==1) return unit(m);

if (g==1) return (unit(m)~(zeros(m,(G-1)*m)));
if (g==G) return ((zeros(m,(G-1)*m))~unit(m));
return (zeros(m,(g-1)*m)~unit(m)~zeros(m,(G-g)*m));

}

lndet(const A)
// More convenient form of logdet
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{ decl asign;
return logdet(A,&asign);

}

loglikelihood(const model, const a0, const Q0, const sigma, const Q, const data)
{ decl G=model[0], T=model[1], m=model[2], n=model[3], F=model[4], Z=model[5],

y=data[0], Cov=data[1], N=data[2],
a, V, // Predicted values
t,g,Omega_t, Psi_t, ll=0,sumZJSJZ,Nt,yG,NtS,
inv_sigma=invertsym(sigma);

filter(model,a0,Q0,sigma,Q,data,&a,&V,0,0);

for (t=1;t<=T;++t)
{ NtS=diag(N[t])**invertsym(sigma);

//Matrix with N_t along diagonal ** Sigma^-1
g=1;
Omega_t=lndet(N[t][g-1]*Jg(g,G,m)*Z*V[t]*Z’Jg(g,G,m)+sigma);
Psi_t=N[t][g-1]*trace(inv_sigma*Cov[t][g-1]);
sumZJSJZ=N[t][g-1]*Z’Jg(g,G,m)’*inv_sigma*Jg(g,G,m)*Z;
Nt=N[t][g-1];
yG=y[t][g-1];

for (g=2; g<=G; ++g)
{ Omega_t+=lndet(N[t][g-1]*Jg(g,G,m)*Z*

invertsym(invertsym(V[t])+sumZJSJZ)*Z’Jg(g,G,m)+sigma);
Psi_t+=N[t][g-1]*trace(inv_sigma*Cov[t][g-1]);
sumZJSJZ+=N[t][g-1]*Z’Jg(g,G,m)’*inv_sigma*Jg(g,G,m)*Z;
Nt+=N[t][g-1];
yG|=y[t][g-1];

}
Omega_t+=(Nt-G)*lndet(sigma);
Psi_t+=(yG-Z*a[t])’*NtS*(unit(G*m)-Z*invertsym(invertsym(V[t])+Z’NtS*Z)*Z’NtS)

*(yG-Z*a[t]);
ll-=0.5*(Omega_t+Psi_t);

}
return ll;

}
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