Caporale, Guglielmo Maria; Gil-Alana, Luis A.

Working Paper
Non-linearities and fractional integration in the US unemployment rate

HWWA Discussion Paper, No. 259

Provided in Cooperation with:
Hamburgisches Welt-Wirtschafts-Archiv (HWWA)

Suggested Citation: Caporale, Guglielmo Maria; Gil-Alana, Luis A. (2004) : Non-linearities and fractional integration in the US unemployment rate, HWWA Discussion Paper, No. 259

This Version is available at:
http://hdl.handle.net/10419/19231

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
NON-LINEARITIES AND FRACTIONAL INTEGRATION IN THE US UNEMPLOYMENT RATE

Guglielmo Maria Caporale
Luis A. Gil-Alana

HWWA DISCUSSION PAPER 259
Hamburgisches Welt-Wirtschafts-Archiv (HWWA)
Hamburg Institute of International Economics 2004
ISSN 1616-4814
Hamburgisches Welt-Wirtschafts-Archiv (HWWA)
Hamburg Institute of International Economics
Neuer Jungfernstieg 21 - 20347 Hamburg, Germany
Telefon: 040/428 34 355
Telefax: 040/428 34 451
e-mail: hwwa@hwwa.de
Internet: http://www.hwwa.de

The HWWA is a member of:

- Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (WGL)
- Arbeitsgemeinschaft deutscher wirtschaftswissenschaftlicher Forschungsinstitute (ARGE)
- Association d’Instituts Européens de Conjoncture Economique (AIECE)
NON-LINEARITIES
AND FRACTIONAL
INTEGRATION IN THE
US UNEMPLOYMENT RATE

Guglielmo Maria Caporale*
Luis A. Gil-Alana**

HWWA Discussion Paper 259
http://www.hwwa.de

Hamburg Institute of International Economics (HWWA)
Neuer Jungfernstieg 21 - 20347 Hamburg, Germany
e-mail: hwwa@hwwa.de

* London South Bank University and London Metropolitan University
** University of Navarre

The second named author gratefully acknowledges financial support from the Government of Navarra (“Ayudas de Formación e Investigación y Desarrollo”).

The paper has been presented at the "International Monetary Issues and Financial Markets" Seminar, November 21, 2003, at HWWA.

Edited by the Department World Economy
Head: PD Dr. Carsten Hefeker
NON-LINEARITIES AND FRACTIONAL INTEGRATION IN THE US UNEMPLOYMENT RATE

Abstract
This paper proposes a model of the US unemployment rate which accounts for both its asymmetry and its long memory. Our approach, based on the tests of Robinson (1994), introduces fractional integration and nonlinearities simultaneously into the same framework (unlike earlier studies employing a sequential procedure), using a Lagrange Multiplier procedure with a standard limit distribution. The empirical results suggest that the US unemployment rate can be specified in terms of a fractionally integrated process, which interacts with some non-linear functions of the labour demand variables (real oil prices and real interest rates). We also find evidence of a long-memory component. Our results are consistent with a hysteresis model with path dependency rather than a NAIRU model with an underlying unemployment equilibrium rate, hence giving support to more activist stabilisation policies. However, any suitable model should also include business cycle asymmetries, with implications for both forecasting and policy-making.

Keywords: C32, E32.
JEL Classification: Unemployment, Asymmetries, Nonlinearities, Fractional Integration, Persistence, Long Memory.

Professor Guglielmo Maria Caporale
London South Bank University
103 Borough Road, London SE1 0AA, UK.
Tel. +44 (0)20 7815 7012. Fax +44 (0)20 7815 8226.
E-mail: g.m.caporale@lсу.ac.uk
1. Introduction

Two well-known facts about the unemployment rate are (i) the high persistence of shocks, or hysteresis (see Blanchard and Summers, 1987), which is a feature, among others, of “insider” models (see Lindbeck and Snower, 1988), or of models in which fixed and sunk costs make current unemployment a function of past labour demand (see Cross, 1994, 1995), and (ii) its asymmetric behaviour, namely the fact that unemployment appears to rise faster in recessions than it falls during recoveries. Both are well documented, especially in the case of the US (see, e.g., Rothman, 1991). One possible explanation for the latter is the presence of asymmetric adjustment costs of labour, such as hiring and firing costs, which have been shown to account well for movements in the unemployment rate in Europe after 1973 (see Bentolilla and Bertoli, 1990), even though, as pointed out by Hamermesh and Pfann (1996), asymmetry at firm level does not necessarily imply asymmetry at macro level. Other suggested explanations include asymmetry in job destruction (i.e., the fact that jobs disappear at a higher rate during recessions than expansions – see Caballero and Hammour, 1994), and/or in capital destruction (see Bean, 1989).

Any satisfactory model of the unemployment rate has to be able to account for these two properties, i.e. long memory and non-linearity. In particular, overlooking non-linearities can result in misleading in-sample diagnostics (see Potter, 1995). Further, non-linear specifications might lead to an improvement over conventional linear forecasts (see, e.g., Parker and Rothman, 1997, Montgomery et al, 1998, and Rothman, 1998).

Various non-linear models have in fact already been estimated in the literature, starting with the seminal paper by Neftci (1984) (see the extensive survey by Pfann, 1993, and also Potter, 1995). In a number of cases models with a single or infrequent shifts in the mean of the unemployment rate have been adopted. Prominent examples are Bianchi and Zoega (1998), whose Markov-switching model only allowed for a switch in the intercept in order to analyse the issue of multiple equilibria, and Papell et al. (2000), who tested for multiple structural changes. Several studies are based on smooth transition mechanisms. These include Rothman (1998), who estimated AR, (S)TAR (smooth transition autoregressive) and bilinear models for predicting US unemployment, and Hansen (1997), who fitted a TAR (threshold autoregressive) model to US unemployment. Other contributions using different approaches are Parker and Rothman (1998), who applied Beaudry and Koop’s (1993) current depth of recession approach; and Franses and Paap (1998), who developed AR models with censored latent effect parameters. More recently, Coakley et al. (2001) have tried to complement the regime shift literature with business cycle asymmetries. Specifically, they combine a
single regime shift in the equilibrium level with asymmetries in the speed of adjustment, which are modelled using a momentum threshold autoregression (M-TAR) model characterised by fast-up, slow-down dynamics over the business cycle. In a more theoretical paper, Caner and Hansen (2001) examine a two-regime TAR(k) model with an autoregressive unit root. They develop an appropriate asymptotic theory, and show that the joint application of two tests – for a threshold and for a unit root – enables one to distinguish between nonlinear and nonstationary processes. They find that the US unemployment rate is a stationary nonlinear threshold autoregression.

An interesting study is due to Skalin and Teräsvirta (2000), who argue that the observed asymmetry can be captured by a simple model based on the standard logistic smooth transition autoregressive (LSTAR) model for the first difference of unemployment, but also including a lagged level term. Such a specification allows for asymmetry by introducing “local” nonstationarity in a globally stable model. They stress that their analysis has implications for policy-makers, who should take into account the fact that asymmetric forecast densities mean that the probability of erring is also asymmetric. Further, there are implications for multivariate modelling: if the unemployment rate is in fact a stationary nonlinear process, linear VARs based on the assumption that it is a I(1) variable and including cointegrating relationships with other I(1) regressors will be mis-specified. Therefore, some papers analyse the joint dynamics of US output and unemployment in the context of nonlinear VARs. For instance, Altissimo and Violante (2001) estimate a threshold VAR model of output and unemployment in the US, in which nonlinearity arises from including a feedback variable measuring the depth of the current recession, and the threshold growth rate separating the two regimes (expansions and recessions) is endogenously determined.

Further evidence on nonlinearities in unemployment has been obtained by estimating linear models, and then carrying out the time domain test of time reversibility (TR) on the residuals introduced by Ramsey and Rothman (1996). For instance, Rothman (1999) finds that ARMA models of US unemployment display TR, indicating that the true DGP is not linear, a result which appears to be robust to differencing and linear detrending when the model allows for conditional mean nonlinearity; however, it is not robust to allowing for GARCH effects.

All these studies typically assume that the disturbances follow an I(0) stationary process, and adopt an AR, MA or ARMA specification for the error term. One of the few exceptions is the study by van Dijk et al (2002), where a fractional integration smooth transition autoregression time series [FISTAR] model is estimated and shown to outperform rival specifications. In this paper we also model unemployment as a nonlinear process, and allow for the disturbances to be fractionally integrated. However,
unlike van Dijk et al (2002), who employ a sequential procedure, we introduce both fractional integration and nonlinearities simultaneously into the same framework, which has the obvious advantage of requiring a single procedure for testing the order of integration of the series. Moreover, it is a Lagrange Multiplier (LM) one, and, therefore, it has a standard null limit distribution. A limitation of our approach lies in the specification of the non-linear (in variables) process, which is such that it becomes linear in the parameters to avoid the interaction with the fractional differencing parameter. Specifically, we use non-linear transformations of the variables, which are regressed in a linear model and do not involve non-linear estimation. Thus, the parameters to be estimated and tested are those corresponding to the short-run components of the series and the order of integration respectively. However, despite this limitation, our specification does enable us to account not only for asymmetry (as other nonlinear models do), but also for the high persistence of shocks and the long memory of the unemployment process. The outline of the paper is as follows: Section 2 presents the model and a procedure of Robinson (1994) for testing the degree of integration of the series. In Section 3, the procedure is applied to the US unemployment rate, while Section 4 concludes.

2. Testing of I(d) hypotheses in non-linear models

Let us suppose that \(\{y_t, t = 1, 2, \ldots, T\} \) is the time series we observe (in our case, unemployment) and that it is related to some exogenous components from both the demand and the supply side, \(z_t \), through the relationship:

\[
y_t = f(z_t; \theta) + x_t, \quad t = 1, 2, \ldots, \tag{1}
\]

where \(\theta \) represents the unknown coefficients and \(x_t \) is driven by:

\[
(1 - L)^d x_t = u_t, \quad t = 1, 2, \ldots, \tag{2}
\]

where \(d \) may be a real value and \(u_t \) is I(0).\(^1\) Note that the fractional polynomial can be expressed in terms of its Binomial expansion, such that:

\[
(1 - L)^d = \sum_{j=0}^{\infty} \binom{d}{j} (-1)^j L^j = 1 - dL + \frac{d(d-1)}{2} L^2 - \ldots
\]

for all real \(d \). Clearly, if \(d = 0 \) in (2) \(x_t = u_t \), and a ‘weakly autocorrelated’ \(x_t \) is allowed for. However, if \(d > 0 \), \(x_t \) is said to be a long memory process, also called ‘strongly

\(^1\) For the purpose of the present paper, we define an I(0) process as a covariance stationary process with spectral density function that is positive and finite at the zero frequency.
autocorrelated’, so-named because of the strong association between observations widely separated in time.

Robinson (1994) proposed a Lagrange Multiplier (LM) test of the null hypothesis:

\[H_0: d = d_0. \] (3)

for any real given value \(d_0 \) in a model given by (2), where \(x_t \) may be the errors from the regression (linear) model:

\[y_t = \beta'z_t + x_t, \quad t = 1, 2, \] (4)

The test is based on the null differenced model in (2) – (4):

\[(1 - L)^{d_0} y_t = \beta'(1 - L)^{d_0} z_t + u_t, \quad t = 1, 2, ..., \] (5)

and its functional form can be found in various empirical applications (e.g., Gil-Alana and Robinson, 1997; Gil-Alana, 2000, 2001a).

In this paper, we extend Robinson’s (1994) procedure to the case of non-linear regression models, i.e., testing \(H_0 \) (3) in a model given by (1) and (2). Note that under the null hypothesis (3), (1) and (2) becomes:

\[(1 - L)^{d_0} y_t = (1 - L)^{d_0} f(z_t; \theta) + u_t, \quad t = 1, 2, \] (6)

The main problem with this equation lies in the interaction between the fractional polynomial \((1 - L)^{d_0}\) and the possibly non-linear function \(f, \) and the estimation of the parameters involved in such a relationship. For the purpose of the present study, let us assume that \(f(z_t; \theta) = \theta g(z_t), \) where \(g \) is of a non-linear nature. In such a case, (6) becomes:

\[(1 - L)^{d_0} y_t = \theta'w_t + u_t, \quad t = 1, 2, ..., \] (7)

where \(w_t = (1 - L)^{d_0} g(z_t). \) We can obtain the OLS estimate of \(\theta \) and residuals:

\[\hat{u}_t = (1 - L)^{d_0} y_t - \hat{\theta}'w_t, \quad \hat{\theta} = \left(\sum_{t=1}^{T} w_t w_t' \right)^{-1} \sum_{t=1}^{T} w_t (1 - L)^{d_0} y_t, \]

and the same type of analysis as in Robinson (1994) can be conducted here. Denoting the periodogram of \(u_t, \)

\[I(\lambda_j) = \frac{1}{2\pi T} \left| \sum_{j=1}^{T} \hat{u}_t e^{i\lambda_j t} \right|^2, \]
the test statistic takes the form:

\[\hat{R} = \hat{r}^2; \quad \hat{r} = \left(\frac{T}{\hat{A}} \right)^{1/2} \frac{\hat{a}}{\hat{\sigma}^2}. \]

(8)

where \(T \) is the sample size and

\[\hat{a} = \frac{-2\pi}{T} \sum_{j=1}^{T-1} \psi(\lambda_j) g(\lambda_j; \hat{\tau})^{-1} I(\lambda_j); \quad \hat{\sigma}^2 = \sigma^2(\hat{\tau}) = \frac{2\pi}{T} \sum_{j=1}^{T-1} g(\lambda_j; \hat{\tau})^{-1} I(\lambda_j); \]

\[\hat{A} = \frac{2}{T} \left(\sum_{j=1}^{T-1} \psi(\lambda_j)^2 - \sum_{j=1}^{T-1} \psi(\lambda_j) \hat{e}(\lambda_j) \times \left(\sum_{j=1}^{T-1} \hat{e}(\lambda_j) \hat{e}(\lambda_j)^\prime \right)^{-1} \times \sum_{j=1}^{T-1} \hat{e}(\lambda_j) \psi(\lambda_j) \right) \]

\[\psi(\lambda_j) = \log \left| \frac{2 \sin \frac{\lambda_j}{2} }{\lambda_j} \right|; \quad \hat{e}(\lambda_j) = \frac{\partial}{\partial \tau} \log g(\lambda_j; \hat{\tau}); \quad \lambda_j = \frac{2\pi}{T} j; \quad \hat{\tau} = \arg \min \sigma^2(\tau), \]

and the function \(g \) above is a known function coming from the spectral density function of \(u_t \).

\[f(\lambda; \sigma^2; \tau) = \frac{\sigma^2}{2\pi} g(\lambda; \tau), \quad -\pi < \lambda \leq \pi. \]

Note that these tests are purely parametric, and, therefore, they require specific modelling assumptions about the short-memory specification of \(u_t \). Thus, if \(u_t \) is white noise, \(g \equiv 1 \), and if \(u_t \) is an AR process of form \(\phi(L)u_t = \varepsilon_t \), \(g = |\phi(e^{i\lambda})|^2 \), with \(\sigma^2 = V(\varepsilon_t) \), so that the AR coefficients are function of \(\tau \).

It is clear then that \(\hat{\theta} \) is a consistent estimate of \(\theta \), \(\hat{u} \), satisfying the same properties as in Robinson (1994), and thus, under certain regularity conditions:

\[\hat{R} \to_d \chi^2_1, \quad \text{as} \quad T \to \infty. \]

(9)

Consequently, unlike in other procedures, we are in a classical large-sample testing situation for the reasons explained by Robinson (1994), who also showed that the tests are efficient in the Pitman sense against local departures from the null. Because \(\hat{R} \) involves a ratio of quadratic forms, its exact null distribution can be calculated under Gaussianity via Imhof’s algorithm. However, a simple test is approximately valid under much wider distributional assumptions: an approximate one-sided 100\% level test of \(H_0 \) against the alternative: \(H_a: d > d_0 \) (\(d < d_0 \)) will be given by the rule: “Reject \(H_0 \) if

2 These conditions are very mild and concern technical assumptions to be satisfied by \(\psi(\lambda) \).
\[\hat{r} > z_\alpha (\hat{r} < -z_\alpha)^\prime, \] where the probability that a standard normal variate exceeds \(z_\alpha\) is \(\alpha\).³

To capture nonlinear features in a time series, one can choose from a wide variety of nonlinear models (see Franses and Van Dijk, 2000, for a recent survey). A model which enjoys a fair amount of popularity, mainly due to its empirical tractability, is the smooth transititon autoregressive (STAR) model, that is,

\[y_t = (\theta_{t0} + \theta_{t1} y_{t-1} + \ldots + \theta_{t\tau} y_{t-\tau})(1 - G(z_t; \gamma, c) + (\theta_{z0} + \theta_{z1} y_{t-1} + \ldots + \theta_{z\tau} y_{t-\tau})G(z_t; \gamma, c) + \varepsilon_t, \]

where \(\varepsilon_t\) is a white noise process and the transition function \(G(z_t; \gamma, c)\) usually is assumed to be the logistic function:

\[G(z_t; \gamma, c) = \frac{1}{1 + \exp(-\gamma(z_t - c) / \sigma_z)}^{-1} \quad (10) \]

with \(\gamma > 0\), and where \(z_t\) is the transition variable (possibly a set of exogenous regressors), \(\sigma_z\) is the standard deviation of \(z_t\), \(\gamma\) is a slope parameter and \(c\) is a location parameter. The parameter restriction \(\gamma > 0\) is an identifying restriction. The value of the logistic function (10), which is bounded between 0 and 1, depends on the transition variable \(z_t\) as follows: \(G(z_t; \gamma, c) \to 0\) as \(z_t \to -\infty\), \(G(z_t; \gamma, c) = 0.5\) for \(z_t = c\), and \(G(z_t; \gamma, c) \to 1\) as \(z_t \to +\infty\).⁴

In our application we do not consider the parameters affecting (10) because of the interaction with the fractional integration polynomial, and thus we assume that \(\gamma = 1\) and \(c = 0\).⁵ Moreover, we do not have to take into account the lag structure of the dependent variable \(y_t\), since this will be contained in the (possible) weak autocorrelation structure of \(u_t\) in (2). Thus, a simple smooth transition model is:

\[g(z_t) = \theta_{t0} [1 - G(z_t)] + \theta_{z0} G(z_t); \quad G(z_t) = \frac{1}{1 + \exp\left(\frac{-z_t}{s_{z_t}}\right)}; \quad s_{z_t} = \frac{1}{T} \sum_{t=1}^{T} z_t^2, \]

where \(z_t\) contains each of the variables affecting unemployment. Clearly, \(G(z_t)\) does not involve the estimation of any parameters, and thus the model under the null becomes:

³ This version of the tests of Robinson (1994) was used in empirical applications in Gil-Alana and Robinson (1997) and Gil-Alana (2000), and other versions of his tests, based on seasonal (quarterly and monthly), and cyclical data can be respectively found in Gil-Alana and Robinson (2001) and Gil-Alana (1999, 2001b).

⁴ Illustrative applications of the STAR model and the closely related TAR model to unemployment rates can be found in Montgomery et al. (1998); Koop and Potter (1999); Caner and Hansen (2001) and Skalin and Teräsvirta (2000) among others.

⁵ In the empirical application carried out in the following section, we work with demeaned series to avoid the influence of the location parameter.
\[(1 - L)^{d_x} y_t = \sum_{i=1}^{k} \left(\theta_{10} S^i_{1t} + \theta_{20} S^i_{2t} \right) + u_t, \quad t = 1, 2, \ldots, \]

where \(S^i_{1t} = (1 - L)^{d_x} [1 - G(z_{it})] \) and \(S^i_{2t} = (1 - L)^{d_x} G(z_{it}), \) which is supposed to be I(0), and therefore standard techniques can be applied.

3. The US experience

In this section the testing procedure described in Section 2 is used to identify the dynamics of the US unemployment rate. The unemployment series used is the logistic transformation of the unemployment rate in the US\(^6\), and we also consider real oil prices and real interest rates, quarterly, for the time period 1960q1 to 2002q3. Specifically, we use an oil price index (the industrial price index for refined petroleum and coal products, which is the available series with the longest time span), and the 5-year benchmark government bond yield (end of the month). The real oil price and real interest rates series have been constructed using the GDP deflator. All series are seasonally unadjusted, and are taken from Datastream.

The variables employed are the same as in Carruth et al. (1998). In that paper, the authors examine the relationship between these three variables by means of classical cointegration techniques. We use the term “classical” in the sense that it is assumed that all individual series are nonstationary I(1), while the equilibrium long-run relationship is stationary I(0). Carruth et al. (1998) assume that causality in the model is unidirectional: only prices matter, while real interest rates are also included as another relevant variable operating at the world level, and hence causality links may also be bidirectional. If one wanted to rationalise it in terms of general equilibrium, one would say that the US is an economy with a stable set of supply-side policies implying a high degree of wage flexibility in the labour market. The main variables that have shifted the long-run labour demand up the (“wage-curve” or efficiency wage) labour supply would be world changes in input prices and in the cost of capital. (Note that real interest rates are implicitly assumed to have no or at most a weak effect on the labour supply via intertemporal substitution).

In this paper, we depart from the Carruth et al. (1998) model from an econometric viewpoint. Thus, instead of assuming a linear relationship, we introduce non-linearities. Moreover, instead of using integer orders of integration, we allow for the possibility of fractional values. This is motivated by earlier work reported in

\(^6\) See Wallis (1987) for a justification based on the logistic transformation being defined between \(\pm \infty \) so that standard distributions apply.
Caporale and Gil-Alana (2002), who found cointegration between the same set of variables for Canada in the presence of autocorrelated disturbances, suggesting that their relationship also has a dynamic component. Furthermore, they reported evidence of fractional (as opposed to classical) cointegration, which implies long memory and slow reversion to equilibrium.

Denoting unemployment in the US by UNE, real oil prices by ROP, and real interest rates by RIR, we employ throughout the model:

\[UNE_t = \theta_{10}^1 [1 - G(ROP_t)] + \theta_{20}^2 G(ROP_t) + \theta_{10}^3 [1 - G(RIR_t)] + x_t, \quad (11) \]

and (2), testing \(H_0\) (3) for values \(d_o = 0, (0.20), 2\), using white noise and autocorrelated disturbances.7

Table 1 reports the values of the one-sided statistic \(\hat{r}\) in (8). We observe that if we assume that \(u_t\) is white noise, the only value of \(d_o\) for which \(H_0\) cannot be rejected is 0.80, implying long memory and mean-reverting behaviour. However, if we allow for autoregressive behaviour in \(u_t\), the unit root null cannot be rejected. Similarly, if \(u_t\) follows the Bloomfield’s (1973) exponential spectral model,8 the unit root (i.e., \(d_o = 1\)) is the only non-rejected value. Finally, in view of the quarterly structure of the series, we also tried seasonal autoregressions of the form:

\[u_t = \sum_{r=1}^{p} \phi_r u_{t-r}, \quad t = 1, 2, ..., \quad (12) \]

with \(p = 1\) and 2. In this case, we find that the null is rejected for all values of \(d\) smaller than or equal to 1. If \(p = 1\), the non-rejection values occur for \(d_o = 1.20, 1.40\) and \(1.60\), and if \(p = 2\), \(d_o = 1.20\) is the only non-rejection value. Thus, the results appear to be very sensitive to the specification of the \(I(0)\) disturbances, values of \(d\) smaller than, equal to, or higher than 1 being obtained depending on whether the disturbances are white noise, non-seasonally and seasonally autocorrelated.

7 Note that we do not include in the regression model \(G(RIR)\) to avoid the problem of multicollinearity.

8 This is a non-parametric approach to modelling the \(I(0)\) disturbances, which produces autocorrelations decaying exponentially as in the AR case (see, e.g., Gil-Alana, 2001b).
TABLE 1

<table>
<thead>
<tr>
<th>Testing the order of integration with the tests of Robinson (1994) in a fractional</th>
<th>0.00</th>
<th>0.20</th>
<th>0.40</th>
<th>0.60</th>
<th>0.80</th>
<th>1.00</th>
<th>1.20</th>
<th>1.40</th>
<th>1.60</th>
<th>1.80</th>
<th>2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>White noise</td>
<td>15.55</td>
<td>11.98</td>
<td>8.22</td>
<td>3.98</td>
<td>-0.05</td>
<td>-2.83</td>
<td>-4.40</td>
<td>-5.27</td>
<td>-5.80</td>
<td>-6.15</td>
<td>-6.41</td>
</tr>
<tr>
<td>AR (1)</td>
<td>5.01</td>
<td>4.08</td>
<td>3.42</td>
<td>2.80</td>
<td>1.79</td>
<td>-0.09</td>
<td>-1.69</td>
<td>-2.75</td>
<td>-3.39</td>
<td>-3.77</td>
<td>-4.00</td>
</tr>
<tr>
<td>AR (2)</td>
<td>3.51</td>
<td>2.96</td>
<td>2.48</td>
<td>1.90</td>
<td>0.08</td>
<td>-1.22</td>
<td>-2.75</td>
<td>-4.00</td>
<td>-4.90</td>
<td>-5.50</td>
<td>-5.92</td>
</tr>
<tr>
<td>Bloomfield</td>
<td>5.08</td>
<td>3.15</td>
<td>2.95</td>
<td>2.49</td>
<td>1.97</td>
<td>0.10</td>
<td>-2.10</td>
<td>-3.95</td>
<td>-5.35</td>
<td>-6.38</td>
<td>-7.17</td>
</tr>
<tr>
<td>Bloomfield</td>
<td>7.01</td>
<td>4.96</td>
<td>3.68</td>
<td>3.44</td>
<td>2.72</td>
<td>0.13</td>
<td>-2.89</td>
<td>-5.45</td>
<td>-7.37</td>
<td>-8.80</td>
<td>-9.89</td>
</tr>
<tr>
<td>Seasonal</td>
<td>11.36</td>
<td>9.22</td>
<td>7.07</td>
<td>5.23</td>
<td>3.70</td>
<td>2.41</td>
<td>1.26</td>
<td>0.19</td>
<td>-0.82</td>
<td>-1.79</td>
<td>-2.69</td>
</tr>
<tr>
<td>Seasonal</td>
<td>16.10</td>
<td>15.22</td>
<td>13.58</td>
<td>10.4</td>
<td>6.16</td>
<td>2.85</td>
<td>0.20</td>
<td>-1.85</td>
<td>-3.36</td>
<td>-4.41</td>
<td>-5.15</td>
</tr>
</tbody>
</table>

In bold, the non-rejection values of the null hypothesis at the 5% level.

TABLE 2

| Confidence Intervals of the non-rejection values of \(d_o\) at the 95% significance level |
|--|-----------------|------|
| Disturbances | Confidence Intervals | \(d_o\) |
| White noise | [0.72 - 0.90] | 0.80 |
| AR (1) | [0.82 - 1.19] | 0.99 |
| AR (2) | [0.69 - 1.05] | 0.82 |
| Bloomfield (1) | [0.85 - 1.15] | 1.01 |
| Bloomfield (2) | [0.89 - 1.11] | 1.01 |
| Seasonal AR (1) | [1.14 - 1.76] | 1.44 |
| Seasonal AR(2) | [1.09 - 1.37] | 1.22 |

Table 2 displays, for each type of disturbances, the 95%-confidence intervals of those values of \(d_o\) for which \(H_o\) cannot be rejected, along with the value of \(d_o\) (\(d_o^*\)), which produces the lowest statistic in absolute value across \(d\). We see that if \(u_t\) is white noise, all values are below unity. If \(u_t\) follows an AR process, the intervals include the unit root and the same happens with the Bloomfield model, while \(d\) is higher than 1 for seasonal autoregressions.

The large differences observed in the values of \(d\) when seasonal autoregressions are taken into account suggest that seasonality should also be
considered. Seasonal dummy variables were first included in the regression model (11), but the coefficients corresponding to the dummies were found to be insignificantly different from zero. Note that the tests of Robinson (1994) are based on the null differenced model, which exhibits short memory, and thus standard t-tests apply. On the other hand, the large values of d observed in Table 1 when u_t is seasonally AR may suggest that seasonality is of a nonstationary nature. Therefore, we decided also to use another version of Robinson’s (1994) tests, which is based on the model,

$$(1 - L^d)x_t = u_t, \quad t = 1, 2, \ldots.$$

(13)

In such a case, \hat{r} takes a similar form to (8), but \hat{u}_t is now defined as:

$$\hat{u}_t = (1 - L^d)y_t - \hat{\theta}w_t,$$

and

$$\psi(\lambda_j) = \log \left| \sin \frac{\lambda_j}{2} \right| + \log \left| 2 \cos \frac{\lambda_j}{2} \right| + \log \left| 2 \cos \lambda_j \right|, \quad \hat{\epsilon}(\lambda_j) = \frac{\partial}{\partial \tau} \log g(\lambda_j; \tau),$$

and the test statistic still has the same standard null limit distribution. Ooms (1995) also proposed tests based on seasonal fractional models. They are Wald tests, requiring efficient estimates of the fractional differencing parameter. He used a modified periodogram regression estimation procedure due to Hassler (1994). Also, Hosoya (1997) established the limit theory for long memory processes with the singularities not restricted at the zero frequency, and proposed a set of quasi log-likelihood statistics to be applied to raw time series. Unlike these methods, the tests of Robinson (1994) do not require estimation of the long-memory parameters, since the differenced series have short memory under the null.9

9 Empirical applications based on this version of Robinson’s (1994) tests can be found, among others, in Gil-Alana and Robinson (2001) and Gil-Alana (2002).
Table 3 reports the results for the same values of d_o and the same type of disturbances as in Table 1, but using (11) along with the new model (13). We see that if u_t is white noise, the unit root null hypothesis is now rejected in favour of higher orders of integration, and H_o (3) cannot be rejected when $d_o = 1.20, 1.40, 1.60$ and 1.80. If u_t is AR(1), the non-rejection values are $d_o = 0.80$ and 1.00, and if it is AR(2) the values are slightly higher: $1, 1.20$ and 1.40. Using the Bloomfield exponential spectral model, the results are the same with one or two parameters, and H_o cannot be rejected at $d_o = 0.80, 1, 1.20$ and 1.40. Finally, including seasonal ARs of form as in (12), the values coincide with those using white noise disturbances, i.e., $1.20, 1.40, 1.60$ and 1.80. Table 4 is the

| TABLE 3 |
| Testing the order of integration with the tests of Robinson (1994) in a seasonal fractional model |
Disturbances	0.00	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00
White noise	6.64	6.09	5.53	4.80	3.73	2.55	1.54	0.74	-0.08	-0.47	-1.96
AR (1)	3.14	2.89	2.44	2.20	-0.86	-1.44	-1.92	-2.32	-2.65	-2.94	-3.18
AR (2)	6.61	6.24	5.19	3.85	2.33	0.92	-0.26	-1.23	-1.98	-2.55	-2.97
Bloomfield (1)	2.34	2.19	1.88	1.73	0.89	0.05	-0.73	-1.38	-1.94	-2.42	-2.84
Bloomfield (2)	2.13	2.01	1.92	1.76	0.92	0.05	-0.75	-1.42	-1.99	-2.49	2.92
Seasonal AR(1)	4.73	3.98	3.16	3.16	2.95	2.59	1.50	1.39	1.17	0.26	-1.92
Seasonal AR(2)	6.17	4.09	2.91	2.15	1.95	1.69	1.20	1.00	0.17	-1.34	-2.33

In bold, the non-rejection values of the null hypothesis at the 5% level.

| TABLE 4 |
| Confidence Intervals of the non-rejection values of d_o at the 95% significance level |
Disturbances	Confidence Intervals	d
White noise	[1.22 - 1.91]	1.59
AR (1)	[0.70 - 1.13]	0.94
AR (2)	[0.90 - 1.50]	1.15
Bloomfield (1)	[0.66 - 1.50]	1.06
Bloomfield (2)	[0.69 - 1.48]	1.05
Seasonal AR (1)	[1.17 - 1.90]	1.70
Seasonal AR(2)	[1.08 - 1.84]	1.62
counterpart of Table 2 with seasonal fractional integration, reporting the confidence intervals and the values of \(d_o^* \) for each type of disturbances. If \(u_t \) is white noise or seasonal AR, the values are higher than 1. For the remaining four cases (AR and Bloomfield \(u_t \)) the values are around 1. In the following section, we try to select the best model specification from all these potential models.

4. Model selection

First, we focus on the models presented in Tables 1 and 2 and choose, for each type of disturbances, the model with the lowest statistic in absolute value. The selected models are described in the upper part of Table 5 (denoted by NS#).\(^{10}\) Simple visual inspection of the residuals for the models NS1-NS3 suggests that these are not adequate specifications, in view of the seasonal structure still apparent in the residuals (the charts are not included in the paper). Thus, we only compare the models NS4 and NS5 on the basis of their diagnostics.

(Insert Table 5 about here)

The lower part of Table 5 describes the selected models in Tables 3 and 4 based on seasonal fractional integration. They are now denoted by S#. Here, we observe that S4 and S5 (the models based on seasonal autoregressions) produce results very similar to S1 (based on a white noise \(u_t \)) in terms of the estimated coefficients of the non-linear variables. Moreover, the coefficients of the seasonal AR parameters are in both cases close to zero, suggesting that seasonal autoregressions are not required in the context of seasonal fractional integration. Therefore, we have five potential models to describe the series of interest: NS4, NS5, S1, S2 and S3. We test for no serial autocorrelation by means of a slight modification of the test proposed by Eitrheim and Teräsvirta (1996) for the standard STAR model.

\(^{10}\) Note that the models based on Bloomfield (1973) disturbances are not considered since they do not have a parametric formula for the weak dependence structure.
TABLE 5

Selected models across Tables 1 and 2

<table>
<thead>
<tr>
<th></th>
<th>Equation</th>
<th>Standard errors in parentheses.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS1</td>
<td>$\text{UNE}_t = -2.136V_1 - 0.960V_2 + 2.624V_3 + x_t; \ (1 - L)^{0.80} x_t = \varepsilon_t$</td>
<td>(1.001) (1.110) (1.050)</td>
</tr>
<tr>
<td>NS2</td>
<td>$\text{UNE}t = -2.073V_1 - 1.462V_2 + 2.870V_3 + x_t; \ (1 - L)^{0.99} x_t = u_t; \ u_t = -0.268u{t-1} + \varepsilon_t$</td>
<td>(1.017) (1.223) (1.097)</td>
</tr>
<tr>
<td>NS3</td>
<td>$\text{UNE}t = -2.132V_1 - 1.033V_2 + 2.665V_3 + x_t; \ (1 - L)^{0.82} x_t = u_t; \ u_t = -0.090u{t-1} + 0.165u_{t-2} + \varepsilon_t$</td>
<td>(0.987) (1.106) (1.038)</td>
</tr>
<tr>
<td>NS4</td>
<td>$\text{UNE}t = -1.755V_1 - 1.494V_2 + 2.824V_3 + x_t; \ (1 - L)^{1.44} x_t = u_t; \ u_t = 0.839u{t-4} + \varepsilon_t$</td>
<td>(0.678) (0.895) (0.766)</td>
</tr>
<tr>
<td>NS5</td>
<td>$\text{UNE}t = -1.926V_1 - 1.606V_2 + 2.908V_3 + x_t; \ (1 - L)^{1.22} x_t = u_t; \ u_t = -0.091u{t-4} + 0.781u_{t-8} + \varepsilon_t$</td>
<td>(0.757) (0.781) (0.841)</td>
</tr>
</tbody>
</table>

Selected models across Tables 3 and 4

<table>
<thead>
<tr>
<th></th>
<th>Equation</th>
<th>Standard errors in parentheses.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>$\text{UNE}_t = -4.268V_1 - 2.815V_2 + 4.075V_3 + x_t; \ (1 - L^4)^{1.59} x_t = \varepsilon_t$</td>
<td>(0.775) (0.712) (0.707)</td>
</tr>
<tr>
<td>S2</td>
<td>$\text{UNE}t = -2.725V_1 + 2.770V_2 + 0.141V_3 + x_t; \ (1 - L^4)^{0.14} x_t = u_t; \ u_t = 0.791u{t-1} + \varepsilon_t$</td>
<td>(0.427) (0.158) (0.440)</td>
</tr>
<tr>
<td>S3</td>
<td>$\text{UNE}t = -2.212V_1 + 3.254V_2 + 0.567V_3 + x_t; \ (1 - L^4)^{1.15} x_t = u_t; \ u_t = 0.714u{t-1} + 0.110u_{t-2} + \varepsilon_t$</td>
<td>(0.418) (0.155) (0.511)</td>
</tr>
<tr>
<td>S4</td>
<td>$\text{UNE}t = -4.270V_1 - 312004V_2 + 3.882V_3 + x_t; \ (1 - L^4)^{1.69} x_t = u_t; \ u_t = -0.014u{t-4} + \varepsilon_t$</td>
<td>(0.650) (0.627) (0.615)</td>
</tr>
<tr>
<td>S5</td>
<td>$\text{UNE}t = -4.268V_1 - 2.805V_2 + 4.078V_3 + x_t; \ (1 - L^4)^{1.61} x_t = u_t; \ u_t = -0.011u{t-4} + 0.08u_{t-8} + \varepsilon_t$</td>
<td>(0.617) (0.818) (0.729)</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.

In particular, the null hypothesis of no autocorrelation in the residuals ε_t can be tested against the alternative of serial dependence up to order q, that is, under the alternative ε_t satisfies:
\[\varepsilon_t = \alpha_1 \varepsilon_{t-1} + \ldots + \alpha_q \varepsilon_{t-q} + \varepsilon_t, \]

where \(\varepsilon_t \sim \text{i.i.d.} \ (0, \sigma^2) \). The null hypothesis is given by \(H_0: \alpha_1 = \alpha_2 = \ldots = \alpha_q = 0 \) which, following Eitrheim and Teräsvirta (1996), is tested by means of an LM test. Here the only difference compared to that test is that one needs to include the gradient of \(\varepsilon_t \) with respect to the fractional differencing parameter \(d \), evaluated under \(H_0 \). Under the null \(\varepsilon_t = \varepsilon_0 \), so that

\[\frac{\partial \varepsilon_t}{\partial d} = \frac{\partial \varepsilon_t}{\partial d} - \sum_{j=1}^{t-1} \frac{\varepsilon_{t-j}}{j}. \]

Performing the tests on the five selected models, the results reject the null hypothesis of no serial correlation in all models except S3, suggesting that a plausible model might be:

\[UNE_t = -2.212[1-G(ROP_t)] + 3.254 G(ROP_t) + 0.567[1-G(RIR_t)] + x_t; \]

\[(1 - L^4)^{1.15} x_t = u_t; \quad u_t = 0.714 u_{t-1} + 0.101 u_{t-2} + \varepsilon_t, \]

with the implication that unemployment is nonstationary and non-mean-reverting. These findings allow us to discriminate between rival unemployment theories. Specifically, a natural rate model would require the process to obey mean reversion, the effects of shocks dying away and the unemployment rate reverting to its underlying equilibrium level. By contrast, in a hysteresis model the short-run equilibrium level depends on actual past levels, as shocks are not mean reverting, at least in a finite time horizon. The evidence presented here clearly gives support to the latter type of model, and to arguments in favour of more active stabilisation policies.

A limitation of the procedure we follow is that it imposes the same order of integration at zero and the seasonal frequencies. Note that the polynomial \((1-L^4)\) can be decomposed into \((1-L)(1+L)(1+L^2)\), where each of these polynomials correspond to the zero, the annual (\(\pi\)) and the bi-annual (\(\pi/2\) and \(3\pi/2\)) frequencies. The tests of Robinson (1994) described in Section 2 also allow us to consider this case (e.g. Gil-Alana, 2003), but this is not within the scope of the present paper.

5. Conclusions

This paper has proposed a model of the US unemployment rate which can account for both its asymmetry and its long memory. Our approach, which is based on the tests of Robinson (1994), introduces fractional integration and nonlinearities simultaneously into the same framework, unlike earlier studies employing a sequential procedure (see
van Dijk et al, 2002). Conveniently, ours is instead a single-step procedure based on the Lagrange Multiplier, therefore following a standard null limit distribution. The empirical results indicate that unemployment in the US can be specified in terms of a fractionally integrated process, which interacts with some non-linear functions of the labour demand variables (real oil prices and real interest rates). We find that the order of integration of the series is higher than 1, implying that, even when taking first differences, they still possess a component of long memory behaviour, with the autocorrelations decaying (exponentially) slowly to zero.

These findings suggest that a hysteresis model with path dependency (see, e.g., Blanchard and Summers, 1987) is suitable for the US unemployment rate. This implies that there exists no constant long-run equilibrium rate, with the effects of exogenous shocks not dying away within a finite time horizon, and unemployment being nonstationary. Evidence of nonstationarity was also reported, within a standard unit root framework, by Mitchell and Wu (1995) Carruth et al. (1998), and Strazicich et al. (2001) inter alia, whilst Wilkins (2003) found evidence of an order of integration higher than 1. By contrast, in a NAIRU (Non Accelerating Inflation Rates of Unemployment) model, in which shocks are not long-lived, and the unemployment rate reverts back to its underlying equilibrium level (see, e.g., Friedman, 1968). The implications for policymakers are of great importance, as, on the basis of our results, activist policies to combat unemployment can be pursued. In particular, monetary policy can be effectively used without immediate inflationary consequences, since it can affect the microeconomic foundations of the labour market equilibrium. However, our analysis also confirms that any adequate model should include business cycle asymmetries, which might arise for a variety of micro- or macro-economic reasons (see, e.g., Bentolilla and Bertoli, 1990, and Caballero and Hammour, 1994). The existence of such nonlinearities should be an essential feature of empirical models of the unemployment rate, and represents important information for both forecasters and policy-makers. For instance, it implies that the probability of erring in forecasting is asymmetric, and so are the costs in terms of foregone output and higher output variability for a given objective function. This should be clearly taken into account when formulating stabilisation policies.
References

