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1. Introduction
In this paper we introduce the notion of the expenditure function and compensated demand within the

theory of discrete choice. Since the theory of discrete choice is based on a random utility formulation,

it follows that the corresponding expenditure function is random. In the context of measuring the

welfare effect of changing prices or non-pecuniary attributes it is useful to apply the expenditure

function to derive Equivalent Variation and Compensating Variation (cv). When the (random) utility

function is nonlinear in income analytic formulae for the distribution of cv has so far not been

available. See Herriges and Kling (1999) for a review of the state of the art as well as previous

contributions. McFadden (1995) has developed a Monte Carlo simulator for computing cv in random

utility models and Herriges and Kling (1999) have investigated the empirical consequences of

nonlinear income effects based on a particular empirical application.1 Aaberge et al. (1995) have used

a Monte Carlo simulation to compute equivalent variation.

By using the stochastic structure of random expenditure function as a point of departure

we demonstrate in this paper that one can obtain explicit analytic formulae for the distribution of cv

for general random utility models. In the case where the model belongs to the Generalized Extreme

Value class the formulae become particularly simple.

Let us briefly review the definition of cv in random utility models with particular focus

on the challenge of calculating the distribution of cv. Let Uj denote the utility of alternative j and

assume that

( )j j j jU v w , y= + ε ,

where y represents income, wj is price or a vector of attributes including price associated with

alternative j, jv ( ), j 1,2,...,⋅ = are deterministic functions and j, j 1,2,...,ε = are random terms with joint

distribution that does not depend on the structural terms { }jv ( )⋅ .2 Then (ignoring the choice set in the

notation) cv is defined implicitly through

( )( ) ( )( )0 0 1 0
j j j j j j j jmax v w , y max v w , y cv+ ε = + + ε

1 I recently became aware of the work by Karlström (1999), who has independently obtained many of the same results as in
this paper, although the proofs are different.
2 Note that the present notation accommodates the specification ( ) ( )j j 1j 2 jv w ,y v w , y w= −% where the function v% does not

depend on j and w1j represents non-pecuniary attributes and w2j the price (or user cost) associated with alternative j.
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where { }0 0
jw , y represent initial attributes and income, and { }1

jw are the attributes implied by the

policy. Here it is assumed that the random terms { }jε are not affected by the policy intervention.

Clearly, cv becomes a random variable that depends on all the error terms and all the attributes and

initial income. From an analytic point of view the difficulty of attaining a formulae for the distribution

of cv stems from the fact that when the new attributes { }1
jw are introduced then the alternative that

yields maximum utility may be different from the one that maximized utility initially. In other words,

the individual agent may switch from the alternative chosen initially to a new one, when the policy is

introduced. If, however, the random terms initially and after the intervention are stochastically

independent, then the complexity of the problem reduces drastically.

The paper is organized as follows. In Section 2 the discrete choice framework is

presented, and in Section 3 compensating choice probabilities and the random expenditure function are

defined and the corresponding distribution functions are derived. In Section 4 we derive compensated

choice probabilities and the distribution of the expenditure function under price changes conditional

on a utility level equal to the initial level under different assumptions about the random terms of the

utility function.

2. The setting
We consider a setting in which a consumer faces a set B of feasible alternatives (products), which is a

subset of the universal set S of alternatives, { }S M= 0 1 2, , ,... , , where 0 indexes the alternative "no

purchase". The consumers utility function of alternative j is assumed to have the form

(1) ( )U v w yj j j j= +, ε

where y denotes income and wj is a vector of attributes including price of alternative j. The function

vj(⋅) is assumed to be continuous, decreasing in the first argument and strictly increasing in the second,

and may depend on j. For notational simplicity non-pecuniary attributes are suppressed in the notation.

Let FB(⋅) denote the joint cumulative distribution function of { }Bk,k ∈ε . We assume that

)(F)(F S ⋅≡⋅ possesses a density. Thus the probability of ties is zero. Then it is well known that one can

express the Marshallian choice probabilities by a simple formulae. For notational simplicity, let

{ }B 0,1,2,...,m= . Then the Marshallian choice probabilities are given by

(2) ( ) ( ) ( ) ( ) ( )( )B
j j k j 0 0 1 1 m m

k B
P B, y, P U max U F u v w , y ,u v w , y ,...,u v w , y du

∈
≡ = = − − −∫w
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where ( )m21
B
j x,...,x,xF denotes the partial derivative with respect to xj and ( )M21 w,...,w,w=w .

Here it is understood that income and prices, (y,w) are given.

If { }ε j are random variables with multivariate extreme value distribution, then GB

defined by

(3) ( )( ) ( ) 







≤ε≡−

∈

w,yxPx...,,x,xGexp kk
Bk

M10
B I

has the property3

(4) ( ) ( )zx...,,zx,zxGex...,,x,xG M10
Sz

M10
S −−−= −

for z R∈ . The corresponding Marshallian choice probability is given by

(5) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

B
j 0 0 1 1 m m

j B
0 0 1 1 m m

G v w , y , v w , y ,..., v w , y
P B, y, .

G v w , y , v w , y ,..., v w , y

− − −
= −

− − −
w

This formulae is well known and is found in a complete analogous form in for example McFadden

(1981).

3. The random expenditure function and compensated (Hicksian)
choice probabilities

We now proceed to discuss the notion of expenditure function that corresponds to the above setting.

Let YB(w,u) be the expenditure function defined as

(6) ( )( )Y u z v w z uB
k B

k k k( , ) :max , .w = + =





∈

ε

The expenditure function can be readily computed as follows. Let ( )kY w ,u,k be determined by

( )( )k k k kv w ,Y w ,u,k u .= − ε

Due to the fact ( )k kv w , y is strictly increasing in y, ( )kY w ,u,k is uniquely determined. We realize

that the expenditure function equals

3 In addition G must satisfy a number of regularity conditions to ensure that exp(-G(x0,x1,...,xM)) is a proper distribution
function, cf. McFadden (1978).
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( ) ( )B k
k B

Y ,u min Y w ,u,k .
∈

=w

With probabililty one the set Y(w,u) is a singleton because for z z≠ * , we have

( )( ) ( )( )( )P v w z v w z
k B

k k k
k B

k k kmax , max , .*

∈ ∈
+ = + =ε ε 0

We thus obtain the next result.

Theorem 1

Let { }B 0,1,2,... ,m= . The distribution of the expenditure function is given by

( ) ( ) ( )( )v v v≤ = − − − −B
B 0 0 1 1 m mP Y ( ,u) y 1 F u w ,y ,u (w ,y),...,u w ,yw

where FB(⋅) denotes the joint distribution of { }Bk,k ∈ε .

A proof of Theorem 1 is given in the appendix.

As mentioned above, the notion of Hicksian- or compensated choice probabilities does

not seem to have appeared previously in the literature. Below we propose a natural definition.

Definition 1

By Hicksian choice probabilities, ( ){ }h
jP B,u,w , we mean

( ) ( )( ) ( )( )( )( )v vh
j j j B j k k B k

k B
P B,u, P w ,Y ,u max w ,Y ,u .ε ε

∈
≡ + = +w w w

The interpretation of ( )h
jP B,u,w is as the probability of choosing j B∈ given that the

utility level is given and equal to u. For example, if prices change the consumers are given income

compensation so as to maintain a given utility level.
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Theorem 2

The Hicksian choice probabilities can be expressed as

( )
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )
v v v v v v v

.
v v v

h
j

B B
j 0 0 1 1 m m k 0 0 1 1 m m k k

k B

B
k 0 0 1 1 m m0

k B

P B,u,

F u w ,y ,u w ,y ,...,u w , y F u w ,y ,u w ,y ,...,u w , y w ,dy

F u w ,y ,u w ,y ,...,u w , y

∞
∈

∈

− − − − − −
=

− − −

∑
∫ ∑

w

A proof of Theorem 2 is given in the appendix.

From Theorem 2 we realize that one can calculate the Hicksian choice probabilities

readily provided the cumulative distribution FB(⋅) is known since only a one dimensional integral is

involved in the formulae for ( )h
jP B,u,w .

Theorem 3

Suppose F(⋅) is a multivariate extreme value distribution. Then the Hicksian choice

probabilities are given by

( ) ( ) ( )( )h
j j B

0

P B,u, P B,y, P Y ,u dy .
∞

= ∈∫w w w

A proof of Theorem 3 is given in the appendix.

The reason for the simplification of the Hicksian choice probabilities expressed in

Theorem 3 is that when the error terms in the utility function are multivariate extreme value

distributed then the indirect utility is stochastically independent of which alternative that is chosen.

4. The probability distribution of the expenditure function and
the choice under price changes conditional on the initial utility
level

We shall next consider the problem of characterizing the Hicksian choice probabilities when the utility

level equals the (indirect) utility under prices and income that differ from the current prices and

incomes. To this end we consider a two period setting. In period one (the initial period) the prices and
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income are ( )00 y,w . In the second period (current period) the prices are w. As above, it is assumed

that the respective random terms remain unchanged under price changes. In general, when prices (or

other attributes) change it may yield a decrease or an increase in the agent’s indirect utility. However,

the highest utility may no longer be attained at the alternative chosen initially, and consequently the

agent will switch to a new alternative, namely the one that maximizes utility under the new price

regime. In the current setting, however, the (indirect) utility level is kept fixed and equal to the initial

level. But the agent may still switch from the initially chosen alternative to a new one because, after

the price changes, the utility of the initially chosen alternatives may no longer coincide with the new

indirect utility.

Let us first consider the distribution of ( )( )00
B y,V,Y ww , where

(7) ( ) ( )( )k
00

kk
Bk

00 y,wvmaxy,V ε+=
∈

w .

The interpretation of ( )( )00
B ,yV,Y ww is as the expenditure function conditional on the utility level

that corresponds to income level y0. Hence, the corresponding Compensating variation measure equals

( )( )0 0
0 By Y ,V , y− w w .

Let ( )00
B y,J w denote the initial choice from B and let ( )* 0 0

BJ , y ,w w denote the current

choice from the choice set B, given the current and initial prices and income ( )00 y,, ww , and given

that the current utility level equals the initial one, ( )00 y,V w .

Theorem 4

Let

( ) ( ) ( )( )00
jjjjj

00
jj y,w,y,wmaxy,w,y,wh vv= .

Then

( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )v

∈ = =

= − − −∫

0 0 0 0 * 0 0
B B B

B 0 0 0 0 0 0
j j ij 0 0 0 1 1 1 m m m

P Y ,V ,y dy,J , y i,J , y j

w ,dy F u h w ,y ,w ,y ,u h w ,y ,w , y ,...,u h w ,y ,w ,y du

w w w w ,w

when ≠i j , ∈i, j B and ( ) ( )≤0 0 0 0
jj j j ii i iy w , y ,w y < y w ,y ,w , where ( )0 0

ii i iy w , y ,w is determined by

( ) ( )( )v v=0 0 0 0
i i i i ii i iw , y w ,y w ,y ,w . Otherwise
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( )( ) ( ) ( )( )∈ = = =0 0 0 0 * 0 0
B B BP Y ,V , y dy, J , y i, J , y , j 0w w w w w .

For = ∈j i B ,

( )( ) ( ) ( )( ) ( )= = = =0 0 0 0 * 0 0 0 0
B B B iP Y ,V ,y y, J , y J , y i P B, y ,w w w w ,w w

for ( ), ,= 0 0
ii i iy y w y w , and

( )( ) ( ) ( )( ), , , , , ,∈ = = =0 0 0 0 * 0 0
B B BP Y V y dy J y J y i 0w w w w w

for ( ), ,≠ 0 0
ii i iy y w y w .

A proof of Theorem 4 is given in the appendix.

The result of Theorem 4 shows that only a one-dimensional integral is needed to calculate

the joint probability density of

( )( ) ( ) ( )( )0 0 0 0 * 0 0
B B BY ,V , y , J , y , J , y ,w w w w w

provided ( )ij 1 2 mF x ,x ,..., x is known. However, in the multinomial Probit case where the utility

function has normally distributed random components, a m 2− dimensional integral is needed to

calculate ( )ij 1 2 mF x ,x ,..., x .

The next result follows immediately from Theorem 4 by summing over Bj∈ and

integrating with respect to y.

Corollary 2

The joint distribution of ( )( )0
BY ,V ,yw w and ( )0 0

BJ , yw is given by

( )( ) ( )( )
( ) ( ) ( )( )

> =

= − − −∫

0 0 0 0
B B

B 0 0 0 0 0 0
i 0 0 0 1 1 1 m m m

P Y ,V ,y y,J , y i

F u h w ,y ,w ,y ,u h w ,y ,w ,y ,...,u h w ,y ,w ,y du

w w w

for ( ).∈ ≤ < 0 0
ii i ii B, and 0 y y w ,y ,w
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The next corollary follows from Corollary 2 by summing over i B∈ .

Corollary 3

The c.d.f. of ( )( )0 0
BY ,V ,yw w is given by

( )( )( )
( ) ( ) ( ) ( )( )

\∈
= − − −∑ ∫0 0

0 0
B

B 0 0 0 0 0 0
i 0 0 0 1 1 1 m m m

i B C y ,y, ,

P Y ,V ,y > y

F u h w ,y ,w ,y ,u h w ,y ,w ,y ,...,u h w ,y ,w ,y du
w w

w w

for ≥y 0 , where

( ) ( ) ( ){ }, , , : v , v , ,= ≥ ∈0 0 0 0
k k k kC y y k w y w y k Bw w .

The results obtained in Theorem 4 and Corollaries 2 and 3 are derived under the

assumption that the choice set B is the same before and after the price change. However, these results

also apply in cases where the choice set changes. Suppose for example that alternative 2 was available

initially but is removed as part of a policy intervention. One can conveniently accommodate for this by

letting w2 become very large so that ( )2 2v w , y becomes very small. As a result we obtain that

( ) ( )0 0 0
2 2 2 2 2h w , y,w , y v w , y=

and that

( )0 02 C y , y, ,∉ w w .

From Corollary 3 it follows that the mean and variance of ( )( )0 0
BY ,V , yw w can be

calculated by the formulae

(8)

( )( )
( )

( ) ( ) ( )( )
0 0

ii i i

0 0
B

y w ,y ,w

B 0 0 0 0 0 0
i 0 0 0 1 1 1 m m m

i B 0

E Y ,V , y

= F u h w , y , w , y ,u h w , y ,w , y ,...,u h w , y ,w , y du dy,
∈

− − −∑ ∫ ∫

w w

and
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(9)

( )( )( )
( ) ( ) ( )( )

( )0 0
ii i i

2
0 0

B

y w ,y ,w

B 0 0 0 0 0 0
i 0 0 0 1 1 1 m m m

i B 0

E Y ,V , y

= 2 y F u h w , y ,w , y ,u h w , y ,w , y ,...,u h w , y ,w , y du dy.
∈

− − −∑ ∫ ∫

w w

We shall next discuss how the general results obtained above simplify in the case where

F(⋅) is a multivariate extreme value distribution. This includes nested logit type models. For simplicity,

we only state the joint density of

( )( ) ( ) ( )( )0 0 0 0 * 0 0
B B BY ,V , y , J , y , J , y ,w w w w w

for the case when

( ) ( )0 0 * 0 0
B BJ , y J , y , .≠w w w

Corollary 4

Suppose F(⋅) is a multivariate extreme value distribution. Then

( )( ) ( ) ( )( )
( ) ( )

0 0 0 0 * 0 0
B B B

B B B B 0 0
i j ij j j m

B

P Y ,V , y dy,J , y i,J , y j

G G G G h w ,y ,w ,dy

G

∈ = =

−
=

% % % %

%

w w w w ,w

when ( ) ( )≠ ∈ ≤0 0 0 0
jj j j ii i ii j, i, j B and y w ,y ,w y < y w ,y ,w , where

( ) ( ) ( )( )= − − − −% B B 0 0 0 0 0 0
0 0 0 1 1 1 m m mG logF h w ,y ,w , y , h w ,y ,w ,y ,..., h w ,y ,w ,y ,

( ) ( ) ( )( )= − − −% B B 0 0 0 0 0 0
i i 0 0 0 1 1 1 m m mG G h w ,y ,w ,y , h w ,y ,w ,y ,..., h w ,y ,w ,y ,

( ) ( ) ( )( )= − − −% B B 0 0 0 0 0 0
ij ij 0 0 0 1 1 1 m m mG G h w ,y ,w ,y , h w ,y ,w ,y ,..., h w ,y ,w ,y ,

and GB(⋅) is defined in (3).
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Thus, the result of Corollary 4 implies that in the case where the random terms are

multivariate extreme value distributed, one can rather easily compute the joint density of the

expenditure function and JB and *
BJ .

The next corollaries follow directly from Corollary 4.

Corollary 5

Suppose F(⋅) is a multivariate extreme value distribution. Then we have, for ∈i B , and

( )0 0
ii i i0 y y w ,y ,w≤ <

( )( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( ) .

> =

− − −
=

− − −

0 0 0 0
B B

B 0 0 0 0 0 0
i 0 0 0 1 1 1 m m m

B 0 0 0 0 0 0
0 0 0 1 1 1 m m m

P Y ,V ,y y,J , y i

G h w ,y ,w ,y , h w ,y ,w ,y ,..., h w ,y ,w ,y

G h w ,y ,w ,y , h w ,y ,w ,y ,..., h w ,y ,w ,y

w w w

Corollary 6

Suppose F(⋅) is a multivariate extreme value distribution, then

( )( )( )

( )
( ) ( ) ( )( )

( ) ( ) ( )( )
∈

>

=

∑
0 0

0 0
B

B 0 0 0 0 0 0
i 0 0 0 1 1 1 m m m

i B\C y ,y, ,

B 0 0 0 0 0 0
0 0 0 1 1 1 m m m

P Y ,V ,y y

G -h w ,y ,w ,y ,-h w ,y ,w ,y ,...,-h w , y ,w ,y

G -h w ,y ,w ,y ,-h w ,y ,w ,y ,...,-h w ,y ,w ,y

w w

w w

for ≥y 0 .

From eq. (8) and Corollary 6 we obtain that

(10)

( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )
( )0 0

ii i i

0 0
B

y w ,y ,w B 0 0 0 0 0 0
i 0 0 0 1 1 1 m m m

B 0 0 0 0 0 0
i B 0 0 0 0 1 1 1 m m m

EY ,V , y

G h w , y ,w , y , h w , y ,w , y ,..., h w , y ,w , y dy
.

G h w , y ,w , y , h w , y ,w , y ,..., h w , y , w , y∈

− − −
=

− − −
∑ ∫

w w
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Corollary 7

Suppose ,...,,, M10 εεε are independent and extreme value distributed. Then for ∈i B ,

and ( )0 0
ii i i0 y y w ,y ,w≤ <

( )( ) ( )( ) ( )( )
( ) ( )( )( ) .

y,w,y,wmaxexp

y,wexp
iy,Jy,yV,YP

00
kkkk

Bk

00
ii00

B
00

B
vv

v
,

∑
∈

==> www

From Corollary 7 we obtain the next result:

Corollary 8

Suppose , ,...,0 1 Mε ε ε , are independent and extreme value distributed. Then

( )( )( ) ( )
( )( )

( ) ( )( )( )
v

,
v v

0 0

0 0
i i

i B\C y ,y, ,0 0
B

0 0
k k k k

k B

exp w ,y

P Y ,V y y
exp max w ,y , w ,y

∈

∈

> =

∑

∑
w w

w w

for 0y ≥ .

From eq. (8) and Corollary 8 we obtain that

(11) ( )( ) ( )( )
( ) ( )( )( )

( )0 0
ii i iy w ,y ,w

0 0 0 0
B i i

0 0
i B 0 k k k k

k B

dy
E Y ,V , y exp v w , y .

exp max v w , y ,v w , y∈

∈

=∑ ∫ ∑
w w

Corollary 9

Suppose M10 ,...,, εεε , are independent and extreme value distributed. Then

( ) ( )( )( ) ( )( ) ( )( )
( )

( )( )
v

v
∈

= = = =
∑
0 0

j j* 0 0 0 0 0 0
B B j

k k

k C y ,y, ,

exp w ,y
P J , , y j Y ,V , y y P C y ,y, , , , y

exp w ,y
w w

w w w w w w w

for ∈j B and ( )≥ 0 0
jj j jy y w ,y ,w .

A proof of Corollary 9 is given in the appendix.
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We realize that the results of Corollaries 5 to 9 are quite tractable from a computation

viewpoint.

From Corollary 9 the next result is immediate.

Corollary 10

Assume that ,,...,, M10 εεε are independent and extreme value distributed. Then for

( )≥ 0 0
jj j jy y w ,y ,w

( )( ) ( )( ) ( )( )( ),
∞

= = ∈∫* 0 0 0 0 0 0
B j B

0

P J , y j P C y ,y, , , y, P Y ,V y dyw ,w w w w w w

and the distribution of ( )( )00
B yV,Y ,ww is given by Corollary 8.

Example

Consider a nested logit model with 4 alternatives where

( ) ( )0 31 2x xx x
0 1 2 3G x ,x ,x ,x e e e e− − θ− − θ= + + +

where ( ]0,1θ∈ and 21− θ has the interpretation as the correlation between the error terms of the

utilities of alternatives two and three. We then get

( )
( ) ( )

i

0 31 2

h
i 0 1 2 3

h hh h
0 1 2 3

G h , h , h , h e

G h , h , h , h e e e e θθ

− − − −
=

− − − − + + +

for { }i 0,1 ,∈ and

( )
( )

( )
( )

32 i

0 31 2

1hh h

i 0 1 2 3

h hh h0 1 2 3

e e eG h , h , h , h

G h , h , h , h e e e e

θ−θθ θ

θθθ

+− − − −
=

− − − − + + +

for { }i 2,3∈ , where hj is given in Theorem 4. By Corollaries 5 and 6 we can calculate the

corresponding distributions of the expenditure function and initial choice.
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5. Conclusion
In this paper we have demonstrated that the notion of random expenditure function and compensated

choice probabilities can be readily adapted within a discrete choice setting. When the model belongs to

the Generalized Extreme Value (GEV) class then the formulae for the compensated choice

probabilities simplifies. Since Dagsvik (1995) has demonstrated that a general random utillity model

can be approximated arbitrarily closely by models belonging to the GEV family, the GEV setting

represents no loss of generality. We have also demonstrated that one can obtain analytic formulae for

the distribution of Compensating Variation. Also in this case the formulae simplifies when the model

belongs to the GEV class. Although we have focused on Compensating Variation in this paper, the

derivation of the distribution of Equivalent Variation is completely analogous.
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Appendix

Proof of Theorem 1:

Since

( )( )kkk
Bk

y,wvmax ε+
∈

is increasing in y with probability one, we get that

( ) ( )( )

( )( )

( ) ( ) ( )( )

B k k k
k B

k k k
k B

B
0 0 1 1 m m

P Y ( ,u) y P max v w , y u

P v w , y u

F u v w , y ,u v w , y ,...,u v w , y .

∈

∈

 > = + ε < 
 

 
= + ε < 

 

= − − −

w

I

Q.E.D.

Proof of Theorem 2:

Due to the fact that

( ){ } ( )( ){ }B k k k
k B

Y , y y max v w , y u ,
∈

= ⇔ + ε =w

we have that

( ) ( )( ) ( )( )
( ) ( )( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

j j j j k k k B
k B

j j j k k k
k B

B
j 0 0 1 1 m m

B
k 0 0 1 1 m m

k B

(y) P v w , y max v w , y Y ,u y

P v w , y u max v w , y u

F u v w , y ,u v w , y ,...,u v w , y
.

F u v w , y ,u v w , y ,...,u v w , y

∈

∈

∈

ψ ≡ + ε = + ε =

= + ε = + ε =

− − −
=

− − −∑

w

Hence

( ) ( )( )j j B

0

P B,u, (y)P Y ,u dy .
∞

= ψ ∈∫w w
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Hence, by inserting for ψj(y) and the distribution of YB(w,u) given in Theorem 1 we obtain the result

of Theorem 2.

Q.E.D.

Proof of Theorem 3:

We have that

( ) ( ) ( )( ) ( )( ) ( )( )h
j j j j k k k B B

k B
P B,u, P v w , y max v w , y Y ,u y P Y ,u dy .

∈
= + ε = +ε = ∈∫w w w

Now recall that by Strauss (1979) and Lindberg et al. (1995) the multivariate extreme value

distribution has the property that ( )( )max ,k B k k kv w y∈ + ε is independent of which alternative that

maximizes utility. Hence due to the fact that

( ){ } ( )( ){ }Y u y v w y uB
k B

k k kw, max , .= ⇔ + =
∈

ε

we obtain that

( ) ( )( ) ( )( )
( ) ( )( )( )

P v w y v w y Y u y

P v w y v w y

j j j
k B

k k k B

j j j
k B

k k k

, max , ,

, max ,

+ = + =

= + = +

∈

∈

ε ε

ε ε

w

Thus, the result of Theorem 3 follows.

Q.E.D.

Proof of Theorem 4:

Let

(A.1)
( )

( )( )
0 01 k k k

k C y ,y, ,
Z (y) max v w , y ,

∈
= + ε

w w

(A.2)
( )

( )( )
0 0 02 k k k

k B\C y ,y, ,
Z (y) max v w , y

∈
= + ε

w w
,

(A.3)
( ) ( )( )

0 0 0

0 0 0
1 k k k

k C y ,y, ,
Z max v w , y

∈
= + ε

w w

and
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(A.4)
( ) ( )( )

0 0 0

0 0 0
2 k k k

k B\C y ,y, ,
Z max v w , y

∈
= + ε

w w
.

Note that 0
11 Z)y(Z ≥ and 0

2 2Z (y) Z< with probability one. Hence

(A.5)
( )( ){ } ( ) ( ){ }

( )( ) ( )( ){ } { }

0 0 0 0
B 1 2 1 2

0 0 0 0 0
1 1 2 2 1 2 1 2

Y ,V , y y max Z (y),Z (y) max Z ,Z

Z (y) max Z ,Z Z (y) max Z ,Z Z (y) Z .

≤ = ≥

⇔ ≥ ∪ ≥ ⇔ ≥

w w

Similarly, we get that

(A.6) ( )( ){ } { }.Z)y(Zyy,V,Y 0
21

00
B <⇔>ww

Accordingly,

(A.7) ( )( ){ } { }.Z)y(Zyy,V,Y 0
21

00
B =⇔=ww

Furthermore,

( )( ) ( )( ) ( )( )( ){ }
( )( ) ( )( ) ( ){ }
( ) ( )( ) ( ) ( )( ) ( ){ }.Z)y(Z)y(Z),y(Zmaxy,wvZ,Zmaxy,wv

Z)y(Zjy,Jiy,J

yr,V,Yjy,,Jiy,J

0
2121jjj

0
2

0
1i

00
ii

0
21B

00
B

0
B

00*
B

00
B

=∩=ε+∩=ε+=

=∩=∩==

=∩=∩=

ww

wwwww

Next note that when 0
21 Z)y(Z = ,

( ) ( ) 0
211

0
1

0
2

0
1 Z)y(Z)y(Z,ZmaxZ,Zmax ===

and

( ) ( ) .)y(ZZ)y(Z,Zmax)y(Z),y(Zmax 1
0
22

0
221 ===

Hence

(A.8)
( ) ( )( ) ( ) ( )( ) ( ){ }

( )( ) ( )( ) ( ){ }.)y(ZZ)y(Zy,wvZy,wv

)y(ZZ)y(Z),y(Zmaxy,wvZ,Zmaxy,wv

1
0
21jjj

0
2i

00
ii

1
0
221jjj

0
2

0
1i

00
ii

=∩=ε+∩=ε+=

=∩=ε+∩=ε+

But (A.8) implies that for ji ≠
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( )( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) { }
( )( ) ( )

( )
( ) { }( )

( )( ) ( ) ( )

0 0

0 0

0 0 0 0 * 0 0
B B B

0 0 0 0 0
i i i 2 j j j 2 j j j k k k 2

k C y ,y, , \ j

0 0 0 0
i i i k k k j j j j j

k B\ C y ,y, , \ j

P Y ,V , y y, y y , J , y i, J , , y j

P v w , y Z , v w , y y Z v w , y , max v w , y Z o y

P v w , y du, v w , y u, v w , y y u v w , ymax

∈

∈

∈ + ∆ = =

+= ε = + ∆ + ε ≥ ≥ + ε + ε ≤ + ∆

+ ε ∈ + ε ≤ + ∆ + ε ≥ ≥ + ε=

 
 
 

∫

w w

w w

w w w w w

( ) { }
( )( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )

0 0

j

k k k
y ,y, ,k C \ j

B 0 0 0 0 0 0
i 0 0 0 1 1 1 m m

B 0 0 0 0 0 0
i 0 0 0 1 1 1 m m

B 0
j j j j ij 0 0

m

m

,

max v w , y u o y

F u h w , y , w , y ,u h w , y , w , y ,..., u h w , y , w , y du

F u h w , y , w , y y , u h w , y , w , y y ,..., u h w , y , w , y y du

o y v w , y y v w , y F u h w , y

∈
+ ε ≤ + ∆

= − − −

− − + ∆ − + ∆ − + ∆

= ∆ + + ∆ − −









∫
∫

∫

w w

( ) ( ) ( )( )0 0 0 0 0
0 1 1 1 m m m, w , y ,u h w , y , w , y ,..., u h w , y , w , y du− −

which yields

(A.9)
( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

0 0 0 0 * 0 0
B B B

B 0 0 0 0 0 0
j j ij 0 0 0 1 1 1 m m m

P Y ,V , y dy,J , y i,J , , y j

v w ,dy F u h w , y ,w , y ,u h w , y ,w , y ,...,u h w , y ,w , y du

∈ = =

= − − −∫

w w w w w

for ( )0 0i B \ C y , y, ,∈ w w and ( )0 0j C y , y, ,∈ w w , and zero for ( )0 0i B \ C y , y, ,∉ w w ,

( )0 0j C y , y, ,∉ w w , ji ≠ .

For j i= it follows that

(A.10)

( )( ) ( ) ( )( )
( ) ( )( ) ( ) { } ( )( )
( )( )

0 0 0 0 * 0 0
B B B

0 0 0 0 0 0 0 0
i i i i ii i i i i i k k k

k B\ i

0 0
B

P Y ,V , y y,J , y J , , y i

P v w , y v w , y w , y ,w , v w , y max v w , y

P J , y i

∈

= = =

 = = + ε > + ε 
 

= =

w w w w w

w

for ( )0 0
ii i iy y w , y ,w= . Moreover, the expenditure function in this case has measure zero outside the

point ( )0 0
ii i iy w , y ,w .

Q.E.D.

Proof of Corollary 7:

Let Z1(y), Z2(y) and 0
2Z be defined as in (A.1), (A.2) and (A.4), respectively. As in the

proof of Theorem 4 it follows that
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( ) ( )( )( )
( )( ).Z)y(Z)y(Zy,wvP

yy,V,Yjy,,JP

0
211jjj

00
B

00*
B

==ε+=

== wwww

Since the random terms are independent it follows that εj is independent of 0
2Z and Z1(y) and 0

2Z are

independent.

Moreover, due to properties of the extreme value distribution it follows that for given y

( )( ) ( )( ).)y(Zy,wvP)y(Z)y(Zy,wvP jjjjjjjjj =ε+==ε+

But then it follows that

( )( ) ( )( ) ( ) ( )0 0
0

j j j j j 2 j j j j C y ,y, ,
P v w , y Z (y) Z (y) Z P v w , y Z (y) P J , y j . + ε = = = + ε = = = 

 w w
w

Q.E.D.


