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1. Introduction
The aim of this paper is to study modeling in panel surveys with nonresponse, where the goal is to

estimate a population proportion or total. Typically, nonresponse causes biases in the estimates and

should not be ignored. The only way to account for nonresponse bias is to model the response proc-

ess. In this paper we study population models with a sequential logistic model for the response

mechanism. Other types of models for nonresponse in panel surveys are discussed by Fay (1986,

1989) and Stasny (1987). Conaway (1993) considers a similar nonresponse model for a different type

of panel data. A maximum likelihood estimator, shown to be practically the same as two prediction

methods utilizing model-based imputation, is considered for estimating the population proportion. The

model-based method, for various models, is compared to traditional methods of weighting and direct

data imputation. The traditional methods turn out to be inferior to the model-based procedures,

showing that model-driven estimation strategies can work in practice.

Two applications are considered. The first one is the estimation of the population rate of participation

in the 1989 Norwegian Storting election, based on panel data from the 1985 and 1989 elections. This

example is particularly well-suited for illustrative purposes of the suggested methods and models,

since the 1985 and the 1989 population rates of voting are known. The second problem concerns car

ownership in Norwegian households in 1989 and 1990, with panel data from the Norwegian Con-

sumer Expenditure Survey. In the latter case we estimate the proportion of ownership in both years.

Section 2 describes the data-structure , the model and the maximum likelihood (ML) method for pa-

rameter estimation. Section 3 considers model-based ML estimation of population proportions, the

imputation method and imputation-based estimators for population proportions. Section 4 describes

the traditional methods for adjusting for nonresponse in panel surveys. Section 5 deals with the elec-

tion panel survey, and Section 6 deals with the consumer expenditure survey.

2. A logistic model for binary panel surveys
A population of N subjects where N is known is considered. X is a 0/1-variable of interest where 1X =

if the subject has a certain attribute A. A panel s is selected from the population in order to observe, for

each i s∈ , X at two different times 1,2t = . We are primarily interested in estimating the true

proportion, P, of the attribute A in the population at 2t = . For each subject i in the population let
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tiX X= at time t, 1,2,t = and ( )1 2,i i iX X X= .

Then 1
21

N

iNP X= ∑ . Nonresponse is indicated by R R Ri i i= ( , )1 2 where Rti = 1 if subject i responds

at time t, and 0 otherwise.

We shall assume a population model for the Xi's. To take nonresponse into account in the statistical

analysis, we must model the response mechanism, i.e. the distribution of response Ri conditional on Xi.

The sampling mechanism is assumed to be ignorable as is typically the case. In particular, this holds in

the two examples considered. The statistical analysis is therefore done conditional on the total sample

s, following the likelihood principle (see Bjørnstad, 1996). Hence, probability considerations based on

the sampling design is irrelevant in the statistical analysis. This is the so-called prediction appoach.

The data can be represented as in the following table.

Table 2.1. Panel with nonresponse

t = 1\ t = 2 X = 1 X = 0 mis totals

X = 1 n11 n12 n13 n1o

X = 0 n21 n22 n23 n2o

mis n31 n32 n33 n3o

totals no1 no2 no3 n

Here, mis is short for missing. Moreover, nij is the number of subjects in the sample s belonging to the

indicated category. The panel consists of the following groups, according to the response pattern:

( ){ }
( ){ }
( ){ }
( ){ }

: 1,1

: 1,0

: 0,1

: 0,0 .

rr i

rm i

mr i

mm i

s i s R

s i s R

s i s R

s i s R

= ∈ =

= ∈ =

= ∈ =

= ∈ =

2.1. The Model

The population model assumes that 1,...., NX X are independent, identically distributed. Let

( ) ( )1 1 11 2 11 , 1| 1i i ip P X p P X X= = = = = and ( )01 2 11| 0i ip P X X= = = . Hence, p11 is the conditional
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probability of attribute A at time 2t = given attribute A time 1t = . Equivalently, we can parametrize

p11 and p01 logistically,

(2.1)
( )
( )

2 1 1
0 1

2 1 1

1|
log .

0 |
i i

i i

P X X x
x

P X X x
β β

 = =
= +  = = 

Then

01
0

01

log
1

p

p
β

 
=  − 

and
( )
( )

11 11
1

01 01

1
log

1

p p

p p
β

 −
=   − 

.

The advantage of the latter formulation is that β β0 1and can take values on the whole real line.

Possible boundary problems are therefore omitted.

The model for the response mechanism is developed through parametrizing sequentially conditional

probabilities:

( )
( ) ( )
( ) ( )

1 1 2 2 1 1 2 2

1 1 1 1 2 2 2 2 1 1 1 1 2 2

1 1 1 2 2 2 1 1 2

, | ,

| , | , ,

| , | , , .

i i i i

i i i i i i i

i i

P R r R r X x X x

P R r X x X x P R r R r X x X x

P R r x x P R r r x x

= = = =

= = = = ⋅ = = = =

= = ⋅ =

Each term is modelled logistically,

(2.2)
( )
( )

1 1 2 (1) (1) (1)
0 1 1 2 2

1 1 2

1| ,
log

0 | ,
i

i

P R x x
x x

P R x x
φ φ φ

 =
= + +  = 

(2.3)
( )
( )

2 1 1 2 (2) (2) (2) (2)
0 1 1 2 1 3 2

2 1 1 2

1| , ,
log

0 | , ,
i

i

P R r x x
r x x

P R r x x
φ φ φ φ

 =
= + + +  = 

Contingency table 2.1 has 8 free cell probabilities. The model (2.1)-(2.3), with p1, has introduced 10

parameters. For the model to be estimable we need to reduce the number of parameters to a maximum

of 8. This can de done in several ways, giving rise to different models as seen in the two applications.

The population model assumes independence between sampled units. The two surveys considered in

the examples use a two-step sampling design by first selecting geographical areas (clusters) and then

selecting units within each sampled area. An alternative and possibly more appropriate model could

have been to assume correlation within clusters. However, the data for two cases were not available on
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"cluster form". Also for the two variables considered here, voting behaviour and car ownership, the

independence assumption should work well as a model for analysis. Certainly, when the data are on

cluster form, the multi-level modeling approach is an interesting alternative that should be tried.

2.2. Maximum likelihood parameter estimation

We shall consider estimation of the unknown parameters (no more than 8) in model (2.1)-(2.3). Let us

consider the likelihood function, i.e. the probability of the observed data as function of the parameters,

given by

(1) (2)( , , ) rr rm mr mmL L L L L= ⋅ ⋅ ⋅β φ φβ φ φβ φ φβ φ φ

where

( )

( ) ( ) ( )

( )

22

11
(1) (1) (1)0 1 10 1 1 1 20 1 2

(2) (2) (2) (2)
1 20 1 2 3

1 1 2 2

1

1
1 1

, , (1,1)

1 1 1
1

11 1
1

1

rr

ii

ii

ii i i
rr

i i

rr i i i i i
i s

xx
xx

xx x x
i s

x x

L P X x X x R

p p
ee e

e

β ββ β φ φ φ

φ φ φ φ

∈

−
−

+− + − + +
∈

− + + +

= = = =

   = − ⋅   + +  +

⋅
+

∏

∏

( )

( ){ ( ) ( )

22

11
(1) (1) (1)0 1 10 1 1 1 20 1 2

2

(2) (2) (2) (2)
1 20 1 2 3

1 1

1
1

1
1 1

0

, (1,0)

1 1 1
1

11 1

1

1

rm

ii

ii

ii i i
irm

i i

rm i i i
i s

xx
xx

xx x x
xi s

x x

L P X x R

p p
ee e

e

β ββ β φ φ φ

φ φ φ φ

∈

−
−

+− + − + +
=∈

+ + +

= = =

   = − ⋅   + +  +


⋅ 
+ 

∏

∑∏

( )

( ){ ( )

( )

22

11
(1) (1) (1)

0 1 10 1 1 1 20 1 2
1

(2) (2) (2)
1 20 2 3

2 2

1
1

1
1 1

0

, (0,1)

1 1 1
1

11 1

1

1

mr
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ii

ii i i
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i i

mr i i i
i s

xx
xx

xx x x
xi s

x x

L P X x R
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( )

( ){ ( )
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(1) (1) (1)

0 1 10 1 1 1 20 1 2
1 2

(2) (2) (2)
1 20 2 3

1
1 1

1
1 1

0 0

(0,0)

1 1 1
1

11 1

1
.

1

mm

ii

ii
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i i

mm i
i s

xx
xx
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−
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∏

∑ ∑∏

Estimates are found by maximizing log(L) numerically using NAG subroutine E04JAF (described in

the NAG Fortran Library Manual March 11, 1984). To estimate the standard error (S.E.) of the

maximum likelihood (ML) estimates $ ( $, $ , $ )( ) ( )θθθθ ββββ φφφφ φφφφ= 1 2 , we use parametric bootstrapping (see Efron

and Tibshirani (1993, ch.6.5)) by simulating 1000 sets of data assuming ( ) ( )(1) (2) (1) (2)ˆ ˆ ˆ, , , ,=β φ φ β φ φβ φ φ β φ φβ φ φ β φ φβ φ φ β φ φ .

The estimated S.E. of a given estimate is then the empirical standard deviation of this estimate. For

example, consider $β0 . Let $ , ... , $, ,β β0 1 0 1000 be the set of estimated values based on the simulated data.

The estimated S.E. is then given by, with 0 0,
1

ˆ ˆ
k

i
i

kβ β
=

=∑ and 1000k = ,

( )
1/ 2

2

0, 0
1

1 ˆ ˆ
1

k

i
ik

β β
=

 
− − 

∑

The simulated mean $β0 estimates E( $ ) $β θ θ0 at = . From a simulation study it seems that the ML

estimates are approximately unbiased.

3. Estimation of attribute proportion at time t = 2
An estimator of P, disregarding the nonresponse groups, is the proportion of A at 2t = among the srr

respondents,

(3.1) $P
n n

nrr
rr

=
+11 21

where nrr is the number of subjects in the survey who respond on both occasions,

11 21 12 22#( )rr rrn s n n n n= = + + + . Let , 1,2,3ij iπ = and 1,2,3j = , be the cell probabilities of table 1.

Then, conditionally on nrr, and hence also unconditionally,
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( ) 11 21

11 21 12 22

ˆ .rrE P
π π

π π π π
+=

+ + +

We see that ( ) ( ) ( )2 2 1 11 1 011 1i iE X P X p p p p= = = + − such that

(3.2) ( )1 11 1 01( ) 1E P p p p p= + − .

It follows that $Prr is unbiased if and only if

(3.3) ( )11 21
1 11 1 01

11 21 12 22

1p p p p
π π

π π π π
+ = + −

+ + +
.

It can be shown that (3.3) is equivalent to

(3.4) φ φ φ φ1
1

2
1

2
2

3
2 0( ) ( ) ( ) ( )= = = =

i.e., that ( )( )1 2, |i i iP R r r X x= = is independent of xi. This means that the response mechanism is

ignorable, which is rarely the case. Hence, typically $Prr will be a biased estimator of P. In our first

application on voting participation it turns out that $Prr overestimates P by a wide margin.

Including the response mechanism into the analysis, we shall use the maximum likelihood estimator

under the model (2.1)-(2.3), assuming ( )1 1 1ip P X= = is known. It is shown that this estimator is

identical to an imputation-based estimator under a saturated model of 8 unknown parameters. We also

present a second imputation-based estimator that differs from the ML estimator by no more than n/N.

Since, from (3.2), ( )1 11 1 01( ) 1E P p p p p= + − , the ML estimator is given by

(3.5) ( )1 11 1 01
ˆ ˆ ˆ1MLP p p p p= + −

where $ , $p p11 01 are ML estimates.

A common approach to correct for nonresponse is by imputation of the missing values in the sample.

The method of imputation is to assign the estimated expected value conditional on nonresponse.

Others who have used this method include Greenlees et al. (1982) and Bjørnstad & Walsøe (1991).

We can express P t N= where t X ii

N= =∑ 21
. In the case of complete data, i.e., rrs s= , the optimal

unbiased estimator of t is, from Thomsen (1981), given by
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(3.6) ( )( )( ) ( )
1 11 1 01

ˆ ˆ ˆ1c ct N p p p p= + −

where $ , $( ) ( )p pc c
11 01 are the ML estimates, i.e.,

(3.7) $ ( )p
X X

X
c i is

is
11

1 2

1

= ∑
∑

(3.8)
( )

( )
1 2( )

01
1

1
ˆ

1

i ic s

is

X X
p

X

−
=

−
∑
∑

.

When we have nonresponse, the missing values in s are imputed and an imputation-based estimator is

then $t and the corresponding P-estimator computed for the "imputed" completed sample. I.e., we

impute the unkown values in $ $( ) ( )p pc c
11 01and . Let $P denote probability under the estimates $θθθθ , and let

$ , $,
( )

,
( )p pI

c
I

c
11 01 be the imputation-based versions of $ $( ) ( )p pc c

11 01and . Then the imputation-based estimators

of P and t become

( )( ) ( )
1 11, 1 01,

ˆ ˆ ˆ1c c
I I IP p p p p= + − and ( )( ) ( )

1 11, 1 01,
ˆ ˆ ˆ1c c
I I It Np p N p p= + − .

Using model (2.1)-(2.3) we obtain the imputed values: For ( )2 2 1
ˆ: 1| , (1,0)rm i i i ii s X P X X R∗∈ = = = ,

for ( )1 1 2
ˆ: 1| , (0,1) ,mr i i i ii s X P X X R∗∈ = = = and for i smm∈ : ( )2 2

ˆ 1| (0,0)i i iX P X R∗ = = = ,

( )1 1
ˆ 1| (0,0)i i iX P X R∗ = = = and ( ) ( )1 2 1 2

ˆ 1, 1| (0,0)i i i i iX X P X X R
∗ = = = = . With a saturated model of

8 unknown parameters, the fit of the data (by taking estimated expected values of the nij's) is perfect.

Then $ $P PML I= (shown in the appendix).

An alternative to (3.6) as a basic estimator in the case of complete data is achieved by noting that (with

{ }:s i i s= ∉ ) t X Xis is
= +∑ ∑2 2 , X is 2∑ is observed and z X is

=∑ 2 can be estimated by

estimating ( ) ( ) ( ) ( ) ( )( )2 2 1 11 1 011 1i is
E X N n P X N n p p p p= − = = − + −∑ .

Hence, a complete data estimator is given by

(3.9) ( ) ( )( )( ) ( ) ( )
2 1 11 1 01

ˆ ˆ ˆ1c c c
i

s

t X N n p p p p= + − + −∑ .
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When we have nonresponse we can represent t as

t X X X X zi
s

i
s

i i
ssrr mr mmrm

= + + + +∑ ∑ ∑∑2 2 2 2 .

z X is
=∑ 2 is estimated by ( ) ( )( )1 11 1 01ˆ ˆˆ 1z N n p p p p= − + − . That is, we replace $ , $( ) ( )p pc c

11 01 by the

current ML estimates $ , $p p11 01 . The missing X2i are imputed as before giving us the imputation-based

estimator

( ) ( )( )( )
2 2 2 2 1 11 1 01

ˆ ˆ ˆ1
rr mr rm mm

c
I i i i i

s s s s

t X X X X N n p p p p∗ ∗= + + + + − + −∑ ∑ ∑ ∑ and ( ) ( )ˆ ˆc c
I IP t N= .

$ ( )PI
c and $PML will give approximately the same results. In fact, we always have the bound

( )ˆ ˆc
I MLP P n N− ≤ (shown in the appendix). In our cases , the maximal difference is less than 10-3.

In addition to being based on different complete data estimators (3.6) and (3.9), the imputation is also

done differently in $t I and $ ( )t I
c . In $ ( )t I

c we impute only in X is 2∑ , while for $t I all missing values in

$t are imputed. Typically, however, $ $( )P PI
c

Iand give approximately the same results as indicated by

the comparisons to $PML .

4. Traditional methods based on weighting and direct data
imputation

We shall compare the modeling approach with traditional weighting and imputation methods that do

not require a specific model for the response mechanism. Reviews of weighting and direct data

imputation in panel surveys can be found in Kalton (1986) and Lepkowski (1989). We consider one

imputation method and four weighting-based methods. Each method is equivalent to constructing a

certain adjusted 2×2-table; either for s or s-smm as shown in table 4.1.

Table 4.1. Adjusted panel without nonresponse

t = 1\ t = 2 X = 1 X = 0 totals

X = 1 n11
∗ n12

∗ n1o
∗

X = 0 n21
∗ n22

∗ n2o
∗

totals no1
∗ no2

∗ n∗
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Here, | |n s n∗ = = or 33| |mmn s s n n∗ = − = − . Table 4.1 is then used in (3.7) and (3.8) to produce

estimates of p p11 01and , 11 11 1p̂ n n∗ ∗ ∗= o , 01 21 2p̂ n n∗ ∗ ∗= o . From (3.6) it follows that in the case of known

p1 , the P-estimate is given by

(4.1) ( )1 11 1 01
ˆ ˆ ˆ1eP p p p p∗ ∗ ∗= + − .

When p1 is unknown it is estimated by 1 1p̂ n n∗ ∗= o . Then (4.1) is modified to

(4.2) ( )1 11 1 01 1
ˆ ˆ ˆ ˆ ˆ1P p p p p n n∗ ∗ ∗ ∗ ∗= + − = o

which corresponds to $Prr based on srr ( see (3.1)). Of course, $P∗ is an estimator of P also when p1 is

known, but $Pe
∗ is a theoretically better estimator. Also, for the case considered in this paper $Pe

∗

actually works better.

4.1. Direct data imputation

The imputation method discards smm and employs mean stratified imputation in the other nonresponse

groups. Missing values of 2 ,i rmX i s∈ , are imputed as mean of observed X i2 -values given X i1 :

Given X X
n

n n
i i1 2

11

11 12

1= =
+

∗: .

Given X X
n

n n
i i1 2

21

21 22

0= =
+

∗: .

Similarily, missing values for X i si mr1 , ∈ , are imputed as the mean of observed X1i-values given X2i.

Let a a a1 2 3, , be the inverses of the response rates for the rows in table 2.1 corresponding to X1i = 1,0,

mis. Similarily b b b1 2 3, , are the inverse response rates for the columns corresponding to X2i-values.

a
n

n ni
i

i i

=
+
o

1 2

b
n

n n
j

j

j j

=
+
o

1 2

.

The constructed imputed 2×2-table is given below.
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Table 4.2. Imputed table, without smm

X2 = 1 X2 = 0 Totals

X1 = 1 ( )1 1 111a b n+ − ( )1 2 121a b n+ − b n b n n1 11 2 12 13+ +

X1 = 0 ( )2 1 211a b n+ − ( )2 2 221a b n+ − b n b n n1 21 2 22 23+ +

Totals a n a n n1 11 2 21 31+ + a n a n n1 12 2 22 32+ + n n− 33

We note that mean imputation for 0/1-variables is equivalent to assigning value 1 to a proportion equal

to the mean in a given stratum. E.g., given X ni
n

n n1 131 11

11 12
= ⋅+, of the X i2

∗ -values in srm are equal to

1, the rest is 0. We see that the imputation-based estimates $ $p p11 01
∗ ∗and are as follows.

( )1 1 11
11

1 11 2 12 13

1
ˆ

a b n
p

b n b n n
∗ + −

=
+ +

,
( )2 1 21

01
1 21 2 22 23

1
ˆ

a b n
p

b n b n n
∗ + −

=
+ +

.

Let $
,Pe I
∗ and $PI

∗ denote the P-estimates given by (4.1) and (4.2) for this imputation method.

4.2. Weighting

The methods of weighting are all based on weighing observed responses to account for the

nonresponse groups. The weights are equal to inverses of response rates in certain adjustment cells.

One traditional weighing scheme is to weigh srr - data to account for the nonresponse groups srm , smr

and smm. This can be done in two different ways. One way is to first account for srm and smm by

weighing srr - data using X1 as auxiliary variable, and then weigh the adjusted 3×2 - table to account

for smr , using X2 as auxiliary variable. Hence we have adjustment cells according to X1 = (1,0, mis)

with the weights:

Row i ( )1 2,i in n gets the weights ai, for 1,2,3i = .

The row-weighting to account for srm and smm produces the following table.
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Table 4.3. Row-weighted table

X2 = 1 X2 = 0 Totals

X1 = 1 a n1 11 a n1 12 n1o

X1 = 0 a n2 21 a n2 22 n2o

X1 = mis a3 n31 a3 n32 n3o

Totals a n a n a n1 11 2 21 3 31+ + a n a n a n1 12 2 22 3 32+ + n

The weights on the second step to account for X1 = mis are then :

first column weight =
a n a n a n

a n a n
1 11 2 21 3 31

1 11 2 21

+ +
+

second column weight =
a n a n a n

a n a n
1 12 2 22 3 32

1 12 2 22

+ +
+

.

The final weighted-adjusted 2×2-table, called the W1-method, is given below:

Table 4.4. Weighted table, row-column

X2 = 1 X2 = 0 Totals

X1 = 1 ( ) 1 111 (1)f a n+ ( ) 1 121 (2)f a n+ n1o ( )1 11 12(1) (2)a n f n f+ +

X1 = 0 ( ) 2 211 (1)f a n+ ( ) 2 221 (2)f a n+ n2o + ( )2 21 22(1) (2)a n f n f+

Totals a n a n a n1 11 2 21 3 31+ + a n a n a n1 12 2 22 3 32+ + n

Here, ( )3 3 1 1 2 2( ) j j jf j a n a n a n= + . The corresponding P-estimates given by (4.1) and (4.2) are

denoted by
1,ê WP∗ and

1ŴP∗ respectively.

Instead of weighing the rows first we can reverse the order and first weigh srr to account for smr and

smm by giving the columns the weights b1,b2,b3 and then weighing the rows of the adjusted table. This

column-row scheme is called the W2-method and the corresponding P-estimates given by (4.1) and

(4.2) are denoted by
2,ê WP∗ and

2ŴP∗ respectively.

Two other weighting methods are similar to W1 and W2, the difference being that they disregard smm

and adjust s - smm in the same way as W1 and W2 adjust the whole sample s. In the two cases we
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consider they give practically the same results as the mean imputation method in Section 4.1, and we

shall not consider these any further.

5. The election panel survey
For illustrative purposes we shall now consider a panel survey where the population totals of A are

known at both times. This case concerns the rate of participation in the 1989 Norwegian Storting

election, based on panel data from the 1985 and 1989 elections. Table 5.1 below gives the data.

Table 5.1. Panel data for election survey

1985\1989 voted did note vote mis totals

voted 743 36 188 967

did not vote 42 20 26 88

mis 115 20 162 297

totals 900 76 376 1352

We shall estimate the voting proportion P in 1989 by making use of the known voting proportion in

1985, p1 = 0.838. From the actual 1989 election we know the true value of P, 0.832. It is of interest to

see how the maximum likelihood estimator $PML , based on different models, behave in this particular

case. This gives us a way to evaluate various models, and gives us some indication on what may be

appropriate models for similar problems in the future. We shall also see how this estimator compares

to the traditional methods of accounting for nonresponse in Section 4 as well as the estimator $Prr and

a poststratified estimator based solely on the response sample srr. It turns out that we do need to

include a nonignorable model for the response mechansim (RM).

5.1. Traditional methods and poststratification

In addition to the traditional methods from Section 4 and the rate $Prr of voting in srr, we shall

consider the s-optimal estimator $ ( )P c , given by (3.6), based on the data in srr. It is given by

( )( ) ( ) ( )
1 11 1 01

ˆ ˆ ˆ1r r rP p p p p= + −

where ( )( )
11 11 11 12ˆ rp n n n= + and ( )( )

01 21 21 22ˆ rp n n n= + . We see that $ ( )P r is the poststratified estimator

using X1 as the stratifying variable. Both $Prr and $ ( )P r assume implicitly ignorable response
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mechanism (RM). These two estimators together with the methods described in Section 4, to adjust for

nonresponse, give the following estimates.

Table 5.2. Traditional estimates of attribute proportion

Method 11p - estimate 01p - estimate P- estimate

$Prr
- - 0.933

$ ( )P r 0.954 0.677 0.909

Mean imputation 0.9471 0.6493 0.899

W1 0.9419 0.6224 0.890

W2 0.9458 0.6395 0.896

Clearly, all these estimators overestimate P. Comparing $ ( )P r and $Prr , it seems that poststratification

corrects for some of the bias, while at the same time indicating that part of the bias is due to

nonignorable nonresponse. The traditional methods of adjusting for nonresponse improve only slightly

on the purely srr -based methods. It seems clear that the RM cannot be ignored and that we do need to

include a nonignorable model for RM in the analysis. In the next section we shall look at the model-

based estimator $PML , given by (3.5), for three different models.

5.2. Maximum likelihood estimation under nonignorable response models

The model (2.1)-(2.3) has 9 unknown parameters and we need to reduce the number of parameters to

no more than 8. This can be done in several ways giving rise to different models.

Model 1 φ2
1 0( ) = .

This amounts to the reasonable assumption that the probability of response the first time does not

depend on the voting behaviour at the second election. Note, however, that this is equivalent with

assuming that voting behaviour in 1989 is not related to the response behaviour in 1985, conditional

on voting behaviour in 1985.

Model 2 φ2
2 0( ) =

In this model we keep (2.1) and (2.2) and reduce (2.3). Voting behaviour in the first election does not

affect the probability of response the second time. We do, however, assume that voting behaviour in

the second election and response in the first may be related.
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Model 3 φ2
1 0( ) = , φ2

2 0( ) =

Here, response at either time depends only on the voting behaviour at that time.

The ML parameter estimates and the corresponding estimated SE (in parentheses) are given in the

following table.

Table 5.3. Maximum likelihood estimates in election models

Parameter Model 1 Model 2 Model 3

β0 0.766 (0.484) 0.049 (0.387) 0.292 (0.286)

β1 2.27 (0.346) 2.48 (0.298) 2.42 (0.286)

p11 0.954 (0.021) 0.926 (0.027) 0.937 (0.014)

p01 0.678 (0.104) 0.5125 (0.092) 0.572 (0.068)

φ0
1( ) -0.377 (0.169) -0.630 (0.281) -0.403 (0.172)

φ1
1( ) 2.12 (0.243) 1.99 (0.352) 2.17 (0.247)

φ2
1( ) − 0.443 (0.475) −

φ0
2( ) -0.445 (2.264) -1.21 (1.03) -1.01 (0.357)

φ1
2( ) 1.369 (0.188) 1.36 (0.197) 1.45 (0.149)

φ2
2( ) 0.574 (0.512) − −

φ3
2( ) -0.080 (2.495) 1.40 (1.17) 1.05 (0.446)

We note that φ1
1( ) is significantly different from 0 under all three models. This indicates that response

behaviour in 1985 depends on the voting behaviour in the same year. Also, clearly φ1
2( ) ≠ 0 and the

response behaviour in 1985 and 1989 are correlated. The main difference between the models

regarding how )2()1( and φφ are estimated concerns φ3
2( ) . Under Model 1 it seems that voting

behaviour in 1989 does not affect the response behaviour. This does not seem reasonable from earlier

experiences regarding voting behaviour (see, e.g., Thomsen and Siring, 1983). The parameters for

estimating P are p11 and p01 . Recall that the srr -estimates are $ ( )p r
11 = 0.954 and $ ( )p r

01 = 0.677 (with

$ ( )P r = 0.909). Under the ignorable RM-model (3.4), the ML estimates of p11 and p01 are 0.950 and

0.635 respectively, with P-estimate equal to 0.899. We note that Model 2 and Model 3 estimate p01
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significantly lower than $ ( )p r
01 , while Model 1 does not. This affects the P-estimates significantly as we

see below.

Models 1 and 2 give perfect fits, and Model 3 gives a nearly perfect fit. We know then from Section 3,

that as a consequence, the three estimators )(ˆandˆ,ˆ c
IIML PPP will give approximately equal estimates

and only $PML is given below for the different models. The estimated SE are given in parentheses.

Estimate of P (=0.832) Model 1 Model 2 Model 3

$PML
0.909 (0.034) 0.859 (0.034) 0.878 (0.019)

5.3. Model comparisons

The saturated Models 1 and 2 give perfect fit of the data to the models. Model 3 gives a nearly perfect

fit. Therefore, we cannot evaluate and compare the models by traditional goodness-of-fit criteria. Note

that goodness-of-fit testing in contingency tables is concerned with estimating the cell probabilities

( ); , 1,2,3ij i jπ= =ππππ . Models 1,2 will give the ML estimates ˆij ijn nπ = , while Model 3 has

ˆij ijn nπ ≈ . Our goal for these models is, however, not to estimate ππππ, but rather P or equivalently

( )2( ) 1iE P P X= = . Hence, we should evaluate the models with this in mind. Now,

(5.1) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 21 1 1| 1 0 1| 0i i i i i i iP X P R P X R P R P X R= = = = = + = = = .

In terms of ππππ, ( )2 1 21iP R π π= = +o o , where π π π πo j j j j= + +1 2 3 . Furthermore,

( ) ( )2 2 1 1 21| 1i iP X R π π π= = = +o o o . Saturated models all have the same ML estimate of π o j ,

ˆ j jn nπ =o o . It follows from (5.1) that saturated models estimate ( )2 1iP X = by:

( )31
2 2

ˆ 1| 0i i

nn
P X R

n n
+ = =oo

where ( )2 2
ˆ 1| 0i iP X R= = is the ML estimate. Since Model 3 is approximately saturated, it follows

that, for estimating P, the three models differ only in how ( )2 21| 0i iP X R= = is estimated. We would

expect that ( )2 21| 0i iP X R= = is not too different from ( )1 11| 0i iP X R= = . The rate of voting among

the nonrespondents may, however, increase slightly with time, since the panel is aging. It is well
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known that voting participation among young voters is smaller than the population rate. Furthermore,

among the young voters there is a lower rate of voting in the nonresponse group (see Thomsen and

Siring, 1983). The point now is that, when p1 is known, the ML estimate of ( )1 11| 0i iP X R= = is

identically the same for all saturated models and is given by

(5.2) ( ) 1 1
1 1

3

ˆ 1| 0i i

np n
P X R

n

−= = = o

o

.

This is seen as follows. Obviously (5.1) holds for ( )1 1,i iX R and the ML estimates of ( )1 1iP R = and

( )1 11| 1i iP X R= = are ( )1 2 1 2ˆ ˆ n n nπ π+ = +o o o o and ( ) ( )1 1 2 1 1 2ˆ ˆ ˆ n n nπ π π+ = +o o o o o o respectively.

Hence, from (5.1),

( )31
1 1 1

ˆ 1| 0i i

nn
p P X R

n n
= + = =oo

and (5.2) follows. We conclude that a criterion for evaluating and comparing (nearly) saturated models

aimed at estimating P is given by

(5.3) ( ) ( ) ( ) 1 1
2 2 1 1 2 2

3

ˆ ˆ ˆ1| 0 1| 0 1| 0i i i i i i

np n
P X R P X R P X R

n

−= = − = = = = = − o

o

In the election panel survey, the estimated voting rates in the subpopulations of respondents for the

two elections are 0.917 for 1985 and 0.922 in 1989, in all three models. For the nonrespondents the

estimated voting rates are given below.

Table 5.4. Estimated voting rates for nonrespondents

Model 1 Model 2 Model 3

( )1 1
ˆ 1| 0i iP X R= = 0.559 0.559 0.554

( )2 2
ˆ 1| 0i iP X R= = 0.882 0.695 0.770

Based on (5.3), Model 2 is clearly to be preferred among the three models. Of course, knowing P in

this case makes it easy to confirm that Model 2 works best, but even if P was not known we would

make the same evaluation based on (5.3). It seems clear that the voting participation in the 89 election

among nonrespondents is overestimated by Model 3 and especially Model 1. The rate of voting of the

nonrespondents does, however, seem to increase with time as expected.
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Comparing $PML to $ ( )P r and the traditional nonresponse-adjustment methods $ , $ , $, , ,P P Pe I e W e W
∗ ∗ ∗

1 2
gives

additional support to the contention that Model 1 does not work. It does not correct for the bias due to

nonresponse that we know is present.

Let us now consider the modeling aspects for the distribution of R i1 given ii XX 21 and . Using the ML

estimates from table 5.3, we find the following estimates (with estimated SE in parentheses)1:

Table 5.5. Estimated conditional probabilities of response

Model 1 Model 2 Model 3

( )1 1 2
ˆ 1| 1, 1i i iP R X X= = = 0.854 (0.015) 0.858 (0.015) 0.856 (0.15)

( )1 1 2
ˆ 1| 1, 0i i iP R X X= = = 0.854 (0.015) 0.795 (0.071) 0.856 (0.15)

( )1 1 2
ˆ 1| 0, 1i i iP R X X= = = 0.402 (0.041) 0.453 (0.080) 0.396 (0.041)

( )1 1 2
ˆ 1| 0, 0i i iP R X X= = = 0.402 (0.041) 0.347 (0.065) 0.396 (0.041)

We see, by comparing Model 1 and Model 3, that assuming φ2
2 0( ) = in addition to φ2 0(1) = has little

effect on these conditional response probabilities. Comparing these models to Model 2 indicates that

R i1 may depend slightly on X2i even when X1i is known. This dependence has the effect of lowering

the response probability for those who did not participate in the 1989 election.

Looking at the estimated distribution of R X X Ri i i i2 1 2 1given , , for Model 1 we find that

( )2 1 1 2
ˆ 1| 1, ,i i i iP R R X X= = varies from 0.71 to 0.81 and ( )2 1 1 2

ˆ 1| 0, ,i i i iP R R X X= = lies between 0.38

and 0.51, while ( ) ( )2 1 1 2 2 1 1 2
ˆ ˆ1| , , 0 and 1| , , 1i i i i i i i iP R R X X P R R X X= = = = differs by no more than

0.003. Hence, Model 1 seems to imply that the behaviour in the 1985 election influences the response

behaviour in the 1989 election (when we have controlled for 1985 response/nonresponse) more than

the voting behaviour in the 1989 election. This further indicates that Model 1 is unsuitable.

One important aspect when comparing $PML under the different models, is that the subpopulation of

new voters is not sampled in the panel survey. Since the voting participation among young voters is

1 At the end of Section 2.2 we described how SE of parameter estimates were computed using parametric bootstrapping by
simulating 1000 sets of data. Each estimation based on the simulated data gives estimates of the various conditional
probabilities. These are used to give the estimates of the SE's.
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smaller than the population rate, we cannot and should not expect $PML to adjust fully for the bias in

the sample. It seems that $PML under Model 2 does as well as could be expected.

Model 1 may seem at first glance quite intuitive, assuming that the response behaviour in 1985 is

independent of the voting behaviour four years later. Note, however, that an equivalent fomulation is

that X2i does not depend on R1i , given X1i. We have shown that this is not a reasonable assumption.

Model 2 assumes instead that R2i does not depend on X1i, given X2i and R1i. Our evaluation shows that

this is a much more reasonable assumption. So clearly, we must include the combined voting

behaviour for (1985, 1989) when modelling the response behaviour in 1985, while this does not seem

necessary for the response behaviour in 1989.

If we disregard the knowledge of p1 and assume it to be unknown, then only Model 3 is estimable. It

turns out that the estimated rate of participation is about 0.91 both years. Clearly, this model does not

work. We note that for the traditional nonresponse-adjustment methods from Section 4, the estimator

* * *
1P̂ n n= o gives values between 0.913 and 0.922 and * * *

1 1p n n= o gives values between 0.911 and

0.915. There is simply not enough information in the data to correct for the nonresponse bias when

estimating p1. Evidently, when p1 is unknown one needs auxiliary information known for the total

sample s for poststratification purposes. To get rid of the nonresponse bias completely one should also

include callback information, if available. In the next case p1 is unknown, but we shall still be able to

estimate it because of the special nature of the data.

6. The consumer expenditure panel survey
In this example we estimate the proportion of car ownership in Norwegian households in 1989 and

1990 with panel data from the Norwegian Consumer Expenditure Survey. The units are now

households and X i1 1= if household i owns a car in 1989, and similarily for X i2 in 1990. In this case,

( )1 1 1ip P X= = is unknown and we estimate the proportion of ownership in both years. The data is

given in table 6.1.
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Table 6.1. Panel data for car ownership

1989\1990 X2 = 1 X2 = 0 mis totals

X1 = 1 133 1 62 196

X1 = 0 3 30 16 49

mis 28 10 142 180

totals 164 41 220 425

6.1. Traditional methods

We consider the traditional mean imputation and weighting approaches from Section 4, with

1P̂ n n∗ ∗ ∗= o and 1 1p n n∗ ∗ ∗= o , and the proportions of ownership in the response sample srr, $ ,p rr1 and

$Prr .

Table 6.2. Traditional estimates of proportions of car ownership

Method $p1
∗ $P∗

Mean imputation 0.791 0.802

W1 0.770 0.780

W2 0.792 0.803

srr -based $ ,p rr1 = 0.802 $Prr = 0.814

The marginal rates of ownership in 1989 and 1990, 196/245 and 164/205, gives 0.80 in both years.

Compared to W1-method it seems that there might be a small bias due to nonresponse. In the next

section we shall look at the model-based maximum likelihood estimators for p1 and P for two different

models as well as studying closer the weighting procedures.

6.2. Maximum likelihood estimation

Looking at the three models in Section 5, we see that letting p1 be an unknown parameter, we can only

use Model 3 since the maximal number of identifiable parameters is 8. In order to separate this new

model, with p1 to be estimated, from the earlier ones, it is called Model 3*. We shall also consider the

following model:

Model 4 φ φ2
2

3
2 0( ) ( )= = , and unkown p1

In this model we have that, conditional on ii RR 21 , is independent of ( )1 2,i iX X .
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The likelihood function is of the same form as in Section 2.2. The ML estimates of p11 and p01 for

Models 3* and 4 are as follows.

Parameter Model 3* Model 4

p11 0.9924 0.9925

p01 0.0896 0.0909

Based on srr , the estimates of p11 and p01 are given by:

( )
11ˆ 133 134 0.9925rp = = and ( )

01ˆ 3 33 0.0909rp = = .

Comparing these estimates to the ML estimates there seems to be no bias due to nonresponse

regarding change in ownership category. In Section 3 we presented three model-based estimators of P

when p1 is known. Using ML estimate $p1 in place of p1 we obtain three modified estimators. E.g.,

( )1 11 1 01
ˆ ˆ ˆ ˆ ˆ1 .MLP p p p p= + − $ $( )P PI

c
MLand differ by less than 0.001 (the total number of households is

approximately 1.9⋅106). We have nearly perfect fit to the data, so that $PI and $PML are approximately

equal here. Hence, only $PML is given in the following analysis. The estimates of p1 and P turn out to

be, for the two models

Model 3* Model 4

$p1 0.761 0.765

$PML
0.777 0.780

The SE's are about 0.02 for $p1 and 0.05 for $PML . Under the model (3.4) of ignorable RM, the ML

estimates of p p p11 01 1, and are 0.9918, 0.0834 and 0.791 respectively, with $PML = 0.802. Hence, a

nonignorable RM-model seems reasonable. We see that W1 produces estimates of p1 and P that are

very close to the model-based ML estimates. The other standard methods gives results that are

practically identical to the ML estimates under ignorable RM. We shall now try to find the reasons for

these results.

Mean imputation assume implicitly the ignorable model (3.4), φ φ φ φ1
1

2
1

2
2

3
2 0( ) ( ) ( ) ( )= = = = , for RM.

So it is reasonable that the estimates from this approach are similar to the ML estimates under the
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same model. W1 and W2 can adjust for certain nonresponse biases. If we look carefully at W1 we see

that this weighting scheme implicitly requires the following independent structure:

(a) X2i and R2i are independent, conditional on X1i and R1i = 1

(b) X2i and R2i are independent, conditional on R1i = 0

(c) X1i and R1i are independent, conditional on X2i and R2i = 1.

In terms of the model (2.1) - (2.3),

(a) ⇔ φ3
2 0( ) =

(b) ⇔ φ2
2 0( ) = , when φ3

2 0( ) =

(c) ⇔ φ1
1 0( ) = , when φ φ2

2
3

2 0( ) ( )= = .

Hence, W1 assumes that φ φ φ1 2
2

3
2 0(1) ( ) ( )= = = , but do allow for φ2

1 0( ) ≠ , i.e., R1i and X2i can be

dependent. W1 will therefore account for different X2-distributions in the strata R1i = 0 and R1i = 1. In

this particular case, the proportions of (X2i = 1) are 28/38 = 0.737 and 136/167 = 0.814 for these strata.

W1 will therefore lead to lower p1- and P-estimates than the methods based on ignorable RM.

The scheme W2 requires similarily φ φ φ1
1

2
1

3
2 0( ) ( ) ( )= = = but allows for φ2

2 0( ) ≠ , i.e., W2 will

account for different X1-distributions in the strata R2i = 0 and R2i = 1. For these panel data, however,

we have no nonresponse bias here. The proportions of (X1i = 1) are 62/78 = 0.795 and 134/167 = 0.802

in these strata, explaining why W2 performs similar to the methods based on ignorable RM.

6.3. Model comparisons

In this case we have no true values to compare with, but we can judge if the various estimates are

plausible or not. We see that Model 3*, in estimating ownership for the whole population, reduces the

respondent ownership percentage by 3.9 the first year and 2.3 the second year. It seems likely that the

true percentages are less than the percentages among respondents. This is supported by the estimates

provided by the weighting scheme W1. The estimated response probabilities the second year, under

Model 3*, are (with SE in parentheses):

( )2 1 2
ˆ 1| 1, 1i i iP R R X= = = = 0.684 (0.035)

( )2 1 2
ˆ 1| 1, 0i i iP R R X= = = = 0.672 (0.089)

( )2 1 2
ˆ 1| 0, 1i i iP R R X= = = = 0.213 (0.045)

( )2 1 2
ˆ 1| 0, 0i i iP R R X= = = = 0.205 (0.035).
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Note that the response behaviour the first year strongly influences the response probability the second

year, while state of ownership has little effect indicating that φ3
2 0( ) ≈ . The best weighting scheme W1

allowed for φ2
1 0( ) ≠ . Model 4 is therefore an alternative to Model 3*, letting φ φ2

2
3

2 0( ) ( )= = , with no

assumption about φ2
1( ) . We have three different RM-nonignorable models producing very similar

estimates of p1 and P. These estimates differs from the estimates based on the RM-ignorable model,

indicating that there is some bias due to nonresponse. We can compute estimates of the conditional

probabilities that a household owns a car, given response and nonresponse. Model 3* gives:

( )
( )
( )
( )

1 1

1 1

2 2

2 2

ˆ 1| 1 0.800

ˆ 1| 0 0.708

ˆ 1| 1 0.800

ˆ 1| 0 0.755

i i

i i

i i

i i

P X R

P X R

P X R

P X R

= = =

= = =

= = =

= = =

We observe that the model reproduces the observed marginals, and estimates the ownership rates in

the nonresponse groups to be significantly less. Note also that the probability of owning a car

increases in the subpopulation of nonrespondents. $PML -percentage seems to be about 1-1.5 higher

than $p1 -percentage. This could be a trend, though it is probably not. More likely, it is a panel effect.

The persons in the household are one year older the second year and the probability of owning a car is

likely to increase with age.

As mentioned in Section 6, using Model 3* for the election panel survey data leads to estimated rates

of participation of around 0.91 both years. Evidently, Model 3* does not work in this case. One

important difference in two cases is that the last panel involves a nearly absorbing state, ownership of

cars, whereas the election panel lacks a state with this feature. Obviously, a nearly absorbing state

gives more information about the conditional probabilities involved. This is probably the reason for

the seemingly better results with Model 3* in the case of car ownership.

7. Conclusions
We have considered a model-driven approach to panel surveys with nonresponse present as an

alternative to methods of weighting and direct data imputation that are currently in use. For the two

illustrations it is found that, on the whole, the traditional methods are inferior to model-based

procedures. This is not surprising since the traditional methods implicitly assume that the response

mechanism is essentially ignorable which is rarely the case.
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Various models have been evaluated, especially in the election panel survey. Among the alternatives

considered in this case, a clear "winner" is the model assuming independence between voting

behaviour in the first election and response behaviour in the second election, when we have controlled

for response in the first and voting in the second election.
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Appendix

Lemma 1. | $ $ |( )P P
n

NI
c

ML− ≤ .

Proof. Let A X X X Xi i isss isrmmrrr mm
= + + +∗ ∗∑∑∑ ∑2 2 2 2 . Since

( ) ( )( )( )
1 11 1 01

ˆ ˆ ˆ1c
It A N n p p p p= + − + − and ( ) ( )ˆ ˆc c

I IP t N=

we get: $ $( )P
N

A
N n

N
PI

c
ML= + −1

Rearranging: ( ) 1ˆ ˆ ˆc
I ML ML

n n
P P A P

N n N
− = − ≤ ♣♣♣♣

Lemma 2. Assume that the fit of the data to the model is perfect. Then $ $P PML I= .

Proof. For convenience we introduce the following notation:

( )1 2 1 2, , , ( , , , )i i i iP X a X b R c R d P a b c d= = = = =

and P a b c P a b c P a b c( , , , ) ( , , , ) ( , , , )− = +0 1 etc.

Let $ ( , , , )P a b c d be the estimated P a b c d( , , , ) . Similarily for $ ( , , , ),..P a b c − etc. Since $ $P PML Iand are

different only in the way the transition probabilities p11 and p01 are estimated, it is sufficient to show

that the estimates of p11 and p01 are equal. Due to symmetry it is enough to show that $ $,
( )p pI
c

11 11= . We

have

$
$ ( , , , )
$ ( , , , )

p
P

P
11

11

1
= − −

− − −

Furthermore, using the imputed values from Section 3,

$ ,
( )p

A

BI
c

11 =
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where

A n n
P

P
n

P

P
n

P

P
= +

−
+

−
+

− −11 13 31 33
111 0

1 1 0

11 0 1

1 0 1

11 0 0

0 0

$ ( , , , )
$ ( , , , )

$ ( , , , )
$ ( , , , )

$ ( , , , )
$ ( , , , )

B n n n n
P

P
n

P

P
n

P

P
= + + +

−
+

−
+ −

− −
( )

$ ( , , , )
$ ( , , , )

$ ( , , , )
$ ( , , , )

$ ( , , , )
$ ( , , , )

11 12 13 31 32 33
11 0 1

1 0 1

1 0 0 1

0 0 1

1 0 0

0 0

Since the fit is perfect we have:

nP n$ ( , , , )1111 11= nP n$ ( , , , )1 0 11 12= nP n$ ( , , , )1 1 0 13− =

nP n$ ( , , , )0 111 21= nP n$ ( , , , )0 0 11 22= nP n$ ( , , , )0 1 0 23− =

nP n$ ( , , , )− =1 0 1 31 nP n$ ( , , , )− =0 0 1 32 nP n$ ( , , , )− − =0 0 33 .

Replacing the nij's in A and B with the corresponding $ 'P s gives us immediately that

$
$ ( , , , )
$ ( , , , )

$,
( )p

P

P
pI

c
11 11

11

1
= − −

− − −
= . ♣♣♣♣


