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1 Introduction

A common challenge in microeconometric analyses of economic relationships is how to

treat heterogeneity concerning the form of the relationships across the micro units. Such

heterogeneity may be modelled and analyzed when panel data are available, unlike the

situation when only cross section data are at hand. However, even in a panel data

context, most researchers have tended to assume a common coe�cient structure, possibly

allowing for unit speci�c (or time speci�c) di�erences in intercept terms of the equations

(`�xed' or `random' e�ects) only. If the heterogeneity has a more complex form, this

modelling approach may lead to ine�cient (and even inconsistent) estimation of the

slope coe�cients, and hence invalid inference.

A more general approach is to allow for heterogeneity also in slope coe�cients of

the equation. The challenge then becomes how to obtain a model which is su�ciently

exible while avoiding overparametrization. The �xed e�ects slope coe�cient approach,

in which each unit has its distinct coe�cient vector, with no a priori assumptions made

about its variation between units, is very exible, but may easily su�er from this degrees

of freedom problem. The random coe�cients approach, in which speci�c assumptions

are made about the distribution from which the unit speci�c coe�cients are drawn, is

far more parsimonious in this respect. At the same time, the expectation vector in

this distribution represents, in a precise way, the coe�cients of an average unit, while

its second order moments matrix gives easily interpretable measures of the degree of

heterogeneity. The random coe�cients approach may also be considered a particular way

of representing disturbance heteroskedasticity in panel data analysis, since the random

e�ects enter multiplicatively to the covariates of the equation.

While there is a growing body of methodological articles in the econometric literature

dealing explicitly with this random coe�cient problem for balanced panel data situations,

far less has been done with unbalanced panel data. This is somewhat surprising, since in

practice the latter is rather the rule than the exception. Because working with complete

panels is mathematically more convenient, a common procedure for empirical researchers

is to leave out the units for which the time series are incomplete and use the balanced

sub-sample of the original, less tidy data-set. This may, however, involve a of loss of

e�ciency, see M�aty�as and Lovrics (1991) and Baltagi and Chang (1994).

In this paper, we consider a general framework for analyzing the production process,

i.e., factor substitution, scale properties and technical change, from unbalanced plant-

level panel data. The paper discusses the importance of choosing a random versus the

more common constant coe�cients speci�cation of plant heterogeneity in econometric

analyses of factor demand systems. The translog cost function approach suggested by
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denoted as X and K respectively, and both, like the three input prices, are treated as

exogenous variables, i.e., capital is treated as a `quasi-�xed' factor. A deterministic trend,

� , representing, inter alia, technical change is included.

The production technology, represented by its dual cost function, is assumed to

be a translog function in (X;K; �;QL; QE; QM) [see, e.g., Christensen, Jorgenson, and

Lau (1971, 1973) and Jorgenson (1986)]:

lnC = �0 + �X lnX + �K lnK + �� � +
P

g g lnQg

+
P

g �Xg(lnX)(lnQg) +
P

g �Kg(lnK)(lnQg)

+
P

g ��g � lnQg +
1
2

P
g

P
h gh(lnQg)(lnQh)

+ 1
2�XX(lnX)2+ 1

2�KK(lnK)2 + 1
2����

2

+ �XK(lnX)(lnK) + ��X� lnX + ��K� lnK; g; h = L;E;M:

Cost minimization with respect to Vg, conditional on Qg (g = L;E;M), X and K

gives, according to Shephard's lemma (@C=@Qg = Vg), the following expression for the

optimal cost share of factor g:

QgVg
C

=
@ lnC

@ lnQg

= g + �Xg lnX + �Kg lnK +
P

h gh lnQh + ��g�:

The homogeneity and symmetry conditions on the cost function and the adding-up of

cost shares imply

P
g g = 1;

P
g �Xg =

P
g �Kg =

P
g ��g =

P
g gh = 0; gh = hg:

We represent these restrictions in the model by letting

M = 1� L � E;

�XM = � �XL � �XE; �KM = � �KL � �KE; ��M = � ��L � ��E;

LM = � LL � LE ; EM = � EE � LE ; MM = LL + 2LE + EE;

and can write the cost function and the cost-share equations of labour and energy as

ln(C=QM) = �0 + �X lnX + �K lnK + ��� +
P

g g ln(Qg=QM )(1)

+
P

g �Xg(lnX)(ln(Qg=QM)) +
P

g �Kg(lnK)(ln(Qg=QM ))

+
P

g ��g� ln(Qg=QM) + 1
2

P
g

P
h gh(ln(Qg=QM))(ln(Qh=QM))

+ 1
2�XX(lnX)2 + 1

2�KK(lnK)2 + 1
2����

2

+ �XK(lnX)(lnK) + ��X� lnX + ��K� lnK; g; h = L;E;

QgVg
C

= g + �Xg lnX + �Kg lnK + ��g� +
P

h gh ln(Qh=QM); g; h = L;E;(2)
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The cost elasticity of output, capital, and the rate of increase of cost with time are,

respectively,

(@ lnC)=(@ lnX) = "X = �X + �XX lnX +
P

g �Xg ln(Qg=QM ) + �XK lnK + ��X�;(3)

(@ lnC)=(@ lnK) = "K = �K + �KK lnK +
P

g �Kg ln(Qg=QM) + �XK lnX + ��K�;(4)

(@ lnC)=(@�) = "� = �� + ���� +
P

g ��g ln(Qg=QM ) + ��K lnK + ��X lnX:(5)

Cross-price and own-price elasticities of substitution in the demand for factor g with

respect to the price of factor h, de�ned as the Slutsky analogues (output constrained

price elasticities of input quantities), are

"gh =

8>>><
>>>:

gh
sg

+ sh; g 6= h;

gg
sg

+ sg � 1; g = h;
(6)

which satisfy
P

h "gh = 0. The corresponding (symmetric) Allen-Uzawa elasticities of

substitution are

�gh = �hg =
"gh
sh

=

8>>><
>>>:

gh
sgsh

+ 1; g 6= h;

gg
s2g

+ 1�
1

sg
; g = h:

(7)

Denoting the cost shares as sg = (QgVg)=C (g = L;E), and using lower case letters

to symbolize logarithms, i.e., c = lnC; x = lnX; qg = lnQg etc., the cost-share equations

of labour and energy, (2), can be written as1

sL = L + �XLx+ �KLk + ��L� + LL(qL � qM) + LE(qE � qM ) + uL;(8)

sE = E + �XEx+ �KEk + ��E� + LE(qL � qM ) + EE(qE � qM ) + uE ;(9)

and the cost function, (1), as

(c� qM ) = �0 + �Xx+ �Kk + ��� + L(qL � qM ) + E(qE � qM )(10)

+ �XLx(qL � qM ) + �XEx(qE � qM )

+ �KLk(qL � qM ) + �KEk(qE � qM )

+ ��L�(qL � qM ) + ��E�(qE � qM )

+ 1
2LL(qL � qM )2 + LE(qL � qM)(qE � qM ) + 1

2EE(qE � qM )2

+ 1
2�XXx

2 + 1
2�KKk

2 + 1
2����

2 + �XKxk + ��X�x+ ��K�k + uC ;

1To these equations may be added, for symmetry reasons, the corresponding equation for materials,

but to avoid singularity of the disturbance covariance matrix, it is omitted from the econometric model.

Using, as here, a Maximum Likelihood estimation procedure, this involves no loss of e�ciency.
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where we have added the disturbances uL, uE , and uC .

The data are from an unbalanced panel, in which the plants are observed in at least

1 and at most P years. We assume that the plants are arranged in groups according to

the number of years the plants are observed. This will be convenient when presenting the

estimation procedure (cf. Section 3). Let Np be the number of plants which are observed

in exactly p years (not necessarily the same and not necessarily consecutive), let (ip)

index the i'th plant among those observed in p years (i = 1; : : : ; Np; p = 1; : : : ; P ),

and let t index the observation number (t = 1; : : : ; p). The total number of plants in the

panel is N =
PP

p=1Np and the total number of observations is n =
PP

p=1Npp. To capture

heterogeneity of the technology, some coe�cients are allowed to be plant dependent and

treated as random.

Two model classes will be considered:

Model A: The two cost-share equations, (8) and (9).

Model B: The two cost-share equations and the cost function, (10).

Identi�cation of the scale properties of the technology and the trend e�ects is possible

within the full Model B only. The substitution properties can be identi�ed from both

models. Model A contains 11 and Model B contains 21 (�xed or random) coe�cients.

Since the latter incorporates more prior information, it leads to more e�cient parameter

estimation within a full Maximum Likelihood procedure, provided that all restrictions

are valid.

The two model versions can be written compactly as

y(ip)t = X(ip)t�(ip) + u(ip)t; p = 1; : : : ; P ; i = 1; : : : ; Np; t = 1; : : : ; p;(11)

where �(ip) is the coe�cient vector of plant (ip), in which at least some elements are be

random and the other are �xed constants common to all plants. Model A is characterized

by

X 0 =

2
666666666666666666664

1 0

0 1

x 0

0 x

k 0

0 k

(qL � qM ) 0

(qE � qM ) (qL � qM )

0 (qE � qM )

� 0

0 �

3
777777777777777777775

; � =

2
6666666666666666666664

L
E
�XL
�XE

�KL
�KE

LL
LE
EE

��L
��E

3
7777777777777777777775

;

y 0 = [sL sE ]; u 0 = [uL uE ];
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and Model B by

X 0 =

2
666666666666666666666666666666666666666666664

0 0 1

0 0 x

0 0 k

0 0 �

1 0 (qL � qM )

0 1 (qE � qM )

x 0 x(qL � qM )

0 x x(qE � qM )

k 0 k(qL � qM)

0 k k(qE � qM )

(qL � qM ) 0 1
2(qL � qM )2

(qE � qM) (qL � qM ) (qL � qM)(qE � qM )

0 (qE � qM ) 1
2(qE � qM )2

� 0 �(qL � qM )

0 � �(qE � qM )

0 0 1
2x

2

0 0 1
2k

2

0 0 1
2�

2

0 0 xk

0 0 �x

0 0 �k

3
777777777777777777777777777777777777777777775

; � =

2
666666666666666666666666666666666666666666664

�0
�X
�K
��
L
E
�XL
�XE

�KL
�KE

LL
LE
EE
��L
��E
�XX
�KK
���
�XK
��X
��K

3
777777777777777777777777777777777777777777775

;

y 0 = [sL sE c� qM ]; u 0 = [uL uE uC ];

In the applications, the following model versions will be considered:

Model A1: All 11 coe�cients are �xed.

Model A2: The coe�cients L; E are random. The other 9 coe�cients are �xed.

Model B1: All 21 coe�cients are �xed.

Model B2: The coe�cients �0; L; E are random. The other 18 coe�cients are �xed.

Model B3: The coe�cients �0; �X; �K ; �� ; L; E are random. The other 15 coe�cients,

representing second-order terms in the cost function, are �xed.

In addition, a `constant returns to scale' version of Model B2, denoted as B2R is also

considered. Model B3 implies that in the two cost-share equations, only the intercepts

are random, whereas the cost equation from which they are derived, have �ve random

slope coe�cients, and a random intercept. Hence, both the cost elasticity function with

respect to output and the substitution elasticity function, conditional on the exogenous

variables, will contain random coe�cients.

The model is formally a system of G regression equations with random coe�cients

and with a total of K (�xed or random) coe�cients. In Model A, G = 2; K = 11, in
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Model B, G = 3; K = 21. The (G� 1) vector of observations of the regressands in the G

equations from plant (ip), observation t is y(ip)t, and the corresponding (G�K) regressor

matrix is X(ip)t. The (K � 1) coe�cient vector of plant (ip) is

�(ip) = � + �(ip);(12)

where � is the common expectation vector of �(ip) for all plants, and �(ip) a zero mean

vector speci�c to plant (ip). By inserting (11) in (12), the G equations for plant (ip),

observation t, can thus be written as

y(ip)t = X(ip)t� + �(ip)t; �(ip)t = X(ip)t�(ip)t + u(ip)t:(13)

We further assume that

X(ip)t; u(ip)t; �(ip) are all stochastically independent;(14)

and that

u(ip)t � IIN(0G1;�
u); �(ip) � IIN(0K1;�

�);(15)

where IIN signi�es independently, identically, normally distributed, 0m;n is a (m�n) zero

matrix and

� u =

2
664

� u
11 � � � � u

1G
...

...
� u
G1 � � � � u

GG

3
775 ; � � =

2
664
� �
11 � � � � �

1K
...

...
� �
K1 � � � � �

KK

3
775 :

The latter two matrices may be singular, reecting for instance that some of the coe�-

cients may be �xed. In all model versions we consider below, �u is a full positive de�nite

(G� G) matrix, while the (K �K) matrix �� has reduced rank and is partioned as

�� =

2
4 �

�
0

0 0

3
5 ;

where in, e.g., Model A2,

�u =

2
4 �uLL �uLE

�uEL �uEE

3
5 ; �

�
=

2
4 ��LL ��LE

��EL ��EE

3
5 ;

and in, e.g., Model B3,

�u =

2
664
�uLL �uLE �uLC

�uEL �uEE �uEC

�uCL �uCE �uCC

3
775 ; �

�
=

2
666666666664

��00 ��0X ��0K ��0� ��0L ��0E

��X0 ��XX ��XK ��X� ��XL ��XE

��K0 ��KX ��KK ��K� ��KL ��KE

���0 ���X ���K ���� ���L ���E

��L0 ��LX ��LK ��L� ��LL ��LE

��E0 ��EX ��EK ��E� ��EL ��EE

3
777777777775
:
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We stack the p realizations from plant (ip) in

y(ip) =

2
664
y(ip)1
...

y(ip)p

3
775 ; X(ip) =

2
664
X(ip)1

...
X(ip)p

3
775 ; u(ip) =

2
664
u(ip)1
...

u(ip)p

3
775 ; �(ip) =

2
664
�(ip)1
...

�(ip)p

3
775 ;

which, in general, have dimensions (Gp�1), (Gp�K), (Gp�1), and (Gp�1), respectively.

Then we can write (13) as

y(ip) = X(ip)� + �(ip); �(ip) = X(ip)�(ip) + u(ip):(16)

It follows from (14), (15), and (16) that

All �(ip)jX(ip) are stochastically independent, and �(ip)jX(ip) � N(0Gp;1;
(ip));(17)

where 
(ip) is the (Gp�Gp) matrix


(ip) = X(ip)�
�X 0

(ip) + Ip 
�u:(18)

We see from (18) that the `gross disturbance' vector �(ip) exhibits a particular kind of

heteroskedasticity.

3 Estimation procedure and data

The joint log-density function of plant (ip), i.e. of y(ip) conditional on X(ip), is

L(ip) = �
Gp

2
ln(2�)�

1

2
ln j
(ip)j �

1

2
[y(ip) �X(ip)�]

0
�1
(ip) [y(ip) �X(ip)�];

so that by utilizing the ordering of the observations in the P groups, we can write the

log-likelihood function of all observations on y conditional on all observations on X as

L =
PX
p=1

NpX
i=1

L(ip) = �
Gn

2
ln(2�)�

1

2

PX
p=1

NpX
i=1

ln j
(ip)j(19)

�
1

2

PX
p=1

NpX
i=1

[y(ip) �X(ip)�]
0
�1

(ip) [y(ip) �X(ip)�]:

The Maximum Likelihood (ML) estimators of (�;�u;��) are obtained by maximizing L

with respect to (the unknown elements of) these parameter matrices, as given in Section

2.2 The structure of this problem is more complicated than the ML problem for systems

2The soluton conditions may be simpli�ed by concentrating L over � and maximizing the resulting

function with respect to the unknown elements of the 
 matrices.
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of regression equations in more standard situations with balanced panel data sets and

�xed slope coe�cients for two (related) reasons. First, the various y, X , and 
 matrices

have di�erent number of rows, reecting the di�erent number of observations of the plants

in the panel. Although the dimensions of �u, and �� in (18) are the same for all plants,

the dimensions ofX(ip), and hence of 
(ip), di�er. Second, di�erent plants have di�erent

disturbance covariance matrices, since 
(ip) depends on X(ip) when �
� is non-zero, i.e.,

when at least one of the coe�cients (in addition to the intercepts) are random.

Primarily we use data from the Manufacturing Statistics database of Statistics Nor-

way, supplemented, to a minor extent by data from the Norwegian National Accounts.

All industries classi�ed under SIC-code 351 Manufacture of Industrial Chemicals are in-

cluded. The data set is unbalanced and covers T = 22 years, with a total number of

plants N =
P

pNp = 88, and a total number of observations n =
P

pNpp = 1101, so

that on average, the plants are observed in 11 { 12 years. Of these plants, N22 = 30

are observed in all the 22 years { representing 660 observations or about 60 percent of

the data set { and N1 = 16 are observed in one year only. All times series used for the

estimation and testing reported below are contiguous, i.e., plants for which there are gaps

in the time series in the original database, 220 observations in all, are excluded. The

output measure is tonnes output. This implies that systematic, gradual quality changes

in output over time will be represented by the trend variable in the model. The capital

input data are constructed from information on �re insurance values, in combination

with information on gross investment ows from the Manufacturing Statistics and in the

National Accounts. Details on the data and data construction are given in the Appendix.

4 Empirical results

Maximum Likelihood estimates of the six models described in Section 2 have been ob-

tained by using the PROC MIXED-procedure in SAS/STAT software [SAS (1992)].

In addition to the estimated elements of the � vector, cf. equation (12), Tables 1

and 3 include the coe�cients calculated by using the adding-up conditions described

in Section 2. Apart from the results for (the restrictive) Model B2R, the tables show

that several coe�cient estimates are relatively stable across models. This supports our

stochastic assumptions, which implies that neglecting coe�cient heterogeneity does not

cause inconsistent estimates of � asymptotically. However, there is a loss of e�ciency.

A clear majority of the coe�cient estimates are signi�cant according to the asymptotic

standard-error estimates.

Tables 2 and 4 give some measures of overall model �t. Both the Akaike and the

11



Schwartz Bayesian information criteria support the most exible models, i.e., A2 among

the A-models and B3 among the B-models. Furthermore, it is evident that substantial

explanatory power is lost when the output-elasticity a priori is set to one, which is the

case for Model B2R. The Log-Likelihood values of the di�erent models are also given

in Tables 2 and 4, and the Log-Likelihood Ratios of interest can be calculated from the

tables. These test-statistics are, however, not asymptotically �2-distributed under the

null, because the coe�cients then are on the border of the admissible parameter space, see

Shin (1995, p. 321). Thus, for making formal inference, other test procedures are needed.

For a discussion of statistical tests for mixed linear models see Khuri et al. (1998).

To facilitate the economic interpretation of the models, we have calculated various

elasticities. In Table 5, own-price and cross-price elasticities of (variable) input demand

are reported. These are the analogues of the Slutsky-elasticities from consumer demand,

and the cross-price elasticities are not symmetric. In addition, we also report the Allen-

Uzawa elasticities, which are symmetric, see Table 6. By construction, the two sets

of elasticities have the same sign. In accordance with the chosen translog functional

form, the elasticities will be functions not only of the estimated coe�cients, but also

of the exogenous variables. Typically, the elasticities will therefore vary across plants

and over time. In Tables 5 and 6, the di�erent elasticities are reported at the overall

sample means of the exogenous variables. The elasticities in Models A2, B2, B3 and

B2R are functions of both the exogenous variables and the random coe�cients, and

these models will in general predict variation in elasticities even across plants with the

same exogenous input. When calculating the elasticities reported in the tables, we use

the estimated expectations of the random coe�cients. Because the predicted (variable)

cost shares depend on unknown coe�cients, all the estimated elasticities in Tables 5 and

6 are non-linear functions of the coe�cients. To calculate standard deviations, a �rst

order Taylor-expansion of the non-linear functions is utilized (cf. Kmenta (1986)).

According to the results in Table 5, none of the variable inputs are price-elastic. This

is in line with the �ndings in Lindquist (1995), where a dynamic translog factor-demand

system assuming �xed e�ects is estimated on Norwegian manufacturing plant-level panel

data. Except for energy in Model B1, the own-price elasticities in the six models are

all less than 1 in absolute value. From Table 6 it is seen that all the cross-price Allen-

Uzawa elasticities are positive (at the global mean of the exogenous variables), which

means that all the three variable inputs in average are substitutes. The Allen-Uzawa

own-price elasticity for energy is fairly high in absolute value in all models and higher

than the estimates usually reported in studies of input demand. The price elasticities

are relatively equal in the A- and B-models. Even the price elasticties from Model B2R
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are rather similiar to those obtained for the other models. Hence, in our case, little gain

is obtained in adding the cost function to the cost-share equations if the sole interest

is in factor-price elasticities. However, in this paper we are also interested in the scale

properties of the technology, which can only be obtained within a framework where the

cost function is an integral part of the model, as in our B-models.

The �rst row of Table 7 contains the output elasticity in the B-models. This elasticity,

like the price elasticities, depends on the value of the exogenous variables (except in

Model B2R where it is restricted to 1 a priori), and again we use the overall mean of the

exogenous variables and the estimated expected values of the random coe�cients as a

reference point when calculating the elasticities. The output elasticity is between 0.25 and

0.3 in the random coe�cient models B2 and B3. In Model B1, in which all coe�cients

are assumed to be plant-invariant, the estimated output elasticity is about 0.15. The

inverse of the output elasticity can be interpreted as `a variable-input scale elasticity' of

the underlying (three factor) production function. These estimated `economies of scale

e�ects' are rather high compared with the unitary elasticity assumed in Model B2R. The

loss of explanatory power for Model B2R is closely linked to higher output elasticity for

this model than for the other B-models.

In the second row of Table 7, we report the elasticity of variable costs with respect

to an increase in the capital stock calculated at the global empirical mean. To be well

behaved, the cost function should be non-increasing and convex in the levels of any �xed

factor, cf. Brown and Christensen (1981, pp. 217 { 218). The intuition is that as capital

stock increases, one needs less variable inputs to maintain the given level of output. This

will accordingly reduce variable costs. However, for Models B1, B2 and B3 this elasticity

has wrong sign, implying that an increase in the capital stock increases variable costs at a

given level of output. The capital elasticity has the correct sign in Model B2R, however,

although it is not signi�cantly di�erent from zero according to the asymptotic t-value.

In the last row of Table 7, we report the derivative of the logarithm of variable costs with

respect to the trend variable. The trend variable is included in order to pick up the e�ect

of technological progress, which may be both neutral and non-neutral. This derivative

should be of negative sign, since technological progress means that a given output level

can be obtained with less variable inputs. As for the response to an increase in the

capital stock, we get a positive sample mean estimate of this derivative for Models B1,

B2 and B3, whereas the correct negative sign is obtained for Model B2R, and the e�ect

is signi�cant.

In order to study the robustness of the results obtained for Model B3 with respect to

the production technology, several alternative calculations have been performed. First,
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insigni�cant coe�cients have been constrained to zero and the model reestimated follow-

ing a general to speci�c modelling approach. Second, an alternative capital measure was

constructed, based on �re insurance values, while the �rst measure was very much based

on data on investments. However, the results using this alternative capital measure came

out very similiar to the results in Table 7, and they are therefore not reported.

Our interpretation of the `theory-inconsistent' results is that we are unable to properly

identify simultaneously the e�ect of changes in production, capital stock, and technolog-

ical progress on variable costs. This may again be due to our proxies for these two

variables. In our context there are no generally accepted way to calculate the capital

stock. A lot of di�erent capital stock measures can be established, and empirically, there

are no operational way to distinguish between them. Our results are, however, robust

to which of the alternative measures we include in our information set (see Appendix).

Technological change is proxied by a deterministic time trend which is, admittedly, a very

rough way of picking up technological progress, and the need for additional information

about technological progress is highly desirable. The problem of identifying the di�er-

ent properties of the production process is not particular to our study. Morrison (1988,

p. 278) for instance, reports within a Generalized Leontief framework that \empirical

researchers have found it di�cult to identify independently the impacts of technology,

quasi-�xed inputs and returns to scale".

In Table 8, we report the estimated covariance matrix of the random coe�cient-vector

for Models A2, B2, B3, and B2R, respectively. These matrices are of di�erent dimensions,

because the number of random coe�cients varies across the models. The covariance

matrix of the genuine disturbances of the six estimated models are given in Table 9. The

covariance matrices of the genuine error-terms are of dimension (2�2) and (3�3) for the

A- and B-models, respectively. All the estimated covariance matrices satisfy the positive-

de�niteness requirement, since all the calculated eigenvalues of the di�erent matrices are

positive. Both the A- and B-models which do not allow for coe�cient heterogeneity have

higher estimated variances of the genuine disturbances than the more exible models.

This is as expected when coe�cient heterogeneity is important, because Models A1 and

B1 are then misspeci�ed and the estimated variances of the disturbances are inuenced

by the coe�cient heterogeneity. By comparing the estimated covariance matrices for

Model B2R with those of Model B2, we see that constraining the output elasticity to 1

has a signi�cant impact on both the covariance matrix for the random coe�cients and

the covariance matrix of the genuine error-terms. However, the submatrix consisting of

only the second order moments of the genuine errors in the two cost-share equations looks

very similiar to that in Model B2.
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Table 1. Coefficient estimates and standard deviations in A-models
Model A11 Model A22

Coefficient Value Std. dev. Value Std. dev.
γL  0.3351    0.0465    0.2261    0.0557
γE  0.0825    0.0290   -0.0027    0.0354
γM  0.5824    0.0622    0.7766    0.0711
βXL -0.0257    0.0024   -0.0171    0.0022
βXE  0.0115    0.0019    0.0060    0.0016
βXM  0.0142    0.0034    0.0111    0.0027
βKL  0.0021    0.0029    0.0030    0.0049
βKE  0.0018    0.0023    0.0069    0.0033
βKM -0.0040    0.0042  -0.0099    0.0064
γLL  0.0445    0.0088    0.0466    0.0057
γLE  -0.0192    0.0045   -0.0089    0.0026
γLM  -0.0253    0.0103   -0.0377    0.0062
γEE  -0.0112    0.0044    0.0053    0.0024
γEM   0.0303    0.0068    0.0036    0.0035
γMM -0.0050    0.0146    0.0341    0.0080
βτL

  0.0003    0.0007    0.0008    0.0004

βτE
  0.0017    0.0006    0.0015    0.0003

βτM
 -0.0020    0.0011  -0.0023    0.0005

1 Model A1: None of the coefficients are assumed to be random.
2 Model A2: γL , γE and γM are the expectations of γL(i,p) , γE(i,p)  and γM(i,p) respectively.

Table 2. Overall measures of fit in A-models
Model A1 Model A2

Number of estimated parameters 14 17
Log-likelihood value 1546.398 2877.179
Akaike’s information criterion 1543.398 2871.179
Schwartz’s Bayesian criterion 1534.853 2854.088
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Table 3. Coefficient estimates and standard deviations in B-models
Model B11 Model B22 Model B33 Model B2R2

Coef. Value Std. dev. Value Std. dev. Value Std. dev. Value Std. dev.
β0    1.5676  0.3001   3.8314  0.5606     3.6053   1.0168 0.9511 0.9224
βX    0.7355  0.0449   0.2856  0.0557     0.4704   0.1282 14

βK   -0.1458  0.0481   0.0070  0.0863     0.1374   0.1634 -0.0425 0.2010
βτ    0.0544  0.0195   0.0248  0.0120    -0.0434   0.0232 0.0672 0.0316
γL    0.3725  0.0431   0.2401  0.0558     0.2104   0.0561 0.1931 0.0610
γE    0.1285  0.0271  -0.0206  0.0352     0.0002   0.0350 0.0144 0.0358
γM    0.4990  0.0570    0.7805  0.0706     0.7894   0.0711 0.7925 0.0732
βXL   -0.0237  0.0023  -0.0156  0.0022    -0.0158   0.0022 04

βXE    0.0111  0.0018   0.0060  0.0016     0.0058   0.0016 04

βXM    0.0126  0.0034   0.0096  0.0027     0.0100   0.0027 04

βKL    0.0017  0.0029   0.0031  0.0049     0.0096   0.0049 -0.0061 0.0053
βKE    0.0020  0.0022   0.0089  0.0033     0.0087   0.0032 0.0102 0.0032
βKM  -0.0037  0.0041 -0.0120  0.0063   -0.0183   0.0064 -0.0040 0.0064
γLL    0.0368  0.0081   0.0409  0.0055     0.0349   0.0054 0.0465 0.0058
γLE   -0.0270  0.0040  -0.0086  0.0025    -0.0118   0.0024 -0.0101 0.0026
γLM   -0.0098  0.0093  -0.0323  0.0059    -0.0231   0.0058 -0.0364 0.0063
γEE   -0.0151  0.0042   0.0042  0.0024     0.0027   0.0023 0.0055 0.0024
γEM    0.0421 0.0062   0.0044 0.0034     0.0091   0.0033 0.0045 0.0035
γMM  -0.0323 0.0129   0.0279 0.0075     0.0140   0.0074 0.0318 0.0080
βτL

   0.0005  0.0007   0.0008  0.0004     0.0010   0.0004 -0.0002 0.0004

βτE
   0.0020  0.0006   0.0015  0.0003     0.0016   0.0003 0.0019 0.0003

βτM
 -0.0025  0.0011 -0.0023  0.0005   -0.0026   0.0005 -0.0017 0.0005

βXX    0.0205  0.0041   0.0573  0.0044     0.0184   0.0082 04

βXK   -0.0548  0.0041  -0.0355  0.0051    -0.0254   0.0122 04

βKK    0.1127  0.0066   0.0569  0.0099     0.0160   0.0189 0.0068 0.0232
βττ   -0.0015  0.0010  -0.0008  0.0005   -0.0019   0.0004 0.0006 0.0014

βτX
  -0.0082  0.0016  -0.0089  0.0012   -0.0039   0.0018 04

βτK
   0.0051  0.0022   0.0067  0.0014    0.0096   0.0025 -0.0098 0.0027

1 Model B1: None of the coefficients are assumed to be random.
2 Model B2 and B2R: β0, γL , γE and γM  are the expectations of  β0(i,p), γL(i,p), γE(i,p) and γM(i,p)    respectively.
3 Model B3: β0, βX, βK, βτ, γL, γE and γM  are the expectations of  β0(i,p), βX(i,p), βK(i,p), βτ(i,p), γL(i,p), γE(i,p) and γM(i,p)

   respectively.
4 A priori restriction.

Table 4. Overall measures of fit in B-models
Model B1 Model B2 Model B3 Model B2R1

Number of estimated parameters 27 33 48 27
Log-likelihood value 662.440 2521.881 2884.850 1388.758
Akaike’s information criterion 656.440 2509.881 2857.850 1376.758
Schwartz’s Bayesian criterion 638.133 2473.266 2775.465 1340.143
1 The value of the two information criterias for model B2R is not comparable with those of the three
other models since the former has six less fixed coefficients than the others.
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Table 5. Own- and cross price-elasticties of input demand.1 Standard deviations in parentheses
Elast.  A1  A2  B1  B2  B3  B2R
 εL,L -0.556

(0.030)
-0.538
(0.021)

-0.584
(0.028)

-0.555
(0.020)

-0.570
(0.021)

    -0.530
    (0.021)

 εE,E -0.992
(0.041)

-0.838
(0.022)

-1.031
(0.040)

-0.845
(0.022)

-0.860
(0.022)

    -0.839
    (0.023)

 εM,M -0.409
(0.025)

-0.370
(0.025)

-0.449
(0.023)

-0.386
(0.026)

-0.414
(0.027)

    -0.382
    (0.027)

 εE,L  0.116
(0.042)

 0.237
(0.031)

 0.038
(0.038)

 0.244
(0.029)

 0.221
(0.031)

     0.237
    (0.034)

 εL,E  0.044
(0.016)

 0.088
(0.015)

 0.014
(0.014)

 0.093
(0.014)

 0.081
(0.014)

     0.080
    (0.015)

 εM,L  0.249
(0.018)

 0.248
(0.019)

 0.271
(0.016)

 0.258
(0.019)

 0.280
(0.020)

     0.263
    (0.022)

 εL,M  0.513
(0.036)

 0.450
(0.027)

 0.570
(0.033)

0.462
(0.026)

 0.489
(0.028)

     0.450
    (0.027)

 εM,E  0.160
(0.012)

 0.123
(0.013)

 0.178
(0.011)

0.128
(0.013)

 0.134
(0.013)

     0.119
    (0.013)

 εE,M  0.876
(0.064)

 0.601
(0.040)

 0.994
 (0.059)

0.601
(0.038)

 0.639
(0.041)

     0.602
    (0.042)

 sL  0.291  0.314  0.287  0.316  0.321      0.328
 sE  0.110  0.116  0.108  0.120  0.118      0.111
 sM  0.600  0.570  0.604  0.564  0.561      0.561
1 All elasticities and cost shares (sL, sE and sM) are computed at the global mean of the exogenous variables.

Table 6. Allen-Uzawa partial elasticities of substitution.1  Standard deviations in parentheses
Elast. A1 A2 B1 B2 B3 B2R
ηL,L -1.912

(0.109)
-1.714
(0.141)

-2.035
(0.105)

-1.759
  (0.145)

 -1.773
 (0.151)

     -1.618
     (0.151)

ηE,E -9.056
(0.484)

-7.201
(0.803)

-9.521
(0.495)

-7.026
 (0.762)

 -7.310
 (0.812)

     -7.549
     (0.884)

ηM,M -0.682
(0.044)

-0.650
(0.069)

-0.743
(0.040)

 -0.685
 (0.071)

 -0.738
 (0.077)

     -0.681
     (0.075)

ηE,L  0.399
(0.142)

 0.756
(0.078)

 0.131
(0.131)

  0.774
 (0.071)

  0.687
 (0.074)

      0.722
     (0.080)

ηM,L  0.855
(0.059)

 0.789
(0.035)

 0.944
(0.054)

  0.818
 (0.034)

 0.872
 (0.033)

      0.802
     (0.035)

ηM,E  1.462
(0.104)

 1.055
(0.053)

1.644
(0.095)

  1.065
  (0.050)

 1.139
(0.052)

      1.073
     (0.056)

sL  0.291  0.314 0.287    0.316    0.321       0.328
sE  0.110  0.116 0.108    0.120    0.118       0.111
sM  0.600  0.570 0.604    0.564    0.561       0.561
1
 All elasticities and cost shares (sL, sE and sM) are computed at the global mean of the exogenous variables.
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Table 7. Output elasticity, capital elasticity and trend effect on costs in B-models1. Standard
             deviations in parentheses

B1 B2 B3          B2R
εX 0.142

(0.013)
0.276

(0.014)
0.257

(0.035)
            12

εK 0.650
(0.016)

0.411
(0.037)

0.248
(0.046)

         -0.082
         (0.094)

ετ 0.022
(0.003)

0.012
(0.002)

0.013
(0.005)

         -0.031
         (0.005)

1 Computed at the global mean of the exogenous variables.
2  A priori restriction.

Table 8. The covariance matrix for the random coefficients. Standard deviations in parentheses1

Model A2
γL(i,p) γE(i,p)

  γL(i,p) 2.45
(0.41)

  γE(i,p) 0.43
(0.19)

1.00
(0.16)

Model B2
β0(i,p) γL(i,p) γE(i,p)

  β0(i,p)   212.45
(36.24)

  γL(i,p)   -18.12
  (3.46)

2.50
(0.42)

  γE(i,p)  -8.31
(1.96)

0.40
(0.19)

1.01
(0.16)

Model B3
β0(i,p) βX(i,p) βK(i,p) βτ (i,p) γL(i,p) γE(i,p)

  β0(i,p) 1024.45
(341.69)

  βX(i,p)  -42.81
(16.28)

 6.53
(1.47)

  βK(i,p)  -46.48
(23.25)

 0.03
(1.39)

 4.69
(1.99)

βτ (i,p)
   4.37
(1.88)

-0.42
(0.18)

-0.24
(0.17)

 0.12
(0.04)

  γL(i,p)  -15.22
(8.81)

-0.82
(0.60)

-0.23
(0.76)

 0.00
(0.12)

2.65
(0.45)

  γE(i,p)  -9.09
(5.89)

 0.24
(0.33)

 0.00
(0.47)

-0.04
(0.05)

0.45
(0.20)

0.98
(0.16)

 Model B2R
β0(i,p) γL(i,p) γE(i,p)

  β0(i,p)  454.30
(71.21)

  γL(i,p)  6.05
(4.41)

 3.45
(0.54)

  γE(i,p) -11.27
(2.73)

 0.19
(0.21)

 1.05
(0.17)
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1 All second order moments and their standard deviations are multiplied by 100.
Table 9. The covariance matrix of the genuine error terms.  Standard deviations in parentheses1

Model A1
uL uE

uL 1.94
(0.08)

uE 0.49
(0.05)

 1.19
 (0.05)

Model A2

uL uE

uL  0.43
(0.02)

uE -0.02
(0.01)

 0.24
 (0.01)

Model B1
uL uE uC

uL  1.96
(0.08)

uE 0.49
(0.05)

 1.19
(0.05)

uC -4.87
(0.33)

-3.14
(0.24)

44.57
(1.93)

Model B2
uL uE uC

uL  0.43
(0.02)

uE -0.01
(0.01)

 0.24
(0.01)

uC -0.65
(0.07)

-0.17
(0.05)

9.20
(0.42)

Model B3
uL uE uC

uL                   0.43
                 (0.02)

uE -0.01
(0.01)

 0.24
(0.01)

uC -0.67
(0.06)

-0.16
(0.04)

3.94
(0.23)

Model B2R
uL uE uC

uL 0.44
(0.02)

uE                  -0.02
                (0.01)

0.24
(0.01)

uC 0.17
(0.16)

-0.47
(0.12)

 61.2
 (2.74)

1All second order moments and their standard deviations are multiplied by 100.



APPENDIX

A1. De�nition of variables

Some variables are observed directly, others are calculated from the information available.

In the latter case, the formulae used are given below. The exception is capital stock,

where the calculations are described in Section A2. Further details on all variables are

given in Section A2. MS indicates that the data are from the Manufacturing Statistics

database of Statistics Norway, and the data are plant speci�c. NNA indicates that the

data are from the Norwegian National Accounts. In this case, the data are identical

for all plants classi�ed in the same National Account industry. While the plants in our

unbalanced panel are collected from 4 di�erent industries at the 5-digit level according to

the Standard Industrial Classi�cation (SIC) system, the plants are classi�ed in 3 di�erent

National Accounts industries. Data in value terms are measured in 1000 Norwegian

kroner (NOK). Subscript i refers to plant.

CLi: Total labour cost (MS)

CMi: Total material cost (incl. motor gasoline) (MS)

CEi: Total energy cost (MS)

Ci = CLi + CMi + CEi: Total factor cost, excluding capital

V Li: Labour input, man-hours (MS)

QLi = CLi=(1000 � V Li): Labour cost, NOK per man-hour

QMi: Price of materials (incl. motor gasoline), 1991=1 (NNA)

VMi = CMi=QMi: Input of materials (incl. motor gasoline), 1000 1991-kroner;

V Ei: Energy input, 1000 kWh.; electricity plus fuels (excl. motor gasoline) (MS)

QEi = 100 � CEi=V Ei: Price of energy, �re per kWh

Xi: Output, tonnes (MS)

Ki = KBi+KMi: Total capital stock (buildings plus machinery), 1000 1991-kroner.

The calculations of capital stock data are based on the perpetual inventory method as-

suming constant retirement rates. We combine plant data on gross investment with �re

insurance values for each of the categories KB=buildings and KM=machinery and equip-

ment (MS). The data on investment and �re insurances are deated using price indices

(1991=1) for investment in the two categories from the Norwegian National Account

(NNA)

A2. A presentation of the data

Primarily, we use data from the Manufacturing Statistics data base at Statistics Norway.

The Manufacturing Statistics follow the Standard Industrial Classi�cation (SIC) and
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gives annual data for large plants at the 5-digit code. Until 1992 plants with at least �ve

employees were de�ned as large, while from 1992 on the limit is 10 employees. In 1993

the activity classi�cation was revised according to EU's NACE Rev. 1 and UNs ISIC

Rev. 3, while previously based on UN's ISIC Rev. 2. For this analysis we use data over

the period 1972 { 1993. While the revision of the activity classi�cation does not cause

inconsistency problems in our data, the change in the de�nition of large plants cause a

break in the time series for plants with 5 { 9 employees in 1992. Our data includes all

industries classi�ed under SIC-code 351 Manufacture of industrial chemicals. We use the

classi�cation terminology before 1993:

35111 Manufacture of carbide

35119 Manufacture of other industrial chemicals

35120 Manufacture of fertilizers and pesticides

35130 Manufacture of synthetic resins, plastic materials and man-made �bres

For some variables it has been necessary to use data from the Norwegian National

Accounts, which use the Manufacturing Statistics as an important source. In this case

the data are identical for all plants classi�ed in the same National Accounts industry.

While the plants in our panel are collected from 4 di�erent SIC-industries, the plants are

classi�ed in 3 di�erent National Accounts industries. For simplicity, the data set used in

this analysis includes only plants with contiguous time series. This reduces the panel data

set from 1321 observations to 1101 observations. The number of plants per year, which

ranges from 43 to 55, shows a negativ trend over time, but the average production per

plant increases rather rapidly. The unbalance in our data set is illustrated in Table A1,

which gives the number of plants sorted by the number of observations. For example,

30 plants are observed in all 22 years (1972 { 1993), while 16 plants are observed in one

year only. The total number of plants in our sample is 88.

Output: The plants in the Manufacturing Statistics are in general multi-output plants

and report output of a number of products. (Most plants produce less than 10 products.)

The classi�cation of products follows The Harmonized Commodity Description and Cod-

ing System (HS). In the statistics, two output-measures are available. The plants report

(i) total output in value terms (Norwegian kroner (NOK)) as well as (ii) output of each

product in both value terms and physical measures. For our analysis, output measure (i)

is preferable for two reasons. First, there is a small di�erence in the de�nition of output

in favour of measure (i) due to the treatment of changes in stocks of �nished products,

second, the coverage of measure (i) is more complete because some plants do not report

their production of all products in both value and volume terms. We have, however,
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chosen to use measure (ii) to calculate an aggregate price per tonne output for each

plant, and then deate measure (i) by these prices to get the preferable output-measure

in tonne.

Table A1. Number of plants classified by number of replications

p = no. of observations per plant, Np = no. of plantsP
pNp = 88,

P
pNpp = 1101

p 22 21 20 19 18 17 16 15 14 13 12

Np 30 0 3 0 1 3 3 6 0 2 1

Npp 660 0 60 0 18 51 48 90 0 26 12

p 11 10 09 08 07 06 05 04 03 02 01

Np 1 1 1 2 2 3 3 2 3 5 16

Npp 11 10 9 16 14 18 15 8 9 10 16

Factor input costs and prices: From the Manufacturing Statistics we get the num-

ber of man-hours used, total labour costs in NOK, total electricity consumption in kWh

and in NOK, the consumption of a number of fuels in various denominations and NOK,

and total material costs in NOK for each plant. We use this to calculate labour costs

per man-hour and total energy costs (excl. motor gasoline) in NOK for each plant. The

di�erent fuels, such as coal, coke, fuelwood, petroleum oils and gases, and aerated wa-

ters, are reduced to the common denominator kWh by using estimated average energy

content of each fuel [Statistics Norway (1995)]. This enables us to calculate an energy

price per kWh for each plant. For most plants, the energy aggregate is dominated by

electricity. The price of material inputs (incl. motor gasoline) is from the Norwegian

National Accounts, and the price is identical for all plants classi�ed in the same National

Account industry. The input data measures \gross" input, and hence does not refer

to the technical production process alone. This means for example that labour costs

includes administration, and electricity consumption includes lighting and o�ce heating.

Capital stock: We calculate capital stock data for the two categories M=machinery and

equipments and B=buildings separately. Plant data from the Manufacturing Statistics on

gross investment and �re insurance values measured at the beginning of each period for

the two categories enter the calculations. The data on investment and �re insurances are

deated using industry speci�c prices of investment goods from the Norwegian National

Accounts. Fire insurance values in a chosen base year, which vary across plants, are

deated and used to determine benchmark levels of capital stocks. These insurance

values are assumed to reect the replacement values of the existing capital stock. It was
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necessary to choose plant speci�c base years for each capital category for two reasons:

First, the fact that the panel data set is unbalanced made it impossible to choose one

common base year for all plants. Second, we have clear indications that the quality of

the �re insurance values varies over time for each plant and capital category. This data

quality problem involves partly extreme values, partly missing observations, and partly

an increasing trend in the insurance coverage over time for many plants. To minimize

the e�ect of this data quality problem when choosing base years, we sorted the plant

observations by increasing �re insurance values and chose as a plant speci�c base year

the observation that is closest to the 75 per cent fractile. From the chosen base year, the

level of capital stock for each category is extrapolated backwards and forwards, using the

perpetual inventory method with depreciation rates taken from the Norwegian National

Accounts.

Let Fjit be the �re insurance value of category j (j = B;M) reported by plant i at

the beginning of period t, and Pjit the National Account price index for investment goods

of category j in period t, 1991 = 1. These price indices vary over four National Account

industries, and we use the same price index for all plants classi�ed in the same National

Account industry. Furthermore, let Ijit be the deated gross investment of category j

reported by plant i in period t, after deation by the National Accounts price index Pjit.

Let fi and li be the �rst and the last year, respectively, in which plant i is observed and

let � = �(i; j) represent the base year chosen for capital category j = B;M for plant i.

The formulae used to calculate capital stock data are:

Kj�i� =
Fji�
Pji�

;

Kj�it =
t���1X
s=0

(1� �j)
sIji;t�s + (1� �j)

t��Kj�i� t = � + 1; � + 2; : : : ; li � 1; li;

Kj�it = (1� �j)
t��

"
Kj�i� �

��t�1X
s=0

(1� �j)
sIji;��s

#
t = fi; fi + 1; : : : ; � � 2; � � 1;

where �B = 0:040 and �M = 0:135. Since we apply the same method and depreciation

rates as in the Norwegian National Accounts, the corresponding industry aggregates

should be relatively close. The National Account data are based on long time series

on gross investment and need not use �re insurance values as indicators for the level

of capital stocks, however. Because of measurement errors in the �re insurance values,

as explained above, we adjust the capital stock �gures Kj�it proportionally, at the plant

level, to make them consistent with the corresponding National Accounts �gures at the

industry level. The formula is

KjiN t =
KjNtP
iN
Kj�iN t

Kj�iN t;
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where iN represent the plants classi�ed in the National Account industry N and KjNt is

the capital stock estimate for industry N in the Norwegian National Accounts.

In Table A2 we give the overall means and standard deviations of variables used in

this analysis.

Table A2. Overall means and standard deviations of basic variables

Variable ln(C) ln(X) ln(K) �

Mean 10.532 9.519 11.077 11.121

Std.dev. 1.885 2.626 2.132 6.266

Variable sL sE sM ln(QL) ln(QE) ln(QM )

Mean 0.291 0.110 0.599 4.545 1.999 -0.378

Std.dev. 0.153 0.115 0.205 0.612 1.001 0.354
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