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Abstract:
This paper studies the effects on fossil fuel prices, extraction paths and petroleum wealth of an
international carbon tax on fossil fuel consumption. We present an intertemporal equilibrium model for
fossil fuels, where the main focus is on the oil market. The impacts of a global carbon tax of $10 per
barrel of oil depend heavily on the market structure in the oil market. If OPEC acts as a ca rtel, they
reduce their production to maintain the oil price. Thus, the effects on the oil wealth of the competitive
fringe is minor, while OPEC's oil wealth is considerably reduced. This may explain the difference in
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be found among non-OPEC producers.

Keywords: International Carbon Taxes, Exhaustible Resources, Petroleum Wealth.

JEL classification: H23, Q30, Q40.

Acknowledgement We are highly indebted to Tom Karlsen for research assistance, to Kjell Arne
Brekke for discussions and comments during the study, to Knut Alfsen, Rolf Golombek, Samuel
Fankhauser, Sverre Grepperud, Torleif Haugland, Rich Howarth and Lars Håkonsen for comments on 	 '
earlier drafts, and to Stein Hansen, Torgeir Johnsen, Grete Pettersen, Inger Østensen and Vidar
Christensen for discussions. This work was supported financially by The Norwegian Research
Programme in Petroleum Economics and Politics.

Address: Elin Berg, Statistics Norway, Research Department,
P.O.Box 8131 Dep., N-0033 Oslo, Norway. E-mail: eli@ssb.no

Snorre Kverndokk, Statistics Norway, Research Department,
P.O.Box 8131 Dep., N-0033 Oslo, Norway. E-mail: snk@ssb.no

Knut Einar Rosendahl, Statistics Norway, Research Department,
P.O.Box 8131 Dep., N-0033 Oslo, Norway. E-mail: ker@ssb.no





1. Introduction

The greenhouse effect is today recognised as a severe threat to our global environment, see rPCC

(1995). Carbon dioxide (CO2) is the most important greenhouse gas, and has therefore been in the

focus of debate. The main source of anthropogenic CO2 emissions is the combustion of fossil fuels,

i.e., natural gas, oil and coal. A country with large reserves of fossil fuels may therefore influence

the accumulation of CO2 in the atmosphere. On the other hand, an international treaty on CO2

emissions reductions will influence the markets of fossil fuels, and hence the nation's income from

the reserves. In this paper we focus on the latter problem, and study how an international carbon tax

on the consumption of fossil fuels effects the petroleum wealth of fossil fuel producers. Most

studies analysing the costs of emissions reductions ignore the reduction in the petroleum wealth.

National studies of the costs of carbon abatement often focus on introducing a unilateral tax on a

national level (see, e.g., Hoeller et al. (1992) for a survey), and do not take into account price effects

in international markets if the tax is imposed in other countries too. An international carbon tax,

where the tax revenue is collected by the governments of the consuming countries, has a

distributional effect between fossil fuel producers and consumer countries.' This may prove to be a

significant cost for many oil and gas exporting countries. One of the first international studies

concerned with the distributional issue of a carbon tax, is Whalley and Wigle (1991).

To determine the effects of a global carbon tax, we are focusing on two important features of the

fossil fuel markets, i.e., market power and dynamic behaviour. These features have earlier been

included in theoretical analyses of fossil fuel markets (see e.g. Ulph (1982)). However, the theo-

retical models are too complex to give sufficient knowledge about the impact of a carbon tax. On

the other hand, as far as we know no numerical studies have been performed combining market po-

wer and dynamic behaviour, in order to study the effects of a carbon tax. 2 Hence, our contribution is

one of the first including these important issues.

The oil market, which will be in focus in this paper, is dominated by OPEC, and the consequences

of a carbon tax is very much dependent on the reaction of the cartel. To illustrate this point, we have

modelled the oil market in two different ways, depending on the market power of OPEC. In the first

I Alternatively, the tax could be charged by an international agency, and the the revenue reimbursed to the countries
according to some specified criteria. This would probably still give a significant cost to oil and gas producing countries.
2 Dahl and Yiicel (1995) combine dynamic behaviour and market power in a study of different policies for increasing
energy security in the USA.
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model, the oil market consists of a cartel and a fringe, where all producers act as Cournot players. In

the other model, the oil market is assumed to be competitive, i.e., OPEC no longer acts as a cartel.

This could either be that OPEC has been formally disorganised, or that the member countries in fact

are operating on their own, ignoring their qoute dicipline. As we will see, OPECs reaction to a

carbon tax is very dissimilar in the two cases.

From market theory, we know that in a competitive static market, the introduction of a tax will

generally establish a new market equilibrium with a higher consumer price and lower producer price

compared to the original equilibrium. Thus, both consumers and producers bear some of the tax

burden, and the share is determined by the demand and supply elasticities. 3 However, to fully ana-

lyse the market of an exhaustible resource, the analysis should be dynamic to cover the inter-

temporal aspects. In a dynamic model of exhaustible resources, the supply is depending on (expec-

ted) market conditions in future periods, and the impacts on the consumer and producer prices of a

tax cannot be separately determined in each period. Dasgupta and Heal (1979) shows within a

traditional Hotelling model that introducing a unit tax in a competitive market of an exhaustible

resource may have counterintuitive impacts in the longer term. Initially, the tax burden is shared

between producers and consumers, however, after some time both the producer and the consumer

price is reduced. The reason is that in order to sell the whole resource, the consumer price must

either not change at all, or it must sometime fall below the original price path. Thus, an analysis

ignoring the dynamic aspects of a fossil fuel market, is in danger of overlooking an important factor

of the producers' behaviour. In this study we find that the intertemporal element is crucial to

understand the response of competitive producers, whereas OPECs reaction as a cartel is mainly

determined by static market conditions. Taxation of exhaustible resources has also been examined

theoretically in, e.g., Bumess (1976), who considered the traditional Hotelling model, and Heaps

(1985) and Lassene (1991), who examined more extended models as well.

This particular, inteitemporal feature of fossil fuel markets has lead Sinclair (1992), as one of the

first studies to combine the theory of exhaustible resources with the theory of greenhouse

externalities, to state that an optimal ad valorem carbon tax should be falling over time in order to

encourage producers to delay depletion. However, as shown in Ulph and Ulph (1994) and Hoel and

Kvemdokk (1996), the issue of an optimal carbon tax is more complex.

3 For a study on the distributional effects of carbon taxes on consumer and producer prices within a static model, see
Berger et al. (1992).
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In empirical energy models, the dynamic aspects associated with the imposition of a carbon tax are

still often ignored. In dynamic models, the oil price is usually set exogenously. Hence, it is not

possible to determine within the model how a tax will be shared between producers and consumers.

Some exceptions are however GREEN (Bumiaux et al. 1992), an extended version of Global 2100

(Manne and Rutherford 1994) and MERGE (Manne et al. 1995). In GREEN the oil price is

endogenous. However, the supply side is modelled as being independent of future expectations.

Hence, the present extraction is not changed by anticipations of future carbon taxes. This means that

the supply function is not fully intertemporal (see Bumiaux et al. (1992)). One of the first

intertemporal energy models, a general equilibrium version of Global 2100, is presented in Manne

and Rutherford (1994). But in the paper they focus on specific stabilisation goals and not on carbon

taxes. Further, the oil market is modelled as a competitive market. MERGE is an integrated

assessment model including an intertemporal energy module. Emissions, concentrations and

temperature change as well as costs and benefits are analysed under five alternative policy scenarios

in the MERGE model, but no attention is paid to the impacts on petroleum prices or petroleum

wealth (see Manne et al. (1995)). Finally, Rosendahl (1996) presents one of the first numerical

analyses on the impacts of CO2 taxes on the petroleum wealth within an intertemporal energy

model. He concentrates on a single fossil fuel, oil, and studies the consequences for the oil wealth of

an average cost producer and for a high cost Non-OPEC producer, of different international carbon

taxes, assuming perfect competition in the oil market, and no interaction with other markets.

The aim of this paper is to analyse the impacts on the petroleum wealths of fossil fuel producers of

introducing an international carbon tax within an intertemporal equilibrium model for the global

energy markets. In particular, we are interested in the impacts on the oil wealth of OPEC and Non-

OPEC producers of a global carbon tax under different assumptions about the market power of

OPEC, e.g., how would the effects of international carbon taxation differ with a strong OPEC cartel

compared to a situation where the cartel has fallen apart? Compared to Rosendahl (1996), who only

studies one fossil fuel, we model the markets for natural gas, oil and coal. Moreover, extraction

costs are assumed to be functions of accumulated production and time (through technological

change). While the main focus of the paper is the oil market, results are also given for different

regional gas markets.



The paper is structured in the following way. In section 2 we describe the model. Numerical

specifications are given in section 3, and simulation results are presented in sections 4 and 5. The

paper ends with sensitivity analyses and conclusions.

2. Description of the model
We are modelling the international markets for fossil fuels in an intertemporal and deterministic

way. All prices and quantities at each point of time are determined simultaneously in the model.

Consumers determine their demand according to current income and prices of the fuels, whereas

producers determine their supply according to the market conditions in all periods assuming perfect

foresight.

The demand for fossil fuels is divided into three regions. First, we distinguish between OECD and

Non-OECD. Second, we divide OECD into OECD-Europe and Rest-OECD because of market

conditions for natural gas, which will be explained later.

To represent the demand for the three fossil fuels oil, gas and coal, we use log-linear demand

functions. The demand for each fuel is a decreasing function of the price of that fuel and an

increasing function of the prices of the two other fossil fuels. Hence, the three fuels are imperfect

substitutes of each other. Moreover, we assume that there exists a single carbon-free backstop

technology (e.g., solar, wind or biomass) which serves as a perfect substitute for fossil fuels. This

means that if the consumer price of, e.g., oil exceeds this backstop price, then no oil will be

demanded. The backstop technology is available in copious supply at a fixed price at each point of

time in all regions. Over time, however, we assume that the backstop price is reduced by a constant

rate to reflect technological change. Finally, the demand function may change exogenously over

time to reflect income effects due to economic growth.

Carbon taxes are levied on consumption of fossil fuels globally, where the relative proportions

depends on the carbon content of the fuel. Moreover, there may already exists other taxes or

subsidies on consumption of fuels in each region. Hence, for the demand, the relevant price of a

specific fuel in a specific region is the sum of the producer price, costs due to transportation,

distribution and refining and the average tax (subsidies are considered as negative taxes). A carbon

tax will be added to existing taxes. However, as a result of a more integrated world economy, we

assume that existing energy taxes and unit costs due to transportation, distribution and refining for
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each fuel will be harmonised after 40 years to a global weighted average, using initial demand as

weights.

The maximum producer prices in the different regional markets are defined as the backstop price

minus additional regional costs due to transportation, distribution and refining of the fossil fuels,

and regional fuel and carbon taxes. When energy taxes and the costs of transportation, distribution

and refining are harmonised, the maximum producer price for each fuel will be equal within every

region.

As fossil fuels are non-renewable resources, their allocation over time is important for the suppliers.

Extracting one more unit today changes the supply conditions in the future. Hence, a rational

producer will not only consider the current price or market condition before the optimal supply of

today is chosen. We therefore model the supply of fossil fuels in an intertemporal way, where the

producers maximise the present value of their resource wealth.

To analyse the importance of market power, the international oil market is modelled in two different

ways; as a market with a cartel (corresponding to OPEC) and a competitive fringe on the supply

side, and as a competitive market with low cost producers (OPEC) and high cost producers (Non-

OPEC). While the first model is an approximation to the current situation, the second model may

illustrate what can happen if the OPEC cartel falls apart.

In the first specification, the fringe always considers the oil price path as given, while the cartel

regards the price as a function of its supply. Hence, the marginal revenue for the fringe is equal to

the price, whereas for the cartel marginal revenue is in general less than the price. There are at least

two different methods of modelling the supply in an intertemporal way in this case, either using a

Cournot approach or a Stackelberg approach. The former assumes that both the fringe producers and

the cartel take the supply of all other producers as given when deciding their own production profile

(Salant 1976). In a Stackelberg model with the cartel as a leader, the cartel knows that the fringe

reacts to its supply decisions, and takes this into account when choosing its production profile.

Thus, a powerful cartel would obviously follow the latter strategy if feasible. However, as is shown

by Ulph (1982), the Stackelberg equilibrium may be dynamically or time inconsistent. Hence, we
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choose to concentrate on the Nash-Cournot model of a dominant firm, using the term of Salant

(1976), to calculate the open loop solution of the game. 4

The cost functions of both the cartel and the fringe are assumed to be increasing functions of

cumulative production. Instead of considering their resources as strictly exhaustible, we assume that

unit costs approach infinity as cumulative production approaches infinity. Hence, with a finite

backstop price the economic reserves are finite (see, e.g., Heal 1976). The scarcity rent of a

producer then reflects that extracting one more unit today increases costs tomorrow. Thus, this is a

model of economic exhaustion (zero long-term scarcity rent) rather than physical exhaustion. The

cost level of the two producer groups differs, reflecting that extraction costs in OPEC-countries

generally are lower than in the rest of the world. Furthermore, one of the main reasons behind the

low oil prices the last decade is probably technological change. We therefore assume that unit costs

are reduced by a constant rate each year, independent of production. This means that over time unit

costs may be reduced or increased, depending on the production rate.

Both the cartel and the fringe maximise the present value of their resource wealth over time, taking

the supply of the other as given. It follows that the fringe also takes the price as given, whereas the

cartel regards the price as a function of its own supply. In equilibrium, then, as long as the fringe

produces, the price change over time must equal the scarcity rent times the discount rate, minus the

unit cost times the technological rate of change (see Appendix 1). The first put reflects the standard

Hotelling rule on price increase based on alternative resource allocations, while the second part

reflects that the price does not have to increase that fast in optimum as the costs are falling due to

technological change. If this condition is not satisfied, it is optimal for the fringe producers to delay

or accelerate extraction, as this will increase the present value of the resource. Similarly, as long as

the cartel produces, the change in its marginal revenue over time must equal the scarcity rent times

the discount rate, minus the unit cost times the technological rate of change. If not, the cartel may

increase the value of its resource by allocating it's extraction backwards or forwards in time.

The same cost conditions are employed when the oil market is modelled as a competitive market.

Thus, the only difference between the two oil models is the market structure. With perfect

competition, the marginal revenue for OPEC producers is equal to the price.

4 It can be shown that this Nash-equilibrium is time consistent but not subgame perfect, see, e.g., Hoel (1992).
8



Because of large transport costs, natural gas is mainly traded in regional markets. As we are

particularly interested in the impact on producer prices in Europe, OECD-Europe is considered as a

single region. The rest of the OECD is taken together, despite separate markets in North-America

and the Pacific area. In this region the gas price and demand must be viewed as an average of the

prices and the demand in the different gas markets, where North-America is clearly dominating. The

same applies to Non-OECD, where the former Soviet Union is a dominating market. The oil market

is the main focus in this paper. Therefore, we simplify and model the gas markets as competitive.

As for oil, extraction costs for gas are assumed to be increasing in cumulative production, so that

costs approach infinity as cumulative production approaches infinity. The costs may differ between

the regions. Moreover, an exogenous technological change occurs in gas extraction too.

Table 1. The production side of the model

Oil
	

Natural gas
	

Coal

International market.

Alt. 1: Nash-Cournot approach:

OPEC

Competitive fringe

Alt. 2: Perfect competition

Low cost producers

High cost producers

Regional competitive markets: International competitive

OECD Europe	 market

Rest-OECD

Non-OECD

Trade only within regions

Unit costs increasing in
	

Unit costs increasing in
	

Unit costs decreasing in

accumulated production,	 accumulated production,	 technological change

decreasing in technological
	

decreasing in technological

change	 change

Table 1 summarises the production side of the model, while the model equations are given in

Appendix 1.

To study CO2 emissions from fossil fuel combustion as well as substitution effects, the coal market

is also modelled. It is considered as an international market. However because the coal resources in

the world are huge compared to oil and gas, and we are mainly concerned with the impacts on oil



and gas prices and the petroleum wealths, we simply assume that the producer price of coal is fixed

at each point of time. However, the price is exogenously reduced over time as a result of

technological change.

3. Numerical specifications

3.1 Demand side

Both the direct and cross price elasticities and the income elasticity are constant as we use log-linear

demand functions. There is much variation across empirical studies and hence it is difficult to come

up with representative elasticities, see, e.g., Dahl and Erdogan (1994). The price elasticities in this

study are taken from Golombek and Bråten (1994). For the OECD-regions all direct price

elasticities are set equal to -0.9, while in the Non-OECD-region the direct price elasticities are set

equal to -0.75. Their choice of elasticities is partly based on the conventional wisdom that demand

is less elastic in developing countries where fossil fuels are used to satisfy basic needs. All cross

price elasticities are set equal to 0.1.

It is often assumed that the income elasticities are somewhat higher in developing countries than in

developed countries. However this difference should not be exaggerated as there is more potential

for energy-efficiency improvement in developing countries. The higher the energy saving potential,

the smaller is the income elasticity for any given growth rate in gross domestic product (GDP).

Consider the <Autonomous Energy Efficiency Index» (AEEI) invented by Manne and Richels

(1990). A GDP growth rate of 2.5% per year combined with a 1% increase in the AEEI is equivalent

to an income elasticity of 0.6.5 Based on this we assume that the income elasticity is 0.5 in the

OECD-Regions and 0.6 in Non-OECD.

The existing tax structure varies greatly between different countries. Energy taxes in the OECD-

countries are based on ECON (1995). In Non-OECD existing taxes on coal and natural gas are

5 The definition of AEEI implies the relation

GDP E AEEI
GDP = kE * AEEI	 = — +

GDP E AEEI

where k is a constant and E is total energy demand. For constant energy prices the elasticity of income (el) is then given
by

•	 •	 •
E/ E 	GDP/ GDP — AEEI/ AEEIsi = €1 =	 .

GDP/ GDP	 GDP/ GDP
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mostly insignificant or unavailable (see lEA 1995b), thus they are set equal to zero. The tax on oil in

Non-OECD is calculated from Gupta and Mahler (1995). The consumption figures in 1994, taken

from BP (1995), are used as weights. As mentioned above, all energy taxes are harmonised to the

global average of 1994 after 40 years, where the consumption figures in 1994 are used as weights.

The annual GDP growth rates are based on Burniaux et al. (1992) and Kverndokk (1994).

Finally, the demand functions are calibrated to agree with consumption of the respective fuels in

1994 given prices and taxes this year.

3.2 Supply side

The unit cost function in fossil fuel extraction has the following functional form

(1) c, c oe

where Co is the initial unit costs of production, A is cumulative production, 'C is the rate of

technological change, t is time and in is the convexity parameter of the cost function.

The initial unit costs of oil production in OPEC and Non-OPEC are calculated from Ismail (1994).

The corresponding cost estimates for the production of gas in OECD-Europe and Rest-OECD are

based on Golombek et al. (1995) and lEA (1995a) respectively, while the unit cost of production of

gas in Non-OECD is taken from ECON (1990). In 1994, Russia exported 10% and Algeria 56% of

their gas production to Europe. These shares are therefore considered as production in OECD-

Europe in the model, and are taken into account when calculating the initial unit cost.6 We assume

that there is no scarcity rent in coal production, and the initial unit cost of production of coal is

therefore set equal to the fob price in 1994 based on lEA (1995b).

The convexity parameter is calculated using estimates of the unit costs in the base year, and data

from BP (1995) for proved reserves, R, defined as quantities which can be extracted under existing

economic and operating conditions. There is no universal rule to estimate the reserves. However,

assuming resources with unit costs less than 20$ per barrel of oil equivalents (boe) for both oil and

6 Similar shares of the reserves in Russia and Algeria are added to the proved reserves of OECD-Europe, see below.
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gas to be regarded as economically recoverable, the convexity parameter is determined by using the

cost function without technology change.

(2) 20 = Co e"

For coal ri is set equal to zero.

The rates of technological change are very uncertain. We have generally assumed the rate of

technological change in oil and gas production to be 1%. Initially, however, as oil producers outside

OPEC have had impressive technological improvements lately, we assume a rate of 2% in Non-

OPEC (see, e.g., Ismail 1994). This rate is reduced to 1% after 30 years. The technological change

in coal production is assumed to be lower, i.e., 0.5% per year. This is based on the development in

past coal prices, see Ellermann et al. (1995).

Finally we assume that there is a higher technological progress in the backstop technology with a

decrease in the backstop price of 1.5% per year. The initial backstop price is taken from Manne et

al. (1995) and is set equal to 108.2$/boe.

In addition to the unit costs of production specified in equation (1), there are costs of transportation,

distribution etc. Refining and transportation costs for oil are calculated from ECON (1990). The

costs of transportation and distribution of natural gas in OECD-Europe are taken from Golombek et

al. (1995). Due to lack of data, we assume that the costs of national transportation, distribution,

storage and load balancing of natural gas are the same in Rest-OECD and Non-OECD as in OECD-

Europe. We further assume that there are no costs of international transportation of gas outside

OECD, while for Rest-OECD we have taken account of the costs of LNG transport to Japan and the

natural gas trade in North America. The costs of transportation of coal are based on ECON (1990).

Finally we assume that the costs of distribution of oil and coal are half the costs of distribution of

natural gas. Even if these costs differ across regions initially, we assume that they are harmonised

after 40 years to the average global level, using consumption figures in 1994 from BP (1995) as

weights.

A market rate of 7% is used as a discount rate in all markets. All data are presented in Appendix 2.
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3.3 The carbon tax

If a climate agreement imposing a global carbon tax is agreed upon, it is difficult to know how large

such a tax eventually will be, and how it will evolve over time. However, both the US

Administration and the EU have made proposals of specific carbon/energy taxes, which are not

imposed, but may give rough estimates of possible sizes of a global carbon tax. The US proposal

made by the Clinton Administration in 1993, which was opposed by the Congress, suggested a tax

of about $3.2 per barrel of oi1.7 The EU proposal suggested originally that a combined

carbon/energy tax should increase from $3 per barrel of oil in 1993 to $10 in the year 2000. A

comparison of several global carbon/energy models presented in Dean and Hoeller (1992), may also

indicate relevant carbon tax levels. Focusing on the average of the four dynamic, long-term models

that are studied, requires carbon taxes in the OECD area rising from about $15 per barrel of oil in

the year 2000 to about $25 in 2010 to achieve the medium reduction scenario. 8

In this study we consider a carbon tax of $10 per barrel of oil, corresponding to $90.3 per ton of

carbon, which is set according to the carbon content of the different fuels. Moreover, the tax is

assumed to be constant over time. For natural gas this means a tax of 7.1$/hoe, and in the coal

market the tax is 12.4$/boe (carbon coefficients are taken from Manne and Richels 1990). To study

the impacts of a global carbon tax, results are presented for the two different assumptions of OPEC

behaviour in reference scenarios where there are no carbon taxes, and in tax scenarios where the

carbon tax is introduced globally.

Simulations were carried out for the time period 1995-2135 with ten year periods, i.e., 14 periods,

using the GAMS/MINOS system (see Brooke et al. 1992). Thus the result in each period is the

average over the ten years. In the graphs below, the results for the year 2000 is therefore the average

over the period 1995-2005 etc.

7 The tax was actually intended to be based on the BTU content of various energy sources, and was therefore an energy
tax rather than a carbon tax.
8 The referred scenario consists of a reduction (from the Business as Usual path) in the rate of growth of carbon
emissions by 2% per annum in each region, and would require absolute cuts in emissions in the OECD and the former
Soviet Union, while allowing some continued, albeit very low growth elsewhere (see Dean and Hoeller 1992).
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4. OPEC acts as a cartel

4.1 The reference scenario

Price and extraction paths for the oil market in the reference scenario are presented in the figures 1

and 2. The producer price of oil increases from $21.2 per barrel in the first period to its maximum at

$39 in 2040, see figure 1. This is the period when the price reaches the maximum producer price set

by the backstop price, energy taxes, and costs of transportation, distribution and refining. Thus,

from then on, the fall in the producer price of oil is determined by the rate of technological change

for the backstop technology. The price development in the first two periods corresponds well with

the assumptions made by MA (1995c) which gives a price interval from $18-28 in 2010. Figure 1

also shows the unit costs of production for OPEC and the competitive fringe. While the unit costs of

OPEC is $3.5 per barrel of oil over the first period, the corresponding cost for the fringe is $12.0.

The increase in costs over time is higher for the fringe than for OPEC, reflecting a higher

production in the fringe initially, as well as larger oil resources in OPEC which can be extracted at

lower costs.

The production of OPEC and the competitive fringe are given in figure 2. Total production in 2000

is 3,067 million tonnes of oil (mtoe/year), where 34% is produced in OPEC and 66% outside OPEC.

Thus the share of OPEC is somewhat lower than the 1994 share of 41%, see BP (1995), which may

be due to a more effective cartel in the model than in reality. This gives a daily OPEC production of

21 million barrels, while the OPEC quotas in 1995 are 24.5 million barrels per day. The production

in the fringe is slightly rising for the first 40 years, before it starts falling, and reaches zero when the

unit cost reaches the maximum producer price between 2040-50. OPEC also increases its produc-

tion slightly in the beginning of the next century, and takes over the whole market when the fringe

stops producing. The last period of OPEC production is 2060. From 2070 onwards, the price of the

backstop technology is so low that further production is not economically viable. The accumulated

production in OPEC and the fringe over the entire time horizon is 154,941 mtoe and 104,995 mtoe

respectively. This is higher than proved reserves reported in BP (1995), which were 104,700 mtoe

and 32,600 mtoe, but is reasonable due to technological change and increasing prices in our mode1.9

9 Proved reserves of oil in BP (1995) are defined as those quantities which geological and engineering information
indicate with reasonable certainty can be recovered in the future from known reservoirs under existing economic and
operating conditions».
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Figure 1. Price and unit cost in oil production - reference scenario
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Rest-OECD has the highest consumption of oil initially, i.e., about 40% of the global consumption.

OECD-Europe and Non-OECD consume about 21% and 39% in the same period. The corre-

sponding shares of oil consumption when demand reaches its peak in 2050 are 35%, 22% and 43%.

In this period, global oil production and consumption is 63% higher than in 2000. High economic

growth combined with higher income elasticity than other regions are the main reasons for the large

energy demand in Non-OECD. The share of OECD-Europe has also increased slightly, mainly

Figure 2. Production of oil in OPEC and Non-OPEC in different scenarios
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because their energy taxes are reduced as they are harmonised across regions. Due to the harmoni-

sation of energy taxes and additional costs, the long run regional maximum producer prices are

equal, and all regions therefore consume oil as long as it is produced.

Figure 3A. Producer prices of natural gas in OECD-Europe

$/boe
100 —

x. ' •
80 — •	 ' • .

•
70 —

60 —

50 —

40 —

30 —

20 —

10

0

2000	 2010	 2020	 2030 2040 2050	 2060 2070 2080	 2090	 2100	 2110
Year

38. Producer prices of natural gas in Rest-OECD

Reference scenario

- - • - - Maximum producer price without carbon tax

— — Global carbon tax

—-x- - Maximum producer price with carbon tax

- 	 - '

$/boe
100 —

*1/4
90 -K

80 —
x

70 — N&

60 —	 X
4o,

50 —

Reference scenario

— 4 — Maximum producer price without carbon
tax

- - å. - - Global carbon tax

— - Maximum producer price with carbon tax

40 —

30 —

20 —

10 —

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2110
Year

16



3C. Producer prices of natural gas in Non-OECD
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Figure 3 shows the producer prices in the three regional natural gas markets. Initially the producer

price of natural gas is 14.6$/boe (2.68 $/MMBtu) in Rest-OECD, while it is 9.4$/boe (1.73 $/

MMBtu) and 6.4$/boe (1.18 $/MMBtu) in OECD-Europe and Non-OECD respectively. The scar-

city rent, the difference between the producer price and the unit cost, is highest in Rest-OECD. The

reason for this is partly the relatively small gas resources in OECD compared to Non-OECD; total

production over the entire time horizon is 25,207 mtoe, 22,323 mtoe and 160,529 mtoe in OECD-

Europe, 1° Rest-OECD and Non-OECD respectively (which are all higher than proved reserves in

BP 1995). The more scarce the resource is, the higher will the scarcity rent be ceteris paribus. In

addition to this, demand for gas is higher in Rest-OECD than in OECD-Europe, which also explains

the difference in scarcity rent and production between these regions, as no trade occurs between the

regions.

The production of gas is given in figure 4. In OECD-Europe the production increases from 276

mtoe in 2000 to 335 mtoe in the peak period 2040. The production is higher in Rest-OECD, but

falls from 646 mtoe in 2000 to 484 mtoe in 2030. Non-OECD produces 958 mtoe initially, and has

both an increasing production over time and a longer period of production compared to the other

regions. The reason is the large amount of relatively cheap gas resources in this region combined

with no taxes. The consumption of gas in each region is equal to the production since there is trade

only within the regions. 2030 is the last year of production in Rest-OECD, while gas is produced

and consumed to 2070 in OECD-Europe, and 2080 in Non-OECD. As seen from figure 4, gas

increases its importance in Non-OECD over time compared to the other regions.

10 Including exports from Russia and Algeria.
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Global production of coal, which is equal to total consumption, increases from 2,411 mtoe/year in

2000 to 12,380 mtoe/year in 2130, an increase of 413%. Coal is produced and consumed over the

entire time horizon, and will not be substituted by the backstop due to low prices and taxes. The

accumulated production of coal over the time periods is 1,035,000 mtoe, which is almost the same

as proved reserves reported in BP (1995). Initially, the relative share of coal consumption is 11.6%

in OECD-Europe, 29.5% in Rest-OECD and 58.9% in Non-OECD. While the consumption in-

creases in all regions over the time horizon, the highest increase is outside OECD due to higher

economic growth and income elasticity. Thus in the last period the relative share of coal consump-

tion across the regions has changed to 6.8%, 17.0% and 76.3%.

Figure 5 shows the total consumption of the three fossil fuels. Initially the share of oil is 41.7%,

while the share of gas and coal is 25.5% and 32.8% respectively. The total fossil fuel consumption

increases to the middle of the next century, but starts decreasing when the backstop becomes

economically attractive. At the end, coal is the only fossil fuel consumed.

Figure 5. Consumption of fossil fuels in the reference scenario

Year
El Consumption of oil RConsumption of coal El Consumption of natural gas

Global carbon emissions are shown in figure 6. They increase from 6 billions tonnes of carbon per

year in 2000, and peak at 11.6 billions in 2050. However, as oil consumption is gradually substi-

tuted by the backstop from 2050 to 2070, the emissions decrease in this period. Due to increasing
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coal consumption, the emissions rise thereafter, with a small drop from 2080 to 2090 when the

backstop replaces natural gas globally. Our estimates agree with emission estimates from other long

term studies to the middle of the next century, see, e.g., Dean and Hoeller (1992) and Cline (1992),

and are in the lower range of the IPCC 1S92 scenarios (IPCC 1992). However, opposed to our

analysis, most other studies estimate increasing CO2 emissions over the entire time horizon, mainly

due to lack of exhaustibility constraints, backstop technologies or a falling backstop price.

Figure 6. Global carbon emissions from fossil fuel combustion
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4.2 Impacts in the oil market of a global carbon tax

When a global carbon tax of $10 per barrel of oil is introduced in all periods, we obtain a new

dynamic equilibrium. In the oil market, the producer price of crude oil is reduced by merely $0.2 per

barrel in the first period (see figure 7). Thus, the consumer price increases by $9.8 per barrel, i.e.,

the tax burden is initially born almost completely by the consumers. The explanation for this is not

that oil demand is very inelastic. Total oil demand, and supply, actually falls by 9% initially. Hence,

an explanation must be found on the supply side, as the producers find themselves decreasing

extraction significantly although their price is almost unchanged. From figure 2 we see that OPEC's

production is considerably reduced, whereas the fringe's production increases somewhat. To

understand this, we have to look at two important aspects, i.e., the intertemporal supply and the role

of OPEC.
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As the supply side is modelled intertemporally, the producers allocate the extraction of their oil

according to present and future market conditions. Increased production in a specific period implies

higher costs in future periods, and this induces the producers to restrain their extraction rate. The

more rapid the price rises, the more profitable it is to restrain production in early periods. Thus, in

order to understand the equilibrium in the first period, we must also focus on the equilibria in the

other periods. Let us have a look at the new price path.

In figure 7 we see that the new equilibrium price path increases more slowly than the reference price

path. With a carbon tax, the price reaches its peak level in 2030, when the new price is $3.2 per

barrel less than in the reference case. Thus, until this period the carbon tax burden is born mainly by

the consumers. In 2040 both price paths have reached their maximum producer price paths. Since

the maximum producer price has fallen by $10 per barrel in the global carbon tax scenario, the

producers bear the entire tax burden from 2040.

The fringe views the oil price as given. We can, therefore, use the price paths to explain its new

production profile. We observed above that the slope of the new price path is lower than in the

reference scenario, i.e., a carbon tax reduces the difference between future and current oil price.

Hence, it is optimal for the fringe to produce relatively more in the first periods compared to the

reference case, even though the producer price is somewhat reduced. We see this in figure 2, where

the fringe moves its production profile nearer in time, and stops producing one period earlier than in
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the reference scenario. Thus, the intertemporal aspect is crucial in explaining the behaviour of the

fringe. Further, as the producer price path is always below the original price path, total cumulative

production for the fringe decreases (by 14%). The oil wealth of the fringe is reduced by around 8%

due to the carbon tax.

OPEC is assumed to take the production path of the fringe as given. Then, the price in each period

is a decreasing function of OPEC's production. Thus, when OPEC decides on its optimal

production path, it has to weight increased production versus lower price, as well as increased

production versus higher future costs, while the fringe only focuses on the latter. Both these factors

induce OPEC to restrain the extraction rate, and explain why OPEC initially only produce about one

third of total production in the reference scenario. In the carbon tax scenario we see that OPEC

restrains production even more, particularly in the first periods, whereas in some later periods

production is higher than in the reference scenario. Moreover, the oil price is mostly reduced in the

latter periods.

In order to understand OPEC's initial behaviour, it is expedient to study the cartels oil rent, which

can be split into a scarcity rent and a cartel rent. The former corresponds to the dynamic aspect, i.e.,

that production today increases costs in the future. 11 The cartel rent corresponds to OPEC's market

power. In the first periods, we find that the oil rent is clearly dominated by the cartel rent. Initially,

this rent is $16.0 per barrel, whereas the scarcity rent is merely $1.7. By looking at OPEC's cost

curve in figure 1, we see that it is quite flat until around 2040. Hence, OPEC's costs in the near

future are not very influenced by the initial production, and this explains why the scarcity rent is

small. In the carbon tax scenario the scarcity rent in the year 2000 is reduced by $0.25. Thus, we

conclude that OPEC's initial behaviour is not very influenced by the dynamic aspect, as opposed to

the fringe. What is important for OPEC, is that their production affects the oil price. With almost

constant unit costs, and a marginal change in fringe production, OPEC reacts to the carbon tax by

restricting its production in order to retain the marginal revenue (net of taxes) at the same level as

without the tax. In our model this implies almost the same producer price, which also could be

demonstrated in a static model with similar demand functions. 12 It is important to stress that

increases in consumer prices on gas and coal also contributes to this outcome.

For the fringe, this rent covers the complete oil rent.
12 A recent study by Bråten and Golombek (1996) also finds a similar result within a static model. Their aim is to
analyse OPEC's response to international climate agreements, where OPEC is either a leader or a follower in a game
between OPEC and a group of countries having signed an international climate agreement.
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From 2040 the fringe has no more valuable reserves, and it is optimal for OPEC to charge as high a

price as possible, which is the maximum producer price. Now OPEC satisfies demand completely at

this price as long as the unit cost do not exceed it. As the consumer price of oil in these periods is

the same as without the carbon tax, and the coal and some gas consumer prices have increased in

2040 and 2050 compared to the reference scenario, the introduction of a carbon tax actually

increases oil demand in these two periods.

Since OPEC acts to restrain its production, the impacts on OPEC's oil wealth is more dramatic than

that of the fringe. Yet it is the best OPEC can achieve, given the production profile of the fringe.

OPEC's oil wealth is reduced by around 23% (see Table 2 below), whereas its cumulative

production is decreased by about 12%.

4.3 Impacts of a global carbon tax on the natural gas markets

The producer prices of natural gas in different scenarios are presented in figure 3. In all regions, the

producer prices of gas are reduced under the carbon tax scenario. As in the oil market, the main

burden falls on the consumers apart from in the last period of production.

The extraction rate of natural gas is reduced over the entire time horizon in the global tax regime in

OECD-Europe and Non-OECD, and OECD-Europe stops producing natural gas one period earlier

than in the reference scenario, see figure 4. The production profile in Rest-OECD is however

different. While this region reduces its production compared to the reference scenario in the first

two periods, it increases the production in 2020 and 2030. However, as the producer price path is

always below the original price path, total cumulative production is reduced in all regions, with 19%

in OECD-Europe, 8% in Non-OECD, and only 2% in Rest-OECD.

As in the oil market, a slower rise in the price compared to the reference scenario gives an incentive

to move production nearer in time. Still, the production is initially lower under the tax scenario

compared to the reference case for all gas producers. This may be explained by the substitution

effects. The carbon tax will give relatively higher increases in the prices of gas and especially coal,

than in the oil price, i.e., offsetting the fact that gas is a cleaner fuel, as oil has the highest price per

boe initially. Thus, in the beginning, there will be a substitution in demand towards oil, while the

effect on gas demand is less clear. However, the price of gas in Rest-OECD increases rapidly, and in

2020 and 2030, the consumer gas price in the reference scenario is higher than the consumer oil

price. Moreover, a carbon tax increases gas prices less than oil and coal prices in absolute terms.
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Thus in these periods, the relative increase in the consumer price of oil is higher than in the

consumer price of gas, and there will be a large substitution in demand from coal and oil towards

gas in this region when a carbon tax is introduced. This explains the increase in gas production in

2020 and 2030 in Rest-OECD. 13

The resource wealths for the natural gas producers are reduced in all three regions. The greatest

reduction is seen in Non-OECD (about 31%) and OECD-Europe (about 26%), while the wealth of

producers in Rest-OECD is reduced by 18% (see Table 2). The reason that the largest reduction in

gas wealth is found in Non-OECD is due to lower initial consumer price on natural gas. Thus, the

carbon tax leads to a much higher percentage increase in the consumer price in this region. Hence

demand falls and the producer price is reduced. One reason for the low reduction in the gas wealth

in Rest-OECD is that this is the region with the highest scarcity rent initially. The same absolute

reduction in producer price will reduce the resource wealth relatively most where the initial scarcity

rent is smallest. The reduction in producer price caused by the carbon tax is not very different in

Rest-OECD and the other regions. Further, Rest-OECD has a low reduction in accumulated

production. However, the change in the production profile towards more production in later periods

gives a lower gas wealth because of the discounting.

4.4 The impacts on global CO2 emissions

A carbon tax of $10 per barrel of oil has quite large impacts on global CO2 emissions in the model,

especially in the long run, see figure 6. In 2000, emissions are 4.7 billion tonnes of carbon, which is

a reduction of more than 21% compared to the reference scenario. But with a constant tax,

emissions will increase and reach 9.2 billion tonnes in 2050. Thus, to reduce emissions below the

current level in the long nm, an increase in the tax is needed. Our emission reductions are in the

range of other studies, see, e.g., Dean and Hoeller (1992) which compares six global energy-

economy models. Even though the tax is constant, it may have a huge impact in the long run when

there is a falling backstop price. Actually the tax decreases the maximum producer price below the

coal price from 2100 onwards, making coal production not economically viable. Thus, there is no

consumption or production of fossil fuels after this period, and consequently there are no carbon

emissions from fossil fuels.

13 The change in the production path of Rest-OECD due to the carbon tax equals the traditional result in the theory for
exhaustible resources for a given resource base, see, e.g., Dasgupta and Heal (1979).
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5. Perfect competition in the oil market

5.1 The reference scenario

If the OPEC cartel breaks down and the oil market becomes a competitive market, it may have

dramatic impacts on oil prices and production, see figures 8 and 9. Consider two groups of

producers; low cost producers called OPEC, and high cost producers called Non-OPEC. In the

competitive market, OPEC no longer restrains its production to keep a high oil price, and the OPEC

production will be 3,968 mtoe in 2000, or almost 80 million barrels of oil per day, see figure 9. This

high production level, which is almost 30% higher than the global production when OPEC acts as a

cartel, brings the oil price down to $10.9 per boe in 2000. The price is too low for Non-OPEC

producers to profit from oil production, and they will therefore not produce initially. However, as

the oil price increases over time, Non-OPEC will enter the market. Due to the high initial

production, OPEC producers terminate their production one period earlier than in the cartel model,

while Non-OPEC produces one period longer. With perfect competition, accumulated production in

OPEC is 6.5% higher than in the cartel model, while total Non-OPEC production is reduced by

7.5%. Furthermore, the oil wealth is reduced by 15% and 71% in OPEC and Non-OPEC,

respectively. The large reduction in the oil wealth of Non-OPEC is mainly a result of the changed

production profile, with the bulk of production in the later periods. This result confirms the

conclusion in Salant (1976) that the fringe has the highest benefit from the formation of a carte

since the fringe enjoys the benefits from a higher price, due to the market power of the cartel,

without having to restrict supply.

A lower oil price gives a substitution in demand away from coal and gas towards oil. In the gas

markets the prices are marginally lower, and so is production initially compared to the cartel model.

However, production increases in the second half of the production period where the oil price

follows the maximum producer price as in the cartel model, while the gas prices are somewhat

lower. Compared to the cartel model, the gas wealths are reduced by 3% in Rest-OECD, and by 4%

in OECD-Europe and Non-OECD.

In the coal market, production falls by 2-3.5% for the next 60 years. Thereafter, the production

changes are only marginal.

Global carbon emissions from fossil fuel consumption are 0.6 billion tonnes of carbon or 10%

higher in 2000 in this model compared to the former model, see figure 6. The emissions are higher
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in the first half of the next century, but falls below the emissions in the cartel model in 2050 and

2060 due to lower oil production in these periods. When oil is not produced, the emission paths are

equal in the two models.

Figure 8. Oil price with competitive oil market
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5.2 The global carbon tax scenario

Figures 8 and 9 show the consequences of a carbon tax in the competitive oil market. A carbon tax

of $10 per boe reduces the initial oil price by $1.2, and the difference between the oil price in the

reference scenario and the tax scenario is in general larger than in the cartel model. This means that

a higher burden is born by the producers. As in the cartel model, the price increases less with a

carbon tax than in the reference scenario. This gives incentives to move production to earlier

periods, resulting in larger reductions in production in later periods. But oil production is mostly

lower than in the reference scenario since the introduction of a tax gives no substitution from gas to

oil because of the low oil price, i.e., a carbon tax gives a relative higher increase in the price of oil

than in the price of gas. Actually, the consumer price of oil increases relatively more than the gas

price after the introduction of a tax, giving a substitution in demand from oil to gas. The loss in oil

wealth with a carbon tax is 25% for OPEC producers, and 39% for Non-OPEC (see Table 2). While

this is a substantial increase in relative numbers for Non-OPEC compared to the cartel model, as no

producers act to maintain the producer price with perfect competition, the loss in absolute numbers

is not much higher as Non-OPEC's oil wealth is considerably lower in the competitive market

model. Compared to the cartel model, OPEC does not reduce its production as much in the first

periods, which means a smaller loss in OPEC's oil wealth in this model. However, this is offset by

the fact that a larger tax burden is born by the producers. Hence, the relative impact on OPEC's oil

wealth from a carbon tax is about the same in the two models. To sum up, the market structure does

not make a big difference for OPEC producers when it comes to the relative impact on oil wealth

from a carbon tax, while for Non-OPEC producers, the OPEC behaviour is of great importance.

These results can be compared to Rosendahl (1996). He found that the reduction in the oil wealth

of an average oil producer in a competitive market of a global carbon tax of $10 per barrel, was 33-

42%. Moreover, the Norwegian oil wealth was found to be reduced by 47-68%, because of higher

unit costs and exogenous production profile. Thus, even if the losses in our study are a bit less than

those found in Rosendahl (1996), which can partly be explained by lack of substitution effects in

Rosendahl's partial model, this study confirms the major impact of a carbon tax on the oil wealths

in a competitive market.

Due to the substitution in demand from oil to gas, the impacts on gas wealths from a carbon tax are

marginally but insignificantly less in this model, compared to the cartel model.

27



With a carbon tax, the carbon emissions follow the same profile as in the reference case, however at

a lower level. The reduction is, e.g., 21% initially, and the emissions peak one period earlier than in

the reference case due to the low oil consumption in the last period of oil production.

Finally, table 2 summarises the impacts on the oil and gas wealths of the carbon tax in the two

models.

Table 2. Percentage reductions in the petroleum wealth of fossil fuel producers in the tax scenario

compared to the reference scenario

OPEC acts as a cartel	 Competitive oil market

Oil - OPEC
	

23%	 25%

Oil - Fringe
	

8%	 39%

Gas - OECD-Europe
	

26%	 26%

Gas - Rest-OECD
	

18%	 18%

Gas - Non-OECD
	

31%	 31%

6. Sensitivity analyses
In analyses with a long time horizon, the uncertainties surrounding the parameters are huge.

Therefore, sensitivity analyses are carried out to test the robustness of the model results. We

concentrate on sensitivity analyses for the oil market in the cartel model.

A more pessimistic view of the future, at least from an environmentalist's point of view, may

support a higher backstop price. Doubling the initial backstop price leads to a higher oil price. The

oil price will also increase slightly for the first 50 years with a carbon tax, due to higher substitution

in demand towards oil in this case. A higher backstop price will also increase the period of

production, and therefore postpone the time periods when the oil price follows the maximum

producer price, and the whole tax burden is born by producers. This reduces the effects of the

carbon tax on the oil wealths, and Non-OPEC may actually gain by 0.5% from the carbon tax

policy. Higher technological change in the backstop technology may be a more optimistic view of

the future. However, increasing the rate of technological change from 1.5% to 2%, gives slightly

higher losses for oil producers. Increasing the initial technological change for Non-OPEC producers
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to 5%, reduces the initial oil price in the reference scenario to $19 per barrel, and the unit costs for

these producers actually falls from the first to the second period. However, the relative effects of the

carbon tax remains. This is also true when the technological change in the oil market in the long run

increases from 1% to 1.5%.

The model is more sensitive to changes in price elasticities. Increasing all cross price elasticities to

0.3, while keeping the direct price elasticities are unchanged, makes energy demand less sensitive to

price changes. 14 Thus, the producer price of oil will be $0-3 higher the first 40 years with a tax due

to higher substitution towards oil, especially from coal. The oil wealth of Non-OPEC will actually

increase by 20% from this policy, while OPEC will face a loss of 2%. With cross price elasticities

of 0.5, but higher direct price elasticities (in absolute value) such that the total price elasticity of

energy demand remains unchanged, we obtain similar results, but with a slight increase in OPEC's

oil wealth with the carbon tax policy. It can be argued that cross price elasticities should vary among

the different fuel types as, e.g., gas and coal may be closer substitutes for each other than for oil.

Increasing the cross price elasticities in the demand function for gas and the cross price elasticity

between coal and gas in coal demand to 0.2, given that the total price elasticities are unchanged,

reduces the losses in gas wealths, while there is little change in the oil market.

A lower discount rate will give a higher loss in oil wealth for Non-OPEC. For instance with a 5%

discount rate, the loss in Non-OPEC will be 13%, while the OPEC loss is almost unchanged at 22%.

The reason is that with a lower discount rate, the future counts more, and Non-OPEC moves the

production profile nearer in time with a carbon tax. The loss for OPEC producers are less sensitive

to the discount rate, as a tax make them increase production in the middle of their production

period. Correspondingly, a 10% discount rate reduces the loss of Non-OPEC, while the OPEC loss

increases slightly.

The shaping of the carbon tax policy has of course also impacts on the oil wealth. It may be

reasonable that a carbon tax is first introduced in OECD. If for instance a carbon tax of $10 per

barrel of oil is only levied on OECD in the four first periods, but thereafter on all regions, the loss in

OPEC's oil wealth will be reduced to 16%, while the Non-OPEC loss will be 9%. As the tax policy

gives a lower oil price, the oil demand outside OECD increases when a tax is put on OECD demand

14 With a direct price elasticity of -0.9 and cross price elasticities of 0.1 as used for the OECD region, a doubling of all
energy prices will reduce the energy demand by 40% in this model. However, if we use cross price elasticities of 0.3, the
reduction will only be 20%. To get an equal reduction in demand, the direct price elasticity should be changed to -1.3.

29



only. This increased demand is covered by OPEC. An increasing carbon tax may be a realistic

alternative to a constant tax. Consider a tax starting at $5 per barrel of oil in the first period, and

thereafter increases to $35 in period 5. From this period onwards the tax is constant. With this tax,

the carbon emissions will always be below the starting level in the reference scenario, i.e., 4-20% in

the four first periods. This tax system gives a loss in the oil wealths of OPEC and Non-OPEC of

38% and 28% respectively.

To conclude, the relative higher loss in OPEC's oil wealth compared to Non-OPEC countries when

an international carbon tax is introduced, is a robust result when OPEC acts as a cartel.

7. Conclusions

In this paper, we have analysed the dynamic impacts on fossil fuel prices of introducing carbon

taxes globally. We have taken into account the intertemporal optimisation problem fossil fuel

producers are facing. In contrast to ordinary Hotelling models, our model has included important

aspects, such as market power in the oil market, and cost functions increasing with cumulative

production and decreasing with technological change.

Our results indicate that behaviour of OPEC is very important when analysing the impacts on

petroleum wealth due to a carbon tax. When OPEC acts as a cartel, the crude oil price is almost

unchanged initially by a global carbon tax. Moreover, in the first 40 years the tax burden is born

mainly by the consumers, as OPEC reduces its production in order to maintain a high price level.

This reduces the growth in the producer price of oil compared to the reference case, and the fringe

accelerates it's oil production. While the market structure is important in explaining OPEC

behaviour in the cartel model, the dynamic aspect explains the behaviour of the fringe. The oil

wealth of the fringe is reduced by merely 8%, whereas OPEC's wealth is reduced by more than

20%. Thus, if we do not consider the environmental benefits, the main losers under the carbon tax

regime will be the consumers and OPEC, while the tax revenue is collected by the governments in

the consuming countries. With perfect competition and no carbon tax in the oil market, low cost

producers (OPEC countries) increase their production significantly initially, which lowers the oil

price and makes oil production unprofitable in the first period for high cost producers (Non-OPEC).

In this case, the oil wealth of Non-OPEC will be reduced considerably, by more than 70%,

compared to the situation where OPEC acts as a cartel. Thus, Non-OPEC has much more to fear if
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OPEC breaks down even in absence of carbon policy, than if a carbon tax is implemented with

OPEC as a cartel. In addition to this, a tax will have a much higher relative impact on the Non-

OPEC oil wealth in the competitive model compared to the cartel model, as nobody will act to

maintain the price under perfect competition, and the relative loss will also be higher than for OPEC

countries.

In the gas markets the tax burden is also born most heavily by the consumers, as the scarcity rent is

quite low initially. Hence, the producer prices cannot be reduced too much. However, the gas wealth

is significantly reduced, especially in Non-OECD. The impact of a carbon tax is not very dependent

on the behaviour of OPEC.

The oil market today is probably better described by the cartel model than the competitive model.

Thus, the results from the cartel model may explain why OPEC countries are reluctant to

introducing global carbon taxes, or other restrictions on carbon emissions. On the other side, other

oil producers seem to have less to fear if such an agreement were reached, and this seems to be

partly consistent with their positions towards carbon restrictions. Therefore, economic factors may

be important in explaining attitudes of oil producers in global warming negotiations.

Finally, in a global context the standard definition of petroleum wealth is a business conception, as

the external effects of utilising petroleum are not taken into account. Hence, if petroleum wealth

were defined in terms of true social costs and benefits, and if carbon taxes were optimally chosen,

the carbon tax would, ceteris paribus, not reduce petroleum wealth.
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Appendix 1

In the model there are three fossil fuels produced: Oil (0), natural gas (G) and coal (K). We

consider the model of the world oil market with OPEC as a cartel (C) and a competitive fringe (F).

Consumers are situated in three regions: OECD-Europe (1), Rest-OECD (2), and Non-OECD (3).

There is a natural gas market with perfect competition in each region, and the coal market is

assumed to be a competitive world market.

All variables are functions of time. However we will suppress the time notation in the following.

The functional forms are constant over time.

1. List of symbols

Po	 international producer price of oil

PK	 international producer price of coal

P 3 	producer price of natural gas in region i, i=1,2,3

Q i; 	consumer price of fuel j in region i, i=1,2,3

international backstop price

z i.	 unit costs of transportation, distribution and refining of fuel j in region i, i=1,2,3J

existing taxes on fuel j in region iJ

Y i 	gross national income in region i
k production of fuel j by producer k

X ij 	consumption of fuel j in region

A k 	accumulated production of fuel j by producer k

-k
A;	 accumulated production of fuel j by producer k over the entire time horizon

unit cost of production of fuel j for producer k

the shadow cost associated with cumulative extraction up to the current time

k
j 	scarcity rent in production of fuel j for producer k

Mitc 	marginal revenue of OPEC
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rate of technological change in production of oil, gas and coal respectively

It 	 rate of technological change in backstop technology

parameter of convexity in the cost function for fuel j for producer k

a i., ji price and income elasticities in demand function for fuel j in region iJ	 J

CO	 constant in demand function for fuel j in region i
J

a, ß, ai , 19	 constants in cost functions

initial backstop price

discount rate

time

T.k 	last period of production of fuel j for producer k
J

2. Demand

On the demand side we assume loglinear demand functions in all regions. Demand takes into

account the imperfect substitution possibility between the different fossil fuels.

First, let 3\C ii be defined by

A i
(Al) ln X; = lnco	 ln Q io -F13• lnQ iK 	QiG +dlnY i

where

Q 10 = Po ± z io v io

(A2) • = PK Z

• 1

- V 1K.

• "7"-- PGi	 Z• + V 1G.

Then the demand for energy type j in region i is given by
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i	 _
X! =X•

, 

<PJ 	 J 	 J

(A3) )( = 0,Q ii >

x E [0,*;],Q =

The restriction of market clearing in the world oil market can then be written

	3 	 i

(A4) + xoF
	i=1	 0

From (A1)-(A4), we can derive the producer price of oil:

(A5) po = po (xCoxoF ,z 10 vol , z 20 + v2 73 „ 3 ni 112 n3 n1 n2 (13 	 vl v-2 y3\
0 9 "-'0 	 '0 9 ‘ZIONCKINCK 9 •ZG 9 `4G 9 `,CG 9 ' 9 	'1* 9 	J

In a similar way, we can derive the producer prices of natural gas and coal.

3. The optimisation problem for OPEC in the Nash -Cournot model

When the oil market is modelled as a Nash-Cournot model, the cartel (OPEC) is facing a downward

sloping demand schedule at each point of time, and takes the extraction path of the fringe as given.

OPEC seeks to maximise the present value of the net revenue flow. The control variable in the

optimisation problem is the extraction path of the cartel, and the state variable is accumulated

production. P0 (..) in (A6) is the producer price given in (A5).

00

(A6) max j. [P0 (--)	 ])(s,„	 dt
.0

s.t.

(A7) =

(A8) 0

(A9) Cg = ae lgAg-Tct

(A10) = Ke Pt

0
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4. Solving the problem

The current value Hamiltonian in the optimisation problem of OPEC, fr, is given by

(All) HC — [ (-)—C o (A.,t)14 + x (c)
c

where Xt (<0) is the shadow cost associated with cumulative extraction up to time t. The scarcity

rent for the cartel is defined as it g t = - 2t, t .

The necessary conditions for an optimal solution are given by the Pontryagin's maximum principle.

From this maximum principle we get the time path of the shadow cost

(Al2)	 rx _	 _ aCg c

x°

(Al2) can be rewritten using the definition of the scarcity rent

(A13) •co	
aCc

= ric	
x

o 	 °aAc

cxo maximises the Hamiltonian for all xc > 0 which for an interior solution requireso —

ap
(A14) all

'	 .. r4C+ 	 C

	

y	 =0a xtc,	 o
= p ....

-0 axo —0 i

which gives the producer price of oil when OPEC produces

(A15) P	 apo = cc + icc	 o c
0 o — c xo

dx o

dP
where — c° xco is the cartel rent. The marginal revenue of OPEC is defined asa _

vA0
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(9P
(A16) MRc = P + ----() -xg =o axg

Using (A13) and (A16) we find the time path of the marginal revenue

(A17) MR c = rirco — cco

The cartel will stop producing at time ToC E (0, co) when the unit cost reaches the backstop price

minus region specific costs and taxes. Let ro be the aggregate production of OPEC over the entire

time horizon. The transversality condition is then

(A18)max("i5 — z i —	 _ rcrEc Tc)
To 	0 • 0 —	 .07 .0 I

5. The optimisation problem for the competitive fringe

The optimisation problem of a competitive fringe producer in the oil market is similar to the one of

OPEC above, with the exception of the producer price which is regarded exogenously. In a

competitive market, the optimisation problem of OPEC producers is again similar to this.

00

(A19) max [Po —C s ]x Fo •e -rt clt
0

s.t.

(A20) A. 0F = x Fo

(A21) x F0

(A22) C F0 = fielr)Ar) -et

From the first order conditions of this maximisation problem, we get for an interior solution

(A23) P	 0(AFo,o = F „F

•
(A24) Po = rPo — (r +1..F )c F0 = reo ecoF
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where 7t 	 the scarcity rent for the fringe defined as the negative of the shadow cost associated

with cumulative extraction.

In a market equilibrium, OPEC's first order and transversality conditions as well as the market

condition (A4) and the development in the backstop price (A10) must be satisfied.

The transversality condition of the fringe, where T(F) E (0, co) , is

(A25) 1114x(Fik; z io v io) =
Fo CA-Fo TFo

6. The optimisation problems in the natural gas markets

As in the oil market, the gas producers also maximise the present value of the net revenue flow. We

consider three separate regional natural gas markets with perfect competition. There are similar

restrictions and first order conditions for the optimisation problems for all markets i=1,2,3. Each

producer faces the following optimisation problem:

00

(A26) max je	e'dt
XG 0

s.t.

(A27) A iG = x iG

(A28) x iG 0

(A29) C = a i

The first order conditions give

(A30) 1" = CG (A iG ,y i ,t) + 7C iG

(A31) = r1) (r + y i )C = rr iG — y i C iG

In a market equilibrium the development of the backstop price A10) and the market condition

(A32) must hold.
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(A32) =

The transversality conditions in the natural gas markets, where T	 (0,00) , are similarly

(A33) -15,it z iG - V Gi	C	 , TGi

7. The optimisation problem in the coal market

We assume that there is one global coal market with perfect competition. Since the coal resources in

the world are so huge compared to those of oil and gas, we ignore the dynamic aspect of the

resource extraction and treat the optimisation problem in the coal market as a static problem, where

the coal producers maximise the profit in every period. Each producer faces the following problem:

00

(A34) max sf [PK — C KICK • e'dt
XK CO

s.t.

(A35) x i( 0

(A36) C K Oelit

The unit cost in coal production is assumed to be independent of accumulated production. The first

order condition is simply,

(A37) PK CK

In a market equilibrium, (A10) and the market condition (A38) must hold.

(A38) PK = P	 ,72	 ,73	 (-N2 (13	 f-N2 (-13	 v 1 v2 v31
K	 IC? K	 vI(/`-'1C	 '101-11C	 v ICIN40 , ‘,40/\40/N4G/ N4G 9 N4G/ L, ' 	 Â. 	*a. )

The transversality condition, where TK E (0,00) is

(A39) max(FT z i( — ) = C K (rK )
K

42



Appendix 2

Table Al: GDP growth rates, in per cent. 
1995 2005 2015 2025 2035 2045 2055 2065 2075 2085 2095 2105 2115 2125
2004 2014 2024 2034 2044 2054 2064 2074 2084 2094 2104 2114 2124 2134 

OECD- 2.2	 1.9	 1.6	 1.4	 1.3	 1.2	 1.1	 1.05 1.0	 0.95 0.9	 0.85	 0.8	 0.75
Europe
Rest-	 2.8	 2.5	 2.2	 1.9	 1.6	 1.4	 1.2	 1.1	 1.0	 0.95 0.9	 0.85	 0.8	 0.75
OECD
Non-	 3.6	 3.4	 3.2	 2.95	 2.7	 2.4	 2.2	 2.0	 1.8	 1.7	 1.6	 1.45	 1.3	 1.2
OECD

Table A2: Price and income elasticities 
OECD	 Non-OECD
-0.90	 -0.75
0.10	 0.10
0.50	 0.60 

Direct price elasticities
Cross price elasticities
Income elasticities 

Table A3: Existing taxes on fossil fuels in 1994, 1994$/hoe 
OECD-Europe Rest-OECD	 Non-OECD

Tax on oil	 34.02	 12.21	 3.52
Tax on gas	 3.60	 0.00	 0.00
Tax on coal	 0.74	 0.00	 0.00

Table A4: Constant parameter in demand function, co, mtoe/year
Oil	 Natural gas	 Coal 

OECD-Europe	 13,506	 2,524	 1,596
Rest-OECD	 17,735	 6,126	 3,465
Non-OECD	 8,390	 4,011	 4,598

Table A5: Parameters in the cost functions 
C = C o enA'	 initial unit cost of	 technological 	 convexity

prod., CO3 1994$/hoe change, T, per cent parameter,
oil

OPEC	 3.32	 1.0	 0.023
Fringe	 10.91	 2.0 ---> 1.0	 0.025

natural gas
OECD-Europe	 7.00	 1.0	 0.122
Rest-OECD	 5.45	 1.0	 0.088
Non-OECD	 5.53	 1.0	 0.017

coal	 8.80	 0.5	 ••• •••

	backstop technology 108.20	 1.5
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Table A6: Initial unit costs of transportation, distribution and refining, 1994$/hoe 
OECD-Europe	 Rest-OECD	 Non-OECD

oil
transportation	 1.64	 1.53	 1.06
distribution	 3.4	 3.4	 3.4
refining costs	 2.28	 2.53	 2.16 

total	 7.32	 7.46	 6.62
natural gas

transportation	 5.1	 3.16	 2.1
distribution	 6.8	 6.8	 6.8
storing and load	 2.0	 2.0	 2.0
balancing 
total 13.9 11.96 10.9
coal

transportation	 3.79	 1.43	 0.57
distribution	 3.4	 3.4	 3.4 

total	 7.19	 4.83	 3.97
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