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THE CONTINUOUS GENERALIZED EXTREME VALUE MODEL WITH

• 	 SPECIAL REFERENCE TO STATIC MODELS OF LABOR SUPPLY
BY

JOHNK. DAGSVIK

ABSTRACT

The paper extends the generalized extreme value random utility model

(McFadden, 1981) to the case where the choice set is continuous. One par-

ticular area of application is treated, namely the static models of labor

supply. The continuous Luce model as well as several standard models that

appear in the consumer demand literature emerge as special cases. The paper

also provides theoretical assumptions that justify the stochastic proper-

ties of the model.

Not to be quoted without permission from author(s). Comments welcome.



1. Introduction 

This paper presents a particular econometric approach for analyzing indi-
.
vidual choice behavior under perfect certainty, with general budget con-

straints and with discrete and continuous alternatives. We focus on a par-

ticular area of application, namely the econometrics for labor supply but

it is clear that the field of applications is much wider. The framework

developed is related to the literature on discrete/continuous choice, see

e.g., McFadden (1981), Hanemann (1984) and Hausman (1985) but it departs

somewhat from the models that have appeared in the literature in that we

insist on a more careful treatment of the unobservables. Specifically, our

approach represents an extension of the generalized extreme value random

utility model to cover the case with continuous alternatives. In contrast

to the traditional approach where the unobservables usually enter as

"tasteshifters", we argue that these unobservables are related to latent

opportunity constraints and matching conditions. Specifically, we define a

space of unobservable alternatives called matches. Each match is related to

particular abilities offered by the individual, 'skills demanded to perform

specific tasks that correspond to certain market or non-market alternatives

and attributes associated with these activities. An optimizing individual

will try to obtain the "best" match, i.e., he will engage in an activity

that yields the best position relative to his abilities and tastes. This

starting point provides a fruitful step for developing a random utility

model where the stochastic properties of the model can be justified on

theoretical grounds and where the budget constraints can be quite general.

The paper is organized as follows: In section 2 we discuss some of the

weak parts of the static labor supply models analyzed in the literature and

we postulate a random utility structure that is convenient for accommo-

dating different types of heterogeneity. We also derive some testable pro-

perties of this distribution.

In Section 3 the joint distribution of the supply function and the wage

rate is derived under general restrictions on the set of available hours of

work, given the match. We also derive some testable properties of this

distribution.

Section 4 discusses the particular case with no constraints on hours of

work within matches and Section 5 considers the other extreme when hours of

work for each match is given.

The final section is devoted to a theoretical justification of the
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stochastic structure of the utility function. Specifically, we provide

assumptions that imply the type of utility function postulated ia Section 2

and hence the derived supply distribution of Section 3.

2. The utility structure 

The textbook model for labor supply starts with a specification of a direct

or indirect utility function in leisure and consumption. Utility is quasi

concave and nondecreasing, and the budget constraint is linear or concave.

By standard marginal calculus the supply function is obtained in this case.

Recently Hausman (1985) has modified this approach so as to take into ac-

count tax systems that imply a piecewise linear non-concave budget curve.

The textbook model is subject to criticism for some obvious reasons of

which we mention a few:

(i) The model assumes that each individual faces only one offered wage

rate and thus it neglects that, at least some individuals have the

choice of several jobs with different wages.

(ii) The fact that non-pecuniary job characteristics matter when labor

market decisions are made is neglected. Only the wage rate is assumed

to matter.

(iii) The decision-makers are assumed to be able to adjust hours of work

freely. Yet we know that for most jobs hours of work are more or less

determined by the firms or by regulations set by the central authori-

ties.

(iv) With a few exceptions (Heckman and MaCurdy,1981 , Hausman, 1980,

1979, Burtless and Hausman, 1979) the tax structure is neglected or

approximated by a smooth convex function.

(v) The unobservables are treated superficially. Distributional as-

sumptions are typically made ad hoc.

Naturally, these are quite a few of the objections that are raised against

the traditional approach and they are mentioned here since we intend to
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develop a framework that is convenient for dealing with dust these im-

portant shortcomings.

The model presented in this chapter is, however, traditional in that

the individual is assumed to operate in an environment of complete cer-
.

taintx with a one-period budget constraint, i.e., no borrowing or saving is

allowed. However, from the observing econometrician's point of view indi-

vidual behavior is perceived as random because many important variables

that affect the decisions usually are unobservable. Important unobservables

that Characterize the environment are type of "job" and types of non-market

activities. We may think of a type of job as the attributes and the nature

of the specific tasks performed as well as the qualifications demanded to

perform the tasks. Similarly non-market alternatives may be identified by

the type of tasks and skills needed to perform them. Examples of non-market

alternatives are related to schooling, sports, household production and

childcare.

The individual's Choice set, i.e., the set of available opportunities

depends on personal abilities and degree of qualifications. Also his quali-

fications may affect the preferences since he would, to some extend, be

likely to consider opportunities that correspond to his abilities. However,

the decision process is only partly determined on the basis of matching

considerations because the individual usually have skills suited to perform

a variety of tasks but still prefer particular tasks to others. Moreover,

the most preferred tasks are not necessarily the ones for which he is best

qualified.

Next we shall introduce the concept match. We define a space of ab-

stract latent alternatives denoted matches. Each match identifies specific

abilities offered and skills demanded to perform a particular combination

of tasks related to certain market and non-market activities. It also

identifies the nature of the activities. Thus a particular match is defined

by,

(i) tasks related to a combination of market and non-market activities,

(ii) abilities offered to perform these tasks,

(iii) skills required to perform the tasks,

(iv) attributes associated with the specific combination of activities.

Such attributes are related to for example working environment, location of

the jobs, commuting time, residental location, quality and prestige of an

educational alternative, etc.



Without loss of generality we may identify each match by a discrete

number z, i.e.,	 is an enumeration of the space S of all the

matches. This enumeration as well as the definition of the. matches is "ob-

jective" in that it is not dependent of the individual. We assume that the

individual has preferences over these matches and that he is pirfectly

certain about the outcome of a matching process.

Let U(h,C,z) be the utility of hours of work, h, consumption, C and

match, z, for a randomly selected individual.

The budget constraints are given by

C al f(h1.1(z) + I

hED(z), zEB .

The first equation specifies the "economic" budget where W(z) is the

wage rate that is allowed to be match-specific. I is non-labor income and

f(•) is the function that transforms gross income to income after tax. This

function may be non-differentiable and non-concave which corresponds to the

current tax system in many countries. We define z as a pure non-market

match if W(z)=0.

The second equation defines the match-specific constraints on hours of

work. These constraints stem from regulations on working hours specific to

the tasks performed as well as from the fact that certain activities take a

minimum or a maximum of time to perform. This set also accounts for

rationing in the labor market. For instance D(z)=0 (the emty set) for some

z which means that certain matches offer no possibility for work either

because non-market tasks take all of the available time or simply because

there are no jobs that correspond to these matches.

The third constraint defines the set of matches that are feasible to

the individual. The set B account for the fact that for a particular indi-

vidual the -abilities offered to perform the respective tasks are given. In

the short run, which is our concern here, the personal qualifications can-

not be changed. Thus B is the subset of matches for which the qualifi-

cations offered coincide with those of the individual. The set B also ac-

counts for the fact that many matches simply do not exist in the market.

Specifically, the individual's choice of matches is made indirectly in- that

he chooses from a set of jobs (or leisure activities) that imply a par-

ticular combination of tasks and attributes. We have chosen not to let 'B
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account for rationing in the labor market. Such restrictions are, as dis-

cussed above, identified by D(z). This is of course to some extent a matter

of convention. Note that the convention adopted here implies that D(z) - does

not depend on the individual. For a given z, D(z) is the same for everyone.

The heterogeneity across individuals is accounted for by B.

The framework introduced above is sufficiently general to accommodate

to the fact that there may be a trade-off between wages and non-pecuniary

attributes. For instance, some jobs may be well paid but offer unattractive

working conditions or tedious work (relative to the individual).

The econometric challenge is, of course, whether or not we are able to

represent these structural features of the market ia a tractable empirical

model. We shall see below that this is possible to some extent.

Before we continue to develop the formal model we would like to empha-

size that although our approach may differ from most previous work in this

area there are nevertheless previous developments along these lines. One

notable contribution dates back to Tinbergen (1956) in which he attempts to

give the frequency distribution of incomes an economic theoretic foun-

dation. Tinbergen introduces attributes of the jobs and abilities associ-

ated with the workers and he let the utility function depend on the tension

between the skills required at the job and the abilities offered by the

worker. Thus his optimizing regime implies that the worker acts so as to

minimize the tension between the skills required and the abilities offered.

The regime we have presented above extends Tinbergen's model in that the

utility function may also depend on attributes associated with different

activities. In Tinbergen's world a person's abilities coincide with his

tastes while here tastes and abilities are allowed to be in conflict with

each other.

The decision process may be decomposed as follows: First, the indi-

vidual evaluates the highest utility of each match i.e., he evaluates the

conditional indirect utility function

0(z) 	max U(h,f(hW(z) + I),z) 	 (2.3)
hED(z)



A
for each z. Second he finds the match, z, for which

A A 	 A
V(Z) m max V(z) .

zEB

Now optimal hours of work, IL is determined by

U ILf64(Z) + I), = 11‘1() .

Alternatively, the decision process may be decomposed in the following way:

The budget constraint (2.2) is equivalent to

zEB(h), hEu zD(z) 	 (2.4)

where

B(h) = { IhED(z),zEB}

i.e., B(h) is the set of matches for which h hours are available. First the

individual finds the optimal match for each h i.e., he evaluates U (h)

defined by

U (h) = max U(h,f(hW(z) + I),z)
	

(2.5)
zEB(h)

which is the highest utility the individual can attain at h hours. Second,

he finds the optimal hours, h, by maximizing U

To the observing econometrician U(h,C,z) is, as mentioned above, per-

ceived as random due to unobserved variables that influence the prefer-

ences. In addition the set B is perceived as random because of unobserved

heterogeneity with respect to skills. Let

= max U(h,C,z) •
zEB(h)

This is the utility function for the observable choice variable (h,C). The

utility function U(h,C) is thus random due to unobserved heterogeneity with

respect to skills and tastes.



The stochastic properties of U(h,C) can be justified by a set of plau-

sible behavioral assumptions which are discussed in Section 6. These as-

sumptions may be categorized in two equivalent sets. The first set of as-

sumptions is, in part, of the revealed preference type. The other set is

related to the'distribution of the utilities. The two sets are equivalent

in that they imply the same stochastic structure of the utility function.

Specifically, they imply that

U(h,C,z) = v(h,C,T(z)) + e(z)
	

a >	 (2.6)

where {T(z),e(01 is an enumeration of the points of the Poisson process on

114xR with intensity measure

X(dt)•e -Ede

where

co

E f X(dt)<

and v(•,•,•) is a suitable deterministic function. Recall that this means

that the expected number of matches for which (T(z),e(z))E(a,b)x(x,y) is

given by

b
A(a,b,x,y) E (e-x -e-Y) f A.(dt) .

a

Moreover, the probability that exactly n matches satisfy

(T(z),e(z))E(a,b)x(x,y) i

A(a,b,x,y) n exp(-A(a,b,x,y))n!

In particular, the probability that there is no match for which c(z)>x is

P(max e(z) (x) = exp(-A(0,c0,x,c0)) = exp(-ce-x) •



The variable T(z) captures the effect of the non-pecuniary aspects related

to match z. Thus the choice environment is characterized by a distribution

of-wages, W(z), match-specific choice sets, D(z), and non-pecuniary aspects

summarized in T(z). This distribution is the same for every individual and

it is, as mentioned above, assumed to be known to the decision-makers.

The variables CW(z),D(z),T(z)) appear here as random variables only in

the sense that the enumeration of matches is arbitrary. For a given enumer-

ation these variables are non-stochastic. For the sake of interpretation

and to link the above setup to standard models of discrete choice consider

the corresponding case where the universe of matches is finite with size n.

Let i(z),v41,2,..., n, be independent draws from the extreme value distri-
-x

bution, exp(-e ), and let Y(z), 	 be a non-stochastic variable.
A

Furthermore let the draws {i(z)} be independent of {Y(z)}. Let G (y) be the
A 	 n

fraction of matches for which Y(z)4y, i.e., Gn (y) is an "empirical" distri-

bution function. Let

Un(h,C) ... max (v(h,C Y(z)) 4. 	 .
z4n 	 a

The variable Y(z) may be percieved as stochastic only in the sense that the

probability that a randomly selected match fram the set of n matches satis-

fies Y(z)4y is la (y). The variable i(z) accounts for the individual vari-

ation in tastes for a given match z. We may therefore interpret v(h,C,Y(z))

as the mean utility accross individuals given (h,C,z). It follows by stan-

dard arguments- that fUn (h,C)1 converges weakly towards {igh,C)} as n

where

e(z))U(h,C) E max v(h,C,T(z)) a

Also a
n
(y) G(y) in the continuity points of G where G(y)	 .

c
The theoretical justification of (2.6) is deferred to Section 6. As

demonstrated by de Haan (1984) the decomposition (2.6) is equivalent to

(under certain regularity conditions) the property that

(h 1 ,C 1 ),U(h2 ,	 ...,U(hm,Cm))
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for arbitrary (h1'C1),(h2'C2),...,(hm ,C
m
 ) and arbitrary integer ta is

distributed according to the multivariate extreme value distribution, type

III, (see Galambos, 1978). This distribution, which is also denoted the

generalized extreme value distribution (see McFadden, 1981) is presented in

Section 6. In the terminology of de Haan figh,C)1 belongs to the class of

max-stable processes.

The decomposition result (2.6) is very important because it enables us,

together with assumptions about W(z) and D(z) to derive a convenient ex-

pression for the realized hours of work and wage distribution. Before we

consider this distribution let us look at the interpretation of (2.6).

First observe that if U(h,C,z) is assumed to be quasiconcave in (h,C), non-

decreasing in C and non-increasing in h for given z the same properties

hold true for v(h C,T(z)) since e(z) does not depend on (h,C). Let

A
37(w,t,It) E max v(h,f(hw + I),t) .

hEA .
2.7)

Then

i)(z) .... 1:7(W(z),T(z),D(z)) 	 e(z)a

is the match-specific indirect utility function since we just noticed that

c(z) is constant when z is kept fixed. In the case where f(..) is concave
A

and A is the set of feasible hours per year, v would possess the standard

indirect utility properties, i.e., be quasiconvex in w and nondecreasing in

w and I.

Note that e(z) only affects the level of the utility while T(z) affects

both the level and the marginal utilities 6U/ash and 8U/N. In the special

case where T(z) is degenerate then all matches have the same marginal

utilities.

It is interesting to note that the standard textbook model is obtained

as a special case of our model. As discussed above the textbook model is

silent about unobservable choice opportunities. All the unobservables re-

gardless of their origins are usually represented by a random variable that

enters the utility function(direct or indirect ut ty n such a way so

as to preserve quasiconcavity and monotonicity in (h,C). Now let us see how

the textbook model emerges. From (2.6) we see that when a is small then the

effect of the "systematic" part v(h,C,T(z)) will be small. Thus for a value
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of a near zero the optimal match would be determined by the sequence {e(z)}

which is purely random. Given the optimal match, hours of work is deter-

mined by maximizing v(h,C,T(z)) with respect to h. But this is a standard
A

textbook utility maximization problem when T(z) is given. Since the deter-
A

mination of z is independent of the rest of the variables that enter the
A 	 A

utility function it follows that CW(z),T(z)) can be viewed as a draw from

the same distribution as the one that generated the sequence 04(z),T(z)).

Therefore our 'model is indeed not a restriction of the traditional model

that appears in the econometric literature of labor supply. Instead it

offers an extension which is capable of explaining a wider variety of un-

observed heterogeneity than in the traditional case at the same time as

it's structure is partly justified fram theoretical arguments.

It is also an extension of the generalized extreme value models to the

continuous case (cf. McFadden, 1981). For example, the probability that

U(hl' C 1 ) > igh2' C2) has the form of a generalized extreme value model and

this example is a special case within the general framework presented here.

In the next section we shall present the distribution function for the

realized wage and hours of work.

3. The distribution of realized wage and hours of work 

The optimal wage,	 and hours of work, T14 can formally be expressed as

sis W(Z)

and

Ti so h(WeZ),D(Z))

where we recall that 
A
z denotes the optimal match, i.e., the match that

maximizes 0(z) and t(w,t,A) is the value that maximizes v(h,“hw+1),t),

hEA. For simplicity assume that D(z) is an interval D(z) = Lyz),E(z)] and

let G(w,t,h,I1) be the probability that a randomly drawn match zEB

satisfies

)(w,T(z)‹t, D(z)h, ii(z)07 zEB) .
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0
Let go = G	 gl = 1-g

o 
and let g 2(w,t,h,1) be the conditional

density of G(w,t,h,R) given that B(z) > O. Evidently, g represents the

(expected) fraction of pure non-market matches in B while g l is the (ex-

pected) fraction of feasible market matches in B. g2 (w,t,h,h)dwdtdhdR--
represents the (expected) fraction of feasible market matches that have

characteristics (w,t,h,E). Let K denote the set of feasible hours of work

(observable). For example K may be total amount of hours per year. Define

the corresponding cumulative distribution function by

0(h,w,K) = P(04; 4 h,t71 ( w), h>0, hEK

and

CO,K)

Also define

01 (h,w) = f(y,t,h,R)10 < lky,t,h,R 4 h,y 4 w,	 (3.1)

and

Q0 = f(y;t,h,R)111(y,t,h,R) = 0, [0,incK1 .	 (3.2

The set Q 1 is equivalent to the set of suitable matches for which supply of

hours and.wages are less than or equal to h and wr, respectively. The set Qo
is equivalent to the set of matches that are unsuitable for work.

The following theorem gives the distribution of the realized wage and

hours of work:

Theorem 1. Assume that

-N(z),T(z),D(z),D(z),e(z)}, z=1,2,...,zEB, is an enumeration of the points
2in the Poisson process on R 0:4M]x[O,MixR with intensity measure

X(dw,dt,dh,clii)xe-ede



Then

Ni (h,w)

0(h04,10 No+Ni(K,') h>0 hEK • 	(3.3)

where

C E f X.(dw,dt,dh,d1T) < co .

and M is the uppir bound on hours of work. Moreover, assume that

e(z)U(h,C,z) 	 v(h,C,T(z)) + a

12

and

N
0(0,K

N
o+ 

N1 (K,c°) 	
(3.4)

where

A
Ni(h,w) = f 	 exp(av(y,t,h,h))G(dy,dt,dh,dh)

C2 1 (h 'w)

N
o 
= f exp(av(0,f(I),O)G(dy,dt,dh,dh)

o

and
—

X(w,t,h,h)
G(w,t,h,17) = 	 C

The idea behind the abstract formalism of the theorem is in fact quite

simple. For the sake of expository simplicity suppose that the number of

matches is finite and let n be the number of matches with the same values



(z) = max uk(i)1 = 	 e
i,k	 E n eai

aj

•
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of CW( ),T(z),D(z)), 	 , • • • . The utility has the form (say)

u (z) = a
j
 + e (z)
	

(3.5)

where

a. 1;'
a '7(W ,T

i
,D )

and e (z) are i.i. extreme value distributed. But this represents a start-

dard description of a discrete choice problem. Consequently, the choice

probabilities are given by the Luce model

The probability of choosing a match in category j is therefore

a 4 	a
n ie 	 gie

E p (z) 	 ■■•■11r AB ..maLirri

aia
iE inie	 Ege

(3.6)

whereg is the frequency of matches in category j. If Q(h) is the set ofj

matches for which optimal hours are equal or less than h then the distri-

bution of hours, p(h), is given by

aj
Ejegh)gje p(h) 	 E 	 p, =

jegh) J ai
E g e

(3.7)

which is precisely a simplified discrete version of (1) in Theorem 1. When

the number of matches increases then (3.7) tends towards a continuous

distribution that corresponds to the theorem. A more formal proof is given

in Dagsvik (1987). Q.E.D.

Next we shall rewrite the result of Theorem 1 beçause it may illuminate



.(0,K)
xx) exp (x y)li(x,y)dxdy+ f expr(0,y)T6(0,dy)

ex 7 (0 ) G(0 d') .	 (3.11)

the interpretation. Note that

1 (h+dh,w+dw) N 1 (h 'w)

Efexp[av(h,f(hw+I),T(z))]lh(w,T( ))	 h,W(z)	 w,D(z)cKI

•Pd1(w,t,h,13)E(h,h+dh),W(z)E(w,w+dw))+o(dh•dw). -

Accordingly, we may express the probability density .0 of (I) as

40,w,x) 	exPR(h,w) 

fx>0 expr37(x,y)li(x,y)dxdy+ f exp 37(0,y) T6(0 dy)
xEK

(3.8).

where

expr(h,w) 	 Efexp av(h,f(hw+I),T(z))]

14

(3.9)

It(w, T(z),D( ) = h,W(z) =

and g is the density of G, where '6 is defined by

abc y)	 POICW(z),T(z),D(z)) < x,W(z) < AD(z)cK,zEB1 	 (3.10)

The function exp(kh,w)) is interpreted as the mean utility across all the

matches for which (w,h) is the optimal Choice. The distribution a(c,y) is

the expected fraction of feasible matches for which optimal hours and wages

are less than or equal to x and y, respectively.

The probability of not working is given by

xEK

From (3.8) to (3.11) it easily verified that we obtain the textbook model

by letting a 4. 4. Fram (3.9) we get
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lim ;(1,w) = O.
a40

Hence (3.9) reduces to

gh,w,K) = 	 g(h,w) = g(h,w)
fxEK g(x,y)dxdy+ f a(0,dy)

x>0

which by definition is the distribution of dhCW(z),T(z),D(z)) W(z)).

As already suggested above i(h,w) is the joint density of an ordinary

constrained Mar*hallian "demand" function, ii, and the "price", W(z). Thus

we have expressed the density • in terms of the "ordinary" supply density g

and the mean value of the latent choice variables conditional an optimal

hours and wages.

Note that by (3.8) #6,(x,y) depends on K but this is suppressed above for

notational-convenience. Below we need, however, to incorporate K into the

notation.

Let 01 (h,w R) and 1(h w,K) denote the densities 0(h,w) and g(h,w) in

the particular case where D(z)=K and let exp((h,w,K)) be the corresponding

mean utility function. Then (3.9) implies that

•1 (h1 ,w1 ,IC) 	01 (h1 , 	 )

01 (h2' w2' K)
 4/1 (112 'w2 'K

exp( (h2 ,w2 ,K))g(h2 ,w2 ,K)
*

exp(;(hi 	,K ))g(hi 	,K )	 xp(;(h2 ,w2 ,K ))g(h2 ,w2 K )

exp (;(hi ,w1 ,K) )(h 1 	,K)
(3.12)

for h1>0, h2>0, h1 ,h2EKMK . From (3.12) we are able to derive testable

properties which is stated in the next two theorems.

Theorem 2. Assume that the match-specific choice set (D(z)) is constant

across matches and equal to the observed feasible set for hours (K). Mori-

over, assume that the budget set is convex (f(e) is concave) and that

v(•,•,t) is quasiconcave for given t. Then
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	( 0 1 (h1 ,w1 ,10 	$1 (hpw	 ) 

	Y 112' 142'1°
	

$
1 (h2 ' w2 ' 1(

when h
1 
and h are positive and belong to the interior of KnK

Note that the statement of the theorem is equivalent to Luce choice

axiom IIA when the choice alternatives belong to the interior of the choice

set.

A
Proof: When f(x) is concave then the function h(w,t,K) is determined by

local criteria and it is therefore independent of K provided it takes

values ia the interior of K. As a consequence, both v(h,w,K) and ibi,w,K

are independent of K when h lies in the interior of K. The theorem now

follows from (3.12). Q.E.D.

In general the marginal distribution of realized hours has positive

mass when h belongs to the boundary of the choice set K. In section 5 we

shall consider a particular case with no jump in the marginal distribution

of realized hours at the boundary of the choice set. In this case IIA holds

for any choice alternative.

Consider next the case we have denoted the "textbook model" above. On

page 15 we demonstrated that when a+0 then 01 (h,w,K) reduces to 'j(h w,K).

The next result provides a test for the hypothesis a=0.

Theorem 3. Suppose the assumptions of Theorem 2 hold. If •1(h,w,l) is

independent of K when h is positive and lies in the interior of K then

1 (h,w,K) reduces to i(11 w,K).

Proof: As noted in the proof of Theorem 2 the assumptions imply that

-4(h,w,K) and i(h,w,K) are independent of K when h>0 and lies in the
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interior of K. Thus (3.8) implies that we can express .1 ( ,w,K) an the

form

.101,w,K) exPC;(h,wni(h w) 
Q(K)

(3.13)

where QM is the denominator of (3.8). But since 4) 1 (h,w,K) is independent

of K then Q(K) must be independent of K. From Theorem 1 it follows that

Q(K) = E exp(a-?7(W(z),T(z) K)) .

A 	 A
Now let IC be a choice set, KcIC. Then v(w,t,K) v(w,t,K ). Moreover it is

A 	 A
possible to choose K and K so that v(w,t,K) > v(w,t,K ) for (w,t) on some

set with positive probability mass because otherwise v(h,f(hw+I),t) would

be independent of h almost everywhere. Accordingly, if a>0

Q(K)=Q1 = E exp(aCW(z),T(z),K)) > E exp(iCW(z),T(z),K* )) =

which is a contradiction. Therefore a=0 and Q=1. By (3.9) v(h,w) = 0 and

the theorem now follows from (3.13). Q.E.D.

4. Unconstrained choice of hours within matches 

This section is devoted to the special case where D(z) = K = [0,M] for the

market matches which means that there are no match-specific restrictions on

hours provided the upper bound M is not biting. This case is of particular

interest because it illustrates the power of the framework. For notational

simplicity let

A 	 A
37(W,t) 	 37(W,t,O,M)

G2 (w,t) - G2 (w,t 0,M)

A 	 A
h(w,t)	 h(w,t,O,M)

W	 W (t,O,M)
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and let W (t) be the match-specific reservation wage determined by

A *
NI(W (t),t) 	 v(0,f(I),t) .

Let

A(h,w) 	 ftit(w,t

i.e., gh,w) is equivalent to the set of matches for which (h, is

optimal. It now follows that

-
4(h04) 	 gl f 	 exp(a.1(w,t))g2(w,t)dtrf exp(av(0,f(I),We(t)dt

w)
(4.1)

f	 exp(av(y,t))g (y,t)dydti -/
A

y>W (t)

for h>0 and

	CO) = 1	 f (0( ,y)dxdy 	 (4.2)

x>0

where

W
g (0 21 aG(co,t,0,0)/at+g, f 	 g2(Y't)dY' 0

(4.3).

A
In the particular case where 10,0 is increasing and differentiable in t

for fixed w we get

A(h,
	 exp(aw,t))g2 (w,t)dt

= exp[il (w,t(h, ))1g2 (14,t(h,w))at(h,w)/ah 	 (4.4)

= exp[av(h,f(hw+I),t(11,w))1g 2 (w,t(h w))at(h,w)/ah

A
where t is defined by



A A
h(w,t(h,w)) = h .

The corresponding density can thus be expressed as

gh,w
exp[av(h,f(hw+I),t(h,w))jg2 (w,t(h,w))8t(h,w)/e4h

(4.5)
g if exp(ali(y,t))g 2 (y,t)dydt+ f xlkav(0,f(I),t))g (t)dt

when h>0.

Before we consider some examples let us compare this model with the

traditional one. Let f(x)=x. Then the match-specific hours of work function

is determined by Roy's identity, i.e.

A
h(w,t) "11-1112-1-8—w

aolkw,t)/8I

given that T(z)=t.

(4.6)

A 	 A
Let y(t1w) be the probability density of T(z) given that W(z)=w W (t)

A
where as above, z denotes the optimal match. We get directly fram (4.1)

that

y(tlw)
exp(a .V(w, t )) g2 (w, t)

(4.7)
f *	 exp(a(w,t))g2(w,t)dt
OW (0

Accordingly, we realize that the model considered in the present section

differs from the standard econometric specification in that the distri-

bution of the "unobservables", given here by y, depends on the structural

parameters of the model through the match-specific indirect utility

function.

This observation suggests a two stage estimation procedure. In stage

one estimate the model by approximating y(t1w) by

g2(w,t)
I * 	 g204,0dt

(t)

19

g2 ( t

This stage is therefore equivalent to the traditional econometric approach
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for estimating labor supply equations (cf. Heckman and HaCurdy, 1981). In

the second stage the match-specific indirect utilities can be computed by

using the estimates obtained in stage one. Next a and the parameters of

g2 (w,t) can be estimated on the basis of (4.7). If a is estimated to be

small this indicates that the heterogeneity with respect to non-pecuniary

attributes is not important.

Example 1. Let

v(h,C,t) = alog(d-h)+flog(C+t)

where a,f3 and d are parameters and assume that f(*) is concave and twice

differentiable. The first order conditions give

a f3111(,w) 

d-h	A 21 	C+t

where

	

m(h,w) 	 wf'(wh+I) .

Hence

A
t(h, as 2- m(h,w)(d -h) - f(hw+I),

a

	N 	 a(t+f(I)) 

	

W (t, 	
f'(/)

'81tt(h 'w) 1 w2V(hw+I)(d-h) 	 ( tf.e + 1)m(h w)

	

8h 	 a

and

gir(w,t(h,w)) 	 (a+)log(d-h)+f3 log m(h,w)+0 log*.

Example 2. Assume that f(x)=.x and



A
V(w,t) = c(w)t+b(I)

where c(w) does not depend on I and b(I) does not depend an w. By Roy's

identity

cl(w)	 tc(w)1'0,0 "1,17
(
7) 	 R

where

c(wW(I) R = 
c'(w)

t(h,w	 hR
c(w)

8t(h,w),. R
8h	 c(w)

A A
v(w,t(h,w)) Rh+b

and W is determined by c'(.1 )=0, which means that W does not depend on t.

In this case the density takes the form

4)(h,w)

, hR	 Rexp(aR4ab)8201' 75) 1 c(w)	 -
f exp(ab)g (t)dt+g i f * exp(ac(y)t+ab)g(y,t)dydt

y>W

hR(w) R(w)exp(aR(w)h)g 2 (w, coo) c(w)

j g* (t)dt+g i f * exp(ac(y)tg 2 (y,t)dydt
y>W

5. Match-specific hours of work 

In this section we shall assume that once the match is given, hours of work

associated with that match is completely determined. This assumption means

that a certain combination of tasks take a fixed time to perform or that

the firm or other institutions determine the hours of work. An extended

21
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version of this model has been applied to analyse the labor supply for

married couples in Norway, see Dagsvik and Strom (1988).

Let H(z) denote hours of work specific to the match. When H(z)=0 then

the match is either a pure nou-market match or it is not available to the

individual. Let

G2(w
' th) = P(W(z) < w,T(z) ( hIH( )>0,zEB)

and assume that the density, g2, of G2 exists. With the notation of section

3 we have

= G(œ,40,0) and g l = 1 - go .

Also define

g (w,h) = f g2(w,t,h)dt

which is the (expected) fraction of feasible market matches with wages and

hours (w,h).

In the terminology of Theorem 1 it is now clear that

= gi f exp(av(x f(xy+I),t))g 2 (y,t,x)dxdtdy

Dx>0

and

No =J exp(av(0,f(I),WG(0, ,dt,0,0) .

Now let

exp(gh,C,w))

= Efexp(av(h,C,T(z)))IzEB,H(z) 	 h,W(z)

2 	 t h)-2 ' ' 
f exp(av(h,C,t)) fx.7 	dt

' I

for h>0,hEK and
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exp(4(0,C)) = Efexp(av(0,C,T(z)))1H(z) = 0,zEB4

= f exp(av(0,C,t)) G(ce ' dt ' ° ' ) •
go

The interpretation of exp(gh,C,w)) is as the average utility of all

feasible market matches with hours h and wage w. Observe that in general

gh,C,w) depends on w because T(z) and W(z) may be interdependent. For

instance some jobs have high wages so as to compensate for unattractive

non-pecuniary attributes. One may also argue that attractive matches are

correlated with high wages because persons with certain qualifications that

matches certain positions are difficult to get and they therefore must be

offered high wages. In the special case where T(z) and W(z) are independent

then gh,C,w) reduces to gh,C), i.e., the wage only affects the average

utility through consumption.

From Theorem 1 we get

(1)(h,w K)
exp(4)(h,f(hw+I),w))g 4 (w,h)g1

(5.1)gl j exp((x,f(xy+I),y))g4 (y,x)dxdy+g exp(4,(0,f(I)))
x>0
xEK

and

g
°
 exp4(0,f(I)))

(KO, ) = 
gl  f expWx,f(xy+I),y))g4 (y,x)dxdy+g0 exp(4(0,f(I))) •

x>0

(5.2)

From (5.1) we can immediately derive certain important conditional distri-

butions. Let (02(h,K1w) be the conditional distribution of hours given the

wage. We get .

gh,w,K) $2 (11,K1w 	gx,w,K)dx
x>0
xEK

exp(gh,f(hw+I),w))g4 (w,h) 
(5.3)I exp(gx,f(xw+I),w))g4 (y,x)dx •

x>0
xEK
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From (5.3) we realize that when H(z) and W(z) are stochastically. inde-

pendent so that

g4 (w , h ) 	g5 (w)g6 (h )

(say), then the marginal density g 5(w) cancels ia (5.3). This means that in

this case it is possible to estimate the parameters of 40 and g 6 without

specifying the marginal.wage density g 5 .

Provided the distribution G(w,t,h) is independent of K it is easy to

verify that (IIA) holds. We state this result below.

Theorem 4.

When D(z) is a singleton, the IIA property holds.

Proof: From (5.1) we get

0(h ,w1

•(h2 ,w22 

)  

S(hrwre) •

which shows that the odds ratio is independent of the choice set. But this

property is equivalent to the IIA assumption. Q.E.D.

6. Justification of the stochastic structure of the utility function from

theoretical assumptions 

In this section we present two alternative sets of assumptions that imply

the structure (2.6). The first set is partly of the revealed preference

type and it is based on Luce choice axiom "independence from irrelevant

alternatives".

Let S be the space of matches which is assumed to be countable.

Assume that there exists a mapping T(•) from S to R+ (say). The inter-

pretation is that T(z) is an index that summarizes the "objective"
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qualitative characteristics of match z. By objective we understand that it

is the same relative to every individual. T(z) is perceived as random here

because the enumeration of the matches is arbitrary. Let (R, 73 ,
B

P 	1h, C))

be a probability space where,13 is the Borel field and

P B (Alh,C) = Pf max U(h,C z)	 max U(h,C z)1

for A,BE15 and AcB. The interpretation of this measure is as the
-

probability of selecting a match for which zET 1
 (A) when the choice set

(for z) is T-/ (B) and given (h,C).

Assumption 1. If A1'2'BIES and A1 c 2 cB '

A1'lh C) = P B A lh,C)PA2 (Ai lh C)

Moreover,PR ( •lh,C) is absolutely continuous with respect to the+ 

probability measure of T.

We recognize this assumption as a version of IIA. In other words

P B (Alh,C) is assumed to be a conditional probability measure.

Assumption 2. For each (h,C) the utilities, U(h,C,z), z=1,2,..., are

independent draws from the same distribution. Furthermore U(h',C',z') and

U(h,C,z) are independent when z*z'.

Assumption 2 states that to the observer all matches are "orthonormal"

and "look the same" apart from purely random disturbances. That is, there

are no hierarchical differences between the matches.

Let us now consider the implications of Assumption 1 and 2 for the

structure of the utility function.

Let {A.A } be a finite partition of a choice set BE13. From Assumption 1

it follows that there exists a measure, a(s,h,C), that is proportional to

T(z)EA	 T(z)EB



Ps (* h,C) such that

a(Aj

B	

,h,C)
p Ck Ih,C)	 E a(Ak ,h,C) •

k

This is a version of the famous Luce model.

By Assumption 2 and from Yellott (1977) it follows that

D
max U(h,C,z) = log a(A ,h,C) + n (h,C)

T(z)EA
(6.1)

Dwhere = means equality in distribution and n 	 are independent

draws from exp(-e -Ica )..Let X denote the distribution of T. Since a(•,h,C)

is absolutely continuous with respect to X we have

a(A ,h,C) = f gt,h,C)X(dt)
A	 •

for some function p(•,h,C). Thus (6.1) implies that

Pf max U(h,C,z)	 = exp(-e -au f gt,h,C)X00) .	 (6.2)
T(z)EA	 A

But this means that we have

Dmax U(h,C,z) = max	 (h,C,T(z))+e(z,h,C)}	 (6.3)
T(z)EA	 T(z)EA

where v(h,C,t) = log (t,h,C) and {T(z), e(z)1, z=1,2,..., is an

enumeration of the points in this Poisson process on R.I.x R with intensity

measure X(dt)•e-acade.

Note that for a given match the individual's preferences with respect

to (h,C) are not random which means that e(z,h,C) is independent of (h C).

To see that (6.3) holds let for notational convenience

u- v(h,C,t)	 for tEA
m(t)

otherwise .

26



Then

II{ max (v(h,C,T(z)) + e(z)) (ul
T(z)EA

= Pfe(z) 4 u- v(h,C,T(z)), z, T(z)EA}

= *here are no points of the Poisson process above the graph of

m0)1

-ae 	 -u= exp( - f ae de•X(dt)) = exp(-e 	 f exp(av(h,C,t))X(dt)).
m(t)<e 	 A

Thus, (6.3) implies that

D
U(h,C,z) = v(h,C,T(z)) + e(z) .

We have thus provided a set of assumptions that are consistent with

(2.6). We state this below.

Theorem 5. If Assumption 1 and 2 hold then the utility function is

distributed as (2.6).

Next we present au assumption that is an alternative to Assumption 1.

First we need some additional definitions. Let B(h) be a finite set of

matches given (h,C). Let n(h) denote the number of matches in B(h). The set

B(h) may also depend on C but for notational simplicity we suppress that

here. Let Bk(h) denote the set of matches which is obtained by adding

(k-On(h) matches to the original set where k is an arbitrary integer.

Let

Uk h,C) = max • U(h,C,z)
zEBk(h)

Thus U1 (h,C) = U(h,C).

27

Assumption 3. Let in be an arbitrary integer and let
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((h1

of

),012 	...,(h ,C )) be arbitrary points. The joint distributionm m

	

,C2
 ),... 	 ,C ))m m

is the same as the joint distribution of

(130 	 ,IT(h 	 ) + d 	 11(h C + d

	

m 	 k

where dk is a location parameter that may depend on ((h 1 ,C1 ),(h2

(h ,C )).m m

The basic idea of Assumption 3 is due to Yellott (1977) who called it

"invariance under uniform expansions of the choice set". The version stated

here is a slightly different version from Yellott's one but the essential

idea is the same. The assumption states that "in average" the number of

persons that has a particular ranking of hours of work and consumption

alternatives remains unchanged under expansions of the sets of matches.

Note that the assumption does not mean that the choice sets are per-

fectly replicated. There are random errors which imply that each duplicate

is "slightly" different from the original opportunity. Our assumption is an

assumption about aggregate behavior in a "large" population: Since the

utility for each level of (h,C) is purely random the individual variations

in the opportunity sets "cancel" and the average rankings remain unal-

tered.

The Assumptions 2 and 3 imply the following result which proof is given

in Dagsvik (1987).

Theorem 6. If Assumption 2 and 3 hold and if {U(h,C)} is continuous in

probability then the distribution of

(U(h	 ,U(h2,	 ...,U(hm,Cm?)

is multivariate extreme value distributed (type III).

• • ,

The multivariate extreme value distribution is also known as the gene-
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ralized extreme value distribution and it has been applied within the field

of qualitative choice models, see for instance McFadden (1981).

The essential property, of this distribution, F, (say) is that

•••

logF(x x2 ...,x )
	

e-aY log F(x1 -y,x2 -y,...,xm-y

where a>0 is a constant and y is arbitrary. (See Johnson and Kotz, 1972, or

Galambos, 1978).

We noted in Section 2 that {U(h,C)} is a stochastic process in the

"time" parameter (h,C). A stochastic process with finite dimensional margi-

nal distributions of the multivariate extreme value type is called a max-

stable process (cf. de Haan, 1984).

In order to obtain a tractable expression for the distribution of opti-

mal hours of work and wage it is necessary to make the next assumption.

Assumption 4. Under random sampling of matches (W(z),T(z),D( )),

are independent draws from the same distribution. Also, (W( z),

T(z),D(z)) and e(z) are independent.

Observe that Assumption 4 does not rule out the possibility of corre-

lation between the preference and W(z) since utility and wage may be inter-

dependent through the matching variable T(z). Now Assumptions 1,2 and 4,

are sufficient to give Theorem 1.
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