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BASED ON ROTATING PANELS

BY

ERIK BIORN

ABSTRACT

The paper deals with the prediction (estimation) of the aggregate value of
a variable on the basis of micro data from partly overlapping samples. This
problem 1is of considerable interest for economic data, e.g. household bud-
get data. We are particularly concerned with the interplay between the sam-
pling design (degree of rotation) and the covariance structure of the data
vector in a situation where the micro data are generated by a variance com-
ponents mechanism with two components, one of which represents unobserved
individual factors. The optimal choice of predictor is discussed, both with
respect to the level of the variable wunder consideration and with respect
to 1ts change between two successive periods.

Not to be quoted without permission from author(s). Comments welcome.
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1. INTRODUCTION

The prediction of population totals on the basis of data from sample surveys
is a problem of considerable practical interest in statistics and econome-
trics. Frequently the problem posed is that of predicting the aggregate
value of a variable y in a period t from observations on y from a sample sur-

vey performed in this period. A more interesting problem may be to predict

the aggregate change in y from period t, to period t, on the basis of sample

1
survey data collected in these two periods.

An econometrician facing such problems will often be in the situation that
he has some a priori information gn the mechanism generating the data. To
him it may seem unrealistic to assume, as sampling statisticians often do,
that all y's in a given period are generated by the same probébility distri-
bution. On the contrary, from economic theory he may have the notion of a
model generating the different y values = both those observed and those un-
observed - and he wants to utilize this information when making predic-
tions of the population totals. Stated in sampling theoretic terms, he may
want to combine "design-based” and "model-based” inference; confer e.g.
Royall (1970), and Cassel, Sirndal, and Wretman (1979). .

In this paper, we shall be particularly concerned with a model in. which y
is’ determined by a vartiance components mechanism, i.e. we allow for unobser-
ved, individual, random effects in the model specification. Within this
framework, we shall consider two situations$ that in which y is related to
an observable exogenous variable x through a linear regression equation,
and that in which no such relationship exists. Regression models with
variance components specifications of the disturbance terms have received
increasing interest in econometric research based on panel data in recent
years, but as far as the author knows, little attention has been paid to
their implications for prediction in sample survey contexts. The salient
feature of this specification is that the covariance structure of the data
vector will depend on the choice of sampling design. Hence, the sampling
design becomes a crucial element in the construction of the optimal pre-
dictor of the aggregate variable y. Of course, this simple model has to be
modified to be useful in practical situations, but it serves to

illustrate the main points of interest..
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The sampling design we shall consider is a design with partly overlapping
samples, or rotating samples, between periods. (For a formal and fairly
general treatment of such data structures and their relation to com-
plete cross-section/time-series (panel) data, see Bigrn (1981).) 1In
particular, we shall focus on a situation where two periods are involved
and in which some individuals are observed in the first period only, some
are observed in the second period only, and some are observed in both
periods. A main motivation for considering this particular data structure
- but of course not the only one - is a desire to explore the possibilities
for a more systematic utilization of the Norwegian household budget surveys
for prediction purposes. From the year 1975, these surveys have been per-
formed annually, using a sampling design of the format described above
about 25 cent of the respondents in one year are asked to report their con-
sumption expenditures again in the next year. The 'predictions" we have
in mind include (a) calculation of annual changes in the
aggregate expenditures on the different consumption items for national
accounting purposes, and (b) estimation of the annual changes in the vector of

budget shares used as weights in the Consumer Price Index.
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42. NOTATION, MODEL AND SAMPLING DESIGN

Consider a population of H individuals numbered consecutively from 1 to H.

Let P = {1,2,...,H}. In each period, a sample of individuals, i.e. a

subset of elements in the index set P, is drawn from this population. The
samples are partly overlapping between periods, but no individual is observed
more than twice. Let ZtC P be the sample selected in period t. These assump-

tions imply that

is non-empty, whereas Ztﬂzt+O is empty for all ©@ > 1 or © < -1. Let, moreover,
St be the individuals among those selected in period t which are observed

only once. It follows that Z_can be expressed as the union of three disjoint

sets as

(2.1) S N AT

where S contains the individuals observed in periods t-1 and t, S
t=-1,t. : t,t+1

those observed in periods t and t+1, and St those observed in period t only.
Finally, let Z: represent the individuals not observed in period t, i.e.
ZtUZ: = P, and S* those not observed in any of the periods under consideration,

1,2,...,T, i.e.

* %* * *
(2.2) S —ZIn.zzn...nzT.

We want to make inferences on the variable y. Its value for individual h in

period t’yht’ is assumed to be generated by the following process

(2.3) = 3 + U+ Vv

ht ht h ht”

where a . is a non-stochastic and (so far) unspecified parameter and My and

V. are independent stochastic variables, with zero expectations and constant

variances, equal to Ouz and Ovz, respectively. Hence,
(2.4) E(yht) =a.,

(2:5)  E(w) = E(v ) =0,



[E(u ) = dhh,ouz,
(2.6) E(uhvh.t) =0,
EQupevprer) = 5hh,6tt,ov2,
where éhh' = 1 for h' = h,0 for h'+h; and 6tt' =1 for t' = t,0 for t'+ t.

The model is thus a variance components model with two componments, the first,
My representing unobservable factors which are specific to individual h,
d Vv i ‘ i .
and pe s @ remainder
We assume that the above specification applies to all the H individuals in

the population in T successive periods, i.e. (2.3)-(2.6) are valid for

=
=
]

1,2,...,H,

t,t' =1,2,...,T.
Letting €ht denote the composite disturbance,
(2.7) g, = +V

ht uh ht?

-an equivalent way of writing the model is

(2.8) Epe) = e,
2 | - | -
g for h'=h, t'=t
= - 2 L 1]

(2.9) COV(yht’yh't') = E(Ehteh,t,) = { po” for h'=h, t'st

0 otherwise,

2 _ 2 2 2,2 e e o

where 07 = Ou + Ov , and p = OU/O . The presence of the individual specific

disturbance component implies that all observations on y from the same indi-
vidual are positively correlated, with a coefficient of correlation equal

to p.

Our main problem in the following will be to predict the total value of y in

the population in period t, i.e.

H
(2.10) Y =% t=1,...,T,




and its change

fas]

(2.11) AY, = T by, ,
t h=1 ht

where Ayht = yht-yh,t—1’ on the basis of the values of Yhe observed in the

different samples, i.e. from the observation sets

Yheo h € Zt,t =1,...,T.

Let n, denote the number of individuals in the sub-sample St and LI
’

the number of elements in S The total number of individuals included

t,t+1’
in the sample in period t is thus

+n +

(2.12) N =, *n, Mot

We shall consider two specifications of the unknown parameters CH

Model I : for h=1,...,H; t=1,...,T,

It = %

where a, are unknown constants.

Model II: Ay 1s linearly related to an observable

variable x, .
at
ModelI will be discussed in sections 3 and 4, and model II in sections 5

and 6.

Moreover, to simplify the exposition, we shall confine attention to the
situation with only two periods involved, i.e. T = 2, and with the sets
501 and 823 empty, 1l.e. ny =0
individuals not observed and

23 = 0. Then S* = Z?ﬂzg is the index set of the

(2.13) m = H-n1—n12-n2 = H-NI-N2+ n,

the number of these individuals. Our data set thus has the following

structure:



individuals
individuals
individuals

individuals

in

in

in

in

subset

subset

subset

subset

S1 are observed 'in period 1
only.
812 are observed in both

periods 1 and 2.
52 are observed in period 2
only.

S* are unobserved.



3. ESTIMATION AND PREDICTION

MODEL I: CONSTANT EXPECTATIONS

3.1 The aggregate variables and their distribution

Let §t be the average value of y in the population in period ¢t

_ 1 H Yt
(3.1) Yt = ﬁ Z— yht = ﬁ— (t = 1,2),
h=1
and
Y = 1 = 1 =
(3.2) T.(s) == I y (¢ =1,2, i =1,2,12)
i hESi

the corresponding averages in the samples S1’SZ’ and 812. By assumption,

Y1(S1), Y1(S12), YZ(S12)’ and YZ(SZ) are observable, and Y1(SZ)’ Y2(S1) are

unobservable. Similarly,

(3.3) 7, (5% = 1l s

T e (h=1,...,H; t =1,2)

he

is the average value in period t for the individuals which are not observed

-in either period. Obviously
Y =n¢Y Y Y Y (S*) (£=
(3.4) HYt n1Yt(S1)+n12Yt(S12)+n2Yt(Sz)+th(S ) (£=1,2).

When the expectation of Yhe is assumed to be the same for all

individuals in period t, i.e.

(3.5) E(yht) =a,. =a (h=1,...,H;t=1,2),

it follows from (2.3) and (3.1)-(3.3) that

(3.6) Y =a_+u+v

(3.7) ?tcsi) a + ﬁ(si> + Gt(si),

(3.8) §t(s*) a_ + n(s*) + Gt(s*> (i =1,2,12; t = 1,2),

]



where
(3.9) U=—ZLI,
H h=1 h
(3.10) v == TV .,
t  H Z ht
1
(3.11)  (s.) =~ = .,
m; e, B
1
(3.12) vV (S.) =— I v
B0y yes.
1
1
(3.13) u(s® = - = u,
m st B
1
(3.14) v(s* =— = v .
t m hes* ht

Using (2.4)-(2.6), we find that ?t(si) and ?t(S*) have expectations

(3.15)

- _ .
E[Yt(Si)] = E[Yt(S )] =a

t

and variances and covariances given by

(3.16) cov[§t(si),§T(sj)]
(3.1 covl¥ (s),7.(sM1
(3.18) COV[§t(Si)’§T(S*)]

3.2 Estimation

In the case considered here,

nothing is known a priorz about a, and a,

0'2+0
U

l Q
=
()

(1 =1,2,12; £ = 1,2),

2 O2
-
1
o
n.
1
2
_d
m
o
m

for =1, T =t
fqr j=1i, T*t
otherwise,
for T =t

for T * t,

(i,j = 1,2,12; £,T = 1,2)

(or

their possible relationship). Since, however, 02 and p (GUZ and sz) are

common parameters in the disturbance structure of all observations, it will

be more efficient to estimate the four parameters simultaneously from the
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combined data set with n, + anq + n, observations than estimating

a, from the observations from period 1 and a, from the observations from

1 2

period 2.

Assume that U and v are normally distributed. Let =1 be the n,xI

vector of disturbances from the n, individuals observed in period 1 omnly,

8(2) the n2x1lvector of disturbances from the n, individuals observed in

period 2 only, and 8(12) the 2n12x1 vector of disturbances from the n,

individuals observed in both periods, ordered first by individual, second

by period. It follows from (2.9) that the covariance matrix of the stacked

vector
¢
(3.19) €= |29
£(2)
can be written asl)
(3.20) E(ee') = Q = GZQ*,
where
o —
I 0] 0
n
1
(3.21) 0, = 0 I ®F 0
n 2
12
0 0 In

10
I being the n. x n, identity matrix and F, = [ ]
n. i i 2
i _ o1
Expressing (2.3) and (2.7) in vector notation as y = a + €, we can write

the log-likelihood function of y as

L =- 5 2 log (2m - 4 log |R] - 4 §'Q_1§ ,

where € is a shorthand notation for y - a.

2(n, + 2n,, + n,) n _ _
Since |Q| = IGZQ*I =g L 12 2 (1-02) 12 and F21 = —1—5 [j ?]
- 1-0 -0 1

L can be written as



_']0..

+ 2n +n

n
1 12 2 "
(3.22) L = L(Z;g,p,oz) = - 5 log (2%)
n, + 2n + n n
1 12 7 ™ 2 _ M2 20 1 =2
- 5 log © —i—log(lo) 5 Q,
where
(3.23) Q=c¢'a)'e

- ] ] -1 ) -
S EEm t Fao) {Iniz(:)Fz ) Y @@
2 1 (2

by e - 2pe, €., + }+% ¢
2 hes,, M h1%h2 h2 hes,

2
h2 °

Maximum Likelihood (ML) estimates of a, az,p,and 02 can be obtained (provided
that certain regularity constraints are satisfied) by an algorithm which

switches between the following two subproblems:

()  Minimization of @ with respect to a, and a,, conditionally
on o and 02 (i.e. conditional Generalized Least Squares
(GLS) estimation).
.. 2 2
(22) Mznzmtzatton of g = (n +2n,, * o, ) log c”+ g log (1-p")

+ 0 Q with respect to p and o2, cond ‘tionally on a, and ay-

2)

It can be shown“’ that subproblem (7) is solved by minimizing the following

sum of squares

Qi-p) = £ (G-ote P+ 1 (G-pie )
h€s h€s
1 2
} e, +e 2 i e 2
1-p h1 * “h2 4 1P h1 *h2,°]
f I UemOmGRD ) =) (e (mGp) ) b
12

Subproblem (47) involves solution of the following two nonlinear equations

in 02 and p:

(1-0)0% (n, + 2, +0) = (1[5 e 2+1 ¢ 2

: hES hES

1 2
2 2_1,._ 1-p 2
M R AL Fr o TR SISO R
hes
12
02{n1 + n, + (1+p)-12n12} = T €h12 + T €h22 + (1+o)_2 T (€h1+€h2)2'
hes, h€s, h€S,,

Let the estlmates be denoted as a1, 32’ p, and 02
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3.3 Prediction

Having obtained estimates of ays 2, and P, we now proceed to the problem
of predicting the population totals Y1 and Y2 and its increase from period
1 to period 2, AY = YZ-Y1' We shall consider two different ways of

attackine this problem:

(A) Direct prediction based on the observed values of Ve

and the estimate of 0.

(B) Prediction utilizing not only the observed Yhe and the
estimated value of p, but also the estimates of a, and a2.
Both procedures emerge as special cases of the following linear prediction

formulae:

Ty = v (8 + v ¥ (8)5) + Ve,
(3.24)

<)

9 =V ¥p(8yp) + vy ¥n(S)) *+ voa,

where the v's are suitably defined weights. In case A, ik and Vo4 are
set equal to zero a priori; in case B, all weights are positive. The

corresponding predictor of AY is

-~
~

(3.25) AY = v22Y2(52)-v“Y1(S1)+v21Y2(S12)—v12Y1(S1z)+v2*a2-v1*a1

Of course, the distinction between procedures (A) and (B) is of no interest
if 31 is a linear function of the y's observed in period 1 and 52 is a linear
function of the y's observed in period 2. This will for instance be the

case if uh=0 for all individuals, since then the ML estimates are simply

the unweighted sample averages

W)
|

= @I + 0T (50 (a +ny,),

)

g = (), Ty(8,,) + n2?552)/<“12 *ny).

But if individual components are present, this distinction is highly relevant,

as we shall see below.
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Using (3.7), the three predictors can be reformulated as

U= (vgg ¥ vy vgday vagma) 20
(3.26)
¥y = (vpq * Vg * V)3, * Vu(aymay) + T,
(3.27) AY = (v21 + Vo, t VZ*)a2 - (v11 * Vi, t v1*)a1
+vaw(aymay) = vynlagmay) + Uy = Uy,
where
U = 1 v " v
g =V + v (s + v (s ) + v (5 )T,
(3.28)

U2 = v21{11(512) + \)2(812)} + vzz{u(sz) + \)2(52)} .

Since the ML estimates 51 and 52 are unbiased, it follows that the condition

for the predictors to be unbiased is

(3.29) Ve, +V

115 Vi ¥ Viw T Vpq FVpp * Vo = He

We shall discuss case A and B in turn.

Case A: v

Let Vik = Vox T 0 and define

(3.30) k, = v, /H, ky = v, /H;

i.e. k1 and 1-k1 are the relative weights assigned to observations from

individuals observed once and twice, respectively, when making predictions
for period 1; and k2 and 1-k2 are the corresponding weights for period 2.
Using (3.1), (3.4),and (3.29), we find that the prediction errors of Y

1
and Y2 can be written as

61 =Y.-Y, = {k1H-n1}Y1(S1) + {(1—k1)H—n12}Y1(812)
- n2?1(32)-m§1(5*),
(3.31)
62 = Y,-Y, = {kZH-nz}Yz(Sz) + {(1-k2)H-n12}Y2(S12)

- n1?2(S1)—m§2(S*).
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~

From (3.16)-(3.18) and (2.13) it follows that their variances are

) _Hk12 H(1-k )
(3.32) var §, = ¢c°H [ o+ -11=v,
1 n n 1
1 12
, S E(1-k)
(3.33) var 62 = 0"H [ + -11=v,,
n2 n,, 2

and that they have a covariance equal to

H(1-k,) (1-k.)
= oon[ ! 2 1],
242

(3.34) cov (01, 2)
If p is positive, the prediction errors w111 have p051t1ve, zero, and negative

correlation according as H(1-k )(1-k ) 2 n,-

~

We are also interested in the prediction error of AY,

(3.35) §, = AY-AY = (YZ—Y?_)'—-(Y1-Y1)

Its variance is

(3.36) var SA = var 51 + var 62 - 2 cov (61,62)'

Hk12 Hk22 ‘ )
+ - 2(1=-p) + n—— {(1-k ) 20(1—k1)(1—k2)+(1—k2) }

oy R 12

02H [

VA‘

We see that the variances of the prediction errors 61 and Gz'are functions of
the population size H, the sample sizes ng,n,, and LIPP and the relative
weights k1 and k2‘ The variance of GA also depends on p, the share of the
disturbance variance which is due to individual variations. This has notable

implications for the optimal choice of predictor, as we shall see in section 4.

Case B: >0

Vixs Vox-

When we also utilize the estimated values ot a, and a, in constructing
the predictors, we find from (2 13), (3.4), (3.7), (3.8), (3.26), (3.28), and

(3.29) that the prediction errors become
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(3.37) d; =Y,-Y, = v1*(ai—a1) * U mHQU + V)
= vixlagma) + (v (UGS ) + V(53
+ vy TGS )+ (8,0}

- nz{a<s2) + 61(32)} - m{u(s* + 51(5*)}’

Y, -Y

(3.38) d2 )Y, = VZ*(

a,ma,) + U,=H(I + V)
= vou(3,may) + (v, mn ){H(S, ) + V,(5,,)}
+ (v22-n2){ﬁ(52) + 52(32)}

- n1{ﬁ(31) + 62<s1>} - m{u(s*) + 62<s*)}.

Three sources of prediction errors can be discerned in this case. The first

is errors in the estimates a, and ays its contribution to the total error
depends on the weights Vik and Vo The second source is the disturbances

of the n, + n,,, Tesp. n, *+ 0,,, individuals included in the samples. This
component can be controlled by changing either the weights or the sampling

design. Thirdly we have the disturbances of the individuals which are not

observed in the period under consideration. This componeﬂt cannot be con-

trolled by changing the weighting system, it can only be affected by the

sampling design.

Since the estimates 51 and 52 are based on tpe Ve values in the

samples S1,Sz, and S12, they will be correlated with the error components
in (3.37) and (3.38). 3) The derivation of general expressions for the
variances of d1 and d2 would thus involve rather messy algebra. In the
following, we shall, for simplicity, neglect the first source of prediction

error by letting a, = a, (t=1,2). This, of course, implies that we proceed

t
as if the common non-stochastic part of Yy, were known with certainty for

all individuals. The variances of the prediction errors then become




21 _ 2 _ _
(3.39) var d1 =0 [E:(n1 v11) + n12(n12 v12) +n, + m]
v 2 v 2
= 02[ o, 12, H=2v, ,=2v. ., ] = W_,
n n 11 12 1
1 12
o201 21 2
(3.40) var d2 = g°[ ——(n2 v22) + H——(n12 v21) +n, +m ]
-2 12
v 2 v 2
2 22 21 .
= g°[ + + H=2v,. =2v,, ] =W, ,
n2 n12 22 21 2
and their covariance is
(n,,-v,.)(n,,~v,.,)
_ 2 27V127 P12V ) _
(3.41) cov (d1,d2) =gp [ . + (n1 v11)+(n2 v22)+ m ]
V., AV
_ 2 12Y21
=oel o, * S V5TV 1

If p > 0, this covariance is positive, zero, and negative according as

V12921

o, VitttV = BV Vo

AV

The variance of the error of the predicted change, dA = d2-d1, is in this

case

(3.42) var dA var d1 f var d2-2 cov (d1,d2)

2 2
v v
2 - V11 22
o w, * a, =2(1=p) (v #v, o4V, +v 5 =H)
CE v 2 vy, P =W
Ry Wyp T2PV19Y91 V9 = Wp

Like the corresponding variance in case A, given in (3.36), it depends in

4)

a crucial way on the individual share of the total disturbance variance.
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4., OPTIMAL CHOICE OF PREDICTORS
MODEL I: CONSTANT EXPECTATIONS

Since the variances of the prediction errors depend on the weighting system
as well as on the composition of the samples, an interesting problem is to
find the optimal choice of these parameters, i.e. the ones that minimize

the variances. Three problems may be defined:

(a) Determination of optimal choice of weights, given the
sampling design.

(b) Determination of optimal sampling design, given the
weighting system. |

(¢) Joint determination of optimal weighting system and

sampling design.

Moreover, each problem may be discussed from the point of view of predicting
Y and of predicting AY. We shall not be concerned with problem (b) in the

following, but concentrate on (a) and touch (c) briefly.

Case é: v1*=v2*=0

From (3.32) and (3.33) it follows that V, and V., are minimized for

1 2
n
* 1
k.=k, =
1™ n1+n12
and
0 .
% 2
k =k, = ,
2 72 n2 12

respectively. This implies, cf. (3.24) and (3.29), that each observation
in period t is given the same weight, H/(nt+n12)(t=1,2), regardless of

whether it comes from an individual which is observed once or twice.

These weights will not, however, minimize the variance of the error of
the predicted change, VA' From (3.36) we find that this variance is mini-

mized for
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\ n1(1-o)[n12+n2(1+o)]

k =k =
L (n,+n,,) (n.+n )-pzn n ’
1 712 2 712 172
b n2(1—o)[n12+n1(1+0)]
2 72

2
(ny+n,,) (ny+n, ) )=0 n,n,
We see that ktA (t=1,2) attains its maximal value, kt*, for p = 0 and
decreases monotonically towards zero as P goes to l: The larger the indi-
vidual part of the disturbance variance, the larger weight should be given
to observations from individuals observed twice and the smaller weight to

those observed once when predicting aggregate changes.

To simplify, we now assume that the same number of individuals is observed

in both periods, i.e. n Iy, Let N=n+n12 be the sample size in each

period and c=n12/N the share of the samples which is overlapping. Then,

k_ k_ k _ M _
(4.1) F1 -k2 k n+n12 1-c,
A, A A n(1-p) _ (1-¢) (1-p)
(4.2) ky =k =k = Oy, - (7m0 (1=p)+c °

12

Values of k* and kA for selected combinationsof c and p are given in table 1.

Let Vt(k,c,N) and VA(k,c,N) denote the variances Vt and VA considered as
functions of k,c, and N, i.e., from (3.32), (3.33) and 3.36),

2 2
- +2u7 Bk (-k) 7y _ = 1,2
(4.3) Vo (k,e,N) = o°H [ Gl + ———}-1] (t =1,2)
: 2 2
020, N H k (U-k) ", _
(4.4) Vy(k,c,N) = 207(1 p)H[ﬁ{(1_c)(1_p) + o }-11.

Their minimum values are, respectively,

(4.5)  V.(k*,e,N) =o’H [ F-1] (£ = 1,2)
A 2 H 1
(4.6) VA(k- 9C,N) = 20°(1-p)H [ ﬁm -1 1.
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We note that the minimum value of Vt is independent of ¢, i.e. it is impossible,
by changing the composition of the sample, to get a better prediction of the
level of Y. The prediction of the change in Y, however, can be impfoved upon

by changing the sample design; VA(kA,c,N) is a decreasing function of c when

p is positive. Thus, given the total sample size, we will obtain the best
predictor of AY by letting ¢ = 1, i.e. by using identical samples in the two
periods. Or stated differently: Since N(1-p+oc) = n(1-p) + n,,, a change

in the sampling design such that n is decreased by =-An units and n,, is in-
creased by (1-p)An units will leave Vo unaffected. One observation from an indi-
vidual observed once has the same 'value" as (1-p) observation from an indi-
vidual observed twice when predicting AY. The minimum variance is

VA(kA,1,N) = 202(1-p)H(H/N-1), which is 2(1-p) times the error .variance of

the optimal predictor of Y.

In the following, we shall refer to the predictors based on k=k* as the
unweighted and those based on k=kA as the weighted predictors, since the
former gives all observations the same weight, whereas the latter does not.
The relative prediction loss incurred by using the unweighted instead of the

weighted predictor of AY can be expressed as

I RN % . ::pc -1
(4.7) >\=}\(C,p,—) = = %
* Yovafemy By
A T N 1-p+pc

Function values of A for H/N = 1005) are given in table 2. We see that the
loss of efficiency may be substantial. If ¢ = 0.5 and p = 0.9, A is larger
than 3. The optimal choice of k in this case is kA = 0.09, whereas k* = 0.5,

cf. table 1. When H/N is sufficiently large, we have approximately

(1-DC)(1-D+OC)’
1-p

raA'(e,p) =
where obviously A'(1-c,p) = A'(c,p). This function attains its maximal value,
(1-p/2)2/(1-p), for ¢ = 1/2, i.e. it is when (approximately) one half of the
sample is observed once and the other half is observed twice that we will
obtain the largest gain by using the weighted predictor instead of the un-

weighted one.

We can derive a similar expression for the prediction loss of Y. The relative




..]_9_

prediction loss obtained by using the weighted instead of the unweighted

predictor of this variable is

B (1-c) (1-p) 24c

A 1
vV (k~,c,N) 3 .
H t o N -0+0
(4.8) w=ulc,0,3) = = (111 otoe)
: VA(k*,c,N) =R

Values of this function for H/N = 100 are given in table 3. We see that
the loss of efficiency may be substantial in this case as welll— in parti-
cular when p is large and c¢ is small. There may thus be a conflict between
the optimal choice of predictor for the level of Y and for its change, AY.
The conflict is more likely to arise the larger is the individual share of
the total error variance, P, and the smaller the fraction of the samples
which is overlapping. The only way in which it can be resolved is by
letting all individuals be observed twice (¢ = 1), in which case k*=kA=O

and A=u=1.
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Table 1. Optimal choice of k for predicting levels (k*) and changes (kA).

Overlapping share

Individual share of error variance, P

of each sample,

0.1 0.5 0.9
c k* K K* D K* K
0.1 0.90 0.89 0.90 0.82 0.90 0.47
0.5 0.50 0.47 0.50 0.33 0.50. 0.09
0.9 0.10 0.09 0.10 0.05 0.10 0.01
Table 2. Relative prediction loss by using the unweighted instead of the

weighted predictor of AY, A=A(c,p,H/N) . H/N = 100.
p
¢ 0.1 0.5 0.9
0.1 1.001 1.05 1.73
0.3 1.003 1.11 2.71
0.5 1.003 1.13 3.04
0.7 1.002 1.11 2.71
0.9 1.001 1.05 1.74

Table 3.

Relative prediction loss by using the weighted instead of the

unweighted predictor of Y, u=p(c,p,H/N) . H/N = 100.
P
¢ 0.1 0.5 0.9
0.1 1.001 1.08 3.04
0.3 1.002 1.13 2.26
0.5 1.003 1.20 1.68
0.7 1.002 1.07 1.32
0.9 1.001 1.03 1.09
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Case B: V,45V5,.20

We pow relax the zero restrictions on v,, and v From (3.39) and (3.40)

1% 2%°
it follows that W1 and W2 are minimized for
Vig T BaVig T Byps Vi THTTRy, S Wy tom,

(4.9)

Vo = MsVyq = Myps Vou = Hmngp-ng, =n, +m,

respectively. From (3.24) we see that this implies that all the indivi-
duals actually observed are represented by the observed values in the pre-
diction formulae, whereas those not observed are represented by the (estima-
ted) value of their common expectation.

This simple predictor will not, however, minimize the variance of the error

of the predicted change. From (3.42) we find that W, is minimized for

Vit = m {1700, iy = mgps Vi = By (Imp)mmyy = mydmreny,
(4.10)

v

29 n2(1-0), Voq = ygs Vi = H—n2(1-p)—n12 n, +m+0n

1 2°

Inserting these values in (3,25), while using (3.2) and (3.3), we find that

the optimal predictor of AY can be written as

-~ HA
AY = by,

h=1 D

‘ where

A= Yng 7 Ta P81
~ h€s
by, = a, = (pa, + (1=0)y, ) ‘
Ay, = (pa, + (1-0)yy,) - a, he&s,
Ay, = a, - a, h€s*.

The interpretation of this is that the individuals observed twice should be
represented by their observed values, whereas each observation from those
observed once should be replaced by a weighted average of the observed value
and its estimated expectation, with weights equal to (1-p) and p ,respectively.
All missing observations should be represented by their estimated expectation.
Thus, the larger is p, the less useful are the observations from individuals

observed once when predicting aggregate changes.
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Assume, as before, that n1=n2=n and let N=n+n12 and c=n12/N. The minimum

values of Wt (t=1,2) and WA are then, respectively

.11 W™ = ) (t=1,2),

(4.12) wAmin = 20%(1-p) [H=N(1-p+0c) ] .

Again, we note that the variance of the prediction error of AY is a decrea-
sing function of ¢, and attains its minimum, 202(1—0)(H-N), for c=1. The

: minimum values (4.11) and (4.12) are less than the corresponding minima

in case A, (4.5) and (4.6); their ratios are N/H and N(1-p+pc)/H, respec-
tively. This is not surprising since the predictors in case B utilizes

knowledge of the expectations a

6 1

and a,, which the predictors in

case A neglect.

Let WtA denote the value of W_ when using the weights (4.10) and, corre-
spondingly, WA* the value of W, based on the weights (4.9). From (3.39),

(3.40), and (3.42) we find

A

A min
t wt

(4.13) W + 02p2(1—c)N,

4.14) Wt =R 20202 (1-c)N.

In this case, as in case A, the loss incurred by using the "wrong" pre-
diction formula is larger the larger is P and the smaller is c. Only when
c=1, there is nd conflict between the optimal choice of predictors for Y
and AY.
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5. ESTIMATION AND PREDICTION
MODEL II: LINEAR REGRESSION

5.1 The aggregate variables

We then consider the case where the systematic part of Yhe in (2.3), a o

is related to an observable variable xht'7) The relationship is assumed
to be linear, 4, = a+8xht, i.e.
(5.1) Yhe = oc+6xht+uh+\)ht (h=1,...,H; t=1,2),

where o and B are unknown constants and Xe is stochastic and uncorrelated

with the disturbance components W and V.. 8) Egs. (3.6) - (3.8) should then
be réplaced by
(5.2) ?t = a+6it+ﬁ+3t,
(5.3) Yt(si) = a+BXt(Si)+u(Si)+vt(Si),
% - k= k- %k .
(5.4) Y (8%) = a+BX£(S JHu(s v (S7) (i=1,2,12; t=1,2),

where the H's and V's are defined as in (3.9)-(3.14) and

_ 1 H
(5.5) X, == ZIx_,
t H - ht
- 1 ’
(5.6) X (s.) =— I x
€1 n; 4eg, BE
1
- * -
(5.7) xt(s ) = z St .

hes

We have joint observations on Yhe and Xyt from all individuals in the

samples.
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5.2 Estimation

The parameters &,B,p,and 02 can be estimated by means of the Maximum Likeli-
hood principle in a similar way as the estimation of a1,a2,p, and 02 in
model I; see section 3.2.7) The iterative algorithm consists in switching
between GLS estimation of o and B,conditional on p and 02, and estimation
of 0 and 02, conditional on o and B. Let the estimates be denoted as &,é,

0, and 82.

5.3 Prediction

We now turn to the problem of predicting the population totals Y1 = H§1

and Y2 = H§2’ and their difference AY = YZ-Y1. The information available

for prediction in this case is the values observed of Yhe and Xe and

the estimates o,B and p. We define the following predictors:

L= vy (8y) + vy 0y (Syp) + wy {adX, (5))
+w {oBX (5,0},
(5.8)
Ty = v ¥y(8,5) + vy, ¥y(5,) + w, {a+BX,(S,,)}
+ W22{°‘+BX2(82)} ,
_ where the v's and w's are gyitable weights. These predictors are

linear combinations of the y values observed and estimates of their (uncon-
ditional) expectations, with different weights assigned to individuals
observed once and twice. When the w's are allowed to be different from
zero, ?} and ?é define combined model and design based predictors
since they utilize information on the sampling design along with infor-
mation on the mechanism which connects the y's and the x's. The correspon-

ding predictor of AY is

(5.9) AY = v22Y2(52) - v11Y1(S1) + v21Y£812) - v12Y1(S12)

* Wyt wyy =W m W da

+
.
”
b1
>
wn
p—

+ szxz(sz)' w12x1(s12) - w“x1(s1)}8.
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Using (5.2) and (5.3), we find that the pradiction errors of Y, and Y, can

be written as

(5.10) d, = Y.-¢

(v #v gty vy e+ (Q-HX )8

1

+ (wy, +w,) (o) + L R (8 + w8 (S, ,)1(E-8)

+

b1 - H(u+v1),

(5.11) d, = Y., -Y, = (v21+v22+w21+w22-H)a + (QZ-HXZ)B

+ (g + wyp) (@m0) + {uy K (S,) + wy, K, (5,)}(B-8)
+U, - H(ﬁ+52),
where\
Qp = vy ray XS+ (wyphwy DR (51,
(5.12)

Qp = (v 4wy )Xy (Sy5) + (vy 4w, )X, (S,),
and U1 and U2 are defined as in (3.28).

We impose a similar restriction of unbiasedness on the weighting system of
these predictors as in model I (cf. 3.29)), namely

(5.13) v

+v, ,tw, W

1171217V g = Vo tgti,tiy, = H,

which implies that the first term in (5.10) = (5.11)

vanishes. The second term represents the errors 1in the exo-

genous variables; Qt-H}-(t is the difference between the predicted

and actual value of its population total in period t (t=1,2). These
errors can be controlled by changing either the sampling design or

the weighting system, since Q, and Q, depend .on these parameters.

Thirdly, the effect of the errors in the estimates o and B, can be
controlled by changing the weights Wij. (The estimates, of course, are
affected by the sampling design.) Finally, the disturbance components in

the regression equation give the same contribution to the prediction error,
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Ut—H(ﬁ+5t) (t=1,2), as in model I; cf. (3.37)-(3.38). As noted in sec-
tion 3.3, this error will be affected partly by the sampling design

and partly by our choice of weighting system.

The sampling design thus affects the total prediction error through

"channels'". For simplicity, we assume in the following that the

several
samples are so large that the errors in the estimated regression coeffi-
cients can be neglected; i.e. we let &=a and é=B. The prediction errors
for the level of Y1 and Y2 then become

(5.14) d_= RtB +u (t=1,2),

t t

with a corresponding error for the change AY equal to

(5.15) d d,~-d, = (R2-R1)B +u

A 2" % 274>

where

- .

(5.16) Rt = Qt-HXt (£=1,2)
and
(5.17) u, = Ut-H(u+vt) (t=1,2).

5.4 Distribution of the exogenous variables and the prediction errors

From the assumptions made so far, we can only draw conclusions on the pre-
diction errors d1,d2, and dA which are conditional on the values of the
exogenous variable Xp o i.e. conditional on R1 and R2. This discussion
would proceed exactly as in case B in section 3.3, and we shall

not repeat it here.

In order to focus more specifically on the effect of variations in the
exogenous variable, we now make the following assumption about its
distribution (or the "super—population' model which generates Xht):
All x's in period t have the same expectation, Et, and satisfy the

following variance components specification:
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(5.18) X, = it Nyt S, (h=1,...,H; t=1,2),

where nh and K

i i Y
he 2T uncorrelated with Hy and he? and

(5.19) E(nh) = E(Kht) = 0,

< 2
E(nhnhv) - Ohh'Tn ’
(5.20) E(My<yre) = 0
2
=34
E(Kht'(h't:') hh'étt'TK ’
Shh' and 6tt' denoting, as before, Kronecker deltas.lo) This implies
2 | . | .
T for h'=h, t'=t
(5.21) cov (xht’xh't') = QXTZ for h'=h, t'#t
0 otherwise,
2 __2 2 . 2,2 . .
where T° = Tn + ‘r'< , and px = Tn /T°. The latter ratio obviously has the
alternative interpretation as the coefficient of correlation

between Xy, and x,,. Furthermore, we assume that the sampling design s

independent of the values of the individual components ny, -

In the following, we shall let "|S" symbolize conditioning on the sample
8=8,US,,US,.We shall interpret this not asconditioning on the values of

X from the individuals inthis sample,but as conditioning with respect to

the individual components of X, and of the regression disturbances

of all individuals in S, i.e. "|S" is a shorthand notation for "\nh,uh;hES".
What we do is thus to condition on the part of the regressors and disturbances
which are particular to the individuals actually observed, and hence can

be "controlled" by means of the sampling design.

From (5.5)-(5.7), (5.12), (5.13), (5.16),and (5.18)-(5.20) we then obtain

ER[8) = (v #wy =0 In(S)+(vyp4w =0 )IN(S, ) =myn(S)) = 4y,

(5.22)

|
o>

E(RZIS) = (v21+w21-n12)n(512)+(v22+w22-n2)ﬁ(82)-n1n(81) = A,

and
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o 2 (V11+W11)2 ("12""’12)2 _
var (R1|S) =T [(1-Ox){ - + ~ - H} + pxm] =C.p»
1 12
2 2
(v, +w,,) (v,at+w,,)
A 20, 217721 227220 _
(5.23) (var (R,[S) = t7[(1-p ){ T, M H} + p.m] =C)),
{ cov (R |s) = Tzo m=C
128 X 12°

- _1
where n(Si) = -

z
1 hE€S.
i

"y (i=1,2,12), and At and Cts are defined by the last

equalities. In a similar way, (2.5), (2.6); (3.9)-(3.14),(3.28),and (5.17)
imply

E(u1|S) = (v11—n1)u(51) + (v12-n12)u(512?-n2u(82) = B,,
(5.24)
E(uZIS) = (vym U8, ,) + (vy,mn)u(S,)-n,u(s,) = B,,
and
2 2
2 Vit V12
var (u,|S) = o“[(1-p){ + + H=2(v,,+v, )} + pml = D_,,
1 n1 n12 11 12 11
v 2 v 2
20 V21 22 . . .
(5.25) var (u2|S) =0 [(1 p){n12 + » +H 2(v21+v22)} + pm] Dyys
cov (u,,u,|S) = Gzpm =D
1272 12?

where Bt and DtS are defined by the last equalities.

We can now write the expectations and variances of the prediction errors,

conditional on the sample, as follows

E(d1|S) BA, + B

1,

(5.26) E(d2|S) BA, + B

2’

E(dAIS) = B(A,-A,) + B, - B

2 1°

and
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-l2
var (dl[S) =8 C11 * Dy
(5.27) var (d,|S) = 82C +D
: 2 22 22’
1g) = g2 - 2 -
var (d,|S) = B7(C,, + Chp = 2C15) + (D, +D 2D, ,).

22 12

Since At and Bt are different from zero, the same will, in general, be the
case for the conditional expectations of the prediction errors, (5.26).
The values of these expectations reflect the values of nh and Uu

h
of the individuals in the sample.

Since, however, E(At) = E3(E(Rt|8)) = 0 and E(Bt) = E(E(ut|S)) = 0 in view

of (5.19), (2.5), and our assumptions about the sampling design, we have

(5.28)  E(d,) = E(d ’

2) = E(dA) = 0,

i.e. unconditionally, the predictors ?1, ?2 and AY are unbiased. The un-

conditional variances of the prediction errors are

[

var (d,) E[var (d1|3)] +Var£E(d1{S)]

2

R“{c,, + var (A1)} + D

11 + var (B1),

1"

(5.29) var (dz) Elvar (dzlS)] + VartE(dz[S)]

= 82{022 + var (AZ)} +D,, + var (BZ)’
= p2 - -

var (dA) =8 {C11 + C22 2C12 + var (A1) + var (AZ) 2 cov (A1,A2)}
+ Dy * Dy, = 2D12 + var (B1) + var (B2)-2 cov (B1,B2).

There is an important difference between conditional and unconditional in-
ference in this case. All the conditional variances (5.27) depend on Oy
and p, since Cts and'DtS are functions of these parameters. The same 1is
true for the unconditional variance of dA' The unconditional variances of
d, and d, in (5.29), however,will be independent of 0 and o, since it
is easy to verify that the terms including Oy in Ctt cancel against the
the corresponding terms in var (At) and that the terms including p in Dtt

cancel against those in var (Bt) (t=1,2) j;cf. (6.2) below.
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6.. OPTIMAL CHOICE OF PREDICTORS
MODEL II: LINEAR REGRESSION

The variances of the prediction errors, given in (5.27) and (5.29), repre-
sent the joint effect of the random disturbances in the regression equation
and the stochastic elements of the exogenous variable X Let us now

examine the optimal choice of predictors on the basis of these formulae.

6.1 Conditional prediction

Consider first the problem from the point of view of conditional prediction,
in the sense defined in section 5.3. Since Dtt in (5.25) is independent of

W g and since BCtt/Bwts = actt/avts (t=1,2; s=1,2), we find, by using simple

calculus, that the values of Vg and Vo that minimize var (d1|S) and

var (dZIS), subject to (5.13), are, respectively

H

Vig T RpeVyq = “1['5'%5"‘ = 1Ly = mypwyy = nple—— - 11,
1"12 1702
(&.1)
Va1 T M2eVar T “12[3'%5“ = 11,7y, =m0y, = 1 [E'%E'" - 11
212 2702

- Moreover, exactly the same choice of - weights will minimize var (dA|S). This

follows from the fact that neither of the covariances C12 or D12 in (5.27)
depends on Veg OF Weos and so they can be disregarded in the process of
minimization.

Our conclusion, then, is that although the conditional variances of the
prediction errors depend on Py and p, the optimal choice of weights for con-
ditional prediction will not be affected by these parameters. The intuitive
explanation of this is, of course, that in the conditional distribution,
where Ny and W, are treated as fixed, all X and €he will be uncorrelated,
and so the composition of the sample between individuals observed once and
twice will have no effect on the prediction performance. At the same time,
in the conditional distribution, the individual components Ny and My will
become part of the intercept term of the regression equation, which explains
why the predictors come out as '"conditionally biased" in this case, cf.
(5.26). *
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6.2 Unconditional prediction

From (5.22)-(5.25) and (5.29) we find that the unconditional variances of

the prediction errors d1 and-d2 can be written as

2 2
(v, +w,,) (v o, +w,,)
var (@) = 2g2? et
17, n n 1
1 12
(6.2) 9 9
(v, +w,.) (Vo *W,n)
var (dz) = T282[ 21 21 22 227 H] + W, ,
o, n, 2

where W1 and W2 are defined as in (3.39) and (3.40). These variances

attain their minima, subject to (5.13), for the same choice of weights,
(6.1), as in the corresponding problem of conditional prediction. Recalling

(5.8), we find that (6.1) implies that the n +n observations on Ve from

12
period t are included with full weight in the predictor for this period,
.whereas the H—nt-n12 individuals unobserved are represented by the (esti-
mated) value of E(yht) with Xpe set equal to its sample average, i.e.

R R n X (S )+n, X (S,;) :
(6.3) a,=a+8 == 12¢c 12 (t=1,2).

n oy,

The optimal procedure for predicting Y1 and Y2 in the regression model is

thus very similar td the optimal predictor in model I,(4.9).

Furthermore, the unconditional variance of dA is

2 2
(v, ,+w,,) (Van+Wan)
(6.4) var (dA) = TZBZ[ i » 22 227 2(1-p )H
n n X
1 2

. {(v,, +w )2—20 (v, +w, (v, +w,,)

n12 12 12 x 12 12 21 21
+ (v,, +w )2}] + W

21 21 A?

where WA is given by (3.42). Obviously, minimization of this variance with
respect to the v's and w's is ot equivalent to minimization of WA; i.e.
the distribution of the exogenous variable in the regression equation will

affect the optimal choice of predictor of AY in this case. Assume again,
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for simplicity, that the same number of individuals is observed in both
periods, i.e. n,=n,=n. The values of Ves and Ve that minimize this
variance is

Vi=Vypn(1=0),

V127V21 2

(6.5)
[H(1-OX) : ]
W, =W, =0 [—r————— - (1-p) ],
11 722 n(1—px)+n12

"’12=“’21="12[n_(‘1-f:I ym - -
X 12

Inserting these values in (5.9),we find that the optimal predictor can be

written as

(6.6) AY

nyp0Y(S ) + n(1-p){¥,(S,) - ¥, (5}
+ noB{iZ(sz) - §1(s1)}
+ [H-n—n12]8A§ + anBA§ ,

where

~ n(1-p_)
s _ X - -
(6.7) X = W [XZ(SZ) - X1(81)]

2 -
n(1 Dx)+n12 12

This predictor implies that the individuals observed twice are given full
weight, as in model I, cf. (4.10) (first term), whereas those observed once
are represented by a weighted average of their observed value (second term)
and the estimate of their expectation conditional on the values of e from
these individuals (third term), with weights equal to 1-p and p, respectively.
Each individual not observed is represented by the estimate of the expected
increase in y, E(yhz—yh1), with X%y set equal to a Ag, which is a
weighted average of the predicted increase in x based on observations from
all individuals in the sample (fourth term). The relative weights assigned

to individuals observed once and twice in this average depend on Py the
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individual share in the total variance of Ko cf. (6.7). Finally, the
fifth term in (6.6) '"corrects" for using an inoptimal predictor of the

increase in x in the third term of the prediction formula.

)

We see that observations on X0 and Yne from all individuals — whether
observed once or twice - are elements in the optimal predictor of AY in
the general case where 0%p<1 and O§93<Z. In certain particular cases, how-
ever, we will only make use of information on either the y's or the x's
from the individuals observed once, but we will always need all information

from those observed twice, The following examples illustrate-this point:

020,=1:8Y = n,,AY(S,,) + nB{X,(8,)-X (5D} + [H-n,,]1BAX(S,,),

0=1,0,20:AY = n,,AY(S,,) + nB{X,(S,)-X,(5))}

H = - -
[n+n12 - 1]bn[X2(52)‘X1(Sl)] + n12AX(S12)} ,
0=0,0,=1:A7 = n ,0%(S,,) + nl¥,(5,)-Y, (S} + [H-n,,]B8K(S,,).

The larger is 0, the less useful will be the observations on Yt from the
individuals observed only once, the larger is Oy the less useful will be

the observations on x from the same individuals.

ht

The crucial role played by p and Py in the optimal predictor of AY can be
explained in a slightly different way. From (6.5) it follows that

v Vo2 n

11
v = v = n (1-0),
12 21 12

Vi1 V22™22 _a
V12t VpqtWyy D

(1'9 )9
12 x

i.e. the relative weight given to observations on Yne from individuals ob-
served once and twice depends on p only, whereas the relative weight
assigned jointly to observations on Yie and estimates of E(yht) based on
the 7 observed for the same individuals depends on o, only.

Let, as before, N = n+n,, and ¢ = /N. The minimum value of var (dA) can then

B2
be written as
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1

min_
1-px+pxc

2.2 H
(6.8) var (dA) = 2T°R (1-DX)H[E

Since both terms in this expression are decreasing functions of ¢ if either
P, or P is positive, we can always obtain a better prediction performance by
increasing the share of the sample which is observed twice. The minimum

value, for c=1, is 2T282(1-DX)H(H/N-1) + 202(1—0)(H-N).

Let var (dA)* denote the value of var (dA) when all individuals are given

the same weight in the prediction formula, i.e. when using (6.1). We find

Oxc(i-c) 2 9

(6.9) var (dA)* = var (dA)mln + ZTZBZH ———— + 20707 (1=Cc)N.
1-px+pxc

The loss of efficiency is larger the larger is Py and p and the smaller is c.

- 1] + 202(1-0)[H-N(1-o+0c)].
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7. CONCLUDING REMARKS

In this paper; we have been particularly concerned with the interplay be-
tween the sampling design and the covariance structure of the data vector
when predicting an aggregate variable y from sampling survey data. One
conclusion is that the optimal choice of predictor, i.e. the one that
minimizes the variance of the prediction error, will not, in general, be
the same when predicting the aggregate level of y and when the purpose

is to predict its aggregate change. In the latter case, in contrast to
the first, information on the relative share of the individuals which are
observed twice as well as on the share of the variance of y which is due
to individual differences, play a crucial role in the optimal prediction
formula. Hence, these parameters become key parameters when assessing the
potential gain which could be obtained by changing the sampling design.
This is by no means a point of academic interest only. An empirical study
of consuher demand in Norwegian households‘based on rotating panel data
from the years 1975-1977, gave estimates of the individual share of the
total disturbance variances which extended from zero to about 0.7. For 22
of 28 commodity groups - accounting for about 85 per cent of the budget of
the average consumer - the estimates were significantly different from zero.

(Bi¢grn and Jansen (1982, section 7.5).)

Furthermore, we have shown how observations on a variable x which is related
to y through a linear regression equation may be used to improve the predictor
of the latter variable. 1In this case, Oy the individual share of the
variance of: x, turns out to be a crucial parameter in determining the optimal

predictor for the change in y.

Another conclusion is that when individual specific components are present,
we can always improve our predictor of the change in y by increasing the

share of the individuals which are observed twice, given the total sample

size. The variance of the prediction error will then take its lowest value

when all individuals are observed twice, and in that case - and only then - yi11
there pe no conflict between the optimal choice of predictor for the level

of y and for its change. It should be recalled, however, that this conclusion
rests on our simplifying assumption that errors in the estimated structural

coefficients (i.e. ;1 and ;2 in model I, o and B in model II) can be neglected.

It may well be modified in small sample situations
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when such errors are taken into account. If, for instance, we can increase
the spread in the data by increasing the share of the individuals which
are observed once, we may obtain better estimates of the structural coeffi-
cients, which in turn may lead to the conclusion that a design with some

degree of rotation may be the best compromise design for prediction purposes.

This problem deserves further research. However, as the algebra seems to
become rather messy, Monte Carlo experiments may be the only feasible
approach. The models we have considered here are the simplest possible,

and more general situations may be well worth investigation. An obvious
extension would be, with basis in the general framework outlined in section
2,, to consider a situation with more than two periods involved and in which
some individuals are observed more than twice. Another interesting generali-
sation might be a situation in which there exists summary information on

the regressor variable x for (some of) the individuals outside the sample in

addition to the joint observations on y and x from those included in the

sample.

===000———
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NOTES

1) Confer Bigrm (1981, p. 17).

2) See Bigrm (1981, pp. 26-27).

3) No such correlation would exist, however, if the estimates of a; and
a, were based on data from independently drawn samples which were
non-overlapping with S1, Sz,or 812.

4) Not surprisingly, we find that W1, Wz,and WA coincide with Vi, Vz,and
VA when v11=k1H, v12=(1—k1)H, v22=k2H, v21=(1-k2)H.

5) Since A is rather insensitive with respect to the value of H/N, pro-
vided it is not too small (less than 50 say), the figures in table 2
are valid approximations to the exact A over most of the relevant
range of H/N.

6) These ratios overstate the gain which can be obtained in practical
situations, since a, and a, will have to be estimated from the data.

7) For simplicity, we confine attention to one regression variable only.
The generalization to multiple regression models is straightforward.

8) Assumptions (2.5) and (2.6) then hold conditionally on the x's, which,
of course, also implies that they hold marginally.

9) We implicitly assume that o,B,p,and 02 are not parameters in the distri-
bution of the x's, 5o that the ML estimates can be obtained by maximizing
the conditional density.

10) Note that X e in this model is generated by the same kind of mechanism

as y,, in model I, cf. (2.5)-(2.6).
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