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BASED ON ROTATING PANELS
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411

ABSTRACT

The paper deals with the prediction (estimation) of the aggregate value of
a variable on the basis of micro data from partly overlapping samples. This
problem is of considerable interest for economic data, e.g. household bud-
get data. We are particularly concerned with the interplay between the sam-
pling design (degree of rotation) and the covariance structure of the data
vector in a situation where the micro data are generated by a variance com-
ponents mechanism with two components, one of which represents unobserved
individual factors. The optimal choice of predictor is discussed, both with
respect to the level of the variable under consideration and with respect
to its change between two successive periods.

Not to be quoted without permission from author(s). Comments welcome.
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1. INTRODUCTION

The prediction of population totals on the basis of data from sample surveys

is a problem of considerable practical interest in statistics and econome-

trics. Frequently the problem posed is that of predicting the aggregate

value of a variable y in a period t from observations on y from a sample sur-

vey performed in this period. A more interesting problem may be to predict

the aggregate change in y fram period t o to period t 1 on the basis of sample

survey data collected in these two periods.

An econometrician facing such problems will often be in the situation that

he-has some a priori information on the mechanism generating the data. To

him it may seem unrealistic to assume, as sampling statisticians often do,

that all y's in a given period are generated by the same probability distri-

bution. On the contrary, from economic theory he may have the notion of a

model generating the different y values - both those observed and those un-

observed - and he wants to utilize this information when making	 predic-

tiond of the population totals. Stated in sampling theoretic terms, he may

want to combine "design-based" and "model -based" inference; confer e.g.

Royall (1970), and Cassel, Sdrndal, and Wretman (1979).

In this paper, we shall be particularly concerned with a model in.which y

is)determined by a variance components mechanism, i.e. we allow for unobser-

ved, individual, random effects in the model specification. Within this

framework, we shall consider two situations: that in which y is related to

an observable exogenous variable x through a linear regression equation,

and that in which no such relationship exists. Regression models with

variance components specifications of the disturbance terms have received

increasing interest in econometric research based on panel data in recent

years, but as far as the author knows, little attention has been paid to

their implications for prediction in sample survey contexts. The salient

feature of this specification is that the covariance structure of the data

vector will depend on the choice of sampling design. Hence, the sampling

design becomes a crucial element in the construction of the optimal pre-

dictor of the aggregate variable y. Of course, this simple model has to be

modified 	 to be useful in practical situations, but it serves to

illustrate the main points of interest.-
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The sampling design we shall consider is a design with partly overlapping

samples, or rotating samples, between periods. (For a formal and 	 fairly

general treatment of such data structures and their relation 	 to com-

plete cross-section/time-series (panel) data, see BiOrn (1981).) In

particular, we shall focus on a situation where two periods are involved

and in which some individuals are observed in the first period only, some

are observed in the second period only, and some are observed in both

periods. A main motivation for considering this particular data structure

- but of course not the only one - is a desire to explore the possibilities

for a more systematic utilization of the Norwegian household budget surveys

for prediction purposes. Fram the year 1975, these surveys have been per-

formed annually, using a sampling design of the format described above

about 25 cent of the respondents in one year are asked to report their con-

sumption expenditures again in the next year. The "predictions" we have

in mind	 include	 (a)	 calculation of	 annual changes in the

aggregate expenditures on the different consumption items for national

accounting purposes, and (b) estimation of the annual changes in the vector of

budget shares used as Weights in the Consumer Price Index.



2. NOTATION, MODEL AND SAMPLING DESIGN

Consider a population of H individuals numbered consecutively from 1 to H.

Let P = 	 In each period, a sample of individuals, i.e. a

subset of elements in the index set P, is drawn from this population. The

samples are partly overZapping between periods, but no individual is observed

more than twice. Let Z
t
c:p be the sample selected in period t. These assump-

tions imply that

S 	 = zn zt
,t+1 	 tt+1

is non-empty, whereas Z fIZ
+
 is empty for all 0 > 1 or 8 < -1. Let, moreover,

t t0
S t be the individuals among those selected in period t which are observed

only once. It follows that Z t can be expressed as the union af three disjoint

sets as

=S 	 USUS
t- ,t t t,t+

where S 	 contains the individuals observed in periods t-1 and t, St,t+1
those observed in periods t and t+1, and S

t 
those observed in period t only.

Finally, let Z* represent the individuals not observed in period t, i.e.

Z
t
 UZ* = P, and S* those not observed in any of the periods under consideration, t

1,2,...,T, i.e.

(2.2	 ...nz*.

We want to make inferences on the variable y. Its value for individual h in

period t,yht , is assumed to be generated by the following process

(2.3) 	 y
ht 

= a
ht +
	 +

where ahisanon-stochasticand(sofar)unspecifiedparameterand Ph and

vht are independent stochastic variables, with zero expectations and constant

E(Yht ) = ah,

(2.1

variances, equal to a 2 
and G

2' 
respectively. Hence,v 



(2.6)

fE(11hIlh ,) =

11hiGI2-2,(1hvh't) =60I

E ( ht
v
h't'

) = 6
hhtt'

a
V

2
 '
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where 6 hh , = 1 for h' = h,0 for h'*h; and (S tt , = 1 for t' = t,0 for t'* t.

The model is thus a variance components model with two components, the first,

11' 
representing unobservable factors which are specific to individual h,

11
and v

ht is a remainder.

We assume that the above specification applies to all the H individuals in

the population in T successive periods, i.e. (2.3)-(2.6) are valid for

h,h' = 1,2,...,H,

t,t' = 1,2,...,T.

Letting Eht denote the composite disturbance,

(2. 7
	

E
ht 

= 1.1
h 

+ 
ht'

an equivalent way of writing the model is

(2.8) 	 E 
'htY ) = aht,

a2 for h'=h, t'=t

(2.9) 	 cov(yht ,yh' ' ) = E(E
ht

E
h't'

) = 	 pa2 for h t =h, t'*tt
0 otherwise,

where a
2 
= a

2
 + a

v
2
' 
and p = a2 /a2 . The presence of the individual specific

disturbance component implies that all observations on y from the same indi-

vidual are positively correlated, with a coefficient of correlation equal

to p.

Our main problem in the following will be to predict the total value of y in

the population in period t, i.e.

H
(2.10) 	 Y

t 
= 	 y

ht
h=1

t=1,... ,T,



and its change

( 2.11
H

AY = I Av
h=1 

'h
t

'

where Ayht = y,
t
 -y.n 	 n,t-1' on the basis of the values of yht observed in the

different samples, i.e. from the observation sets

Yht' 	h E Z t ,t = 1,...,T.

Let n denote the number of individuals in the sub-sample S
t 

and n
t,t+1

the number of elements in S
t+1
	The total number of individuals includedThe

in the sample in period t is thus

( 2.12) n 	+n +n= 
t- 	 t1,t 	 t,t+1.

We shall consider two specifications of the unknown parameters ah:ht

Modell: a = a
ht

for h=1,...,H; t=1,.. •	 .3

whereat are unknown constants.

Model II: aht iS linearly related to an observable

variable x
71t.

Modell will be discussed in sections 3 and 4, and model II in sections 5

and 6.

Moreover, to simplify the exposition, we shall confine attention to the

situation with only two periods involved, i.e. T = 2, and with the sets

S01 
and S

23 
empty, i.e. n

01 = 
n
23 = 

O. Then S * = z*nz* is the index set of the1 	 2
individuals not observed and

(2.13) 	 m = H-n
1
-n

12
-n

2 
= H-N -N + n

1 2 	 12

the number ofthese individuals. Our data set thus has the following

structure:
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n 1 individuals

n 1 individuals

n2 individuals

ni individuals

in subset S 1 are observed in period I

only.

in subset S
12 are observed in both

periods 1 and 2.

in subset 52 are observed in period 2

only.

in subset S* are unobserved.

•



(3.1)

and

(3.2)

H
=

t H
h=1

1= 	 v
n. 	 'ht

hES.
= 1,2, i = 1,2,12)

H
	 (t = 1,2),

ui
t 

= a +

-12 (S.) = a t + ì:(S) + ■)-
tt

;I"
t
(S*) = at 	 Ti(S *) + t

(S* ) 	 (i = 1,2,1 2; t = 1,2),

3. ESTIMATION AND PREDICTION

MODEL I: CONSTANT EXPECTATIONS

3.1 The aggregate variables and their distribution

Let 	be the average value of y in the population in period t,

the corresponding averages in the samples S 1 ,S 2 , and S I2 . By assumption,

-i 1 (S 1 ), 'i 1 (S 12 ) ' "i2(S12), and Y2 (52) are observable, and 
-12 1 (S 2 ), ' 2 (S 1 ) are

unobservable. Similarly,

(3.3
ASO

S* ) = -1 .Z
ta hES* ht

(h = 	 = 1,2)

is the average value in period t for the individuals which are.not observed

in either period. Obviously

(3.4) = n
t (S

 )+n 	 +n 	 (S )+Mi. S*)(t=1,2).
12 t 1 	 2 t 2 	 t

When the expectation of yht is assumed to be the same for all

individuals in period t, i.e.

(3.5) 	 E
(Y ) = aht = a t
	 (h= ,...,H;t=

it follows from (2.3) and (3.1)-(3.3) that



2
+

v
2 a2

ni
•a

11
2 a2= p ---

n. 	 n.

for j = i, T = t

for 	 T * t(3.16) COV(Y (S.), -i (S.)]
tl 	 Tj

n.

a
2 
+a 	

a2

m 	ni

a 
2

= p a
2

ni

otherwise,

for T = t

for T * t,

(3.17) *),(S *)] =

where

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

H- 	 1
p = if

 h=1 • h'

H

= Tf z
h=1

17(S i) = 	 Z ph ,
ni hES.

- 	 1v kS. =--- Z v

	

t i 	n.
hES.

1-1(5 *) = 	 Z pm hES* h'

■;t(S*) . 1— Z v .
m 

hES
* ht

8

Using (2.4)-(2.6), we find that Tit (S i) and "it (S *) have expectations

(3.15) ECi (S.)] =
t
(S*)] = a

tt = 1,2,12; t 	 1,2

and variances and covariances given by

(3.18)
	

covri t (S i ),"iT (S*)] = 0 	 (i,j = 1,2,12; t,T =

3.2 Estimation

In the case considered here, nothing is known a priori about a l and a2
 (or

their possible relationship). Since, however, a2 and p (a 2 and a 2 ) arev
common parameters in the disturbance structure of all observations, it will

be more efficient to estimate the four parameters simultaneously from the



combined data set with n, + 2n
1 9

 + n
9 

observations than estimating

a 1 from the observations from period 1 and a2 from the observations from

period 2.

Assume that uh and vht are normally distributed. Let E
(1) 

be the n
1
xl

vector of disturbances fram the n 1 individuals observed in period 1 only,

E (2) the n2 xl vector of disturbances from the n2 individuals observed in

period 2 only, and E (12) the 2n 12x1 vector of disturbances from the n
12

individuals observed in both periods, ordered first by individual, second

by period. It follows from (2.9) that the covariance matrix of the stacked

vector•

(3.19)	 E =  

awa

can be written as
1)

	(3.20)	 E(EE') = Ç = 	 * 2

where
v—

I
n

	(3.21)	 0 I	 F
2 0nl 2 

0

n.i2

1 p
I being the n. x n. identity matrix and F2 

=
n. pi

Expressing (2.3) and (2.7) in vector notation as y = a + E, we can write

the log-likelihood function of y as

	n 1
 + 2n	 + n2

2 log (27) - i log ll -	 E'P

	

2
	

2

where E is a shorthand notation for y - a.

Since IQ' = la
2(n + 2n

*1 = 
a 	 1 	 1

+ n )	 2 n i
(1-p ) and F

-1 -
2 -p

2	
-[1-

1 

L can be written as
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(3.22)
n
1 
+ 2n 12 + n 2 

L = L(y;a,p,a
2) =

2 	
log (2T)

n 1 + 
2n 12 

+ n 2 	 n 12 	 2 	 1 -2
2

log a - 2
log (1-0 ) - -2- G. Q,

where

(3.23) 	Q = 	 E

—1
= el 

0 
E
0) 

+ E
(12)
l 	{I	 (71F2 

}E
(12) 

+ 
'z(2)

E
(2)( 	 n

12
■Y

r 2 	 2
= z E

hl
2 	 1+ 	 Z 	 tc

h1 
- 2pEh1 6

h2 
+ E

h2
1 +: Eh2.

hES 1 	1-p
2 

hES 12 	 hES 2

Maximum Likelihood (ML) estimates of a1,a2,p,and a
2 
can be obtained (provided

that certain regularity constraints are satisfied) by an algorithm which

switches between the following two subproblems:

(i) Wnimization of Q with respect to a l and a2 , conditionally

on p and G2 (i.e. conditional Generalized Least Squares

(GES) estimation).

(ii) Minimization of g = (n 2 + 271 22 + n2 ) Zog a2
•

+ n 12 Zog (1-p
2

+ G2Q with respect to p and G2 , conditionally on a l and a2 .

It can be shown2) that subproblem (i) is solved by minimizing the following

sum of squares

Q(1 -p) = Z {(1-P) 1 6111 } 2 + 	 (0-10
hES

1 	hES 2

2
Eh2

•••

•
2 1j.+ E 	 r{c - ( 1- (I-P N 	 "I 	 "4 I I- {6h2-( 	

1-p 
1Ehl i 	 hi

L hl ` 	 `1+p ) 	2	 •1+p 	 2hES
12

Subproblem (ii) involves solution of the following two nonlinear equations

in a2 and p:

(1-p)a
2 

(n
1
 + 2n

12 +
 n2' = ( -p)[ I 	 2E 	 Z E 

2
]

+ z 	
h1

2 
+- 	 ---)(E 	 + E )

2 1 	 1-p

	

h2 	 2 	 l+p 	 hl 	 hhES

2rt 	1	 -n1 + n2 	(1+P	 n 12 1 = 	 Ehl
2 + E E

h2
2 

+ (l+p)
2
	1

+6 )2
°

hES 1 	
hES2 	 hES

12

-2Let the estimates be denoted as a l' a2 	and G .

hES 
hl
	hES2 

h2

12



3.3 Prediction

Having obtained estimates of a l' a2 and p, 
we now proceed to the problem

of predicting the population totals Y 1 and Y 2 and its increase from period

1 to period 2, tiY= Y 2 -Y 1 . We shall consider two	 different ways of

attacking this problem:

(A) Direct prediction based on the observed values of v- ht
and the estimate of p.

(B) Prediction utilizing not only the observed y 	the

estimated value of p, but also the estimates of a l and a2 .

Both procedures emerge as special cases of the following linear prediction

formulae:

( 3 . 24)
11 Y (S) + v12'71

= v	 cs
v22

+ v

+ v2 *a2

where the v's are suitably defined weights. In case A, v 1 and v2* are

set equal to zero a priori; in case B, all weights are positive. The

corresponding predictor of AY is

(3.25)	 LÇY = v
22

7 2 (	 v	 (s 1 )+v
11	 21 2	 1

+v2*2-v 1*a 1 .
1 	 1

Of course, the distinction between procedures (A) and (B) is of no interest

if a
1 

is a linear function of the y's observed in period 1 and 5.
2 

is a linear

function of the y's observed in period 2. This will for instance be the

case if 1 h=0 for all individuals, since then the ML estimates are simply

the unweighted sample averages

	= (nY (S ) 	 n 12 
( S 12)

gni + n
1

2
	 1 Y	 1
	 + n27p )/ 1 + n2 ).

But if individual components are present, this distinction is highly relevant,

as we shall see below.
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Using ( 3 - 7 ), the three predictors can be reformulated as

Y 1 = (v 11 + v 12 + v 1*)a 1 + v 1* (a 1 -a 1 ) + U 1
(3.26)

Y 2 
= (v21 + v22 + v2*

)a
2 

+ v2* (a2-a 2 ) + U 2

	(3.27)	 L;,%11 = (v21 + v22 + v2*)a2 - (v 11	 v 12 4. v l*)a l

+ v2* (a2-a2) - v 1* (a 1 -a 1 ) + U2 - U

where

U 1
	v11 

p (S ) + 5 1(S1)1	 v 12 63(S 12 ) 	)1)1(s12)/
(3.28)

= v21 {T.le(S 12) + 7)2 (s 12)/	 v226(S 2 ) 	7) 2 (s )/

Since the ML estimates a 1 and a2 are unbiased, it follows that the condition

for the predictors to be unbiased is

	

(3.29)	 v11 +v 12 +v 1* =v21 +v22 +v2* = H.• 

We shall discuss case A and B in turn.

Case A: v 1* = v2 	0

Let v 1* = v2* = 0 and define

(3.30)	 k 1 = v 11 /H , k2 = v22'/H.

i.e. k
1 
and 1-k 1 are the relative weights assigned to observations from

individuals observed once and twice, respectively, when making predictions

for period 1; and k
2 

and 1-k
2 

are the corresponding weights for period 2.

Using (3.1), (3.4),and (3.29), we find that the prediction errors of Y 1

and Y2 can be written as

=  Y 1 -Y 1 = {k
1 H-

n 7 (s )—mai l (s*),

) + {(1-k l )H-n. lY

-

(3.31)

(S 2 = Y 	1.
_ 	

12(S ) 	 1(1-k )H-n 12 1Y 1

i	 1	 1

n 1 i"(S 1 )-mi. S*



H(1 -k )(1-k )
1

coy ( ,6 ) = a2 p H [ 	(3.34)
n 12

-13 -

From (3.16)-(3.18) and (2.13) it follows that their variances are

2 	 Hk
12 	 H(1-k 1 ) 2

	(3.32)	 var 	 = a H ( 	 + i J = V
l'n1 	 n12

Hk
2
2 H(1-k 9 ) 2

	(3.33)	 var 	 = a2H 	 + 	  - 1 I = V
2'n

2 	 n 12

and that they have a covariance equal to

If p is positive, the prediction errors will have positive, zero, and negative

correlation according as H(1-k
1
)(1-k

2
) 	 n

12'

We are also interested in the prediction error of AY,

	(3.35)	 = AY-AY = (Y2-Y2 	 y -y 1
) 	 6 -

A 

Its variance is

	(3.36)	 var 6 	var S + var 6 -2 	2 coy (6

•

' 6 2).

2 	 Hki= a H
n

1

k
2

- 2( -p) + 	 {(1-k ) - 2p(1-k i )(1-k 2)+(1-k ) 1]
n 12  

We see that thevariances of the prediction errors 6 1 and 6 2 are functions of

the population size H, the sample sizes n 1 , n2 , and n 12' and the relative

weights k 1 and k2' The variance of 6 also depends on p, the share of the A
disturbance variance which is due to individual variations. This has notable

implications for the optimal choice of predictor, as we shall see in section 4.

Case B: v1, v2* >

When we also utilize the estimated values ot .2 4 and a 2 	in constructing

the predictors, we find from (2.13), (3.4), (3.7), (3.8), (3.26), (3.28 ), and

(3.29) that the prediction errors become
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0.■

(3.37)	 d1 = Y 1 -Y 1 = v 1* (3. 1 -a 1 ) + U 1 -H(17 + ;' 1 )

= v 1* (3 1 -a 1 )	 (v 11 -n 1 ){17(S 1 ) 	-1(s1)/

+ (v
12-n 12 ){17(S 12 ) 	 7.). 1 (S 12 )1

- n 671(S 2 ) + ■)- 1 (S 2 )1 - m{TI(S *) + ■; 1 (S *)1,

(3.38) 	 d2 
= Y

2
-Y

2 
= v

2*
(3

2-a2) + U2 -H(171 + ■)-2 )

= v2 ( 2 -'a2) 	(v21 -n 12 ){/71(S 12 ) 	 ;12 ( 1

+ (v
22

-n
2 ){i1(S2

) + 7)
2 (S 2 )1

- n 1 { -17t(S 1 ) + 	 (S )} - m{171(S *) + "\-; (S *)}.2

Three sources of prediction errors can be discerned in this case. The first
4".
	 "b

is errors in the estimates a 1 and a2' its contribution 
to the total error

depends on the weights v
1* 

and v
2* .

 The second source is the disturbances

of the n 1 + n 1
2' 

resp. n
2
 + n

12' individuals included 
in the samples. This

component can be controlled by changing either the weights or the sampling

design. Thirdly we have the disturbances of the individuals which are not

observed in the period under consideration. This component cannot be con-

trolled by changing the weighting system, it can only be affected by the

sampling design.

Since the estimates a and a are based on1 	 2 	 the yht values in the

samples S
1'2' 	 12'S 	 and S 	 they will be correlated with the error components

in (3.37) and (3.38). 3) The derivation of general expressions for the

variances of d 1 and d
2 would thus involve rather messy algebra. In the

following, we shall, for simplicity, neglect the first source of prediction

error by letting a = at (t=1,2). This, of course, 
implies that we proceed

as if the common non-stochastic part of y ht were known with certainty for

all individuals. The variances of the prediction errors then become
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1 ,	 ,2	 1 ,	 2(3.39)	 var d = a --kn -v ) + 
n12

k 12 1	 2
	n-v 	 + n + m]1	 ni	 1	 11

	

+ H-2v 11 - 12	 = Wn
12

(3.40)	 var 2	 1	 2	 1,2= a ( 	 -v )	 -v ) +n +m ]n2 2 22	 n 12 1	 2i

= a
	2 	 2v

22 
v

21 H-2v
22 -2v	 = 142	n 2	 n 12	 21

and their covariance is

2
v 11
n

1

v 12
2

(3.41)	coy (d i ,d = a p (n1 -v 12 )(n 1 -v21 ) 
n -v22 )+ m

n 12
11

= a p 12v21	  + H-v -v -v
n 12	 11	 12	 1 - 2

If p > 0, this covariance is positive, zero, and negative according as

V
12v2 1 >

-
12 < 

v 11 +v 12 +v21 +v22 -H = H-v 1* -v2* .n 

The variance of the error of the predicted change, dA = d -d l , is in this

case

(3.42)	 var d = var d 1 + var d 2-2 coy d ,d )A

2 2v
11

n2	
11	 12	 1 + + v22- -4(l-p)(v +v +v v

n 22-H)

n 12	 1 2-2pv12 v21 +v21 
2 11 = W .A

Like the corresponding variance in case A, given in (3.36), it depends in
4)

a crucial way on the individual share of the total disturbance variance.

1
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4. OPTIMAL CHOICE OF PREDICTORS

MODEL I: CONSTANT EXPECTATIONS

Since the variances of the prediction errors depend on the weighting system

as well as on the composition of the samples, an interesting problem is to

find the optimal choice of these parameters, i.e. the ones that minimize

the variances. Three problems may be defined:

Determination of optimal choice of weights, given the

sampling design.

(b) Determination of optimal sampling design, given the

weighting system.

(c) Joint determination of optimal weighting system and

sampling design.

Moreover, each problem may be discussed fram the point of view of predicting

Y and of predicting AY. We shall not be concerned with problem (b) in the

following, but concentrate on (a) and touch (c) briefly.

Case A: v
I*

=v =0

Fram (3.32) and (3.33) it follows that V I and V2 are minimized for

n
k=k 

*
- 
	1 

r 1 	 n 1 +n 12

and

n2 
k =k 

*
-2 2 n

2+n 12

respectively. This implies, cf. (3.24) and (3.29), that each observation

in period t is given the same weight, H/(nt+n 
12)("/'2)'

 regardless of

whether it comes fram an individual which is observed once or twice.

These weights will not, however, minimize the variance of the error of

the predicted change, V. Fram (3.36) we find that this variance is mini-

mized for
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1-P)[n12+n2("-P)]

	

k	
1 

	

1	 1
(n 1 +n

12
)(n

2
+n

12
)-p

2
n n

2

n2 (1-P)[n 12 +11 1 (1+P)]

(n +n )(n +la )-p 2n n1	 12	 2	 12	 1 2

A	 .
We see that k

t (t=1,2) attains its maximal value, k
t
*, for p = 0 and

decreases monotonically towards zero as p goes to 1: The larger the indi-

vidual part of the disturbance variance, the larger weight should be given

to observations from individuals observed tWice and the smaller weight to

those observed once when predicting aggregate changes.

To simplify, we now assume that the same number of individuals is observed

in both periods, i.e. n =n
2
 =n. Let N=n+n

12 
be the sample size in each

1 
period and c=n12 /N the share of the samples which is overlapping. Then,

(4.1)	 k	 = - 1 -c,n+n 12

(4.2) A	 A A • 	n(1-p)
k =k =k - no _p)41112

(1-0(1-0
(1-c)(1-p)+c

Values of k * and k for selected combinationsof c and p are given in table

Let Vt (k,c,N) and VA (k,c,N) denote the variances Vt and VA considered as

functions of k,c, and N, i.e., from (3.32), (3.33) and 3.36),

(4 .3 )

2	 H k2	
(1-k)

2
V
t
(k,c,	 = a H E -{----- +

N 1-c	 c
(t = 1,2)

(4.4) k
2

(  -k 2
k,c,N) = G

2
-p)H[ H

N (1-c)(1-P) r 	c

Their minimum values are, respectively,

H
V
t
 (k*

"
c N) = a2 H [ Tr.
 N

1 ,c,N) = 2a (1 -p)H [ 
N 1-p+pc

(t = 1,2)

k



_
H 	 (k*,c,N) 	 37 • 

1-pc
1...p 	1

- "(4.7)
N

)
v (k 2 c 2 N) 	 • l _p+pcA

A 	 H 	 1 1
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We note that the minimum value of V
t 

is independent of c, i.e. it is impossible,

by changing the composition of the sample, to get a better prediction of the

level of Y. The prediction of the change in Y, however, can be improved upon

by changing the sample design-2 V (k, c,N) is a decreasing function of c whenA 
p is positive. Thus, given the total sample size, we will obtain the best

predictor of AY by letting c = 1, i.e. by using identical samples in the two

periods. Or stated differently: Since N(1-p+pc) = n(1-p) + n
12' 

a change

in the sampling design such that n is decreased by -An units and n
12 

is in-

creased by (1-p)An units will leave VA unaffected. One observation fram 
an indi-

vidual observed once has the same "value" as (1-p) observation from an indi-

vidual observed twice when predicting AY. The minimum variance is
A

VA (k 2 1,N) = 2a2 (1-p)H(H/N-1), which is 2(1-p) times the error variance of

the optimal predictor of Y.

In the following, we shall refer to the predictors based on k=k * as the

unweighted and those based on k=kA as the weighted predictors, since the

former gives all observations the same weight, whereas the latter does not.

The relative prediction loss incurred by using the unweighted instead of the

weighted predictor of AY can be expressed as

Function values of X for H/N = 1005) are given in table 2. We see that the

loss of efficiency may be substantial. If c = 0.5 and p = 0.9, X is larger

than 3. The optimal choice of k in this case is k
A = 0.09, whereas k* = 0.5,

cf. table 1. When H/N is sufficiently large, we have approximately

X:14'(c ,p)
-Pc) (1-p+pc) 

-p

where obviously M(1-c,p) = X t (c,p). This function attains its maximal value,

(1-p/2) 2/ (1-p), for c = 1/2, i.e. it is when (approximately) one half of the

sample is observed once and the other half is observed twice that we will

obtain the largest gain by using the weighted predictor instead of the un-

weighted one.

X=X(C,P,-- -

We can derive A similar expression for the prediction loss of Y. The relative
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prediction loss obtained by using the weighted instead of the unweighted

predictor of this variable is

(4.8)	 11=14(c,
V
t
(k,c,N)

V(k* ,c,N)

H (1-c)(1-P)
2
 +c 

,N (1-o+pc) 2

H
-ST

Values of this function for H/N = 100 are given in table 3. We see that

the loss of efficiency may be substantial in this case as well - in parti-

cular when p is large and c is small. There may thus be a conflict between

the optimal choice of predictor for the level of Y and for its change, AY.

The conflict is more likely to arise the larger is the individual share of

the total error variance, p, and the smaller the fraction of the samples

which is overlapping. The only way in which it can be resolved is by

letting all individuals be observed twice (c = I), in which case k* =0=0

and X=11=1.
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Table 1. Optimal choice of k for predicting levels (k *) and changes (k A).

Overlapping share
of each sample,

Individual share of error variance, p

0.1 0.5 0.9

k* k k* -

0.1

I 	 0.5

0.9

0.90

0.50

0.10

0.89

0.47

0.09

0.90

0.50

0.10

0.82

0.33

0.05

0.90

0.50.

0.10

0.47

0.09

0.01

Table 2. Relative prediction loss by using the unweighted instead of the

weighted predictor of AY, X=X(c,p,H/N) . HiN = 100.

c

,

P

0.1 0.5 0.9

0.1 1.001 1.05 1.73

0.3 1.003 1.11 2.71

0.5 1.003 1.13	 . 3.04

0.7 1.002 1.11 2.71

0.9 1.001 1.05 1.74

Table 3. Relative prediction loss by using the-weighted instead of the

unweighted predictor of Y,.11=11(c,p,H/N) 	 H/N = 100.

c

P

0.1 0.5 0.9

0.1 '.	 1.001 1.08 3.04

0.3 1.002 1.13 2.26

0.5 1.003 1.20 1.68

0.7 1.002 1.07 1.32

0.9 1.001 1.03 1.09
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Case	 B: v v	 > 01*'-2*--

We now relax the zero restrictions on v 1* and v2 , . From (3.39) and (3.40)

it follows that W I and W2 are minimized for

11 = n 1'v 12 = n 12' v1 	H-n 1 -n 12 = n2 
+ m,

(4.9)

22
 = n 	 21 = n 12' v2* = H-n -n1 = n 1 + m,

respectively. From (3.24) we see that this implies that all the indivi-

duals actually observed are represented by the observed values in the pre-

diction formulae, whereas those not observed are represented by the (estima-

ted) value of their common expectation.

This simple predictor will not, however, minimize the variance of the error

of the predicted change. Fram (3.42) we find that WA is minimized for

v
11 -- n 1 (1 -p) , v 12V.,, 	 n12, V 1* = H-n 1 (1 -0-n 12 = n2 +m+pn 1 ,

(4.10)	
= 

v	 = n (1 -p), v	 = n	 v	 = H-n (1-p)-n	 = n +11m+Pn22	 2	 21	 12'	 2*	 12	 1	 ' 2*

Inserting these values in (3.25), while using (3.2) and (3.3), we find that

the optimal predictor of AY can be written as

-	 H-
AY = Pqh ,

h=1

where

AYh= Yh2 Yhl
	 hES 12

AYh= a2	 (Pa l 4- (1-p Y 1 )

	 hES 1

AYhm (Pa2	 (1-P)Yh2 ) - a l
	 hES2

-4h= a2	 a l
	 hES *,.

The interpretation of this is that the individuals observed twice should be

represented by their observed values, whereas each observation from those

observed once should be replaced by a weighted average of the observed value

and its estimated expectatiOn, with weights equal to (1-p) and p ,respectively.

All missing observations should be represented by their estimated expectation.

Thus, the larger is p, the less useful are the observations from individuals

observed once when predicting aggregate changes.
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Assume, as before, that n 1 =n2=n and let N=n+n 12 and c=n 12 /N. The minimum

values of W
t 

(t=1,2) and WA are then, respectively

(4.11) 	 W
t
min = a2 (H-N)
	

(t=1,2),

(4.12) 	
WA
min = 2a2 (1-p)[}1-N(1-p+pc)].

Again, we note that the variance of the prediction error of AY is a decrea-

sing function of c, and attains its minimum, 2a
2
(1-p)(H-N), for c=1. The

minimum values (4.11) and (4.12) are less than the corresponding minima

in case A, (4.5) and (4.6); their ratios are N/H and N(1-p+pc)/H, respec-

tively. This is not surprising since the predictors in case B utilizes

knowledge of the expectations a
1 
anda2 , which the predictors in

case A neg1ect.
6)

Let Wt
A 

denote the value of W
t 
when using the weights (4.10) and, corre-

spondingly, W 	value of WA based on the weights (4.9). Fram (3.39),

(3.40 ), and (3.42) we find

(4.13) 	
Wt

A
= Wt

m
in 

+ a2 p2 (1-0N,

*(4.14)	 W	 - W minA 	4- 2p 2 (1-c)M.

In this case, as in case A, the loss incurred by using the "wrong" pre-

diction formula is larger the larger is p and the smaller is c. Only when

c=1, there is no conflict between the optimal choice of predictors for Y

and AY.
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5. ESTIMATION AND PREDICTION

MODEL II: LINEAR REGRESSION

5.1 The aggregate variables 

We then consider the case where the systematic part of Yht in (2.3), ah ,

7)
is related to an observable variable xht•	 The relationship is assumed

to be linear, a
h =a+ax	 i.e.ht'

(5. 1) = cx -fix +p +y
ht h ht (h= ,...,H; t=1,2

where a and ß are unknown constants and x is stochastic and uncorrelated

with the disturbance components 
11h

 and vh	8) Eqs. (3.6) - (3.8) should then

be replaced by

(5.2)

(5. 3)

_
= a+aX

t
+p+v

t'

= a+ISR_( .)+171(S.)4 (S.),
El	 1 	 tl

(5.4) yt (S*) = a+aX.
	* 	 * - *
	S 	 S )+y S ) (i=1,2,12; t= 1,2),

where the 171's and TPs are defined as in (3.9 )-(3.14) and

H
(5.5)	 R =	 E xhtt	

h=1

(5.6) = —
1 

E 
h tn. hES.

(5.7)
t
(s*) 	 z

m hES* L"' •

We have 'oint observations on y
ht and xht from all individuals in the

. 
samples.
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5.2 Estimation

The parameters ot,a,p,and u
2 

can be estimated by means of the Maximum Likeli-

hood principle in a similar way as the estimation of a 1,a2' p, and a2 in

model I; see section 3.2. 9) The iterative algorithm consists in switching

between GLS estimation of a and ß, conditional on p and a2 and estimation
^ -

of p and a
2 , conditional on a and ß. Let the estimates be denoted as a,Ø,

ST, . and a .

5.3 Prediction

We now turn to the problem of predicting the population totals Y 1 = HY 1

and Y2 = 2' and their difference AY = Y
2-Y 1 	The information available

for	 prediction in this case is the values observed of Yht and xht and
the estimates a,f3 and p. We define the following Predictors:

= v
11

1. 1 (S
1
) + v

12 1 (S12 ) + w 11 {a431 1
(S 1 )}

•
w

12 {00-6X (S 12 )}

(5. 8)

= v "is (S21 2 12 2(s2)	 w21{;422(s1 )}

w22 {&+ 2 (S 2 )}

where the v's and w's are suitable 	weights. These predictors are

linear combinations of the y values observed and estimates of their (uncon-

ditional) expectations, with different weights assigned to individuals

observed once and twice. When the w's are allowed to be different from

zero,	 and 72	define	 combined model and design based predictors

since they utilize information on the sampling design along with infor-

mation on the mechanism which connects the y's and the x's. The correspon-

ding predictor of AY is

(5.9) = v222 (S2 )	 v 11 -i 1 (S 1 )	 v21 7P12 ) - v1	
(S12)

4. (14 21	 w22 	 w 12 	 w 11 )&

S )15.
4" {142f 312 (5 12 	 /422 2 2 	 12 	 12	 11(S 	 w 	 cs ) 	 w



-25 -

Using (5.2) and 5.3), we find that the prediction errors of Y and Y2 
can

be written as

(5.10)
	

=1.-Y1 = (v11"12 -'7 11 4"wi 
-H)a + (Q 1 -HR 1 )

+ (w +
11	 I )(;-0 )

	{wiiRi(s ) 4- wi2x i )1 (Š -13)

+
1	6- H1-4 ,

(5.11)
	

= ; -Y2 = (v 1 4-v22 4-w21 4v22 -H)a	 (Q 2 -HR2 )

+ (w21 + w22)(Œ-a) + {w21	 (s 12 ) + w22"R 2 (S 2 )1( - Ø)

where

(5. 12)

= ( 11 +w11 )1R (S ) V I	 1 
))7 1 (S; ),

Q2
	

1+w21 ) x2 ( s1 )
	

2 4-w22

and U 1 and U are defined as in (3.28).

We impose a similar restriction of unbiasedness on the weighting system of

these predictors as in model I (cf. 3.29)), namely

(5.13)	 v +v +w +w = v	 + +11	 12	 11	 1	 1	 w21 w2

which implies that the first term	 in (5.10) - (5.11)

vanishes. The second term represents the errors in the exo-

genous variables; Q -HR is the difference between the predictedt	 t
and actual value of its population total in period t (t=1,2).	 These

errors can be controlled by changing either the sampling design or

the weighting system, since Q
1 and Q2 depend .on these parameters.

Thirdly, the effect of	 the errors in the estimates a and (3, can be

controlled by changing the weights w. . (The estimates, of course, are
ij

affected by the sampling design.) Finally, the disturbance components in

the regression equation give the same contribution to the prediction error,
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■MMI 	 WIMP

Ut-H(11+v
t
) (t=1,2), as in model I; cf. (3.37)-(3.38). As	 noted in sec-

tion 3.3, this error will be affected partly by the sampling design

and partly by our choice of weighting system.

The sampling design thus affects 	 the total prediction error through

several "channels". For simplicity, we assume in the following that the

samples are so large that the errors in the estimated regression coeffi-
Alb	 016

cients can be neglected; i.e. we let a=ot and 	 The prediction errors

for the level of Y
1 
and Y

2
 then become

(5.14)

with a

(5.15)

where

(5.16)

and

(5.17)

d
t 
= R

t
ß + u

t
	 (t=1,2),

corresponding error for the change AY equal to

dA = d2-d 1 = (R2-R1 " 11. 11 2 -11 1 ,

R = Qt-HtRt  

■ ■

u
t 

= U
t
-H(11+vt )

•
	

(t=1,2)

(t=1,2).

5.4 Distribution of the exogenous variables and the prediction errors

Fram the assumptions made so far, we can only draw conclusions on the pre-

diction errors dd2' and dA which are conditional on the values of the

exogenous variable xht , i.e. conditional on R 1 and R2. This discussion

would 'proceed exactly as in case B in section 3.3, and we shall

not repeat it here.

In order to focus more specifically on the effect of variations in the

exogenous variable, we now make the following assumption about its

distribution (or the "super-population" model which generates x
ht

):

All x's in period t have the same expectation,
 t' 

and satisfy the

following variance components specification:



where nh and K are uncorrelated with 11 and vht 	 h 	 h
and
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(5.18)
	

+ 	 +
ht
	 (h1,..., H ; t=1,2),

(5.19) E(n ) = E(Kh 	 t -= 0,

(5.20)

2
E(n n ) = 	 Th h' 	 hh' 	 '

E(11
h 
K
h't 

) = 0,

E(K K 	 ,)
ht h't 	 tt'TK  

2  

5
 hh' and 6
	 denoting, as before, Kronecker deltas.

10) 
This implies

tt'

(5.21) cov . (xht ,xh , t ,)

T
2 for h'=h, t t =t

P xT
2

for hf=h, t'*t

0 	 otherwise,

where T2 T
2 

+ T<2 , and p = T T
2 . The latter ratio obviously has the

n 	X	 T1
alternative interpretation as the	 coefficient of correlation

between x
hl 

and x
h2 . Furthermore, we assume that the sampling design is

independent of the vcaues of the individual components nh
•

In the following, we shall let "IS" symbolize conditioning on the sample
S=S1 US 12 US 2 .We shall interpret this not asconditioning on the values of

xht fram the individuals inthi's sample,butas conditioning with respect to

the individual components of xht and of the regression disturbances

of all individuals in S, i.e. "IS" is a shorthand notation for "In 	 .hES".h' h'
What we do is thus to condition on the part of the regressors and disturbances

which are particular to the individuals actually observed, and hence can

be "controlled" by means of the sampling design.

From (5.5)-(5.7), (5.12), (5.13), (5.16),and (5.18)-(5.20) we then obtain

E(R
1 IS) = (v 11 +w 11 -n 

)Ti(S1)+(
 1 

+w
12-n 1 2) ( S 12

)-n2
17(S

2
) = A

l'
(5.22)

E(RIS) = (v 	 -n n 	 21 +w 21 	 1 ) 	 1 )+(v+ 	 -n2 ) -1- (S 2)-n 1
71(S

1
) = A

2'

and
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2 	 2
(

var (14,
1
IS) = T 2 [(1-px){	v 11 +w 11 ) 	(v12+w12) 

n 1
n 12 	

- 11} + px
m] = C6

	N 2 	 N2

(5.23) 	 var (IS) = T
2 [(1-p ){

(v21+1421' + 
\
( 
v22114221 - 111 + p

x
m] = C 2 'x 	 n 12 	 n2

cov (R 1 ,R2 1S) = T 2 pxm = C 12'

where ii(S.) =-
1
-- 	 (i=1,2,12), and A

t 
and Cts are 

defined by the last
ni hES. nh

i.

equalities. In a similar way, (2.5), (2.6), (3.9)-(3.14),0.28),and (5.17)

imply

E(u l lS) = (v 11 -n 1 )1
-1(S 1

) + (17
12-n 12 )171(S 12)-n 	 S

(5 . 24 )

E(u2 IS) = (1721 -n 12 )17(S 12 ) 	(v22 -n2 )5(S 2 )-n 171(S 1
 ) = B

2'

and

ç var (u

(5.25) 	 var

coy (u

11
2

v
12

2v
= a2 [(1_p){___

n 1 	 n 12

S)

	2 	 2
rv 	v	21	 22

= a
2
i( 1 -0 1- n2n 12

u2I S) = a2
 
pmpm = D

12'

+ 
H-2(v 11 +v12)1

	Pm] = D1 1'

+ H-2(v i +v2 )1 + Pm = D22'

where Bt 
and D

ts 
are defined by the last equalities.

We can now write the expectations and variances of the prediction errors,

conditional on the sample, as follows

E(d i lS) = r3A1 4. B l'

(5.26)
	

E(d2 IS) = 13A2 + B2 ,

E filS = 3(A2-A 1 ) + B2 - B 1 ,

and
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(var d
11 

+ D II'

(5.27)
	

var (d IS) = 2
C22 

+ D
2

var (d IS) = 2 (C
GI 	 11 4. 22 	

2C12)
(D11 4. D 2 - 2D 12 ).

12

Since A
t 
and B

t 
are different fram zero, the same will, in general, be the

case for the conditional expectations of the prediction errors, (5.26).

The values of these expectations reflect the values of nh and Lill

of the individuals in the sample.

Since, however, E(At ) = E(E(Rt IS)) = 0 and E(B
t ) = E(E(u

t
IS)) = 0 in view

of (5.19), (2.5), and our assumptions about the sampling design, we have

-(5.28)
	

E0c1	 E(ci 2 	 E(d) =

i.e. unconditionally, the predictors 	' 2 and a are unbiased. The un-

conditional variances of the prediction errors are

var (d ) = E lvar (d IS)] +vartE(d

=
2{ 

11
+ var (A )} + D 11 + var B

(5.29)	 var (d	 Elvar d IS)] + vartE(d2 ISM= 

= a
2
{C
22 

+ var (A )} + D
22 

+ var (B
2

)
'

var (d )=
2 	

11 + C22 - 2C 12 + var A
1
 ) + var (A

2
)-2 coy (A ,A2 )1

+ D
11 + D22 	 D1 

+ var (B 1 ) + var (B )-2 coy (B 1 ,B2).

There is an important difference between conditional and unconditional in-

ference in this case. All the conditional variances (5.27) depend on Px

and p, since C
s
 and D

ts 
are functions of these parameters. The same ist

true for the unconditional variance of d 	 The unconditional variances of

d 1 and d2 
in (5.29), however ,will be independent of p and p 	 since it

x'
is easy to verify that the terms including px in Ctt cancel against the

the corresponding terms in var (At) and that the terms including p in Dtt

cancel against those in var (B
t
) (t=1,2) ;cf. (6.2) below.
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OPTIMAL CHOICE OF PREDICTORS

MODEL II: LINEAR REGRESSION

The variances of the prediction errors, given in (5.27) and (5.29), repre-

sent the joint effect of the random disturbances in the regression equation

and the stochastic elements of the exogenous variable xht • Let us now

examine the optimal choice of predictors 	 on the basis of tftese formulae.

6..1 Conditional prediction 

Consider first the problem fram the point of view of conditional prediction,

Lu the sense defined in section 5.3. Since D
tt 

in (5.25) is independent of

xix-
ts
 and since

tt
/3w

ts 
= aC

ttts 
(t=1,2; s=1,2), we find, by using simple

calculus, that the values of vts and wts that minimize var (d 1 1S) and
var (d2 IS), subject to (5.13), are, respectively

H v
11 

= n
1 '
w
11 

= n
1 

[ 
n1+n12    

1 v - n 12 w12 	 n 12 E n

	

1 	 12     
(6).1)

H 
v21 = n 1 'w21 = n1 n

2
+n

12
22 - n2'w22 - n2

[ H 

n2411 12

Mbreover, exactly the same choice of , weights will minimize var (dIS). This

follows from the fact that neither of the covariances C
12 

or D
12 

in (5.27)

depends on v
ts 

or w
ts' 

and so they can be disregarded in the process of

minimization.

Our conclusion, then, is that although the conditional variances of the

prediction errors depend on p
x 

and p, the optimal choice of weights for con-

ditional prediction will not be affected by these parameters. The intuitive

explanation of this is, of course, that in the conditional distribution,

where nh and ph are treated as fixed, all xht and cht will be uncorrelated,

and so the composition of the sample between individuals observed once and

twice will have no effect on the prediction performance. At the same tite,

in the conditional distribution, the individual components nh and ph will

become part of the intercept term of the regression equation, which explains

why the predictors come out as "conditionally biased" in this case, cf.

(5.26).
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6.2 Unconditional prediction 

From (5.22)-(5.25) and (5.29) we find that the unconditional variances of

the prediction errors d 1 and- d 2 can be written as

(v 12 +w i 2 ) 2(v
11 +w 11 )2

var (d ) = T 2 ,3 +

2 

- H +W
1 	 n 1 	 n

12
1

var (d2) = T

2
8
2 (v2141421)

2 

4-
 (v224v22) 

- H] + W2
	n12	 n 2

where W
1
 and W

2 
are defined as in (3.39) and (3.40). These variances

attain their minima, subject to (5.13), for the same choice of weights,

(6.1), as in the corresponding problem of conditional prediction. Recalling

(5.8), we find that (6.1) implies that the nt+n

period t are included with full weight in the predictor for this period,

whereas the H-nt-n12 individuals unobserved are represented by the (esti-

mated) value of E (Yht) with xht set equal to its sample average, i.e.

(6.2)

12 observations on 
Yht from

The optimal procedure for predicting Y 1 and Y2 in the regression model is

thus very similar tà the optimal predictor in model I,(4.9).

Furthermore, the unconditional variance of dA is

(6.4) 	 var d = T 2 ( 11 +w11 )

n 1

(v +w22 22
n2

- 2(1 -ç )H

1+ 	 r 07 1 2 4. w 1
1'12

2
1 	 w 12 )(v21 + w21 )x 

+ (v
21 + w 1 1]

where WA is given by (3.42). Obviously, minimization of this variance with

respect to the v's and w's isrot equivalent to minimization of WA ; i.e.

the distribution of the exogenous variable in the regression equation wilZ

affect the optimal choice of predictor of AY in this case. Assume again,
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for simplicity, that the same number of individuals is observed in both

periods, i.e. n 1 =n2=n. The values of vts and wts that minimize this

variance is

/ v 11 =v22=n(1-p),

=v =n	1	 21	 12

(6.5)
H(1-Px)
	  -(
n(1-P)+n	 0-01,

x	 12

H 	w	 [12 21 1 n(1-px)+n 12

Inserting these values in (5.9),we find that the optimal predictor can be

written as

(6.6) = n 12 di (S 1 ) + n(1-p)r 2i (S 2 ) - 1-12 (S )}

+ np3a2 (s 2) - R i (s 1 )1

+ [H-n-n 1 ]f36,5E + npxaAR ,

where

1

n i2 

x12
 AR(S 12)n(1-P )+n

This predictor implies that the individuals observed twice are given full

weight, as in model I, cf. (4.10) (first term), whereas those observed once

are represented by a weighted average of their observed value (second term)

and the estimate of their expectation conditional on the values of xht from

these individuals (third term), with weights equal to 1-p and p, respectively.

Each individual not observed is represented by the estimate of the expected

increase in y, E(y z-v.-	 ) with xh2 -xn1. set equal to a AR, which is an 
weighted average of the predicted increase in x based on observations from

all individuals in the sample (fourth term). The relative weights assigned

to individuals observed once and twice in this average depend on p , thex
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individual share in the total variance of xht' cf. (6.7). Finally, the

fifth term in (6.6) "corrects" for using an inoptimal predictor of the

increase in x in the third term of the prediction formula.

We see that observations on x
ht 

and y From all individuals -
ht

observed once or twice - are elements in the optimal predictop of LY in

the general case where 05.p<1 and

	

	 <1. In certain particular cases, how-,

ever, we will only make use of information on either the y's or the x's

from the individuals observed once, but we will always need all information

from those observed twice. 	 The following examples illustrate this point:

p=p =1:ad = n 12 g(S12 ) + nKii 2
(S )-3Z 1 (S 1 )1+ [I-1-n 12] (363(S 12 ),

p=1,px=0:63# = n1 2g(S 12 ) + n13{R2 (S 2 ) -R 1 (S 1 )1.

[  H
n.+111 2 	

11i3n[R2(S2)-R1(S1)] 	
nl A5Z(S12)1

P= ,p =1:a'= n 12 g(S12 ) + n{"i 2 (S21 (S )1 + [H-n 1 ]ßAR(S 12 ).x 

The larger is P, the less useful will be the observations on 
Yht from the

individuals observed only once, the larger is p, the less useful will bex
the observations on xht from the same individuals.

The crucial role played by p and p in the optimal predictor of AY can bex
explained in a slightly different way. From (6.5) it follows that

v
11 	 v22 	 n

(1 -p) ,••■•••■•■■• =  
v
12 	

v21 	 n I2

v 11 "4 11 	v22 +14722 	n

v1241412 	 v 21 +w 21 	 n12

i.e. the relative weight given to observations on yht from individuals ob-

served once and twice depends on p only, whereas the relative weight

assigned jointly to observations on y 	estimates of E(y) based on

the xht observed for the same individuals depends on px only.

Let, as before, N = n+n 12 and c = n 12 /N. The minimum value of var (dd can then

be written as
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(6.8)
	H 	 1 var (d ) min= 2T22 (1-p )1.1[--	 •	 - 1] + 2a

2 (1-p)(H-N(1-p+pc)].A 	 x N 	 1-p +p c
XX

Since both terms in this expression are decreasing functions of c if either

px or p is positive, we can always obtain a better prediction performance by

increasing the share of the sample which is observed twice. The minimum

value, for c=1, is 2T 2 3 2
(1-px)H(H/N-1) + 2a

2
(1-p)(H-N).

Let var (d ) * denote the value of var (dA) when all individuals are given

the same weight in the prediction formula, i.e. when using (6.1). We find

(6.9)
p c(1-c)

var (dA ) * = var (d) min + 2T 2 H 
 X

1p +p c 	 a
22

( -c)N.- 
x x

The loss of efficiency is larger the larger is px and p and the smaller is c.
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7. CONCLUDING REMARKS

In this paper, we have been particularly concerned with the interplay be-

tween the sampling design and the covariance structure of the data vector

when predicting an aggregate variable y from sampling survey data.	 One

conclusion is that the optimal choice of predictor, i.e. the one that

minimizes the variance of the prediction error, will not, in general, be

the same when predicting the aggregate level of Y and when the purpose

is to predict its aggregate change. 'In the latter case, in contrast to

the first, information on the relative share of the individuals which are

observed twice as well as on the share of the variance of y which is due

to individual differences, play a crucial role in the optimal prediction

formula. Hence, these parameters become key parameters when assessing the

potential gain which could be obtained by changing the sampling design.

This is by no means a point of academic interest only. An empirical study

of consumer demand in Norwegian households based on rotating panel data

fram the years 1975-1977, gave estimates of the individual share of the

total disturbance variances which extended fram zero to about 0.7. For 22

of 28 commodity groups - accounting for about 85 per cent of the budget of

the average consumer - the estimates were significantly different from zero.

(Biorn and Jansen (1982, section 7.5).)

Furthermore, we have shown how observations on a variable x which is related

to y through a linear regression equation may be used to improve the predictor

of the latter variable. In this case, px , the individual share of the

variance of. x, turns out to be a crucial parameter in determining the optimal

predictor for the change in y.

Anotner 	 conclusion is that when individual specific components are present,

we can always improve our predictor of the change in y by increasing the

share of the individuals which are observed twice, given the total sample

size. The variance of the prediction error will then take its lowest value

when all individuals are observed twice, and in that case - and only then - will

there be no conflict between the optimal choice of predictor for the level

of y and for its change. It should be recalled, however, that this conclusion

rests on our simplifying assumption that errors in the estimated structural
404, 	 oft.

	 oft

coefficients (i.e. a 1 and a2 in model I, a and (i in model II) can be neglected.

It may well be modified in small sample	 situations
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when such errors are taken into account. If, for instance, we can increase

the spread in the data by increasing the share of the individuals which

are observed once, we may obtain better estimates of the structural coeffi-

cients, which in turn may lead to the conclusion that a design with some

degree of rotation may be the best compromise design for prediction purposes.

This problem deserves further research. However, as the algebra seems to

hecome rather messy, Monte Carlo experiments may be the only feasible

approach. The models we have considered here are the simplest possible,

and more general situations may be well worth investigation. An obvious

extension would be, with basis in the general framework outlined in section

2: 	 consider a situation with more than two periods involved and in which

some individuals are observed more than twice. Another interesting generali-

sation might be a situation in which there exists summary information on

the regressor variable x for (some of) the individuals outside the sample, in

addition to the joint observations on y and x from those included in the

sample.

---o0o---
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NOTES

Confer Bi0rn (1981, p. 17).

See BlOrn (1981, pp. 26 -27).

3) No such correlation would exist, however, if the estimates of a1 and

a2 were based on data fram independently drawn samples which were

non-overlapping with S 	or S 12 •

4) Not surprisingly, we find that W W 2 , and W 	 with V 1 , V2 , and

when v 11 =k 1 H, v12=(1-k1)H, v22 =k 2H ' v21 =(1-k 2 )11 *

5) Since X is rather insensitive with respect to the value of H/N, pro-

vided it is not too small (less than 50 say), the figures in table 2

are valid approximations to the exact X over most of the relevant

range of H/N.

6) These ratios overstate the gain which can be obtained in practical

situations, since a 1 and a will have to be estimated from the data.

For simplicity, we confine attention to one regression variable only.

The generalization to multiple regression models is straightforward.

8) Assumptions (2.5) and (2.6) then hold conditionally on the x's, which,

of course, also implies that they hold marginally.

We implicitly assume that a,a,p,and G2 are not parameters in the distri-

bution of the x's, so that the ML estimates can be obtained by maximizing

the conditional density.
10) Note that xht in this model is generated by the same kind of mechanism

as yht in model I, cf. (2.5)-(2.6).
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