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Abstract. We analyze the effects of R&D-driven automation on economic growth,

education, and inequality when high-skilled workers are complements to machines

and low-skilled workers are substitutes for machines. The model predicts that

innovation-driven growth leads to an increasing population share of college grad-

uates, increasing income and wealth inequality, and a declining labor share. We use

the model to analyze the effects of redistribution. We show that it is difficult to im-

prove income of low-skilled individuals as long as both technology and education are

endogenous. This is true irrespective of whether redistribution is financed by pro-

gressive wage taxation or by a robot tax. Only when higher education is stationary,

redistribution unambiguously benefits the poor. We show that education subsidies

affect the economy differently depending on their mode of funding and that they

may actually reduce education. Finally, we extend the model by fair wage concerns

and show how automation could induce involuntary low-skilled unemployment.
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1. Introduction

Common wisdom in growth and labor economics suggests that technological progress

is labor-augmenting. Accordingly, technological progress developed by market R&D and

incorporated into new machines complements human work effort and makes workers more

productive. In this paper, we look at the dark side of R&D-driven technological change and

consider a situation in which new technologies complement only high-skilled workers but

substitute for low-skilled workers.

In contrast to other recent studies on automation and growth (to be discussed below), we

consider an overlapping generations structure of the population and focus on endogenous

education decisions and the effects of policy responses that are often suggested as an answer

to the challenges posed by automation. Since (at least at the current state of technology)

high-skilled labor is more difficult to automate than low-skilled labor, people may avoid the

downside of technological progress and enjoy its benefits by upgrading their skills. We show

that an increase in the skill premium due to automation motivates an increasing share of

people to obtain higher education in the form of a college degree. However, in a heteroge-

neous society, not everybody is able or willing to obtain higher education. Due to ability

constraints, some individuals do not manage to acquire higher education and are left behind.

In this way, R&D-based growth leads to increasing income and wealth inequality from one

generation to the next and, in an extension of the model, to increasing involuntary unem-

ployment of low-skilled individuals. We implement redistribution policies, financed by labor

income taxes or robot taxes, and show why it is difficult to improve the disposable income

of low-skilled individuals as long as both technology and education are endogenous.

The most popular discussion of skill-biased technological progress is perhaps provided by

Goldin and Katz (2009), who argue that America has lost the “Race between Education and

Technology” because high school completion rates have stagnated since the 1950s. However,

as emphasized by Acemoglu and Autor (2012), this loss is relative because the underlying

model assumes that low-skilled labor also benefits from innovation but to a lesser degree than

high-skilled labor. Here, by contrast, we conceptualize individuals with tertiary education (a

college degree) as high-skilled workers. These workers are complements to machines and their

wages as well as their share in the workforce increased throughout the 20th century. The

race against technology is lost by those individuals who do not obtain a tertiary education

and whose wages do not benefit from automation.

Another important distinction from Goldin and Katz (2009) is that, in their study, educa-

tion and technology are treated as being exogenous such that education could win the race

against technology. In our framework, by contrast, both forces are endogenous. Skill-biased

technical change promotes education and more education, in turn, leads to more R&D, more

1



innovation, and further advancements of technology. The outcome that education fails to

keep pace with increasing skill-biased technological change derives from the fact that tech-

nology advances perpetually, whereas the labor share of high-skilled individuals converges

to an upper limit.

The idea of labor-substituting technological progress has been popularized by Brynjolfsson

and McAfee’s (2011) book on another race, the “Race against the Machine”. Brynjolfsson

and McAfee claim that technological progress, understood as automation, makes people more

innovative, productive, and richer but at the cost of increasing unemployment and (wealth)

inequality. Early quantitative evidence for this view stems from Berman et al. (1998), who

show that around 70 percent of the decline in production workers’ share of the wage bill

is explained by R&D and computerization. Goos et al. (2009, 2014) and Autor and Dorn

(2013), provide evidence for the phenomenon of wage polarization, i.e., that routine tasks

in manufacturing are more and more performed by robots, which drives low-skilled workers

out of manufacturing and into the service sector. Since service sector jobs are typically

paid less well, this process leads to a hollowing out of the middle class.1 More recently,

Graetz and Michaels (2018) provide evidence that industrial robots lead to a reduction in the

demand for low-skilled labor; Frey and Osborne (2017) argue that the average educational

attainment of an occupation and the probability of this occupation to be automated are

negatively correlated; Arntz et al. (2016, 2017) explain that low-skilled workers perform

tasks that are typically much easier to automate than the tasks performed by high-skilled

workers; and Acemoglu and Restrepo (2017) find that the increase in industrial robots in

U.S. manufacturing had large negative effects on wages and employment across commuting

zones with the strongest wage effects on workers with high school education or less.

To curb rising inequality of living standards, it is seemingly attractive to transfer income

to the losers from automation, perhaps in the form of unconditional transfers financed by

progressive labor income taxation or by taxing machine input, i.e., by imposing a so-called

robot tax (Shiller, 2017; Gasteiger and Prettner, 2017). Here, we investigate the impact

of these policies when both education and technology are endogenous. We show that both

policies reduce education, R&D, and economic growth. Aside from its repercussions on

innovation and growth, redistribution from the skilled to the unskilled may not improve

disposable income of low-skilled individuals in the short and medium run. The reason for

this perhaps non-obvious result is that both a robot tax and a progressive income tax reduce

the potential income gain from higher education, which leads to a larger population share of

1 For tractability and because we are less interested in modeling structural change, our framework does
not feature a service sector that could absorb labor. Extending the model to include a service sector
(with appropriate simplifications in other parts of the model) is a promising avenue for further research on
automation.
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low-skilled individuals. The increased low-skilled labor supply depresses the pre-tax wage of

low-skilled workers. Redistribution to low-skilled workers improves their disposable income

unambiguously only in the long run, when higher education is stationary.

By the same general equilibrium argument, low-skilled wages can benefit from a subsidy

on the education of high-skilled workers. Due to the induced additional uptake of higher

education, low-skilled labor supply declines and low-skilled wages increase. Only in the

long run, when education is stationary, an education subsidy makes low-skilled workers

unambiguously worse off. The impact of education subsidies on economic growth depends on

the mode of their funding. If financed by robot taxation, an education subsidy may actually

reduce education because it depresses R&D, growth, and the demand for high-skilled labor.

If financed by an income tax, education subsidies increase education and growth. Although

this particular policy constitutes a de facto redistribution from the unskilled poor to the

skilled rich, it may not increase after-tax inequality because pre-tax inequality declines due

to the induced higher supply of high-skilled labor.

Rising inequality may also trigger rising unemployment. To investigate this idea, we inte-

grate Akerlof and Yellen’s (1990) fair wage theory into an extension of the model. Automa-

tion increases the productivity and income of high-skilled workers but leaves productivity

of low-skilled workers unchanged. If low-skilled workers receive “neoclassical” wages accord-

ing to their marginal product under full employment, they would perceive the increasing

inequality as unfair and would not exert full effort at work. To elicit full effort, firms might

let low-skilled workers participate in the productivity gains from automation and adjust

their employment accordingly, causing involuntary unemployment among low-skilled work-

ers. This mechanism, however, does not necessarily imply that unemployment increases with

automation. The reason for this perhaps unexpected result is that automation also increases

the skill premium and induces more higher education such that the supply of low-skilled

labor declines. With both the supply and demand of low-skilled labor contracting, the effect

on unemployment is ambiguous. Only when education is stationary, automation and fair

wage concerns imply unambiguously rising unemployment.

Some recent articles have investigated automation in the context of long-run develop-

ment. Hémous and Olsen (2016) and Acemoglu and Restrepo (2018) are perhaps most

closely related to our contribution. Like us, both studies focus on R&D-based innovations

and inequality in the process of economic growth. In both studies, the household side of the

economy is simpler than in our case because there is no education decision and skills are

taken as given by the infinitely living (representative) individual. The production side, how-

ever, is more complex in both studies. Specifically, final goods are assumed to be produced

by a variety of intermediate goods (Hémous and Olsen) or a variety of tasks (Acemoglu and
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Restrepo). Varieties are produced by labor and potentially by (low-skilled) labor replacing

machines. R&D generates new varieties that start out as un-automated. Firms may then

make investments in order to automate the production of their intermediate good. As a

result, low-skilled wages benefit from R&D-based innovations and even automation could

raise low-skilled wages because it encourages more R&D. It is perhaps fair to say that both

theories focus on the production side of the economy and on the question under which con-

ditions (low-skilled) workers could benefit from automation. This justifies a rather stylized

household side of the economy. The race between education and technology, and the impact

of redistribution policies are not the focus of their contributions.

While Hémous and Olsen and Acemoglu and Restrepo assume that R&D creates new

intermediate inputs or tasks in production that start out un-automated, we conceptualize

R&D as the process that creates patents for automation capital. This view is supported by

Mann and Püttmann (2017) who analyzed granted US patents from 1976 to 2014 and identi-

fied automation innovations. They find that the share of automation patents in total patents

increased from 25 percent to 67 percent during the observation period. Acknowledging that

R&D probably generates both un-automated new tasks and machines that substitute for

low-skilled labor, our theory complements the existing literature.2

An earlier related study is provided by Krusell et al. (2000), who discuss capital-skill

complementarity and inequality in a growth model without R&D and TFP growth. Growth

is driven by the accumulation of equipment capital, which substitutes for low-skilled labor

and augments high-skilled labor. The study focuses on mechanisms on the production side

of the economy and considers neither household decisions nor redistribution policies.

Sachs and Kotlikoff (2012) provide a model that discusses, like us, the interaction between

automation and education in an overlapping generations context. However, their framework

as well as their conclusions are different from ours. In their framework, all individuals

are assumed to start their working life as being low-skilled and may later in life invest in

education and physical capital. When exogenous technical advances increase the productivity

2 Other, for various reasons less related studies on automation and macroeconomic performance are provided
by Zeira (2006), Steigum (2011), Peretto and Seater (2013), Benzell et al. (2015), Restrepo (2015), Sachs
et al. (2015), Abeliansky and Prettner (2017), Gasteiger and Prettner (2017), Prettner (2017), Cords and
Prettner (2019), Guimarães and Mazeda Gil (2019), Lankisch et al. (2019), and Venturini (2019). Most of
these studies do not explain technological progress endogenously. Exceptions are Zeira (2006) and Peretto
and Seater (2013), which, however, do not address inequality issues and redistribution. The interaction
between technology, wages, and education relates our paper to the unified growth literature, where one of
the core mechanisms is the rise of education triggered by technological progress (Galor and Weil, 2000;
Galor and Moav, 2002; Galor, 2005; 2011). In contrast to this literature, we focus on tertiary education,
R&D-based growth, and automation through new technologies. In an earlier study (Strulik et al., 2013), we
constructed an overlapping generations version of the Romer (1990)–Jones (1995) R&D-based growth model
with an endogenous education and fertility decision to discuss long-run adjustment processes. However, we
did not consider automation and the evolution of inequality.
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of machines that substitute for low-skilled labor, young individuals respond by investing less

in education. Instead of a race between education and technology, the study thus investigates

a case where the two “runners” move in opposite directions.

Our paper also contributes to the long-standing debate on the interaction between in-

equality and economic growth. While the earlier theoretical literature focused mainly on

the causality running from inequality to growth, where empirical studies found a negative

association (Persson and Tabellini, 1994; Alesina and Rodrik, 1994; Aghion et al., 1999),

the literature related to skill-biased technical change (cited above) argues in favor of the

causality running from growth to inequality and suggests a positive association. Recently,

Piketty (2014) has popularized the view that economic growth reduces inequality in the

context of the neoclassical growth model. Here, we argue that R&D-based growth theory

in conjunction with automation provides a “non-Pikettarian” result: ceteris paribus, faster

growth is predicted to lead to more inequality in labor income and wealth. This finding,

however, does not imply that there is no threat from automation when the growth rate of

factor productivity declines. As long as R&D-based growth is positive, automation causes

inequality to rise.

The paper proceeds as follows. In Section 2, we set up the basic model of R&D-driven

automation. In Section 3, we take the education system as given and provide a series of

analytical results on economic growth and various aspects of inequality along the balanced

growth path. The full model with growth–education interaction is investigated in Section 4.

We calibrate the model to the U.S. economy in which economic growth is roughly constant

during the 20th century and mildly declining in the long run. While our main results hold also

true for the knife-edge case of gradual convergence towards a positive long-run growth rate

(see the Appendix), the scenario of mildly declining growth is better suited to capture the

actual long-run trends. We use this version to investigate the various forms of redistribution

policies mentioned above. In Section 5, we extend the model by fair wage concerns and

involuntary unemployment of low-skilled workers. Section 6 concludes the paper.

2. The Model

2.1. Basic Assumptions. Consider an overlapping generations economy in which individ-

uals live for two periods. They enter the economy as young adults and are equipped with

secondary education (high school or less). Young adults are endowed with one unit of time

and decide whether or not to spend a certain amount η of their available time studying in

order to acquire greater skills in the form of a college degree. The remaining time of young

adulthood is supplied on the labor market. Young adults save for the second period of their

life when they are retired. After the second period, individuals die with certainty. Time t
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evolves discretely with each time step capturing one generation. The working population is

of size Lt and constant. In an earlier version of this paper (Prettner and Strulik, 2017), we

showed that the main results also hold when there is a growing population. Employing the

argument of finite space on earth, it can be argued that the only meaningful long-run steady

state is associated with a stationary population (Strulik, 2005).3

Individuals are heterogeneous with respect to their ability to graduate from college, which

is expressed as the disutility (or effort) entailed by studying. As a result, the society is

divided into high-skilled and low-skilled workers: high-skilled labor, denoted by LH,t, is, as

conventionally assumed, complemented by machines, whereas low-skilled labor, denoted by

LL,t, is substituted by machines. For simplicity, we ignore the potential automation of some

high-skilled jobs by artificial intelligence. Including this feature would provide more realism

to our stylized model but would not change the main mechanisms and results.

There are three production factors, the two types of labor described above and physical

capital in the form of machines and robots. Low-skilled workers are employed in the final

goods sector for tasks that can also be performed by machines. High-skilled workers are

either employed as workers in the final goods sector responsible for tasks that cannot be

easily automated (engineers) or as workers in the R&D sector for developing new technologies

(scientists). In the basic model we ignore the possibility of involuntary unemployment such

that all labor markets clear. The government taxes wage income and/or the use of machines

(i.e., it imposes a “robot tax”) at a constant rate and uses the revenues for redistribution.

2.2. Individuals. Individuals experience utility from consumption in working age and old

age. In period t, the remaining lifetime utility of working-age individuals of type j = L,H

is given by

ut = log(cj,t) + β log(R̄sj,t)− 11[j=H] v(a), (1)

where cj,t is consumption of young adults, β is the discount factor, 11[j=H] is the indicator

function attaining a value of one for those who obtain a college degree, v(a) is the disutility

from obtaining a college degree of an individual with idiosyncratic ability level a ≥ 0, and

R̄ is the gross interest rate on savings sj,t such that cj,t+1 = R̄sj,t refers to consumption in

the second period of life. For simplicity, we assume that the economy is comparatively small

and open to international capital flows to an extent that the interest rate is determined at

the world market.

Higher education requires a constant investment of time such that the time spent on

education is ηL = 0 without tertiary education and ηH > 0 = η with tertiary education,

where ηH < 1. Realistically, not all members of a society are willing or capable to obtain

3 See Strulik and Weisdorf (2008) for a unified growth model that endogenously generates convergence
towards a stationary population.
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a college degree. We model this aspect by assuming that the disutility (or effort) to be

incurred by higher education is declining in ability a. Formally, v(a) ≥ 0 and ∂v/∂a < 0 for

all individuals who invest in a college degree, while v(a) = 0 for individuals who choose not

to invest in a college degree. Moreover, there exists a pole for ability, lima→ā+ v(a) = ∞,

which captures the notion of a lower bound of ability below which graduation from college is

associated with infinite disutility (or requires infinite effort). Consequently, and realistically,

there are always some individuals in society who remain without a college degree.

Instead of considering effort, we could have implemented heterogeneity in education by

time constraints. Individuals of lower ability would then need more time to obtain higher

education and the fact that time (lifetime in working age) is finite would prevent higher

education of some individuals of low ability. These features would produce qualitatively

similar results for the predicted evolution of education and technology. They would, however

imply an implausibly large variation of graduation time across individuals and a secular

increase of average graduation time in the course of economic development.

Let wj denote the wage per unit of labor supply of type j = L,H, τw the tax rate on

wage income, and Tj the lump-sum transfers to type j. The budget constraint that each

individual faces is then given by

(1− τw)(1− ηj)wj,t + Tj = cj,t + sj,t. (2)

Maximizing utility (1) subject to the budget constraint (2) leads to optimal consumption

and optimal savings as

cj,t =
(1− τw)(1− ηj)wj,t + Tj

1 + β
, sj,t =

β [(1− τw)(1− ηj)wj,t + Tj]

1 + β
. (3)

where β/(1 + β) is the savings rate of both types of workers.

2.3. Education Decision. By inserting (3) into (1), we obtain the indirect utility function

conditioned on education. Individuals compare utility with and without a college degree and

obtain higher education if

v(a) ≤ (1 + β) log

[
(1− τw)(1− η)wH,t + TH

(1− τw)wL + TL

]
≡ w̃t, (4)

in which w̃t denotes the net skill premium in terms of utility. Solving (4) with equality, we

obtain the ability level at the threshold above which individuals achieve tertiary education,

denoted by a∗t :

v−1(w̃t) = a∗t . (5)

The threshold is moving over time and declines with increasing skill premium. These con-

siderations are visualized in the upper part of Figure 1. Suppose that the lowest ability level
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is given by zero. Let the cumulative distribution function of ability be denoted by F (a). An

example, is shown in the lower part of Figure 1. A skill premium of w̃t is, via the threshold

level a∗t , associated with a population share F (a∗t ) of low-skilled individuals. A rising skill

premium gradually motivates individuals of lower ability to obtain tertiary education such

that F (a∗t ) declines.

Figure 1. The Education Threshold

F (a)

a∗t a

1

ā

F (a∗t )

v(a)

0 a∗t a

w̃t

ā

Individuals with ability a below the threshold a∗t =
v−1(w̃) remain without tertiary education. A share F (a∗t )
of individuals remains without tertiary education.

2.4. Final Goods Production. The production side of the economy builds upon Romer

(1990) and Jones (1995). Aggregate output is produced with physical capital in the form of

machines and with both types of labor according to the production function

Yt = L1−α
H,Y,t

(
LαL,t +

At∑
i=1

xαi,t

)
, (6)

where LH,Y,t is the part of high-skilled labor that is employed in the final goods sector, xi,t

are machines of the specific type i, α ∈ (0, 1) denotes the elasticity of output with respect

to human labor that can easily be automated, and At is the stock of specific blueprints
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available for the associated machines of type i, i.e., it represents the technological frontier

of the country under consideration. We conceptualize technological progress (a growing

technological frontier A, which is TFP growth) as an increase in the variety of machines in

the production process.4

Let pi,t denote the net price of a unit of a machine of type i and τR the ad-valorem tax on

machine input in production (the robot tax). The factor rewards are then given by

wH,Y,t = (1− α)L−αH,Y,t

(
LαL,t +

At∑
i=1

xαi,t

)
⇔ wH,t = (1− α)

Yt
LH,Y,t

, (7)

wL,t = α(LH,Y,t/LL,t)
1−α, (8)

(1 + τR)pi,t = αL1−α
H,Y,tx

α−1
i,t , (9)

The key difference with respect to the conventional growth literature is that technological

progress (rising A) has a different impact on the two types of labor. As commonly assumed,

it increases the productivity of complementing labor LH and is in this sense quasi labor-

augmenting. However, it leaves the productivity of substitutable labor LL unaffected such

that the relative importance of this type of labor declines with technological progress.

The key difference to related studies on automation (Acemoglu and Restrepo, 2018; He-

mous and Olson, 2016) is that we provide an aggregate view according to which machines do

not replace low-skilled labor in aggregate production. In our notation, the alternative view

would be formalized by a production function Yt = L1−α
H,Y,t

(
LL,t +

∑At
i=1 xi,t

)α
and, depending

on factor prices, production would employ either machines or low-skilled labor. Obviously,

this approach requires a disaggregated view on the production process, where labor-replacing

machines are only available in some sectors of the economy.

Here, by contrast, low-skilled labor is always in demand. Intuitively, when new varieties

of machines enter the production process (A rises) and perform tasks formerly performed

by low-skilled labor, low-skilled workers find employment elsewhere in the economy. We

thus maintain the notion of quasi labor-augmenting technological progress from conven-

tional growth theory. The only difference is that technological progress does not increase

the productivity of low-skilled labor. This can be seen in the low-skill wage (8), which is

independent from technology and determined just by the relative skill supply. High-skilled

labor, by contrast, benefits from technological progress and wages increase at the rate of

aggregate output growth when labor supply stays constant [see (7)]. Finally, note that the

demand for machines depends negatively on the robot tax τR [see (9)].

4 Alternatively, we could have used a quality-ladder model (following Aghion and Howitt, 1992), which, in
reduced-form, would be equivalent to the variety approach.
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2.5. R&D Sector. The R&D sector produces blueprints for new machines by employing

scientists, which are recruited from high-skilled labor. To focus on our research questions, we

abstract from governmentally-funded basic research and from R&D tax credits for applied

research (see, for example, Prettner and Werner, 2016; Minniti and Venturini, 2017; for the

importance of R&D policies in determining long-run economic growth). The production

function of the R&D sector is given by

At − At−1 = δ̄tLH,A,t, (10)

where LH,A,t denotes scientists employed in the R&D sector and δ̄ is the productivity of

these scientists. The productivity level of scientists itself depends on intertemporal knowl-

edge spillovers (the standing-on-giants-shoulders externality) and on congestion effects (the

stepping-on-toes externality) as described by Jones (1995). We follow the standard approach

and write

δ̄t =
δAφt−1

L1−λ
H,A,t

, (11)

where φ ∈ (0, 1] measures the strength of intertemporal knowledge spillovers and 1− λ with

λ ∈ [0, 1] measures the strength of the congestion externality.

Profits in the R&D sector are given by the revenue that R&D firms generate by selling

their patents net of the costs for the scientists that they employ,

pA,tδ̄tLH,A,t − wH,A,tLH,A,t, (12)

where pA,t is the price of blueprints and wH,A,t denotes the wage rate of scientists. Due

to the competitive labor market, the wage rate of scientists attains the same level as the

wage rate of high-skilled workers in the final goods sector. R&D firms maximize profits by

choosing optimal R&D employment, which provides the optimality condition wH,A,t = δ̄tpA,t.

Our overlapping generations structure allows us to introduce a finite patent length of one

generation, which is reasonably close to the actual patent duration of approximately 20 years

(United States Patent and Trademark Office, 2017).

2.6. Intermediate Goods Sector. The intermediate goods sector uses physical capital

as variable input factor to produce machines. The production function is linear with a

unitary capital input coefficient such that xi,t = ki,t, where ki,t is the amount of physical

capital employed by each intermediate goods producer. There are two types of firms in

the intermediate goods sector. Producers of the latest vintage of machines use a blueprint

(patent) from the R&D sector as fixed input. These firms have a certain degree of market

power and free entry into the intermediate goods sector implies that operating profits in

period t, πi,t, are equal to the entry costs consisting of the price that has to be paid up-front

10



for the blueprint such that

πi,t = pA,t. (13)

Producers of older vintages of machines are no longer protected by patent law and free

entry ensures that a zero profit condition holds. Let variables associated with the latest

vintage of machines be indexed by i and variables associated with earlier vintages by j.

Operating profits for producers of the latest vintage are given by

πi,t = pi,t(xi,t)xi,t − R̄xi,t. (14)

Profit maximization implies

p′i,t(xi,t)
xi,t
pi,t

+ 1 =
R̄

pi,t
⇒ pi,t =

R̄

α
. (15)

Producers of the latest vintage of machines charge a markup over marginal cost and the

production of machines of type i adjusts (due to capital inflow/outflow) to the point at

which R̄ = α2L1−α
H,Y,tx

α−1
i,t /(1 + τR). Producers of older vintages charge prices at marginal

cost pj,t = R̄ for all j such that the production of machines of type j adjusts to the point

at which R̄ = αL1−α
H,Y,tx

α−1
j,t /(1 + τR). Combining both demand functions provides the input

ratio

xj,t = α
1

α−1xi,t, (16)

implying that the demand for older vintages is higher because their price is lower. Aggre-

gating over all vintages and using (16) we obtain

At−1∑
j=1

xαj,t +
At∑

i=At−1+1

xαi,t = Ãtx
α
i,t, Ãt ≡

(
α

α
α−1 − 1

)
At−1 + At. (17)

Using the new notation, we can rewrite final goods production as Yt = L1−α
H,t [LαL,t + Ãtx(i)α].

2.7. Equilibrium. In the basic model, we abstract from unemployment. Since the popula-

tion share of low-skilled individuals amounts to F (a∗t ), see Figure 1, low-skilled employment

is given by LL,t = F (a∗t )Lt. Since high-skilled individuals spend a fraction η of their time on

education, aggregate supply of high-skilled labor amounts to LH,t = [1− F (a∗t )](1− η)Lt.

Labor market clearing requires that employment of high-skilled labor in the final goods

sector and in R&D add up to the total supply of high-skilled labor such that

LH,t = LH,Y,t + LH,A,t. (18)

The market-clearing wage rate is given by

wH,A,t = wH,Y,t ⇔ pA,t
δAφt−1

L1−λ
H,A,t

= (1− α)
LαL,t + Ãtx

α
i,t

LαH,Y,t
. (19)
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From Equation (9), we get demand for intermediates as

xi,t =

[
α

pi,t(1 + τR)

] 1
1−α

LH,Y,t. (20)

Plugging (13) and (20) into (19) provides

πi,t
δAφt−1

L1−λ
H,A,t

= (1− α)
LαL,t + Ãt

[
α

pi,t(1+τR)

] α
1−α

LαH,Y,t

LαH,Y,t
. (21)

Using (15), we obtain profits as πi,t = (1 − α)R̄xi,t/α. Inserting this expression, the price

pi,t = R̄/α, and equations (18) and (20) into (21), we obtain an implicit function for the

employment level of scientists LH,A,t. If an interior solution with R&D exists, the employment

level of scientists solves the equation

R̄

α

[
α2

R̄(1 + τR)

] 1
1−α

(LH,t − LH,A,t)
δAφt−1

L1−λ
H,A,t

=

(
LL,t

LH,t − LH,A,t

)α
+ Ãt

[
α2

R̄(1 + τR)

] α
1−α

. (22)

Finally, the government runs a balanced budget. Low-skilled individuals receive a fraction

κ of total transfers such that TL,t = κTt/LL,t and TH,t = (1− κ)Tt/LH,t with

Tt = τWwH,tLH,t + τWwL,tLL,t + τRpi,txit

[(
α

α
α−1 − 1

)
At−1 + At

]
. (23)

3. Analytical Results

The full model is recursive: individuals need to form expectations on their future wages

to decide upon their education. Future wages, however, depend on the education decision.

We solve this problem numerically in Section 4. Here, we focus on the long-run results and

assume that the outcome of the education decision, LH,t, is given as a positive pre-determined

state variable at any time t (implying 0 < LH,t < Lt). Suppose, for now, that τR = τW = 0.

Then, solving for the equilibrium boils down to solving one equation, namely (22), for one

unknown variable, employment in R&D, LH,A,t.

3.1. Equilibrium R&D Employment. Inspection of (22) provides the following result.

Proposition 1. At any time t, the equilibrium employment level in the R&D sector exists

and it is positive and unique.

For the proof notice that, due to the assumed positivity constraints on parameters and

state variables R̄ > 0, δ > 0, φ ∈ (0, 1], α ∈ (0, 1), λ ∈ (0, 1), At−1 > 0, LL,t > 0, and

LH,t > 0, the left-hand side (LHS) of Equation (22) is strictly decreasing in LH,A,t, while the

12



right-hand side (RHS) is strictly increasing in LH,A,t. Furthermore, we have that

lim
LH,A,t→0

LHS =∞, lim
LH,A,t→0

RHS = const. > 0,

lim
LH,A,t→LH,t

LHS = 0, lim
LH,A,t→LH,t

RHS =∞.

As a consequence, the equilibrium level of scientists in the R&D sector is positive and unique.

Once LH,A,t has been found, we can solve for all other variables.

3.2. Balanced Growth Path. Along the balanced growth path, a has reached its steady

state level ā and the population shares of workers stay constant. The long-run economic

growth rate rises if there are more scientists employed in R&D and if these scientists have a

higher productivity level (δ), and it decreases with the extent of the duplication externality.

Let L∗H,A denote the solution of (22) at a∗t = ā. The balanced growth rate is obtained from

(10) and (11) as g = δ(L∗H,A)λ for φ = 1 and as g = 0 for φ < 1. As is well known, when

the population and the education level per person stay constant, positive balanced growth

exists only for a knife-edge case. Off the balanced growth path, however, the case of zero

asymptotic growth is compatible with meaningful adjustment dynamics, as shown below.

3.3. Wage inequality. Inspection of (7) and (8) shows that high-skilled workers enjoy wage

growth when the economy is growing (growing Yt). By contrast, wages of low-skilled workers

are constant on the balanced growth path because factor shares are constant. This leads

directly to the next result.

Proposition 2. Technological progress is skill-biased. In an economy populated by high-

skilled workers who are complementary to machines and low-skilled workers who are substi-

tutes to machines, higher growth implies higher wage inequality.

The intuition for this result is straightforward. Technological progress raises the pro-

ductivity of high-skilled workers by the introduction of new machines. At the same time,

however, new machines do not raise the productivity of low-skilled workers. Another way to

illustrate the effect of technological progress on low-skilled workers is to consider the labor

share in aggregate income and to decompose it between high-skilled workers and low-skilled

workers.

Proposition 3. Along a path of positive balanced growth, the total labor share is declining

towards (1− α). The low-skilled labor share is declining to zero.

For the proof, we compute the labor share as

(1− α) +
wL,tLL,t
Yt

, (24)
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where (1 − α) is the high-skilled labor share. We then note that, along a path of positive

balanced growth, LL,t and wL,t are constant because population shares are constant, whereas

Yt is growing at a positive rate. The decline in the labor share in the course of automation is

consistent with the empirical evidence for the U.S. pointing out that the labor share was con-

stant until the 1970s, but declined by almost 6 percentage points since then (Karabarbounis

and Neiman, 2014).

3.4. Wealth Inequality. The declining relative income of low-skilled labor has, further-

more, a clear inequality-enhancing effect on the distribution of wealth.

Proposition 4. In a growing economy without redistribution, the share of wealth held by

high-skilled workers increases and converges to one asymptotically. Ceteris paribus, faster

economic growth leads to a faster increase of wealth inequality.

For the proof, we insert wages (7) and (8) into savings (3) for TH = TL = 0 and obtain

relative wealth held by high-skilled workers s̃:

s̃ =
(1− η)(1− α) Yt

LH,Y,t

(1− η)(1− α) Yt
LH,Y,t

+ α
(
LH,Y,t
LL,t

)1−α
LL,t
LH,t

. (25)

Along the balanced growth path, the population shares stay constant, while Yt/LH,Y,t grows

perpetually. This implies that the second term in the denominator becomes gradually less

important from a quantitative point of view such that s̃ converges to 1. Clearly, wealth

inequality increases faster when Yt grows at a higher rate. Notice that, off the steady state,

rising higher education (declining LL and increasing LH) reinforces wealth inequality during

the transition towards the steady state.

In our stylized framework, rising wealth inequality is a product of growing wages of high-

skilled workers, stagnating wages of low-skilled workers, and constant saving rates. In a less

stylized framework, utility functions could take into account subsistence needs or status con-

cerns in consumption. These mechanisms would, however, further amplify wealth inequality

because they imply lower saving rates for the poor. The result of Proposition 4 deviates

from the findings of Piketty (2014), who argues that, ceteris paribus, faster economic growth

reduces inequality. The reason for this difference is the simplifying assumption of Piketty

(2014) that all wages (those of low-skilled and of high-skilled individuals) grow at the same

rate, while we allow for differential growth that drives a wedge between the wages of high-

skilled workers and the wages of low-skilled workers to the extent that also their savings

diverge from one another.
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4. The Race between Education and Technology

4.1. Preliminary Considerations. We next consider adjustment dynamics off the steady

state and the interaction between education and technology. Qualitatively, it is straightfor-

ward to see the impact of technology on education.

Proposition 5. With technological progress, the share of high-skilled labor in the population

increases and converges to ā.

The proof is obvious from Proposition 2 and inspection of Equation (5) and Figure 1.

As technology advances and more machines are used in production, the wage of high-skilled

workers increases relative to low-skilled workers. An increasing skill premium motivates more

individuals to obtain higher education. Increasing supply of high-skilled labor leads, ceteris

paribus, to relatively higher wages for low-skilled workers [see Equations (7) and (8)], and,

thus, suppresses the skill premium. This interplay captures the “race between education and

technology” only that, in its original setup, Goldin and Katz (2009) treated education as

exogenous, whereas here, education is endogenous and triggered by technological advance-

ments. Given that technological advances are the dominating force, the skill premium is

gradually increasing, and a larger share of the society obtains higher education. Ultimately,

society converges towards a situation in which a population share of F (ā) remains without

higher education because their ability is too low to obtain a college degree.

4.2. Calibration for the United States. To fully assess the interactions in the race

between education and technology, we calibrate the model and solve it numerically. In so

doing we try to fit U.S. trends for the second half of the 20th century and beyond for TFP

growth (Fernald, 2015), the population share with a college degree (U.S. Census, 2019b),

the Gini coefficient of before-tax monetary income (U.S. Census, 2018a), and the R&D

expenditure to GDP ratio (Ha and Howitt, 2007). We start the computation of adjustment

dynamics in the year 1900 and convert the predicted growth rates per generation into annual

rates.

We assume that a generation takes 25 years and set R̄ = 1.56, which implies an annual

real interest rate of close to 4 percent. We assume that the time preference rate equals the

interest rate and set β = 1/R̄. Assuming that high-skilled individuals enter college at age

19, complete their education after 5 years and leave the workforce at age 63, we obtain the

estimate of η = 0.11 = 5/(63 − 19). We assume a parsimonious parameterization of the

subutility function v(a); v(a) = [θ/(a− ā)]ψ.

We approximate the ability distribution with the IQ-distribution (truncated at 0). This

choice is mostly motivated by data availability and should be broadly interpreted since,
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clearly, ability and educational success depend on a host of factors, which are not all corre-

lated with IQ. IQ test scores are approximately normally distributed and, by construction,

have a mean of 100 and a standard deviation of 15 (Encyclopedia Britannica, 2019). The

implied partial distribution function is f(a) = 1/(15
√

2)e−
(a−100)2

2·152 and the cumulated distri-

bution function is given by

F (a) = 0.5

[
1 + erf

(
a− 100

15
√

2

)]
,

in which erf denotes the error function. We set ā to 0.5, implying that – in the limit – half of

the population obtains a college degree. While college graduation is highly correlated with

IQ, the correlation is not perfect and there are likely some individuals with an IQ score below

100 who graduate from college. On the other hand, many individuals with an IQ above 100

do not obtain a college degree due to credit constraints, family background, illness, and

a host of other reasons including unfavorable non-cognitive skills or just lack of interest.

These factors are not represented in our stylized model, which assumes a strict division of

educational attainment of society by ability. Hence, our macroeconomic calibration target

is not a precise picture of the stratification of society but “only” to get the population share

of college graduates about right.

Another possibility to motivate the ability curve and its threshold is through the supply

side of education. A crucial determinant of college admission are SAT scores, which are also

about normally distributed and strongly correlated with IQ such that formulas have been

suggested to convert SAT scores to IQ (e.g. Frey and Dettermann, 2014). The admission

threshold is college-specific and higher SAT scores are needed for admission at more selective

universities. Top colleges aim for SAT scores of 1400 or higher. Less selective public institu-

tions and small liberal arts colleges accept applicants in the 950-1050 SAT score range but

it is very unlikely to enter college with a score of 700 or below (McCammon, 2016). Using

Frey and Dettermann’s (2014) conversion formula, a SAT score of 700 is converted into an

IQ of 105.

We set population size (arbitrarily) to 1,000 and then calibrate the initial technology level

A(0), the technology parameters α, δ, φ, and λ and the education parameters ψ and θ to

fit the following seven calibration targets: a roughly constant TFP growth rate of about

2 percent (Fernald, 2015); an R&D share that increases from 0.8% in 1953 to 1.6 percent

at the end of 20th century (Ha and Howitt, 2007); a share of college graduates among the

male population that rises from 12.8% in 1967 to 33.7% in 2017 (US Census, 2018a); a Gini

coefficient of income that rises from 40% in 1967 to 48% in 2017 (US Census, 2018b). This

leads to the estimates α = 0.63, φ = 0.70, ψ = 0.0625, θ = 8 · 108, λ = 0.2, δ = 1.5, and
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A(0) = 14. In the benchmark case, there is no redistribution such that τW = τR = 0. The

parameters used in the calibration are provided below Figure 2.

Figure 2. Adjustment Dynamics of the Model and Observed Data for the
United States
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Parameters: α = 0.63; β = 0.64; δ = 1.5, φ = 0.7, λ = 0.2,
θ = 8 · 108, ψ = 0.0625. Blue (solid) lines: model; red (dashed)
lines: data. Data sources: see main text.

Solid lines in Figure 2 refer to the predicted adjustment dynamics. Dashed lines refer to

the underlying data. The first panel shows that the calibration supports an almost constant

and eventually mildly falling trend of TFP growth during the 20th and 21st century. In

the second panel, we see how the rising skill premium induces an increasing share of the

population to acquire higher education. The model approximates the actual increase of

college graduates well. It predicts that the population share of high-skilled workers reaches

its steady-state level (LAH/L)∗ = (1− η)ā = 0.45 in the middle of the 21st century.

The middle panel in Figure 2 shows that the model predicts a somewhat too fast increase

of R&D intensity during the 20th century. On the other hand, one could argue that TFP

growth at the end of the 20th century is overestimated by the model. These shortcomings

17



are partly due to the simple structure of the model, which provides no degrees of freedom

to adjust TFP growth independently from investment in R&D. Another reason is that TFP

growth is an imperfect measure of technological progress.

The fourth panel shows that the model matches the increasing trend in inequality well.

The Gini coefficient is easily obtained as sw − LH,t/Lt, where sw is the income share of

high-skilled individuals, sw ≡ wH,tLH,t/(wH,tLH,t + wL,tLL,t). As the economy grows, the

income share of high-skilled individuals converges to 100%, whereas the share of high-skilled

workers converges toward 45%. Hence the Gini coefficient gradually rises towards its steady-

state level of 55%. The computational experiment clearly refutes the view that declining

or constant productivity growth is incompatible with increasing automation and increasing

inequality. As explained above, for these trends to be simultaneously observed, we only need

positive TFP growth, i.e., further innovation in automation. In the Appendix, we show that

these transitional dynamics are fully robust to changes in the parameters even to the extent

of the knife edge case φ = 1.5

4.3. Redistributive Taxation. Since only high-skilled individuals benefit from technolog-

ical progress, it seems appropriate to support the losers in the race between education and

technology by means of redistribution and taxation. Aside from redistribution through pro-

gressive income taxation, the implementation of a robot tax has recently been proposed.

However, when technology and education are endogenous, redistributive taxation can entail

less benign outcomes in a dynamic context than suggested by thought experiments that

treat education and technology as given. In a fully dynamic context, redistribution has the

potential to be counterproductive such that it does not help to improve disposable income of

low-skilled workers. Before we discuss redistribution in the calibrated economy, we develop

some intuition for this result by means of an analytical discussion.

Proposition 6. As long as a∗t > ā, an increasing wage tax or an increasing transfer to

low-skilled labor reduces education.

The proof is obtained by differentiating the wage premium in monetary terms, ŵ ≡
[(1− τw)(1− η)wH,t + TH ] / [(1− τw)wL + TL], for the case where TL ≥ TH > 0. Intuitively,

higher taxes on wage income or higher transfers TL reduce the incentive to increase wages

through higher education. In a dynamic context, this means that along the transition path,

i.e., as long as the low-skilled labor share has not yet settled at F (ā), redistribution slows

down the take up of higher education, and thereby innovation and economic growth.

5 If the ability threshold ā were (much) smaller than 100, the high-skilled elite would eventually comprise
a majority of society and an increasing wage premium would lead to declining inequality as measured by
the Gini coefficient. Other measures of inequality, like, for example, the skill premium or the absolute Gini
coefficient (Chakravarty, 1988) would continue to rise.
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The response of employment in R&D (and thus economic growth) to an increase in the

robot tax can be discussed with the help of the equilibrium condition (22). From visual

inspection, the response is seemingly ambiguous. On the one hand, an increase of τR leads

to less machine production, lower profits in the machine producing sector, a lower equilibrium

price for the blueprints of new machines, and, thus, lower wages and employment in R&D.

Formally, this implies that the left-hand side of (22) declines. On the other hand, the

reduction of machine input leads to lower wages for high-skilled workers in goods production

and therefore to a shift of high-skilled labor towards R&D. Formally, this implies that the

right-hand side of (22) declines. By implicitly differentiating (22), it can be shown that the

negative effect through profits in the machine sector dominates.

Proposition 7. An increasing robot tax τR leads to less employment in R&D and slower

growth.

The proof of Proposition 7 is stated in the Appendix. While the static responses of

education and innovation to redistributive taxation can be assessed analytically, the impact

on low-skilled income and income inequality can only be assessed numerically in the dynamic

equilibrium. For that purpose, we take the model as calibrated in Figure 2 and assume a

redistributive policy reform in the year 2025. We focus on the case in which only low-skilled

individuals receive income transfers, i.e., κ = 1 such that TL = T and TH = 0. The results

are shown in Figure 3. To facilitate comparisons, solid (blue) lines replicate the benchmark

case without redistribution from Figure 2.

Adjustment dynamics for a robot tax of τR = 0.1 are shown by green (dashed) lines in

Figure 3. Confirming Proposition 7, the robot tax depresses R&D and TFP growth (top

panel). As a result, wages for high-skilled labor increase at a lower rate, which causes a

slower high-skilled labor expansion (second panel). Redistribution reduces the high-skilled

labor supply also in the long-run. Since, in the limit, transfers are growing at the rate of

technological progress, some individuals with abilities above but close to ā are permanently

discouraged from obtaining a college degree. In the limit, LH/L converges to 0.436 (instead

of 0.45).

Because the population share of rich college graduates expands slower with rising tech-

nology, pre-tax inequality increases (fourth panel) such that, in the short run, redistribution

has hardly any effect on after-tax inequality (bottom panel). As time passes, however, the

effect of redistribution dominates the general equilibrium effect on gross wages. In the limit,

transfers TL grow at the rate of high-skilled income, whereas low-skilled wages stagnate such

that, in the long run, low-skilled income is dominated by transfers, limt→∞wL/TL = 0. In
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Figure 3. Adjustment Dynamics Redistributive Taxation (κ = 1)
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Parameters as for Figure 2: blue (solid) lines: τR = τW = 0 (replication of Figure 2); Policy
reform in 2025: green (dashed) lines: τR = 0.1; red (dashed-doted) lines: τW = 0.1.

the long-run, the after-tax Gini coefficient settles at a lower level, because, through redis-

tribution, low-skilled individuals participate in the gains from automation and economic

growth.

Alternatively, transfers could be financed by a labor income tax. Red (dash-dotted) lines

in Figure 3 show the outcome for τw = 0.1 (and τR = 0). In contrast to the robot tax, the

wage tax has a direct effect on education and an indirect effect on technological progress

and growth. Lower net wages reduce the gains from education such that higher education

increases at a lower rate with economic development. As a result of reduced high-skilled labor

supply, there is less employment in R&D, and thus less innovation and lower productivity

growth. The labor income tax reduces the progress of technology and education similarly

to the robot tax and it therefore has similar consequences for the adjustment dynamics of

low-skilled income and inequality (panels 2 to 5 in Figure 3).
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Next, we consider an education subsidy implemented in the year 2000. This conforms

to the case of κ = 0 such that all transfers are channeled to high-skilled individuals. The

results are shown in Figure 4, where again blue (solid) lines replicate the benchmark run

from Figure 2, green (dashed) lines reflect the case of τR = 0.1 and red (dash-dotted) lines

reflect the case of τW = 0.1.

Figure 4. Adjustment Dynamics: Education Subsidy (κ = 0)
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Parameters as for Figure 2: blue (solid) lines: τR = τW = 0 (replication of Figure
2); policy reform in 2000: green (dashed) lines: τR = 0.1; red (dashed-doted) lines:
τW = 0.1.

In the medium run, an education subsidy reduces pre-tax inequality but through different

channels, depending on the mode of finance. If the education subsidy is financed by a labor

income tax, it reduces inequality because it encourages education. The supply of high skill

labor increases and the supply of low skill labor declines such that the wage premium and

inequality decline, compared to laissez faire. In the long run, however, education and high-

skilled labor supply converge towards their steady state levels and the education subsidy is
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pure redistribution from the poor to the rich. Consequently, after-tax inequality is higher in

the long run (red dash-dotted lines in Figure 4).

The education subsidy financed by the robot tax fails to boost education (green dashed

lines in Figure 4). As explained above, the robot tax reduces the demand for machines

and innovations and slows down TFP growth (top panel). The effect from reduced high-

skilled income through lower growth dominates the positive direct effect of the transfer on

education such that the supply of high-skilled labor increases at a slightly lower rate than

in the benchmark run (second panel). As a result of the robot tax and the lower supply of

high-skilled labor, the incentive for R&D declines and the R&D intensity grows at a lower

rate than in the benchmark case.

5. Automation, Fair Wages, and Involuntary Unemployment

In principle, there are several gateways for rising unemployment due to automation in

such a framework. While integrating a labor market with search and matching frictions

and automation (see Cords and Prettner, 2019; Guimarães and Mazeda Gil, 2019) would

complicate the model substantially, we introduced unemployment via the social welfare sys-

tem and a reservation wage in an earlier version of this paper (Prettner and Strulik, 2017).

The notion that automation causes voluntary unemployment through frictions on the labor

supply side is, however, not entirely compelling. In the following, we integrate involuntary

unemployment based on Akerlof and Yellen’s (1990) fair wage theory into our model. Ak-

erlof and Yellen motivate the fair wage theory from different perspectives, including equity

theory, relative deprivation theory, and social exchange theory, which all seem particularly

relevant in the present context, where only one group of workers benefits from technological

progress.

The basic idea is that workers compare their payment with that of coworkers and exert

full effort at work only when they perceive their remuneration as fair. Specifically, effort at

work ej is given by e = min(wj/w
∗
j , 1), in which w∗j is the wage that is perceived as fair by

workers of group j. In our context, fair wage considerations are made only in the final goods

sector because this is the sector in which high-skilled workers and low-skilled workers meet.

In equilibrium, high-skilled workers receive the same wage in R&D as in goods production.

To include effort considerations, we rewrite the goods production function such that ej is

taken into account:

Yt = (eH,t · LH,Y,t)1−α

[
(eL,t · LL,t)α +

At∑
i=1

xαi,t

]
.
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Following Akerlof and Yellen, we assume that the fair wage of group j is a weighted average

of the wage received by the reference group and the market-clearing wage

w∗L,t = µwH,t + (1− µ)wcL,t, w∗H,t = µwL,t + (1− µ)wcH,t, (26)

where wcj,t is the market clearing wage of group j and µ measures the strength of wage

comparisons. The market-clearing wage is defined as the wage that would clear the market

for group-j labor in the neoclassical case (i.e., when workers unconditionally exert full effort).

Let Lj, t denote labor supply of group j. We then have

wcH,t = (1− α)(LH,t)
−α(LαL,t + Ãtx

α
t ), wcL,t = αL1−α

H,t (LL,t)
α−1, (27)

where we made use of the shorthand notation Ãt according to (17). In principle, multiple

equilibria are possible on the labor market. Here, we follow Akerlof and Yellen (1990) and

consider the so-called integrated equilibrium as the most relevant one. At this equilibrium,

all workers exert full effort. High-skilled workers receive a wage that exceeds the fair wage

and full employment results such that LH,t = LH,t. Low-skilled workers receive a fair wage

that exceeds the market-clearing wage and low-skilled unemployment results. The indirect

demand function for low-skilled labor is given by

wL,t = α(LH,t)
αLα−1

L,t ≡ LD(wL,t). (28)

Inserting (27) into (26) and using wH,t = wcH,t provides the “fair wage constraint”, i.e., the

wage at which low-skilled workers exert full effort:

wL,t = µ(1− α)(LH,t)
−α(LαL,t + Ãtx

α
t ) + (1− µ)α(LH,t)

1−α(LL,t)
α−1 ≡ Fw(wL,t). (29)

Labor market equilibrium prevails when (28) and (29) hold simultaneously. It is depicted

in Figure 5. Labor demand according to (28) is represented by the falling curve LD. The

upward-sloping curve FW represents the fair wage constraint. Low-skilled workers perceive it

as fair to earn more as their employment rises. The full-employment constraint is represented

by the vertical LL line. The initial labor market equilibrium is obtained at LL,0 and initial

unemployment is obtained as LL,0 − LL,0.

The implications of the race between education and technology for unemployment can

be qualitatively deduced from Figure 5. Technological progress (rising Ãt) shifts the fair

wage constraint upwards to FW,1. Low-skilled workers demand a higher wage because they

notice that wages for high-skilled workers rise with increasing automation. Due to the rising

reference level, they perceive a higher wage for themselves as fair. Intuitively, low-skilled

workers want to take part in the advances from technology, although their labor productivity

does not improve. Without a pay rise, however, labor productivity would deteriorate due to

declining effort. The new equilibrium employment level is at LL,1.
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Figure 5. The Fair Wage Constraint and Equilibrium Unemployment

wL
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Technological progress shifts the fair wage constraint FW

upwards and the low-skilled workforce LL inwards.

Technological advances, however, also trigger higher education such that the workforce of

low-skilled individuals declines. The workforce constraint shifts to the left to L̄L,1. Taking

both moves together, it is ambiguous as to whether low-skilled unemployment, given by

L̄L−LL, increases or decreases due to high-skilled labor-augmenting technological progress.

However, once education has converged to its upper bound, only the effect of technology on

fair wages remains effective and low-skilled unemployment increases inevitably as automation

technology advances.

Proposition 8. Once higher education converged towards its upper bound, more innovation

and faster economic growth lead to more involuntary unemployment.

The proof is obvious from Figure 5. When education is stationary, the vertical LL-line

does not move. More innovation leads to a faster increasing TFP level Ã and a faster

upward movement of the fair wage constraint. As a result, low-skilled wages increase at a

higher rate and employment declines faster. The result is intuitive. More innovation and

higher growth of high-skilled wages leads to a faster increase of the reference level for fair

wage considerations and low-skilled workers need a faster increase of wages to induce full

effort. Since low-skilled productivity does not rise, firms respond with reduced demand for

low-skilled labor.

Finally, we consider the evolution of unemployment along the transition. For that purpose,

we employ the model as calibrated for Figure 2 and set µ such that fair wage considerations

generate an unemployment rate of 5 percent at the end of the 20th century. This leads to

the estimate of µ = 0.004. The importance of the reference wage is thus estimated to be
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Figure 6. Adjustment Dynamics: Unemployment
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Parameters as for Figure 2 and µ = 0.004: blue (solid) lines: τR = τW = 0;
green (dashed) lines: τR = 0.1; red (dashed-doted) lines: τW = 0.1.

relatively small. Since fair wage concerns reduce economic growth, we increase the initial

value A(0) to 25 in order to match the calibration targets for education and inequality in

the 20th century. Figure 6 shows the implied adjustment dynamics.

Blue (solid) lines in Figure 6 reflect the case without income redistribution. The bottom

panel shows that unemployment actually declines mildly during the 20th century, indicating

that the effect of reduced low-skilled labor supply (the inward movement of the LL-curve in

Figure 5) dominates the effect of reduced labor demand due to technological progress and

rising reference levels of the fair wage. Eventually, however, before labor supply becomes

stationary, unemployment begins to rise as the levels of TFP and wages of high-skilled

individuals increase further. Due to the fair-wage constraint, low-skilled wages benefit, at

least partially, from technological progress and economic growth. The higher low-skilled
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wages motivate some individuals close to the ability threshold ā to abstain from tertiary

education. Reduced skilled-labor supply leads to less R&D and lower growth.

The impact of fair wage constraints on inequality is, in principle, ambiguous. In the third

panel of Figure 6 we see that fair-wage considerations increase inequality for the calibrated

model by about 4 percentage points. The inequality dampening effect from growth participa-

tion of unskilled workers is dominated by the inequality boosting effects of (i) the presence of

a group that receives no labor income, (ii) a smaller population share of high-skilled workers

who benefit fully from economic growth.

We next reconsider the effects of redistributive taxation and assume that individuals com-

pare gross wages and not their disposable income after redistribution. We assume that all

transfers go to low-skilled labor and again consider a 10 percent robot tax (dashed, green

lines) and a 10 percent labor income tax (dash-dotted, red lines). The response of TFP

growth and education to redistribution is familiar and analyzed in detail in the discus-

sion of Figure 3. Here, it is interesting to see that redistribution increases unemployment.

This response is not driven by labor supply considerations of low-skilled individuals because

transfers are granted irrespective of the employment status and labor supply is inelastic by

assumption. Instead, low-skilled unemployment rises because of the depressing effect of re-

distribution on education. As a result of reduced high-skilled labor supply, high-skilled wages

are higher at any level of technology, and thus low-skilled individuals consider a higher wage

as fair. In order to elicit full effort, firms pay higher wages and reduce labor demand.

6. Conclusion

In this paper, we propose a model of endogenous technological progress and economic

growth according to which R&D-based innovations in machine technology lead to more

automation, a higher skill premium, and more inequality in terms of income and wealth.

The model predicts that more sophisticated technology induces more education but only to

a certain degree because, eventually, some individuals will be left behind who do not manage

to obtain a college degree due to ability constraints. The feature that low-skilled labor

does not benefit from automation creates rising inequality because the wages of high-skilled

individuals increase at the rate of technological progress. Considering the other big race

mentioned in the introduction, the model suggests that it could be difficult and eventually

impossible to “run with the machine”(as suggested by Brynjolfsson and McAfee, 2011).

Similar to the related R&D-based growth literature, we focus on the manufacturing sector,

which, in principle, leaves the loophole that non-routine, low-skilled labor finds employment

in an expanding service sector. However, one could argue that the service sector is rep-

resented in reduced-form in our model. According to the aggregate production function,
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low-skilled labor is not benefiting from automation, but it is also not made redundant by the

arrival of new machines. It could be conceptualized as moving to different tasks. Moreover,

in general equilibrium, low-skilled labor benefits indirectly from technological progress. Skill-

biased technological progress induces more higher education in the population, and thus a

relative decline of low-skilled labor supply and an increase of low-skilled wages. Of course,

this positive indirect effect vanishes when technology no longer triggers increasing higher

education. Likewise, the model could be refined by assuming that more recent vintages of

machines are able to substitute, to an increasing degree, high-skilled labor.

In our overlapping generations setting, increasing wage inequality explains a secular decline

of the aggregate saving rate and a secular increase of wealth inequality. These effects are

stronger at higher rates of technological progress. Our theory therefore contrasts with the

conventional view that high economic growth is conducive to lower inequality (Piketty 2014),

which is mainly due to the fact that there is only one type of labor in the framework of Piketty

(2014). We have also shown that it is difficult to improve income of low-skilled individuals as

long as both technology and education are endogenous. This is true irrespective of whether

redistribution is financed by progressive wage taxation (which reduces higher education and

growth through lower high-skilled labor supply) or by a robot tax (which reduces demand for

machines and growth through less R&D). Designing redistribution policies that circumvent

the repercussions through adjustments of education and technology appears to be a serious

challenge for the future. Only when higher education is stationary, does redistribution

unambiguously benefit the poor. In this situation, redistribution schemes similar to the ones

sketched out in our contribution might be needed to ensure that those who lost the race

against the machine would nevertheless share in some of the gains from automation.

In an extension of the model, we consider the impact of automation on involuntary un-

employment of low-skilled workers through fair wage constraints. This approach appears to

be natural when automation benefits only one group at the workplace. If workers refuse to

exert full effort when they are not allowed to share in the gains from technological progress,

unemployment results. Interestingly, as long as higher education is non-stationary, techno-

logical progress does not necessarily lead to more technological unemployment. The reason

is that it also triggers more higher education, and thus reduces the low-skilled workforce.

For brevity, we focused on the integrated equilibrium of the fair wage model. In future work,

it could be interesting to investigate segregated equilibria as well, i.e., conditions where au-

tomation under consideration of fair wage and effort concerns motivates firms to abandon

the employment of low-skilled labor. It would also be interesting to investigate a case in
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which workers compare disposable income rather than wages, which could motivate the in-

troduction of a universal basic income or other redistribution schemes from the winners to

the losers of the race between education and technology.
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Appendix

Proof of Proposition 7. To analyze the impact of education on R&D and economic growth

we re-write (22) as the implicit function

F ≡ R̄

α

[
α2

R̄(1 + τR)

] 1
1−α

(LH,t − LH,A,t)
δAφt−1

L1−λ
H,A,t

−
(

LL,t
LH,t − LH,A,t

)α
− Ãt

[
α2

R̄(1 + τR)

] α
1−α

= 0.

Differentiation of F provides and ∂F/∂LH,A,t < 0 and

∂F

∂(1 + τR)
= − 1

1− α
1

1 + τR

R̄

α

[
α2

R̄(1 + τR)

] 1
1−α

(LH,t − LH,A,t)
δAφt−1

L1−λ
H,A,t

+
α

1− α
1

1 + τR
Ãt

[
α2

R̄(1 + τR)

] α
1−α

< − 1

1− α
1

1 + τR

{
R̄

α

[
α2

R̄(1 + τR)

] 1
1−α

(LH,t − LH,A,t)
δAφt−1

L1−λ
H,A,t

− Ãt
[

α2

R̄(1 + τR)

] α
1−α
}

= − 1

1− α
1

1 + τR

(
LL,t

LH,t − LH,A,t

)α
< 0

and thus, by the implicit function theorem, dLH,A,t/dτR < 0. Then, from (10) and (11),

dgA,t/dτR < 0.

Robustness and Positive Steady-State Growth. This section shows that the general

results of our model are robust to re-specifications of the parameters, in particular, to having

positive growth in the long run. The results are shown in Figure 7, where the parameter

values used for this simulation are reported below the figure. Blue (solid) lines reflect adjust-

ment dynamics of the benchmark case. As the economy grows and skill-biased technological

progress unfolds (first panel), more individuals are motivated to acquire a college education

(second panel). The increase in college graduates renders high-skilled labor less scarce and

more high-skilled labor is allocated to R&D (third panel). This, in turn, further amplifies

technological progress such that the economy takes off with initially increasing growth rates.

After a while, however, the stepping-on-toes effect becomes noticeable and the gain in growth

rates levels off as the economy adjusts towards the steady state.

The bottom panel of Figure 7 shows inequality measured by the Gini coefficient of wage

income. To show our “non-Piketterian” result, we next increase δ to 0.5 (from 0.43) and

keep all other parameters and initial values from the benchmark run. The results are shown

by dashed (red) lines in Figure 7. Due to the higher productivity in R&D, the alternative

economy grows at a faster rate, initially and everywhere along the adjustment path (panel

1). The higher rate of skill-biased technological progress induces faster growth of income
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Figure 7. Adjustment Dynamics (φ = 1)
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Blue (solid) lines: δ = 0.33; red (dashed) lines: δ = 0.40.

for the high-skilled population and triggers more education (panel 2). A better educated

workforce provides more labor supply for R&D (panel 3), which further spurs innovation

and economic growth. Since low-skilled labor is not benefiting from these trends, inequality

increases faster in the high-growth economy (panel 4). Individuals who suffer from ability

constraints in learning and fail to achieve college graduation are left behind earlier than in

the benchmark run.
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