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1 Introduction

The regulation of electricity utilities is a topic of great research interest and practical relevance.
In the past few decades, theoretical and empirical scholars, as well as policy makers, have ad-
dressed various issues related to mechanism design and cost-efficiency incentives, especially
in the presence of information asymmetries between regulator and regulated firm. At the risk
of oversimplifying, one might say that, in terms of the investment incentives provided, regula-
tion mechanisms can be high-powered or low-powered. In a high-powered incentive mecha-
nism, price caps are largely independent of firms’ costs. This provides regulated firms high
incentives for cost reduction, but at the cost of setting prices that may be too high or too low.
In a low-powered incentive mechanism, prices are set in line with the regulated firms' costs;
this prevents major misalignments between prices and costs, but at the cost of providing low

incentives for cost reduction.

The trade-off between high- and low-powered incentive mechanisms is largely an empirical
question: do cost-reduction incentives really matter? Do regulated firms subject to higher-pow-

ered regulation mechanisms invest more in cost reduction?

The German system for regulating electricity distribution system operators (DSOs) provides a
natural setting for addressing these questions. A legal exemption in the German incentive reg-
ulation system effectively results in two different regulatory regimes, one with higher-powered
incentives than the other. Specifically, the default regulatory mechanism unfolds over a five-
year period. While revenue caps are initially based on the DSOs’ own costs, caps gradually
decrease over time and are eventually determined by the industry's most cost efficient firm

(which the regulator identifies beforehand by means of efficiency analyses). In this sense, the



default regulatory regime is a hybrid of cost-based regulation (first year) and yardstick regula-

tion (last year of the regulatory period).!

Small DSOs (those with less than 30,000 connected consumers) can opt for an alternative reg-
ulation regime. As in the default regime, revenue caps are initially based on the DSOs’ own
costs. However, unlike the default regime, where prices adjust toward the fifth-year yardstick
cap, under the alternative system prices adjust at an exogenously given rate. In this sense, the
alternative regulatory regime provides lower incentives for cost reduction: even fifth-year
prices are a function of first-period costs. This regime is thus based to a larger degree on cost-
based regulation than the default regime and disregards the individual DSOs’ true cost effi-
ciency when demanding cost reductions. The default regime relying on a yardstick element is
thus much closer to the theoretical ideal of a price cap regulation determining exogenous pro-

spective price targets.?

In this article, we propose a difference-in-differences (DiD) approach to estimate the impact of
incentives on cost reduction; that is, we examine the impact of price exogeneity on regulated

firms’ cost-reduction efforts. The first level of difference in our DiD analysis compares periods

! See Shleifer (1985) for yardstick regulation. See also Averch and Johnson (1962) and Finsinger and Kraft (1984)
for cost-plus regulation and its incentive for wasteful spending.

2 There is some disagreement — both in economics literature and in regulatory practice — regarding the usage of
the term “price cap.” Beesley and Littlechild (1989) and Laffont and Tirole (1993) stress its proximity to cost of
service (or rate of return) regulation. However, in theory a completely exogenous price cap makes the firm the
residual claimant of its profits (Cabral and Riordan (1989)). In this sense, yardstick regulation is the practical
counterpart of this theoretical extreme. In regulatory practice — and in the empirical literature — the term “price
cap” often refers to an incentive scheme subject to periodical regulatory audits, which effectively make a firm’s
price a function of its (historical) cost (Littlechild, 1986; also cf. section 2 below). Price cap regulation is then
effectively a low-powered mechanism (especially if the regulatory lag is short). In our case, the alternative regime
is closer to this historical own-cost based approach, whereas the default regime determines final period’s price
targets based on cost data exogenous to the firm. The German regulator calls both regimes “revenue-cap regula-
tion” (“Erldsobergrenze” in the Incentive Regulation Ordinance (IRO)). So as to avoid further confusion, we use
the terms “revenue-cap” regime for the low-powered; and “yardstick” regime for the high-powered scheme.

2



when incentives are in effect to periods when they are not, whereas the second level of differ-
ence compares DSOs subject to a high-powered mechanism to DSOs subject to a low-powered

mechanism.

The DiD approach allows us to control for potentially confounding factors such as a heteroge-
neous expansion of power plants for decentralized renewable electricity generation. Moreover,
it enables us to account for the potential selection bias due to the non-random assignment of
treatment. We argue that the participation choice of small DSOs is driven by expected gains
that depend on time-invariant unobservables (such as propensity to take regulatory risks). The
average treatment effect on the treated can then still be consistently estimated with DSO-spe-

cific effects (Blundell and Dias, 2009).

We use data on 150 German DSOs over the period 2010-2013. Revenue caps for the regulatory
period 2014-2018 are based on each DSO’s cost in 2011, the base year. We compare costs in
the base year to costs in the other years of the first regulatory period. Our results suggest that
DSOs in the lower-powered regulation regime incur higher costs in the base year used to deter-
mine future prices. This is especially true for firms that are more efficient to begin with. A
matched-sample regression, which we perform as a robustness check on and extension of our
DiD approach, shows an increase of about 10% in the costs of the regulated firms in the top

efficiency quartile.

The increase in costs is consistent with the basic idea that incentives matter: if a regulated firm
can keep a greater fraction of its cost savings, then cost savings are greater. The fact that the
effect is particularly strong for firms that are more efficient is consistent with two different
ideas, both of which we discuss in detail in the theory section of the article: First, more efficient
firms have a greater ability to add wasteful expenditures to their cost base. Second, in a world

of asymmetric information and sequential regulation without regulator commitment, efficient



regulated firms have an incentive to pool with inefficient firms: the ratchet effect (Laffont and

Tirole, 1993).

The increase in costs has important consequences draining resources that could otherwise help
managing the “Energiewende” in Germany, i.e. the energy transition to cleaner production and,
in particular, decentralized renewable generation such as wind and solar power, which is also a
topic in many other countries worldwide. The shock-like increase of decentralized renewable
generation in the course of the energy transition greatly affects cost bases of concerned network
operators because intermittent renewable production necessitates massive capacity investment
and network reinforcement. The expected network cost increase is estimated to be approxi-
mately 3.8 billion euro per annum for whole Germany until 2032 (compared to roughly 18
billion current total cost per annum), which a low-powered regulatory regime would addition-
ally increase — being especially at the expense of DSOs’ customers who already face high
tariffs due to strong local wind and solar power expansion.® We furthermore discuss major re-
gional redistributive effects adding pressure in particular on economically weak Eastern Ger-

many.

The article is organized as follows. The next section discusses related literature. Section 3 pro-
vides an overview of the German regulatory setting; a stylized theoretical model; and a set of
testable hypotheses. Our empirical approach is explained in Section 4, and the results are pre-

sented and discussed in Section 5. Section 6 concludes the article.

2 Related literature
Since the 1980s, and following the United Kingdom's lead, a number of countries implemented

various forms of incentive regulation. (Until then, utilities were typically subject to cost-based

3 See study prepared for the Federal Ministry for Economic Affairs and Energy, BMWi (2014). Regional network
charges already vary considerably between 4.6 and 10.7 cents per kilowatt hour nowadays.
4



regulation (US) or were state owned (UK and Europe).) This institutional development was
accompanied by a renewed research interest, both theoretical and empirical, on the economics

of regulation.*

At the empirical level, the central question regards the impact of incentive regulation on the
regulated firm's cost-reduction effort, and ultimately on their efficiency levels. Newbery and
Pollitt (1997) and Domah and Pollitt (2001) show that the introduction of incentive regulation
promoted productivity and service quality among UK electricity utilities. Greenstein et al.
(1995) and Ai and Sappington (2002) demonstrate that incentive regulation in the US telecom-
munications sector encouraged cost-reducing investment. Results by Majumdar (1997) further
indicate that this positively affected technical efficiency. More recent evidence by Cambini and
Rondi (2010), who examine EU energy utilities from 1997 to 2007, shows that investment rates
tend to be higher under incentive than under cost-based regulation. Seo and Shin (2011) find a
positive effect of incentive regulation on productivity in the US telecommunications industry

during the period 1988-1998.°

Despite the variety of industries and data sets considered, a common pattern among virtually
all of the empirical studies is the comparison of firm efficiency before and after the adoption of
incentive regulation.® For example, different US states adopted price-cap regulation at different

points in time, which provides a right-hand side explanatory variable for a firm investment

4 At the theoretical level, two relevant contributions regarding price-cap regulation are Cabral and Riordan (1989)
and Biglaiser and Riordan (2000).

5 For largely qualitative analysis of the effects of incentive regulation, see also Braeutigam and Panzar (1993);
Crew and Kleindorfer (1996, 2002); Joskow (2008); Liston (1993; Guthrie (2006); Vogelsang (2002). Kridel,
Sappington and Weisman (1996) and Sappington and Weisman (2010) provide detailed surveys of the empirical
literature.

& There also exists a strand of empirical literature investigating the effect of deregulation. See Fabrizio et al. (2007),
Davis and Wolfram (2012) and Cicala (2015) for studies of US electric generating plants. Knittel (2002) also finds
evidence that regulation allowing plants to capture some of the rents from cost savings is related to higher technical

efficiency.



regression. By comparison with this strand of the literature, the strength of our empirical ap-
proach is that it consists of a differences-in-differences approach with a regression-discontinu-
ity flavor based on an essentially exogenous feature of regulation: that the alternative (low-
powered) regulatory regime is only an option for DSOs with less than 30,000 connected con-

Sumers.

Beyond this general characterization, two papers are particularly germane to ours and deserve
special mention. Like us, Cullmann and Nieswand (2016) study the investment behavior of
German DSOs. They measure an increase in investment after the introduction of incentive reg-
ulation, especially in the base year. Whereas their results are consistent with our evidence, they
do not make a case for a causal effect in the way we do. Moreover, they do not distinguish the
different regulatory regimes (low- and high-powered) as we do. Agrell et al. (2005), in turn, is
similar to our article in that they provide a dynamic framework with which to compare revenue-
cap and yardstick regulation. They use data on Swedish electricity utilities from 1996 to 2000
and focus on the value of yardstick regulation in reducing uncertainty regarding price cap levels.
However, their different regulatory regimes are based on (out of sample) counterfactual simu-

lations, while our results are based on historical data.

3 Setting
In this section we provide a brief description of the German incentive regulation; develop a
simple formal model that encapsulates the main features of the various regulatory systems; and

derive a series of theoretical results which imply specific testable predictions.

3.1 Incentive regulation in Germany
In 2009, Germany switched from a cost-based to an incentive-based regulation regime of elec-
tricity network access charges. In this section, we explain its functioning in general terms, leav-
ing for Appendix A.2 the more detailed description of the Incentive Regulation Ordinance

(IRO) which led to the regulatory change.



Similarly to many other countries, the German regulator imposes revenue caps on its more than
800 electricity Distribution System Operators (DSO). The idea is that, by setting allowed prices
over a period of time, firms become residual claimants of any cost reductions during the regu-
latory period, and are thus highly incentivized to become more cost efficient. Against this effi-
ciency benefit, one must also consider that the cap itself is at least partly based on the firm's

cost, which in turn creates some incentives for wasteful expenditures.

The extent of the cost-reduction and cost-padding incentives depends on how revenue caps are
computed and applied. In Germany we find two different regulatory regimes: a default regime
and an alternative regime. The alternative regime was introduced by the regulator in attempt to
reduce bureaucratic costs: it is characterized by less reporting requirements. This simpler re-
gime can only be chosen by DSOs with less than 30,000 connected consumers (which corre-
sponds to more than 75 percent of all German DSOs). We first describe the features that are

common to both systems, then their differences.

Under both regimes there is a designated base year (three years before the regulatory period)
during which firm costs are audited. The estimate of the firm's cost determines the revenue cap
at the start of the five-year regulatory period. The revenue cap then declines in each subsequent

year.’

The differences between the two regimes pertain to the way the cap is adjusted over time. Under

the default regime, an industry efficiency frontier (yardstick) is estimated by the regulator.? By

" Revenue caps basically comprise two components. A first component corresponds to costs that are beyond the
DSOs’ control, such as concession fees or feed-in remuneration for decentralized electricity generation. A second
component corresponds to controllable costs, i.e. the effective costs of network operation; this component is sub-
ject to cost-reduction targets. (The official regulatory formula also accounts for variations in the consumer price
index, industry’s productivity growth, quality and changes in supply obligations; see Appendix A.2 for details.)

8 The regulatory authority employs a combination of Stochastic Frontier Analysis (SFA) and Data Envelopment
Analysis (DEA), using costs as input; and exit points, network length, annual peak load, and area served amongst

others as outputs; see Appendix A.3 for details.



the end of the regulatory period, all firms are set a revenue cap corresponding to this efficiency
frontier. Until then, each firm's revenue cap declines linearly from the first year's level (which,

as we have seen before, is determined by the firm's cost during the designated base year).

Under the alternative regulatory regime, by contrast, the initial revenue cap is adjusted at an
exogenous rate, which the regulator sets equally for all respective DSOs. In other words,
whereas under the default regime the final cap is determined exogenously, under the alternative
regime it is the adjustment rate that is determined exogenously thus being independent of their

true cost efficiency.®

Both the default and the alternative regimes include elements of cost-based regulation as well
as elements of price-based regulation. However, the extent of cost-reduction incentives is
greater under the default regime: under this regime revenue caps during the last period are ex-
ogenously given, as in pure yardstick regulation. By contrast, under the alternative regime rev-

enue caps in every period are a function of the firm's cost audit during the base year.

Our empirical strategy uses this difference in incentive power, together with a “natural” assign-

ment to each system, to estimate the effects of regulation on cost reduction incentives.

9 Similar to the default regime, in the alternative regime DSOs are assigned an efficiency score. However, unlike
the default regime, where the regulator estimates each firm’s specific efficiency score, all firms are assigned the
same score under the alternative regime: 87.5 percent in the first regulatory period (2009-2013) and 96.14 percent
in the second regulatory period (2014-2018). To our knowledge, there does not exist any official documentation
on how the first efficiency score of 87.5% was determined in the first regulatory period. It is, however, unlikely
that the regulator conducted an internal efficiency analysis among all potential participants in the alternative re-
gime beforehand as reducing the number of DSOs to be benchmarked was one of the reasons to simplify regulation.
Thus, a link between the exogenous efficiency score and the true efficiency is unlikely. It can neither be established
for the subsequent regulatory period where the updated score is defined as the mean of all DSOs’ previous scores.
8



3.2 A model of regulation and cost reduction
In order to better understand the effects of alternative regulatory mechanisms, we next develop

a simple model of a regulated firm's cost-reduction strategy.

Suppose that the firm is regulated during two periods: the base period and the regulatory period
(or final period). The timing is very simple: First, the regulated firm chooses a level of wasteful

expenditures. Next the regulator determines the allowed revenue in each of the two periods.

With respect to the actual timing under the German system, we conflate the designated base
year with the first year of the regulatory period (and call this the base period); and we collapse

years 2 through 5 during the regulatory period into one (and call it the regulatory period).°

For simplicity, we assume that firm output is exogenously given; and with no further loss of

generality assume it to equal 1. The regulated firm's cost (total and per unit) in the base period,
C,, IS given by
C,=0+Ww Q)

where @ is firm efficiency (which we assume to be exogenously given) and W corresponds to

wasteful expenditures. Moreover, the regulated firm's cost during the regulatory period is given

by

¢, =0. 2)
(Below we change this assumption by allowing base-period expenditures to have an effect on

cost during subsequent periods.)

Allowed revenue during the base period is given by

10 To be more specific, we assume all years are like year 5.
9



R°=60+e(d) f(w) (3)
where e(@) measures how effectively a type @ firm is able to turn wasteful expenditures into

its cost base (everything else equal); and f(w) measures how, independently of firm type,

wasteful expenditures can be padded on to the cost base used by the regulator in setting revenue

caps.

We make the important assumption that (@) is decreasing. As a higher @ implies that the firm

is less efficient, we assume that less efficient firms find it harder to make wasteful expenditures

count (in terms of making them part of the cost base).

As to f(w), we assume that it is a positive, strictly increasing, strictly concave and bounded

function defined in R+. The idea is that there are diminishing marginal effects in adding waste-
ful expenditures to the regulated cost base: first the firm will select expenditures that are easily
passed on to the cost base. As more and more expenditures are added, the regulated firm even-

tually gets into highly dubious expenses (e.g., a third executive car).

Allowed revenue during the regulatory period depends on the regulatory system. Under the
default yardstick regime (denoted system y), allowed revenue during the regulatory period is
determined by industry best practice (as assessed by the regulator), a value that is exogenous
with respect to the regulated firm's cost level. Under the alternative revenue-cap regime (de-
noted system r), allowed revenue is given by R°(1—Xx), where the regulator sets x € (0,1) in-

dependently from the regulated firms' cost levels.

The regulated firm's objective function consists of two different components: firm profits and
wasteful expenditures. The idea is that the decision maker (the regulated firm's CEO) is sensi-

tive to firm profitability (directly because her compensation is linked to profits, and indirectly

10



because her survival depends on shareholder satisfaction); and moreover the CEO benefits di-
rectly from many of the wasteful expenditures (e.g., extra executive cars). Formally, the regu-

lated firm's problem is as follows:
max z°+7° +aw 4)
w

where 7 denotes regulated firm profit; s e{y,r} denotes the regulatory system in place; and
a €(0,1) is the coefficient measuring utility from wasteful expenditures. For simplicity, we as-

sume no discounting between periods. We also assume that the private benefit from wasteful
expenditures accrues during the first period. None of these assumptions changes the qualitative

nature of our results.

Given our assumptions, the profit functions are given by

7’ =R°—c,=0+e(@) f(w)—(6+Ww) (5)
7' =R —¢ =R’ -0 6)
7 =R ¢, =R°(1-x)-0 (7

where RY is exogenously given. Finally, we define

A=w —-w (8)

the difference, in terms of wasteful expenditures, between system r and system y.

Based on this simple model, we derive two basic propositions which reflect the core of our

theoretical (and later empirical) analysis.

Proposition 1. A>0

(Proofs may be found in Appendix A.1.) Proposition 1 reflects what is perhaps the most basic
result regarding regulation: incentives matter. Yardstick regulation, to the extent that it sets a

revenue cap (during the regulatory period) which is not a function of the firm's cost, creates an
11



extra incentive for firms to reduce costs: as far as the regulatory period is concerned, any cost
increase translates directly into a profit decrease. By contrast, revenue-cap regulation has the
property that revenue caps during every period are an increasing function of the firm's cost
during the base period; and this creates additional incentives for the firm to increase its costs in

the base year by means of wasteful expenditures.

Proposition 2. Suppose f(w)=Ilog(w). Then dA/d&<0.

Intuitively, more efficient firms are better able to turn wasteful expenditures into their cost base.
As such, these firms are greatly affected by a change in regulatory regime. We note that the

condition that f (w) is logarithmic is sufficient (and greatly simplifies the proof of Proposition

2) but is not necessary.

We next consider a model extension that allows for the distinction between operating and cap-
ital expenditures. One important difference between these two types of expenditures is that
capital expenditures during the base year have an effect on firm costs for a number of periods,
including the regulatory period. The distinction is important: whereas W -operational expendi-
tures lead to cost padding, w -capital expenditures contribute to cost padding but also to an
increase in cost during the period when the firm is a residual claimant of any cost reductions.
In other words, the wasteful expenditure effect of cost-based regulation should be lower for

capital expenses.

To formalize this argument, we now split the value of w into two different components:

W=W, +W, . 9)

From the model's point of view, the crucial difference between W, and W, is that the former
can be chosen during the base period only, whereas the latter leads to multi-period commitment,

which we model by assuming the same value of w, in both periods.

12



The regulated firm's problem is now given by
max 7+ +a(W, +W,).
The profit functions are now given by
7’ =R°—c,=0+e(@)(f,(w,)+ f, (W))—(@+W, +W,)
7’ =R"—¢, =R - (0+w,)
7"=R" -, =R°(L-x)-(0+w,).
Similarly to our previous analysis, we define
A =W, —W)
A, =W, —W
We can then derive the following result.

Proposition 3. A, > A,

(10)

(11)

(12)

(13)

(14)

(15)

In words, the effects of incentive regulation are greater in reducing wasteful operating expenses

than in reducing wasteful capital expenses.

Finally, we note that the above model considers one regulation cycle only. As we explain in

detail in the next section, there have already been two regulation cycles since the reform of the

German electricity regulation system; and more cycles are expected to take place. More gener-

ally, in a repeated-regulation context with no long-term commitment on the part of the regula-

tor, theory predicts that ratcheting will take place:

The regulator infers from a high performance an ability to repeat a similar performance

in the future and becomes more demanding. Consequently the firm has an incentive to

keep a low profile (Laffont and Tirole, 1993, p. 664).

13



Specifically, Laffont and Tirole (1993) provide conditions such that, under asymmetric infor-
mation regarding the regulated firm’s cost efficiency, some measure of pooling of types takes
place in the first period (see their Propositions 9.1 and 9.2). By pooling we mean that more
efficient types signal the same cost level as less efficient types. This is consistent with the idea
of more efficient DSOs inflating costs by more than less efficient DSOs (that is, efficient DSOs

pooling with inefficient DSOs, at least partially).

Laffont and Tirole (1993) do not provide results comparing the extent of pooling across differ-
ent regulatory mechanisms. However, intuitively the incentive for pooling in the first regulation
round should be greater the more cost-based future regulation rounds will be. For this reason,

we would expect pooling to be greater under the alternative revenue-cap regime.

We thus have an alternative reason why cost padding is greater for more efficient firms, that is,

an alternative interpretation for Proposition 2’s prediction.

3.3 Testable predictions
Propositions 1-3 imply a series of related testable predictions. First, in the base year DSOs in
the low-powered revenue-cap regime should show higher expenditures compared to DSOs in
the high-powered yardstick regime (everything else constant). Second, this effect should be
particularly strong among more efficient firms. Third, this effect should be particularly strong

for operating expenditures (as opposed to capital expenditures).

4 Empirical approach

Following our previous reasoning we expect different spending behaviors among DSOs in the
base year used to determine future prices, specifically in what concerns effective costs of net-
work operation. Accordingly, we conduct our analysis for total expenditures as well as its cap-
ital and operational components. In this section we discuss our empirical approach and describe

how our dataset was created.

14



4.1 ldentification strategy
We identify possible differences in spending behavior based on a difference-in-differences
(DiD) approach. This allows the identification of causal treatment effects by controlling for
confounding factors with the help of a control group. Essentially, it assumes that two groups of
initially similar subjects experience the same trend. The development of the control group’s
outcome variable serves as a counterfactual to which the outcome of the treated group is com-
pared. The difference in the differences of the groups’ outcomes before and after the treatment

can be causally attributed to the treatment.

This approach suits our setting well: DSOs in both regimes are located in the same jurisdiction
and face decreasing revenue caps. However, whereas one group is subject to a cap that is even-
tually given by conditions exogenous to the regulated firm (the yardstick, or y, regime), another
group is subject to a cap that reflects the firm’s expenditures during the base year (the revenue-
cap, or r, regime). The base year thus serves as our treatment; and the basic hypothesis to test
is whether DSOs in the r regime (with lower-powered incentives) exploit their ability to influ-

ence their future prices through higher expenditures in the base year.

We employ several measures to ensure the validity of the parallel-trend assumption required by
a DiD approach. First and most important, we exploit the fact that the relevant base year 2011
falls within the first regulatory period (2009-2013). DSOs are thus already working toward
specific cost reduction targets, which we use as a means to compare firms under different reg-
ulatory regimes but with similar characteristics (to the extent that cost reduction targets are
related to firm efficiency). While firms in the revenue-cap regime face a homogenous efficiency

score of 87.5 percent, scores in the yardstick regime differ. To ensure comparable reduction
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paths we restrict our attention to DSOs in the y regime having official efficiency scores between

82.5 and 92.5 percent.!

Second, we control for factors potentially confounding the common trend, such as special ex-
penditure requirements due to an extraordinary expansion of renewable-energy power plants in
the DSOs’ grid, or the acquisition of new grids (see Section 4.4). Finally, we check the robust-
ness of our results by also restricting our sample to DSOs with less than 100,000 connected
consumers to keep the supply obligation conditions more comparable across regimes. This
choice to concentrate on a restricted, local scale of operators also addresses scale effects, which
could go hand in hand with varying operator efficiency. However, we focus on changes in cost
levels, i.e. cost inflation. Even in the presence of scale effects it is not clear, why DSOs operat-
ing at different scales shall have different cost inflation potentials a priori. Nevertheless, we
consider this potential threat by including variable returns to scale in a variety of efficiency
analyses as well as different upper limits to the number of connected customers per operator.

Results remain robust.!2

As mentioned earlier, the revenue-cap regime can only be chosen by small DSOs, specifically
those with less than 30,000 connected consumers (which corresponds to more than three quar-
ters of all German DSQOs). As incentive regulation was introduced in Germany in 2009, we
observe DSO choices during two regulation cycles. The majority of smaller DSOs (more than
90 percent) opted for the r regime the first time around; and of the ones that did not, many did

so the second time around (given that they did not grow and lost eligibility).%® In this sense, our

11 We obtain equally significant results when narrowing the interval to 85-90%, which, however, reduces the num-
ber of DSOs in the yardstick regime from 31 to 19.
21t is noteworthy, that we did neither find pronounced scale effects nor systematically varying efficiency with
operating size in this restricted sample.
13 The second wave of shifts to the r regime was partly caused by a more favorable value of x, from 0.875 in 2009-
2013 to 0.9614 in 2014-2018. Demanding less cost reduction only reinforces the cost inflation incentive. (Recall
that x applies independently of the DSO’s actual efficiency level.)
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empirical design has a certain regression-discontinuity flavor: large DSOs choose the y regime
and small DSOs choose the r regime, where the threshold is exogenously determined. However,
despite the clear cutoff point (30,000 consumers), a “pure” regression discontinuity approach

would be statistically fragile as there are hardly any DSOs just around the threshold.'*

In contrast to a standard regression-discontinuity approach, DiD has the advantage of address-
ing the possible selection bias arising from the non-random assignment of treatment: Assuming
that decision-making is based on time-invariant unobservables (e.g., propensity to take regula-
tory risks), such DSO-specific effects cancel out in a DiD approach with fixed effects.’® Blun-
dell and Dias (2009) show that the average treatment effect on the treated can be consistently

estimated using OLS.®

In addition to the treatment effect of the r versus the y regime, we are also interested in the
effect of DSO efficiency level, that is, whether the effect of switching from a high-powered to

a low-powered regulation regime depends on the regulated firm’s efficiency level. As DSOs in

Unfortunately, the regulator does not provide any official number (basically because competencies for small DSOs
are located at the Federal State level). However, our database (which comprises network-related information on
645 DSOs in Germany, out of which 500 are eligible for the r regime) shows an increase in DSOs in the r regime
from 462 to 472. In the sample used for our analysis, this concerns 5 DSOs.
14 A propensity-score matching approach is not promising either, as the number of connected consumers almost
perfectly predicts treatment. Still, we followed a nearest-neighbor matching approach to compare expenditures
between DSOs under different regulatory regimes (see section 5.2). The results from this approach confirm the
results from the DiD method, which in the present setting we consider to be more robust.
15 The pre-set homogenous efficiency score is, in fact, the most decisive factor. In combination with different
degrees of risk inclination it can explain why more DSOs have opted for the r regime in the second period than in
the first one. Furthermore, as the score was known before the base year (as well as the other bureaucratic facilita-
tions) and since eligibility is strictly determined by the number of consumers, assuming that unobserved temporary
individual-specific shocks do not influence the participation decision seems warranted.
16 Note that this is not the average treatment effect, which is usually of interest in the classical DiD approach.
However, we are not primarily interested in the average difference in potential outcomes for anyone in the popu-
lation, but rather for firms being treated. That is, we only want to learn whether DSOs that are not subject to the
yardstick element have exploited the opportunity to increase their future revenues through inflated costs in the
base year.
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the r regime are not subject to benchmarking, we must conduct our own analysis in order to
assess DSO efficiency level. We follow the official guidelines of the IRO efficiency analysis

employing data from before the base year.

4.2 Dataset
841 German DSOs were subject to the IRO in the regulatory period 2009-2013. Of these, 184
were regulated under the yardstick regime, and the remaining 657 (all smaller DSOs) under the
revenue-cap regime. Regarding the process of data collection, we should note that most small
DSOs in Germany are still vertically integrated. For this reason, data on their network-operation
expenditures can only be obtained by making use of accounting unbundling obligations. Alt-
hough these obligations are legally binding since 2011, compliance is not universal (though
increasing every year). Striving for a sample containing also data from before the base year, we
can only rely on DSOs that also report data regarding the previous year in their balance sheets

of 2011.

These data requirements (along with gaps in DSOs’ network data; see below) imply that our
sample is a strict subset of the population.t’” Specifically, we constructed an initial balanced
panel of 150 DSOs from 2010 to 2013. However, as mentioned earlier, we restrict attention to
DSOs with cost-reducing targets comparable to DSOs in the revenue-cap regime. This further
restricts our panel to 131 DSOs, out of which 31 fall into the high-powered yardstick regime

and 100 into the low-powered revenue-cap regime.'®

DSOs in our sample serve up to 430,000 exit points with the first half of firms serving less than

19,000 points. They distributed about 77 TWh of electricity and maintained about 134 thousand

17 We also have to disregard DSOs with the legal status of a small corporation (Section 267 German Commercial
Code), which exempts them from reporting detailed cost data in their annual statements.
18 This classification stems from the second regulatory period as expenditures in the base year 2011 affect revenue
caps in the second period 2014-2018.
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kilometers of low-voltage lines in 2011. This amounts to about 16 and 11 percent of the respec-

tive total numbers for Germany.

Our cost data is derived from the DSOs’ annual statements.'® We follow the IRO’s method to
compute effective network-operation costs (totex): we subtract non-controllable cost compo-
nents from total costs on the DSO’s balance sheet. By non-controllable costs components we
mean costs such as concession fees, charges for the use of upstream network levels, or feed-in
remuneration for decentralized renewable electricity generation (all of which are beyond the
DSO’s control).?’ We divide total network operation costs (totex) into their operational and

capital components (opex and capex).

Our data is complemented by a series of controls which we are able to obtain thanks to a variety
of data disclosure requirements the DSOs are subject to. A first set of controls can be obtained
from the DSOs’ websites. It includes (among others) data on the number of exit points, the
length of underground and overhead lines, energy delivered, area served, and population.?* Sec-
ond, transmission system operators release data on the extension of renewable electricity gen-
eration. This information also allows us to retrace different speeds of extension and, thus, dif-
ferent demands for expenditures. Finally, by consulting annual statements and publications of
municipalities, we identify whether concessions have been awarded, i.e., whether a DSO has

acquired new networks.

19 We deflate data from the annual statements by the domestic producer price index for industrial products and an
index for earnings in the energy supply sector, respectively.
20 See Appendix A.3 for details. Even though we do not possess detailed cost data necessary for the official stand-
ardization, we are able to account for the crucial cost blocks which are within the DSOs” control and those which
are not.
2L This information has to be published on the DSOs’ websites on a yearly basis and is collected by the service
provider ene’t whose database we consult and replenish. Data gaps with respect to these variables also restrict our
final sample.
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Table 1 displays summary statistics and Figure 1 depicts the development of expenditures dis-

tinguished by regime.??

[Table 1 about here]

[Figure 1 about here]

4.3 Efficiency analysis

Our efficiency analysis follows (as closely as possible) the guidelines laid down by the IRO,
which stipulates an input-oriented efficiency analysis: DSOs operating a given network with
lowest costs establish a frontier; and the remaining DSOs are rated in relation to that benchmark.
Specifically, each DSO is assigned an efficiency level determined by the better of two values:
one resulting from Data Envelopment Analysis (DEA), one from Stochastic Frontier Analysis
(SFA).22 The DEA method is non-parametric and relies on linear optimization. According to
this method, deviations from the efficiency frontier are deemed deterministic (see Charnes et
al. (1978)). By contrast, the SFA method is based on regression analysis and allows for noise

(see Aigner et al., 1977; Meeusen and van den Broeck, 1977).24

22 Table A-4 in the appendix provides summary statistics for the non-restricted sample comprising all 150 DSOs,
i.e. including DSOs with official efficiency sores outside the range of 82.5-92.5%.

23 The German regulatory authority, in fact, conducts four efficiency analyses: SFA and DEA with standardised
and non-standardised costs, respectively. DSOs then receive the highest respective score (best-of-four).

2 The SFA method is based on a parametric regression and requires an assumption on the production function.
The IRO does not prescribe any particular functional form, but requires assuming non-decreasing returns to scale
for DEA. Even though the choice of output parameters used in the official efficiency analyses is rather politically
motivated, the IRO only specifies that the choice has to be guided by statistical means in order to capture the
DSOs’ supply obligations. As the resulting efficiency scores only serve as inputs for our main investigation, we
do not dwell on technical details and refer the interested reader to Coelli et al. (2005) or Bogetoft and Otto (2011).
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In addition to the previously-mentioned input totex, we use the following outputs measures:
total number of exit points; annual energy delivered; length of underground and overhead lines,

respectively; and total installed capacity for renewable electricity.?®

Despite the unavailability of data as disaggregated as in the official analyses conducted by
Agrell et al. (2008, 2014), our dataset allows us to perform comparable efficiency analyses.?®
These analyses are based on 2010 data, the year preceding the base year. This is important since
(as per our theoretical analysis) we expect 2011 cost data to be biased by “strategic” wasteful

expenditures (recall that 2011 is the base year for the subsequent regulatory period).?’

The resulting cost efficiency scores are depicted in Figure 2.2 The SFA scores are more com-
pressed around a higher mean, but both methods generally produce strongly correlated scores.
In addition to the continuous-variable scores, we also define an “efficient DSO” dummy corre-

sponding to DSOs with an above-median SFA score.?

% These were selected by a regression of totex on a set of potential cost determinants; see Appendix A.3 for
details.
% We use the R packages “Benchmarking” by Bogetoft and Otto (2015) for DEA (assuming non-decreasing re-
turns to scale) and “frontier” by Coelli and Henningsen (2013) for SFA (assuming a Cobb-Douglas cost function
with a half-normally distributed inefficiency term). See Appendix A.3 for details. We employ the unrestricted
sample.
271t is possible that 2011 expenditures are higher simply because DSO shift expenditures from 2010 to 2011.
However, the potential of cost shifting is rather low. An assessment by the national regulator shows that only less
than four (resp. 14) percent of investments and maintenance work can be pushed back two (resp. one) years, the
rest has to be undertaken immediately (Bundesnetzagentur (2015), p. 218f). Moreover, if all firms were to engage
in such investment withholding activities we would still identify DSO efficiency based on 2010 data. If only more
efficient firms shift costs, we would underestimate the effect, but for the reasons mentioned above we do not think
the effect is significant.
28 To be accurate, we actually obtain technical cost efficiency scores as we treat costs as an input. Conventional
cost efficiency scores can only be derived using additional price data on inputs (instead of quantity-times-price
data, which we use and which is stipulated by the IRO). Bogetoft and Otto (2011) show that this production ap-
proach still approximates the respective cost function.
2% As robustness checks we consider the upper quartile as well as the DEA-based efficiency scores.
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[Figure 2 about here]

4.4 Estimation

We implement the DiD approach by means of a log-linear fixed-effects OLS regression:
totex, = y (“revenue-cap"; x base year, )+ x, S+, + &; +U,

where totex;; denotes the log level of total network operation costs of DSO i in year t; “reve-
nue-cap” and “base year” denote dummy variables with the obvious interpretation; and x;; rep-

resents various (logged) covariates (more on these below).

The regression coefficient y measures whether DSOs in the revenue-cap regime had higher ef-
fective network-operation costs in the base year 2011 compared to the year 2013 and to the
respective differential among DSOs in the yardstick regime. We further interact this variable
with a dummy indicating the efficiency of DSOs in the revenue-cap regime. (To check robust-

ness we also employ an interaction with the continuous efficiency variable.)

The regression coefficient §; captures time-specific effects; a; depicts (unobserved) DSO-spe-
cific effects, and u;, is an idiosyncratic error term. The above regression is based on a cluster-

robust estimate of the variance-covariance matrix, where we cluster at the DSO level .

30 Even though treatment only varies at the group level, inference of the DiD coefficient is not affected by cluster-
ing issues as mentioned by Bertrand et al. (2004) or Donald and Lang (2007). These authors are concerned with
within-group correlation of errors, something that becomes an issue when we have, for example, individuals from
several states. If treatment is assigned at the state level, unobserved state shocks could confound inference. As
argued in section 4.1, we only focus on one jurisdiction and both groups have common dynamic incentives. Hence,
we can safely assume away any group effects in the composite error, which in turn guarantees consistent estima-
tors. In our setting, another source of uncertainty over time is absent as treatment status is not serially correlated
but only arises in the base year.
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Several conditions must be met in order for a DiD approach to be valid.®! First, Table 2 reveals
that DSOs’ characteristics differ across regimes. In order to account for differences, we include
various (logged) covariates x;; in the regression: number of exit points, annual energy deliv-

ered, network length, and installed capacity for renewable electricity generation.®2
[Table 2 about here]

Second, the common trend assumption must not be violated. Our setting assumes decreasing
costs paths only differ as a result of different efficiency levels, duly controlling for other di-
mensions of DSO heterogeneity.3® As previously stated, we only consider DSOs in the yardstick
regime having official cost reduction targets that are comparable to the homogenous one in the
revenue-cap regime. In addition, besides accounting for an unequal expansion of renewable-
energy power plants (see previous list of covariates), we include a dummy for network acqui-
sitions. Such acquisitions are subject to an official tendering for municipal grid concessions.
Their availability follows a 20-year cycle so that the year of acquisition cannot be controlled
by the DSOs. Thus, the corresponding increases in capital expenditures have to be accounted

for.

Third, the covariates must be exogenous, in particular not influenced by the treatment. This
assumption seems reasonable in the present case: the number of exit points, network length and
annual energy delivered are demand-driven (which is close to inelastic) and network acquisi-

tions follow a 20-year municipal concession-awarding cycle. While the capacity for renewable

31 We refer to the assumptions outlined by Lechner (2011): common trend, exogeneity of covariates (i.e. they are
not influenced by the treatment), no anticipation (i.e. the treatment does neither affect the control nor the treatment
group in the pre-treatment period).
32 We disregard population due to high correlation with exit points (Pearson's correlation coefficient: 0.96).
33 Due to a lack of data we cannot show the development of expenditure measures before 2010. However, as
German regulation bases revenues on costs and since revenues are derived from network access charges, we can
provide an indirect picture showing the development of network access charges. Figure A-2 in Appendix A.5 hints
at a common trend — especially when considering the period before the IRO was active in 2009.
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electricity generation is determined by local producers, a violation of the exogeneity assumption
might be possible: Given a high expansion in the previous year, additional network-stabilizing
expenditures might become necessary if a shock occurs in the form of, e.g., extraordinarily high
solar radiation. To account for this possibility, we include the lagged installed capacity as an

additional control variable.

Fourth, we have to consider anticipation effects. As mentioned earlier, higher 2011 costs could
simply result from shifting 2010 or 2012 expenditures. Although, as shown earlier, the scope
for such shifting is rather small, we account for this possibility by estimating a log-linear panel
with firm fixed effects. Employing this “within estimator” helps to account for shifting in any
direction as we compare deviations from the mean which comprises costs of any year of the

observation period.

Finally, we again acknowledge that our approach does not preclude the possibility of a selection
bias arising from the non-random assignment of treatment. However, a DiD regression with
fixed effects enables us to recover the average treatment effect on the treated, namely the addi-
tionally wasteful expenditures incurred by DSOs in the low-powered revenue-cap regime in the

base year; and that is the primary focus of our analysis.

5 Results

5.1 Difference-in-differences results
We start with the general comparison between DSOs in the revenue-cap and the yardstick re-
gime. Column (1) of Table 3 reveals no significant higher total network operation costs (totex)
among the DSOs in the low-powered revenue-cap regime in the base year compared to DSOs
in the high-powered yardstick regime. Besides network length we neither find any effect for the
covariates included to control for differences among DSOs, which suggests these characteristics

do not affect expenditures in a significant way. Notably, the time dummies indicate that costs
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decrease over the regulatory period. Columns (4) and (7) also fail to reveal any statistically
significant higher opex and capex. In sum, at this level we find no direct empirical support for
our first hypothesis. In other words, ignoring firm heterogeneity (in terms of efficiency level)
DSOs under the revenue-cap regime do not seem to inflate their base-year’s costs more than

those under the yardstick regime.

[Table 3 about here]

We next turn to our second hypothesis, where we consider spending behavior according to DSO
efficiency level. In columns (2), (5) and (8) we define efficient DSOs in the revenue-cap regime
as those with above-median efficiency score; whereas in columns (3), (6) and (9) we define

efficient DSOs as those in the upper quartile.®*

Column (2) reveals a positive and statistically significant DiD coefficient on totex, indicating
that, in the base year, efficient DSOs under the revenue-cap regime had about 3.7 percent higher
total expenditures than those under the (high-powered) yardstick regime. The difference in the
rate of totex change is about 9 percentage points.>> Column (3) shows that the effect is even
stronger when focusing on upper quartile in terms of DSO efficiency level: the coefficient is

now about 4.3 percentage points (higher than DSOs under the yardstick regime).

Together, these results provide partial evidence for Proposition 1 (high-powered-incentive reg-
ulation leads to greater efficiency); and strong evidence for Proposition 2 (the effect of incen-

tives is greater for more efficient firms).

34 In both cases the efficiency score is estimated with the SFA approach.
% The statistically significant coefficient for grid acquisition implies that this variable captures a factor that seem-
ingly confounds spending.
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The same qualitative results are also present when focusing on the sub-component opex (col-
umns (5) and (6)). The magnitude is even reinforced: efficient DSOs have about 5 percentage
points higher rates of change. By contrast, we find no statistically significant effects regarding
the rates of capex change (columns (8) and (9)).% Together, these results provide support for
Proposition 3: the effect of regulation incentives is greater for operating expenditures than for

capital expenditures.

5.2 Robustness checks
To check the robustness of our results, we change our regressions in various ways. First, we
employ DEA efficiency scores instead of SFA scores.®” The results, shown in Table A-5 in

Appendix A.4, confirm our basic results.

Second, we interact the DiD-variable with a continuous efficiency score variable instead of a
dummy indicating more and less efficient DSOs. Table A-6 reassures our previous results and
shows that totex and opex of DSOs in the revenue-cap regime significantly increase with each
additional efficiency-score percentage point. In addition, we test whether there is a non-linear
relationship by including the efficiency score squared. The coefficient of the squared term is
significantly positive, while the coefficient of the linear term is insignificant. This confirms our
previous result that the effect of incentive regulation is especially significant for higher effi-

ciency firms.

3 Regarding capital expenditures the statistical significance of grid acquisition is noteworthy, suggesting that this
variable indeed controls for a deviation from the assumed common trend (the respective DSOs have an about 21
percentage points higher rate of capex change).

37 Even though the altered distinction does not affect the number of DSOs classified as efficient, their composition
is changed. Regarding the median distinction only 46 of 50 DSOs in the simplified procedure are characterized as
efficient by both methods. Regarding the upper-quartile distinction only 18 of 25 DSOs are deemed efficient by
both methods.
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Third, we narrow our sample to DSOs serving less than 100,000 connected consumers in order
to consider only firms with more comparable supply obligations. Table A-7 reveals that our
results also hold for the reduced sample.® Fourth, Table A-8 in the Appendix shows that the

results are robust to considering alternative output measures in the efficiency analyses.

Finally, as an alternative to DiD we estimate the differential effect of revenue-cap regulation
vis-a-vis yardstick regulation by means of a matched regression. Specifically, we match on exit
points, energy delivered, network length, and (lagged) installed capacity for renewable electric-
ity generation, while disregarding any DSOs with grid acquisitions, which could otherwise not
be sufficiently accounted for. We also employ rates of cost changes (defined as percent change
over the previous year) to account for differences in size. The results, included in Table A-9,
show that, for firms in the upper efficiency quartile, the rates of change in totex and opex are
greater for DSOs under the low-powered incentive regime, thus providing additional credence

to our DiD results.

5.3 Welfare analysis and discussion
As a final exercise, we put the consequences of the piling up of inefficient expenditures in
perspective. As the inflated costs in the base year translate into higher revenue caps that have
to be borne by consumers paying the (increased) network access charges, we can evaluate the

loss in consumer welfare. The loss is depicted by the excess expenditures of more efficient

38 This also applies to a sample containing only firms with less than 75,000 consumers.
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DSOs in the revenue-cap regime compared to their counterparts in the yardstick regime.*® How-
ever, we abstain from calculating the welfare effects directly using our DiD coefficients.*’ Do-
ing so would imply to assume that DSOs in the revenue-cap regime would face the same cost-
reduction targets as before. However, this is not the case. If they were in the yardstick regime,

they would receive cost-reduction targets based on their individual efficiency.

Therefore, we instead perform an alternative back-of-the-envelope calculation and assume that
their cost-reduction targets would be updated. In particular, we conduct a nearest-neighbor
matching to estimate excess expenditures. In contrast to our previous analysis, we now employ
the full dataset of 150 DSOs which also comprises DSOs in the yardstick regime that, in the
first regulatory period, have received official efficiency scores that are not comparable to the
homogenous one in the revenue-cap regime. We thus have an increased number of potential

matching partners for the more efficient firms.

We match DSOs of both regimes on the SFA efficiency score of 2010. We also match on exit
points, energy delivered, network length, and (lagged) installed capacity for renewable electric-
ity generation while disregarding any DSOs with grid acquisitions in the base year. Table 4
provides the matching results with respect to the rates of totex change, which we use to account
for size effects. We focus on totex because it is eventually providing the basis for revenue and

thus network access charges.*! Obviously, the more efficient DSOs in the revenue-cap regime

%9 In other words, even if cost inflation is a general industry practice, the additional increase we estimate represents
the excess burden of suboptimal regulation.
40 Taking the DiD coefficient from column (3) of Table 3, the excessive totex for the upper quartile efficient DSOs
in the revenue-cap regime would amount to 4.3 percent which corresponds to about 3.2 million euro in absolute
terms only for those DSOs in our sample.
4l Table A-10 contains the matching results for the remaining expenditure measures as well as for DEA scores.
We find significant effects regarding opex with the upper quartile distinction using SFA scores. Whereas the anal-
ysis using DEA scores does not yield significant results, the effects point in a similar direction with half of the
magnitude.
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have higher rates of totex change than their matching partners in the yardstick regime. This is
statistically significant regarding the median and upper quartile distinction. We focus on the

latter in the following.

Based on these estimates of inflated rates of totex change we subsequently calculate the absolute
totex values for each of the upper quartile efficient DSOs in the revenue-cap regime if their
actual rates had not been inflated by 10.534 to 10.993 percent (column (3)). Comparing these
hypothetical totex values to the realized ones then allows to quantify the excessive spending.
Using the respective values for the upper quartile efficient DSOs we find that the excessive
totex range between 9.9 and 10.3 percent of the realized totex in the base year (or in absolute

numbers: 6.8-7.1 million euro for this subsample of DSOs).*

[Table 4 about here]

Admittedly, this is not the end of the story: one advantage of the revenue-cap regime is that it
saves on regulatory costs (e.g., estimating each DSO’s efficiency level). That said, a difference
of about 10%, once extrapolated to the hundreds of DSOs subject to revenue-cap regulation,
adds up to about 70 million euro.*® Seen from another angle, hypothetically assuming that all
(bigger) 184 DSOs under the yardstick regime were instead regulated by the revenue-cap re-
gime; and considering that these firms are close to efficient (their average (official) efficiency
is of about 95%); this would entail a damage of more than 800 million euro (based on their total
effective network-operation costs in 2011%%). Looking at it from a positive perspective, the fact
that these 184 firms have been under yardstick regulation has generated a benefit of 800 million

euro.

42 Regarding DEA scores (see Table A-10) the excessive totex range would be 3.9-4.8% (3.0-3.7 million euro).
43 The value of excess expenditure in our sample is about 10 million euro for 23 more efficient DSOs. Extrapolating
to the efficient upper quartile of 650 DSOs under the revenue-cap regime we get a value of 70 million euros.
44 See Bundesnetzagentur (2015), p. 122.
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It is further revealing to contrast the ex post estimate of the impact of cost-based incentive
regulation to the massive historical and planned investment in renewables during the period
after 2013. An engineering-based study uses current information on network operation to fore-
cast necessary network expansion until 2032 based on the regional renewable expansion targets
in Germany (“Bundesland” or state targets).*® This entails the integration of 206 Gigawatt of
renewable capacity of which more than half are already connected to date. This massive expan-
sion of decentralized — mainly wind (111 Gigawatt) and solar (85 Gigawatt) production —
necessitates the reinforcement of networks on all voltage levels. The study derives extra invest-
ment needs of ca. 48.9 billion euro until 2032, which translates into an extra cost of 3.8 billion

euro per annum (about 20% of total network-operating costs in 2012).

About 62% of low voltage network operators will be affected by this network expansion due to
the need to integrate this renewable power generation integration. This is particularly true for
rural, small-scale operators. In this context, the revenue-cap regime would imply an extra bur-
den to rural consumers through two different channels: base expansion costs due to renewable

power integration and the excess burden due to inefficient regulation.

This increase becomes particularly harsh comparing the different regions in Germany. The po-
tential for renewable capacity investments is driven by wind and solar exposure, which differs
across Germany and therefore across DSOs. Sparsely populated North and East Germany will
experience wind power installations whereas solar power increases in the densely populated
South. The 48.9 billion euro total investments will be distributed more or less equally to North
(14.9 billion euro), East (11.8) and South Germany (14.4), whereas West Germany needs to
spend much less (7.8 billion euro).*® This leads to an increase in the price spread between

Western and Eastern German customers and levers redistribution. Starting on 2012 average

45 See study prepared for the Federal Ministry for Economic Affairs and Energy, BMWi (2014), p51ff.
46 See study prepared for the Federal Ministry for Economic Affairs and Energy, BMWi (2014), p51ff.
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levels of 5.7 and 8.1 cents per kilowatt hour for residential customers in East and West Germany
respectively, a low-powered incentive regulation regime would increase prices to 6.7 and 11.8
cents per kilowatt hour accommodating fluctuating renewables in 2032. In contrast, with a high-
powered incentive regime prices could be kept substantially lower at the initially forecasted
levels of 6.1 and 10.7 cents per kilowatt hour. This is equivalent to keeping the price increase
at 16.62 instead of 42.02 euro per annum for a West German customer and at 107.96 instead of
152.49 euro per annum in East Germany. This compares to an annual bill for the network charge

of roughly 248 euro.

Against this background it is evident that policy should thoroughly consider the incentive power
of its regulatory regime — in particular when facing cost intensive system transitions as well
as distributive equity. This is also relevant in many other countries investing heavily in decen-
tralized generation, such as China (with a goal of 680 GW renewable capacity by 2020) or

several US states (goals ranging from 10 to 50% of renewable production by 2020 to 2030).%

6 Conclusion

We set out to compare two alternative regulatory regimes currently in place in the German
electricity distribution sector. Conceptually, the revenue-cap regime, closer to cost-based regu-
lation, provides lower incentives for cost reduction than the yardstick regime, especially for
firms that are more efficient to begin with. The results from our difference-in-differences anal-
ysis confirm this theoretical prediction. In addition, firms follow the regulatory incentive to
heavily inflate flexible operational instead of capital costs in order to profit from the photo year
effect in cost auditing and, by the same token, accepting worse performance measures. The
most important finding thus is that regulators clearly have to be aware of incentives they set for

firms. Light-handed revenue-cap regulation clearly comes at a cost, in particular approaching a

47 See NDRC (2016) and NCSL (2017).
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state of (supposed) efficiency prevalent in many countries having already adopted incentive
regulation over the past decades. For those very efficient operators our results suggest the high-

est cost inflation and welfare loss.

The matter of cost inflation caused by low-powered incentive regulation should receive more
attention in light of ambitious decarbonization goals and ongoing sector restructuring through-
out the world. Germany is a forerunner in decentralized renewable power expansion, in partic-
ular intermittent solar and wind power, and faces further challenges with the electrification of
the heating and mobility sectors. The necessary infrastructure system transition to achieve en-
vironmental goals will most likely require heavy capacity reinforcement and extra spending,
which makes unnecessary wasteful expenditure painful. Other potential challenges are demo-
graphic change and migration. Rural exodus and international migration similarly lead to the

relocation of population entailing infrastructural change and investments.

In the second instance, sectoral structure itself may be rethought: First, forging bigger DSOs
will make them eligible for performance evaluation and high-powered incentive regimes. The
specific supply obligations of very small DSOs can distort benchmarking exercises yielding
less meaningful results, which will be complicated even more the more intermittent renewables
will be connected to the networks. Second, bigger DSOs will additionally save on administra-

tive cost.

While a more sophisticated structural econometric approach may be useful to consider the dy-
namics of firm behavior and regulation (cost shifting), or to quantify impacts of asymmetric
information (leading to more accurate forecasts on how DSOs will react to the upcoming sector
restructuring caused by the desire to achieve environmental goals), the focus of this article was
set on the verification of the impact of low- vs. high-powered incentive regulation on the basis

of historical data. There are many additional questions to be addressed with a more structural
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approach, including: how to treat bi-directional flows in a distribution network, how to inter-
nalize external cost effects of different network usage by producing consumers, or, more gen-
erally, how to set prices for network transmission dynamically using multi-part tariffs to avoid
unnecessary investments. In all of these cases, the issue of incentives to inflate the cost base —

the central focus of our paper — is of primary importance.
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A. Appendix

A.1 Proofs

Proof of Proposition 1: The first-order condition under regulatory systemy is given by

e(@)f'(w)-1+a=0 (16)

leading to

y_ ol 1z
" _g[ew)j ()

where g () is the inverse of f '(w) . By contrast, under regulatory system r the f.o.c. is given by

e(@)f'W(2-x)-1+a=0 (18)
leading to
vy l+a
v~ ) )
Taking differences,
l-«a l-a
ol 2w ) @

Note that, given our assumptions on f(w), it follows that f '(w) is a strictly positive and
strictly decreasing function in R+; and so ¢ () is also a strictly positive and strictly decreasing
function in R+. Together with our assumptions that « €(0,1) and x €(0,1), the result fol-

lows.m
Proof of Proposition 2: If f(x)=1log(x), g(x)=1/x. Equation 20 then becomes

_(2=x)e(0) @) _ 1-x)e(9)
1« - l-a

A

(21)
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The result then follows from the assumption that e() is strictly decreasing. m

Proof of Proposition 3: The first-order conditions under regulatory systemy is given by

e(@)f'(w)-1+a=0 (22)
e(@)f'w)-2+a=0 (23)
leading to
v_ql 1z
) o
y_ql 22
e g[ (0) j )

where ¢ () is the inverse of f'(w). By contrast, under regulatory system r the first-order con-

ditions are given by

e(@)f'w)2-x)-1+a=0 (26)
e(@)f'(w)(2-x)-2+a=0 (27)
leading to
y l-o
e =9 ( - x)e(H)j (28)
y 2—a
= ) “
Taking differences,
l-« l-«o
R [(2— x)ew)j_ ’ (%] <0
2—-a 2—-«a
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If £ () = log() , then

_(2=x)e(0) e(0) _1-x)e(0)
 1l-a l-a l-a

A (32)

0

_(2=x)e(0) e(d) _(A-x)e®)
 2-a 2-a  2-a

A, (33)

It follows that A, >A,.m

A.2 Incentive regulation in Germany
In 2009, Germany’s previous cost-based regulation of electricity network access charges was
replaced by the Incentive Regulation Ordinance (IRO). DSOs are given individual revenue caps
that linearly decrease within the regulatory periods of five years thereby demanding a reduction
of inefficient costs. In the default (high-powered incentive) regime, this amount is determined
by an efficiency analysis conducted among DSOs prior to the respective regulatory period. By
means of Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis (DEA), the Ger-
man regulator identifies DSOs being able to produce a given output (measured by exit points,
network length, annual peak load and area served amongst others) with fewest costs. These

DSOs serve as a benchmark to which less cost efficient DSOs have to converge.

Only controllable costs are considered for this comparison. That is, any costs that DSOs cannot
influence (like concession fees, charges for the use of upstream network levels or feed-in re-
muneration for decentralized electricity generation) are identified in a cost audit three years
before the start of the regulatory period. These non-controllable costs are subtracted from the
overall network-operation costs consisting of (standardized*®) capital and operational expendi-

tures (see next section).

48 The German regulatory authority, in fact, conducts four efficiency analyses: SFA and DEA with standardised
and non-standardised costs, respectively. DSOs then receive the highest respective score (Best-of-four).
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Revenue caps limiting the scope of access charges are then calculated using the following reg-

ulatory formula:

RC, =C +(Cm0 +(1—Vt)xCCVO)x(gE:t - Pthx EF. +Q,. (34)

— “opncit
0

The revenue cap, RC,, in year t mainly consists of three parts: (i) the ‘permanently non-control-
lable’ costs (Cpnc,e, ‘PNC costs” henceforth), (ii) the effective costs of network operation, which
are further decomposed in a part that is ‘temporarily non-controllable’ (Cy,o, i.e. the costs of
an efficient network operation derived by multiplying the effective costs of network operation
with the efficiency score), and in a part of ‘controllable’ costs (C, i.e. inefficient costs), and
(iii) an additional quality element preventing cost reductions at the expense of supply quality
(Q.).* (1 — V) is a factor linearly distributing the required reduction of inefficient costs over
the regulatory period.>® The effective costs of network operation are deflated by the develop-
ment of the consumer price index (CPI) as these costs are retrieved in the base year 0, in which
the cost audit is conducted. This development is further corrected for the industry’s productivity
growth (PF;). Finally, changes in supply obligations are respected by the expansion factor (EF;)

correcting the effective costs of network operation.

Figure A-1 depicts the path of cost reduction for an exemplary DSO. All revenue caps in the
regulatory period are based on the overall costs of network operation occurring in the base year.
In this example, 30 percent of these costs are deemed permanently non-controllable (and do not
change over the period). Only the remaining costs are considered in the official efficiency anal-

ysis. Here, the DSO has obtained an efficiency score of 80 percent. This implies that its effective

49 The official regulatory formula further comprises an element accounting for the volatility of fuel costs and a
balancing element accounting for the administrative delay when pnc costs, for instance, suddenly increase justify-
ing a raised revenue cap but the official adjustment is only carried out in the subsequent year.
%0 That is, for a 5-year period: V; = 0.2,V, = 0.4, ...,V = 1.
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network-operation costs have to be reduced by 20 percent by the end of the regulatory period.
The DSO receives revenue caps that — starting from the cost level in the base year (solid line)

— are lowered by a certain percentage every year within the regulatory period.
[Figure A-1 about here]

The just described regulation generally applies to all DSOs. However, smaller DSOs with less
than 30,000 connected consumers can opt out of this default “standard procedure” for the whole
regulatory period. In an alternative “simplified procedure” small DSOs face lower reporting
requirements and better planning reliability as they are exempted from the efficiency analysis
and are instead given a pre-set, homogenous efficiency score. In the first regulatory period

2009-2013 this score was fixed at 87.5 percent (second period (2014-2018): 96.14 percent).

Moreover, 45 percent of overall network-operation costs are deemed pnc costs without any
exhaustive identification.®! Revenue caps are also calculated using the regulatory formula but
disregarding the quality element.>> However, whereas in the standard procedure any changes in
pnc costs lead to an adjustment of revenue caps, only concession fees and charges for the use
of upstream network levels are accounted for. Small DSOs further lack the possibility to deduct
additional investment expenses caused by a high extension of renewable electricity generation

that is not captured by the expansion factor.

A.3 Efficiency analysis and cost approximation
The IRO prescribes in detail which costs serve as input for the efficiency analysis. In general,
total expenditures (totex) are composed of operational and capital expenditures (capex and

opex), but both are subject to standardization. capex comprises the imputed equity yield rate

5L A major revision of the IRO in 2016 reduced this allowance to 5 percent. This, however, leaves our analysis
unaffected.
52 This would otherwise necessitate the (bureaucratic) reporting of detailed data like SAIDI.
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and imputed depreciation. Imputation is carried out at the plant level and, depending on activa-
tion dates, evaluated at costs or at current costs. The equity yield rate is then calculated by
adding up imputed net book values of fixed assets and the book values of financial and current

assets necessary for operation, and by multiplying this sum by official interest rates.

As we do not possess cost data at the plant level and cannot determine whether all financial and
current assets are necessary for operation, we approximate capex in the following manner: We
model the equity yield rate as fixed assets (at costs) times the official multiplier for ‘new’ assets
(9.05% before corporation tax) and we employ the respective balance sheet item for deprecia-

tion (at book value).

opex consists of material, personnel and sundry costs (at book values), which we model by their
respective profit-and-loss-account items. opex is further supplemented by the interest on bor-
rowed capital but at most at equity market levels. We account for this by adding up liabilities

and liability provisions and multiply this by the official value (3.98%).

Costs that are officially deemed permanently non-controllable (‘pnc costs”) are deducted from
these overall network-operation costs. Again, we cannot reproduce the full standardization re-
quired by Section 11.2 IRO due to a lack of detailed cost data. However, we are able to consider
the three major blocks comprising concession fees, charges for the use of upstream network
levels, and feed-in remuneration for decentralized renewable electricity generation. We possess
explicit data on the latter, but have to approximate the former two. This works well for the
concession fees (described in the next paragraph) but seems, in our opinion, rather problematic
for the charges for the use of upstream network levels. Their calculation depends on annual
energy delivered and annual peak load. We, unfortunately, do not have consistent data on the
latter. In order to prevent any bias in our pivotal cost variable, we abstain from any approxima-
tion attempts. We rather make use of a more promising approach. The material costs item of

the profit and loss account is subdivided into cost of raw materials and supplies, and cost of
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purchased services. Charges for the use of upstream network levels and feed-in remuneration
for decentralized renewable electricity generation are filed into the former and depict the ma-
jority of this item (the rest basically comprises fuel costs, which are also separately accounted
for in the official regulatory formula). We thus simply deduct this sub-item and only keep the
cost of purchased services of the material costs item still promising to account for any autono-

mous cost inflation.

Concession fees, which are claimed by local municipalities, are filed into the sundry costs item.
Being non-controllable by the DSOs they have to be approximated and deducted. Their scope
is legally limited and depends on the municipalities’ population. As they contribute to the mu-
nicipalities’ revenues and as municipalities are rather poor, we assume the highest possible
charges. We, thus, approximate the DSOs’ concession fees by apportioning annual energy de-
livered into a part delivered to end users and into a part delivered to firms.>® We multiply the
respective parts by the respective charges depending on the municipalities’ population.>* Some
DSOs have reported their actual expenditures for concession fees enabling us to test the quality
of our approximation. Regressing the actual values on our approximations yields a considerable

R-squared of 0.91.

The resulting block of effective network-operation costs is used as input for the efficiency anal-
ysis. The official efficiency analyses conducted by Agrell et al. (2008, 2014) consider the fol-
lowing outputs: the total number of exit points (at all voltage levels), area served, the length of
underground and/or overhead lines at HV and MV level respectively, the total length of both

underground and overhead lines at LV level, annual peak load (at HV/MV and MV/LV level

53 We determine the amount of energy delivered to end users by assuming inhabitants living in two-person house-
hold consuming 3,000 kWh per year. The remaining energy delivered is assumed to be transmitted to firms.
% The respective figures are laid down in Section 2.2 Concession Levy Ordinance.
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respectively), the number of substations,>® and the total installed capacity for decentralized elec-
tricity generation (at all voltage levels). These outputs were, however, identified as cost drivers
regarding large DSOs and building on the detailed but confidential official database. As we
consider rather smaller DSOs and also lack data on annual peak load, disaggregated decentral-
ized electricity generation, and substations, we conduct an own identification of cost drivers
drawing on Agrell et al. (2008, 2014). Table A-1 presents the respective regression results with

an increasing degree of aggregation regarding lines.

We prefer specification (7) implying the lowest BIC and promising to account for DSOs ser-
vicing more expensive overhead lines. The IRO requires conducting efficiency analyses using
both SFA and DEA. The only methodological prerequisite concerns DEA to assume non-de-
creasing returns to scale, which we accordingly do. For SFA, we assume a Cobb-Douglas cost
function with a half-normally distributed inefficiency term.>® Choosing specification (7), how-
ever, complicates SFA. As some DSOs do not have any overhead lines, taking logs is precluded.
We, therefore, draw on Battese (1997) and add a dummy variable to indicate non-use. The SFA
regression results for are presented in Table A-2. We further conduct an efficiency analysis
using specification (8) which has the highest degree of aggregation and also disregards the out-
put ‘area served’ which is prescribed by IRO but shows no statistical significance in our analy-
sis. This specification allows taking logs of all variables. Output is presented in Table A-3.
Although the classification of DSOs within the revenue-cap regime is changed, our DiD results

remain robust (see Table A-8).

% In the second official efficiency analysis, this variable has been replaced by the number of meters.
% We do not consider a translog functional form as this implies estimating many more parameters producing poor
results for our dataset.
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A.4 Tables

Table 1: Summary statistics

Variable Obs. Mean Std.D. Min Max Description

Population 522 51975 71405 3512 545124 Population in area served at low voltage level

Exit points 524  31.08 46.78 1.80 30772 Ti)tgégumber of exit points at all voltage levels in

Energy delivered 524 39499 867.35 22.70  7021.60 Annual energy delivered to end users in GWh

Avrea served 517 25.01 31.33 2.00 257.00 Area served at low voltage level in km?

Network length 524 88359 146407 6500 14190.50 | ol length of underground and overhead lines
at all voltage levels in km

Growth solar cap. 524 16654 23407 920 408363 Crowth rate of installed capacity for solar power
electricity generation in %

Cap. renewable 524 16.63 29.06 0.07 953 58 Ins;alle_d capacity for renewable electricity gener-
ation in MW

Network acquisition 524  0.04 0.19 0 1 Dummy indicating network acquisitions

Totex 504 872 13.64 0.32 109 85 EfEECtIVE network-operation costs in m euro
(= capex + opex)

Opex 524  6.51 11.67 0.22 95.07 Standardized operational expenditures in m euro

Capex 524  2.21 2.74 0.07 28.09 Standardized capital expenditures in m euro

Notes: Summary statistics for data of 131 DSOs for years 2010-2013. Accounting data in 2010 euro.

Sources: DSOs’ annual statements with separate accounting information for network operation as demanded by Section
6b German Energy Act; DSOs’ network data published on their websites complying with Section 27 Network Charges
Ordinance; data on renewable energy production published by transmission system operators complying with Section 73
Renewable Energy Sources Act.

Table 2: Differences among regulatory regimes

. “Yardstick” “Revenue-cap” Difference (t-stat)

Variable
1) &) B):®-©

Population 132601 28253 8.30***
Exit points 80.43 15.59 8.15%**
Energy delivered 1147.86 177.74 5.85%**
Avrea served 45.12 17.73 4.85%**
Network length 2171.68 473.28 6.28***
Cap. renewable 31.87 7.40 4.65%**
Growth cap. solar 283.11 210.38 0.94
DSOs 31 100

Notes: Data from year 2010; *,** ***: significant differences at 10%, 5% and 1% respectively

(two-sided t-test).
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Table 3: Difference-in-differences results — expenditure measures

Dependent variable: In(totex) In(opex) In(capex)
No efficiency  Efficiency dis- Efficiency distinc- No efficiency  Efficiency dis- Efficiency distinc- No efficiency  Efficiency dis- Efficiency distinc-
distinction  tinction: median tion: upper quartile distinction  tinction: median tion: upper quartile distinction  tinction: median tion: upper quartile
@) @) ®) 4) ®) (6) (@) (8) )
"Revenue Cap" x base 0.022 0.029 -0.010
year (1.29) (1.37) (-0.74)
Efficient x "Revenue 0.037** 0.043** 0.048** 0.053** -0.003 -0.004
Cap" x base year (2.14) (2.32) (2.15) (2.21) (-0.23) (-0.25)
Non-efficient x "Reve- 0.006 0.015 0.010 0.021 -0.016 -0.012
nue Cap" x base year (0.30) (0.82) (0.40) (0.93) (-1.14) (-0.85)
L 0.024 0.022 0.023 -0.028 -0.031 -0.029 0.121 0.120 0.121
In(exit points)
(0.54) (0.50) (0.53) (-0.95) (-1.10) (-1.03) (1.36) (1.36) (1.36)
In(energy delivered) 0.068 0.068 0.070 0.059 0.058 0.061 0.063 0.063 0.063
(1.51) (1.48) (1.53) (1.20) (1.17) (1.23) (0.96) (0.95) (0.96)
In(network length) 0.373*** 0.369*** 0.367*** 0.321*** 0.316*** 0.314*** 0.564*** 0.563*** 0.563***
(3.55) (3.55) (3.50) (2.77) (2.74) (2.70) (3.66) (3.66) (3.66)
In(cap. renewable) 0.015 0.014 0.015 0.012 0.011 0.012 0.011 0.011 0.011
' (0.77) (0.70) (0.75) (0.50) (0.43) (0.48) (0.63) (0.61) (0.63)
In(lagged cap. renewa- 0.013 0.012 0.012 0.026* 0.025* 0.026* -0.019 -0.020 -0.020
ble) (1.05) (0.95) (1.00) (1.86) (1.70) 1.77) (-0.96) (-0.99) (-0.97)
Grid acquisition 0.033 0.034* 0.035* 0.026 0.027 0.028 0.045 0.045 0.046
(1.63) (1.66) (1.69) (1.02) (1.04) (1.08) (1.61) (1.62) (1.62)
2011 -0.023 -0.022 -0.022 -0.035* -0.033 -0.034 0.026* 0.027* 0.026*
(-1.35) (-1.28) (-1.31) (-1.66) (-1.59) (-1.62) (1.92) (1.94) (1.92)
2012 -0.024* -0.023 -0.023* -0.044** -0.042** -0.043** 0.028* 0.029* 0.028*
(-1.75) (-1.61) (-1.67) (-2.60) (-2.45) (-2.51) (1.85) (1.88) (1.85)
2013 -0.015 -0.013 -0.014 -0.032 -0.030 -0.031 0.028 0.029 0.028
(-0.78) (-0.65) (-0.71) (-1.31) (-1.18) (-1.24) (1.49) (1.52) (1.49)
Constant 11.829*** 11.905*** 11.864*** 12.329*** 12.421%** 12.369*** 8.740*** 8.770*** 8.749***
(11.16) (11.25) (11.24) (12.04) (12.02) (12.03) (5.12) (5.15) (5.14)
DSOs 131 131 131 131 131 131 131 131 131
R2 within 0.16 0.17 0.17 0.09 0.10 0.09 0.28 0.28 0.28
F 3.71*** 3.68*** 3.97*** 4.06*** 4.25%** 4.64%** 4.31%** 4.04%** 4.,03***

Notes: OLS estimation with DSO-fixed effects and time-fixed effects. Standard errors clustered at DSO level. t statistic in parentheses. Distinction between non- and efficient DSOs using SFA efficiency scores.
Years 2010-2013. *** ***: significant at 10%, 5% and 1% respectively.
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Table 4: Matching results for welfare analysis

Dependent variable: rate of totex change
" Revenue-can® Median efficientin ~ Upper quartile effi-
Vs "YardsticE" ""Revenue-cap® vs. cient in ""Revenue-
' "Yardstick™ cap® vs. "Yardstick"
) ) @)
Number of nearest neighbors: 4
Average treatment ef- 0.939 6.781* 10.534**
fect on the treated (3.085) (3.833) (4.807)
Number of nearest neighbors: 5
Average treatment ef- 1.128 7.374** 10.747**
fect on the treated (2.884) (3.493) (4.429)
Number of nearest neighbors: 6
Average treatment ef- 1.269 7.032** 10.993***
fect on the treated (2.770) (3.331) (4.217)
DSOs 132 86 63

Notes: Treatment-effects estimation using nearest-neighbor matching (Mahalanobis dis-
tance metric). Al robust standard errors in parentheses. Efficiency distinction based on SFA
efficiency scores. Matching on SFA efficiency score, exit points, energy delivered, network
length, cap. renewable, and lagged cap. renewable. DSOs that encountered network acqui-
sitions were disregarded. Year 2011. *,** ***: significant at 10%, 5% and 1% respectively.
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Table A-1: Cost drivers

Dependent variable: effective network-operation costs (totex) (in euro)

()] (2) 3) (4) (5) (6) @) (8)
Exit poirs 199563***  187006***  195759*** 99183**  201753***  188965***  196861*** 100631**
(3.58) (3.05) (4.07) (2.28) (3.57) (3.06) (4.01) (2.28)
-140998***  -139703***  -144285*** -Q0744**  -131848***  -133637***  -135719*** -87741**
Cap. renewable
(-3.59) (-3.47) (-4.23)  (-2.05) (-3.07) (-3.03) (-3.73)  (-1.98)
28989 18986 30743 12560
Area served
(0.88) (0.61) (0.91) (0.41)
Energy delivered -1561 373 -1706 3096 -1555 302 -1743 3031
(sum) (-0.51) (0.15) (-0.56) (1.20) (-0.49) (0.12) (-0.55) (1.14)
Lines under- S544** 6351+
ground (LV) (2.42) (2.74)
Lines overhead 14737** 15001**
(LV) (2.18) (2.23)
Network length 8088*** 8527**
(LV) (2.90) (3.30)
;‘23?1 (;”(‘Sel_rv) 2011 -4615 1723 -4546
(0.20) (-0.53) (0.17) (-0.51)
Lines overhead 15157%** 17870%** 15469%**  17971%**
>Lv) (3.11) (4.41) (3.13) (4.32)
Lines under- 4817** 54457
ground (all levels) (2.38) (2.91)
Lines overhead 15127%** 15494+
(all levels) (4.65) (4.78)
Network length 7130%** 7367
(sum) (3.24) (3.31)
-454823 -312186 -483313  -533322 -325005 -231017 -351717  -478249
Constant (-0.88) (-0.66) (-0.94)  (-0.97) (-0.67) (-0.50) (-0.72)  (-0.96)
DSOs 148 148 148 148 148 148 148 148
R 0.94 0.93 0.94 0.92 0.94 0.93 0.94 0.91
BIC 4994 5000 4985 5022 4991 4995 4982 5018

Notes: We employ the full data set for the year 2010. OLS estimation using standard errors clustered at DSO level. t statistic reported in
parentheses. *,** ***: significant at 10%, 5% and 1% respectively.
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Table A-2: SFA regression results (model with lowest BIC)

Stoc. frontier normal/half-normal model

Number of obs: 150
Log likelihood: -57.05713

In(totex) Coef.  Std. Err. z P>|z|
In(exit points) 0.403 0.077 5.226 0.000
In(cap. renewable) 0.002 0.032 0.073 0.942
In(energy delivered) 0.162 0.067 2.425 0.015
In(lines underground (all levels)) 0.359 0.093 3.845 0.000
In(lines overhead (all levels)) 0.043 0.019 2.212 0.027
I(lines overhead (all levels) = 0) -0.022 0.103 -0.212 0.832
Constant 10.836 0.344 31.532 0.000
sigma_sq 0.203 0.061 3.326 0.001
gamma 0.596 0.252 2.366 0.018

Notes: I(lines overhead (all levels) = 0) is a dummy indicating whether a DSO does not have any
overhead lines at any voltage level. The DSO’s according value for In(lines overhead (all levels))
is then set to zero. This approach follows Battese (1997) and renders the use of the Cobb-Douglas
functional form possible, even under the presence of non-used outputs. gamma is the share of the
inefficiency term’s variation on the composite error term’s variation (sigma_sq). Its relatively
high value indicates the presence of inefficiency (and not just noise).

Table A-3: SFA regression results (model with highest degree of aggregation)

Stoc. frontier normal/half-normal model

Number of obs: 150
Log likelihood: -58.21459

log(TOTEX) Coef.  Std. Err. z P>|z|
In(exit points) 0.400 0.076 5.298 0.000
In(cap. renewable) 0.005 0.033 0.150 0.881
In(energy delivered) 0.140 0.068 2.042 0.041
In(network length (sum)) 0.427 0.092 4.652 0.000
Constant 10.604 0.334 31.724 0.000
sigma_sq 0.212 0.063 3.391 0.001
gamma 0.621 0.238 2.606 0.009

Notes: gamma is the share of the inefficiency term’s variation on the composite error term’s var-
iation (sigma_sq). Its relatively high value indicates the presence of inefficiency (and not just

noise).
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Table A-4: Summary statistics (non-restricted sample)

Variable Obs. Mean Std.D. Min Max Description

Population 598 71020 99000 3512 689582 Population in area served at low voltage level

Exit points 600 4260 62.10 1.80 429 26 Ti)tgégumber of exit points at all voltage levels in

Energy delivered 600 502.15 956.53 22.70  7021.60 Annual energy delivered to end users in GWh

Avrea served 593  34.93 56.36 2.00 420.00 Area served at low voltage level in km?

Network length 600 128370 220714 6500 1516300 ! ol lengthof underground and overhead lines
at all voltage levels in km

Growth solar cap. 600 16564 22099 920 408363 Crowthrateof installed capacity for solar power
electricity generation in %

Cap. renewable 600 2897 7713 0.07 90299 'nstalled capacity for renewable electricity gener-
ation in MW

Network acquisition 600 0.04 0.19 0 1 Dummy indicating network acquisitions

Totex 600 1231 18.90 0.32 109.85 Efiectlve network-operation costs in m euro
(= capex + opex)

Opex 600 9.47 16.06 0.22 95.32 Standardized operational expenditures in m euro

Capex 600 2.84 4.09 0.07 39.03 Standardized capital expenditures in m euro

Notes: Summary statistics for data of 150 DSOs for years 2010-2013. Accounting data in 2010 euro.

Sources: DSOs’ annual statements with separate accounting information for network operation as demanded by Section
6b German Energy Act; DSOs’ network data published on their websites complying with Section 27 Network Charges
Ordinance; data on renewable energy production published by transmission system operators complying with Section 73
Renewable Energy Sources Act.
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Table A-5: Difference-in-differences results — expenditure measures (DEA efficiency scores)

Dependent variable: In(totex) In(opex) In(capex)
No efficiency  Efficiency dis- Eﬁ'C'?nC_y dis- No efficiency  Efficiency dis- Efflmgnc.y dis- No efficiency  Efficiency dis- EfflClgnc'y dis-
distinction  tinction: median tinction: up- distinction  tinction: median tinction: up- distinction  tinction: median tinction: up-
per quartile per quartile per quartile
@) 0] @) 4) ®) (6) Q) (8) ©)
"Revenue Cap" x base 0.022 0.029 -0.010
year (1.29) (1.37) (-0.74)
Efficient x "Revenue 0.037** 0.042** 0.047** 0.055** -0.003 -0.010
Cap" x base year (2.08) (2.18) (2.11) (2.25) (-0.21) (-0.52)
Non-efficient x "Reve- 0.006 0.015 0.010 0.020 -0.016 -0.010
nue Cap" x base year (0.33) (0.84) (0.43) (0.91) (-1.17) (-0.73)
N 0.024 0.022 0.020 -0.028 -0.031 -0.033 0.121 0.120 0.121
In(exit points)
(0.54) (0.50) (0.46) (-0.95) (-1.10) (-1.11) (1.36) (1.36) (1.36)
In(energy delivered) 0.068 0.071 0.068 0.059 0.062 0.059 0.063 0.064 0.063
(1.51) (1.53) (1.49) (1.20) (1.23) (1.18) (0.96) (0.97) (0.96)
In(network length) 0.373*** 0.371*** 0.370*** 0.321*** 0.319%** 0.317*** 0.564*** 0.564*** 0.564***
(3.55) (3.58) (3.52) (2.77) (2.77) (2.72) (3.66) (3.67) (3.66)
In(cap. renewable) 0.015 0.014 0.015 0.012 0.011 0.012 0.011 0.011 0.011
0.77) (0.69) (0.74) (0.50) (0.43) 0.47) (0.63) (0.60) (0.63)
In(lagged cap. renewa- 0.013 0.012 0.012 0.026* 0.025* 0.025* -0.019 -0.020 -0.019
ble) (1.05) (0.96) (0.99) (1.86) (1.71) (1.76) (-0.96) (-0.99) (-0.96)
Grid acquisition 0.033 0.034* 0.034 0.026 0.027 0.027 0.045 0.046 0.045
(1.63) (1.68) (1.66) (1.02) (1.06) (1.05) (1.61) (1.63) (1.61)
2011 -0.023 -0.022 -0.022 -0.035* -0.033 -0.034 0.026* 0.027* 0.026*
(-1.35) (-1.28) (-1.31) (-1.66) (-1.59) (-1.62) (1.92) (1.94) (1.91)
2012 -0.024* -0.023 -0.024* -0.044** -0.042** -0.043** 0.028* 0.029* 0.028*
(-1.75) (-1.61) (-1.68) (-2.60) (-2.44) (-2.51) (1.85) (1.88) (1.84)
2013 -0.015 -0.013 -0.014 -0.032 -0.030 -0.031 0.028 0.029 0.028
(-0.78) (-0.65) (-0.71) (-1.31) (-1.17) (-1.24) (1.49) (1.52) (1.48)
Constant 11.829*** 11.859*** 11.897*** 12.329*** 12.365*** 12.415%** 8.740*** 8.752%** 8.739***
(11.16) (11.28) (11.23) (12.04) (12.07) (11.99) (5.12) (5.14) (5.14)
DSOs 131 131 131 131 131 131 131 131 131
R2 within 0.16 0.17 0.17 0.09 0.10 0.10 0.28 0.28 0.28
F 3.71*** 3.81*** 3.88*** 4.06%** 4.41%** 4.60%** 4,31 *** 3.98*** 3.92%**

Notes: OLS estimation with DSO-fixed effects and time-fixed effects. Standard errors clustered at DSO level. t statistic in parentheses. Distinction between non- and efficient DSOs using DEA
efficiency scores. Years 2010-2013. *,** ***: significant at 10%, 5% and 1% respectively.



Table A-6: Difference-in-differences results — continuous efficiency score

using SFA scores

using DEA scores

Dependent variable: In(totex) In(opex) In(capex) In(totex) In(opex) In(capex)
1) (@3] ®) (4) () (6) () (8) 9) (10) 11) (12)
Efficiency score 0.038* -0.185 0.047* -0.197  -0.005  -0.141 0.062*** -0.001  0.075** 0.009 0.003 -0.048
(1.84) (-1.62) (1.86) (-1.32) (-0.33) (-1.64) (2.70) (-0.01) (2.56) (0.12) (0.12) (-0.87)
Efficiency score 0.270** 0.297* 0.165 0.079 0.083 0.064
squared (2.05) (1.71) (1.59) (1.16) (0.85) (0.92)
In(exit points) 0.022 0.020 -0.030 -0.033 0.121 0.119 0.018 0.018 -0.035 -0.036 0.120 0.119
(0.50) (0.46) (-1.03) (-1.19) (1.35) (1.35) (0.42) (0.42) (-1.21) (-1.26) (1.35) (1.35)
In(energy delivered) 0.069 0.069 0.059 0.059 0.063 0.063 0.069 0.069 0.060 0.060 0.063 0.064
(1.52) (1.48) (1.20) (1.17) (0.96) (0.96) (1.52) (1.52) (1.20) (1.20) (0.97) (0.96)
In(network length) 0.372***  0.363*** 0.320*** 0.310*** 0.565*** 0.560*** 0.369*** 0.366*** 0.316*** 0.313*** (.566*** (0.563***
(3.57) (3.52) (2.78) (2.70) (3.66) (3.66) (3.57) (3.52) (2.76) (2.70) (3.67) (3.68)
0.015 0.015 0.012 0.011 0.012 0.011 0.015 0.015 0.012 0.011 0.012 0.011
In(cap. renewable)
(0.78) (0.72) (0.50) (0.45) (0.64) (0.62) (0.76) (0.73) (0.49) (0.46) (0.65) (0.62)
In(lagged cap. renewa- 0.013 0.012 0.026* 0.025*  -0.019  -0.020 0.012 0.012 0.025* 0.025*  -0.019 -0.020
ble) (1.05) (0.98) (1.84) (1.73)  (-0.95)  (-1.00) (0.98) (0.96) (1.75) (1.71)  (-0.95) (-0.97)
Grid acquisition 0.034* 0.037* 0.027 0.031 0.045  0.047* 0.035* 0.035* 0.028 0.029 0.045 0.046
(1.68) (1.77) (1.07) (1.16) (1.60) (1.66) (1.72) (1.73) (1.10) (1.12) (1.61) (1.63)
2011 -0.028* -0.021  -0.041** -0.033  0.022*  0.026* -0.030** -0.023  -0.042**  -0.035* 0.018  0.023*
(-1.77) (-1.27) (-2.04) (-1.57) (1.68) (1.90) (-2.27) (-1.47) (-2.51) (-1.76) (1.54) (1.69)
2012 -0.024* -0.023  -0.044**  -0.042**  0.028*  0.029* -0.023* -0.023  -0.043** -0.042**  0.028*  0.028*
(-1.75) (-1.61) (-2.60) (-2.44) (1.84) (1.88) (-1.68) (-1.62) (-2.53) (-2.46) (1.83) (1.85)
2013 -0.015 -0.013 -0.032 -0.030 0.028 0.029 -0.014 -0.013 -0.031 -0.030 0.027 0.028
(-0.78) (-0.65) (-1.32) (-1.18) (1.47) (1.53) (-0.72) (-0.66) (-1.24) (-1.19) (1.46) (1.50)
Constant 11.849%** 11.950*** 12.354*** 12.465*** 8.735*** 8.797*** 11.909%** 11.942*%** 12.427*** 12.462*** 8.740*** B.767***
(11.24) (11.29) (12.13) (11.96) (5.12) (5.20) (11.42) (11.43) (12.26) (12.11) (5.14) (5.22)
DSOs 131 131 131 131 131 131 131 131 131 131 131 131
R2 within 0.17 0.17 0.09 0.10 0.28 0.28 0.17 0.17 0.10 0.10 0.28 0.28
F 3.80%**%  3.86%**  4.22%FF  4A44Fxx A Q7R 4,00%** 4.36%**  4.80%**  4.95%**  4.98*** 420%**  3.82%**

Notes: OLS estimation with DSO-fixed effects and time-fixed effects. Standard errors clustered at DSO level. t statistic in parentheses. Years 2010-2013. *,** ***: signifi-
cant at 10%, 5% and 1% respectively.
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Table A-7: Difference-in-differences results — expenditure measures (DSOs with less than 100,000 connected consumers)

Noefficiency  c i 0. Sinctionrup.  Noeficiency Gt o up, Noetfidency e ction: up-
distinction median per quartile distinction median per quartile distinction median per quartile
Distinction between non- and efficient DSOs using SFA efficiency scores
Dependent variable: In(totex) In(opex) In(capex)
(1) 2) (3) (4) (5) (6) (7) (8) 9
"Revenue-cap*“ x base 0.020 0.025 -0.013
year (1.02) (1.03) (-0.94)
Efficient x "Revenue-cap® 0.036* 0.041* 0.044* 0.049* -0.007 -0.007
x base year (1.79) (1.98) (1.74) (1.83) (-0.44) (-0.43)
Non-efficient x "Revenue- 0.004 0.013 0.006 0.017 -0.019 -0.015
cap™ x base year (0.18) (0.63) (0.22) (0.67) (-1.30) (-1.04)
R2 within 0.16 0.17 0.17 0.09 0.10 0.10 0.28 0.28 0.28
F 3.58%** 3.56%** 3.86*** 4.03*** 4.21%** 4.60*** 4.71%** 4.38*** 4.40%***
Distinction between non- and efficient DSOs using DEA efficiency scores
Dependent variable: In(totex) In(opex) In(capex)
(10) (11) (12) (13) (14) (15) (16) (17) (18)

"Revenue-cap* x base 0.020 0.025 -0.013
year (1.02) (1.03) (-0.94)
Efficient x "Revenue-cap* 0.035* 0.040* 0.043* 0.051* -0.007 -0.013
x base year (1.74) (1.87) (1.71) (1.88) (-0.42) (-0.68)
Non-efficient x "Revenue- 0.004 0.013 0.006 0.016 -0.020 -0.013
cap® x base year (0.20) (0.65) (0.24) (0.65) (-1.33) (-0.93)
R2 within 0.16 0.17 0.17 0.09 0.10 0.10 0.28 0.28 0.28
F 3.58*** 3.68*** 3.77*** 4.,03*** 4.36*** 4 55%** 4.71%** 4.34%** 4.27%**
DSOs 125 125 125 125 125 125 125 125 125

Notes: OLS estimation with DSO-fixed effects and time-fixed effects. Covariates omitted for better presentation. Standard errors clustered at DSO level. t statistic in parentheses.
Years 2010-2013. *,** ***: significant at 10%, 5% and 1% respectively.
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Table A-8: Difference-in-differences results — expenditure measures (alternative efficiency analysis)

Noefficency  c i 0. Sinctionrup. Noefidiency Gt o up, Noetficency e ction: up-
distinction median per quartile distinction median per quartile distinction median per quartile
Distinction between non- and efficient DSOs using SFA efficiency scores
Dependent variable: In(totex) In(opex) In(capex)
(1) 2) (3) (4) (5) (6) (7) (8) 9
"Revenue-cap*“ x base 0.022 0.029 -0.010
year (1.29) (1.37) (-0.74)
Efficient x "Revenue-cap® 0.037** 0.038** 0.047** 0.045* -0.004 -0.002
x base year (2.13) (2.01) (2.15) (1.84) (-0.28) (-0.14)
Non-efficient x "Revenue- 0.006 0.016 0.010 0.023 -0.016 -0.012
cap® x base year (0.32) (0.92) (0.40) (1.05) (-1.07) (-0.90)
R2 within 0.16 0.17 0.17 0.09 0.10 0.09 0.28 0.28 0.28
F 3.71%** 3.72%** 3.69*** 4.06*** 4.20%** 4.31*** 4.31** 3.97*** 4.00%***
Distinction between non- and efficient DSOs using DEA efficiency scores
Dependent variable: In(totex) In(opex) In(capex)
(10) (11) (12) (13) (14) (15) (16) (17) (18)

"Revenue-cap* x base 0.022 0.029 -0.010
year (1.29) (1.37) (-0.74)
Efficient x "Revenue-cap* 0.031* 0.049** 0.037* 0.063*** -0.001 -0.006
x base year (1.77) (2.60) (1.66) (2.64) (-0.04) (-0.34)
Non-efficient x "Revenue- 0.012 0.013 0.021 0.017 -0.019 -0.011
cap® x base year (0.63) (0.71) (0.86) (0.78) (-1.37) (-0.82)
R2 within 0.16 0.17 0.17 0.09 0.09 0.10 0.28 0.28 0.28
F 3.71%** 3.58%** 4.09%** 4.06%** 4,03*** 4.71%** 4.31%** 4,08*** 3.93%**
DSOs 131 131 131 131 131 131 131 131 131

Notes: OLS estimation with DSO-fixed effects and time-fixed effects. Covariates omitted for better presentation. Standard errors clustered at DSO level. t statistic in parentheses.
Years 2010-2013. *,** ***: significant at 10%, 5% and 1% respectively.
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Table A-9: Matching results as alternative analysis

Dependent variable: rate of totex change rate of opex change rate of capex change
" median effi-  upper quartile ef- " median effi-  upper quartile ef- " median effi- upper quartile
Revenue- PPN, AL Revenue- PPN, A Revenue- L T
“ys cientin "Rev- ficient in ""Reve- “ys cientin "Rev- ficient in "'Reve- “ys cient in ""Rev- efficient in
"YC;P dsti c.k" enue-cap“ vs. nue-cap“ vs. .,Yc:f dstic.k" enue-cap“ vs. nue-cap® vs. .,Yc:f dstic.k" enue-cap“vs.  "‘Revenue-cap®
"Yardstick" "Yardstick" "Yardstick" "Yardstick" "Yardstick™  vs. "Yardstick"
@) (@3] (©) (4) ©) (6) @) (@) (©)
Number of nearest neighbors: 4; efficiency distinction: SFA
Average treatment 0.326 6.585 10.813* 1.911 8.786 13.164** -5.764 -2.297 1.338
effecton the treated ;4 556y (4.902) (5.927) (5.123) (5.433) (6.000) (4.947) (6.401) (9.603)
Number of nearest neighbors: 5; efficiency distinction: SFA
Average treatment 0.206 5.047 8.862* 1.584 6.803 10.667** -5.097 -2.358 0.978
effecton the treated (4 155y (4.547) (5.325) (4.664) (5.012) (5.356) (4.647) (6.154) (9.014)
Number of nearest neighbors: 6; efficiency distinction: SFA
Average treatment ~ -0.105 4.974 8.413* 1.013 6.499 9.886%* -4.630 -1.708 1.336
effect on the treated  (3.893) (4.165) (5.073) (4.390) (4.583) (5.007) (4.410) (5.799) (8.763)
Number of nearest neighbors: 4; efficiency distinction: DEA
effect on the treated  (4.606) (4.868) (5.775) (5.123) (5.411) (5.898) (4.947) (6.299) (9.257)
Number of nearest neighbors: 5; efficiency distinction: DEA
Average treatment 0.206 5.186 8.606* 1.584 6.902 10.043* -5.097 -1.834 1.931
effecton the treated 4 155y (4.435) (5.187) (4.664) (4.867) (5.237) (4.647) (6.031) (8.798)
Number of nearest neighbors: 6; efficiency distinction: DEA
Average treatment ~ -0.105 4581 8.478* 1.013 5.985 9.679* -4.630 -1.598 2.417
effect on the treated (3 893) (4.163) (4.981) (4.390) (4.554) (4.968) (4.410) (5.774) (8.562)
DSOs 118 72 49 118 72 49 118 72 49

Notes: Treatment-effects estimation using nearest-neighbor matching (Mahalanobis distance metric). Al robust standard errors in parentheses. Matching on exit points, energy delivered, network
length, cap. renewable, and lagged cap. renewable. DSOs that encountered network acquisitions were disregarded. Distinction between non- and efficient DSOs using efficiency scores as men-
tioned. Year 2011. *,** ***: significant at 10%, 5% and 1% respectively.
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Table A-10: Matching results for welfare analysis

Dependent variable: rate of totex change rate of opex change rate of capex change
"Revenue- median effi-  upper quartile ef- "Revenue- median effi-  upper quartile ef- "Revenue- median effi- upper quartile
i cientin "Rev- ficient in "Reve- i cientin "Rev- ficient in ""Reve- « cient in "Rev- efficient in
cap " vs. enue-cap“ vs nue-cap“ vs cap " Vs. enue-cap“ vs nue-cap* vs cap " Vs. enue-cap“vs. "'Revenue-cap“
Yardstick "Yardstick" "Yardstick" Yardstick "Yardstick" "Yardstick" Yardstick "Yardstick™  vs. "Yardstick"
1) (2) ®) (4) (5) (6) @) (8) 9)
Number of nearest neighbors: 4; efficiency distinction: SFA
Average treatment 0.939 6.781* 10.534** 2.026 7.807* 10.818** -2.970 2,517 7.716
effecton the treated 5 g5y (3.833) (4.807) (3.476) (4.077) (4.633) (4.050) (5.965) (9.107)
Number of nearest neighbors: 5; efficiency distinction: SFA
Average treatment 1.128 7.374** 10.747** 2.147 8.496** 11.044*** -2.320 2.964 7.790
effecton the treated ) gy (3.493) (4.429) (3.217) (3.688) (4.249) (3.852) (5.646) (8.741)
Number of nearest neighbors: 6; efficiency distinction: SFA
Average treatment ~ 1.269 7.032** 10.993*** 2.146 8.141** 11.560%** -1.681 2.817 7.576
effect on the treated  (2.770) (3.331) (4.217) (3.088) (3.499) (3.970) (3.713) (5.445) (8.467)
Number of nearest neighbors: 4; efficiency distinction: DEA
Average treatment ~ 0.939 1.746 4.218 2.026 2.337 3.377 -2.970 -1.131 4.093
effecton the treated 5 g5y (3.848) (4.626) (3.476) (4.051) (3.996) (4.050) (6.068) (9.491)
Number of nearest neighbors: 5; efficiency distinction: DEA
Average treatment 1.128 1.999 4.381 2.147 2.393 3.343 -2.320 -0.397 4.422
effecton the treated  ; gg) (3.526) (4.265) (3.217) (3.676) (3.813) (3.852) (5.804) (8.961)
Number of nearest neighbors: 6; efficiency distinction: DEA
Average treatment ~ 1.269 2.985 5.156 2.146 3.429 4.421 -1.681 0.500 4.568
effect on the treated  (2,770) (3.254) (4.125) (3.088) (3.383) (3.776) (3.713) (5.481) (8.737)
DSOs 132 86 63 132 86 63 132 86 63

Notes: Treatment-effects estimation using nearest-neighbor matching (Mahalanobis distance metric). Al robust standard errors in parentheses. Matching on 2010 efficiency score, exit points,
energy delivered, network length, cap. renewable, and lagged cap. renewable. DSOs that encountered network acquisitions were disregarded. Distinction between non- and efficient DSOs using
efficiency scores as mentioned. Year 2011. *,** ***: significant at 10%, 5% and 1% respectively.
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A.5 Figures
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Figure 1: Development of expenditures distinguished by regulatory regime
Source: own figure

DEA

Figure 2: Efficiency scores
Source: own figure
Notes: Efficiency scores of year 2010 for all 150 DOs. Means: 0.77 (SFA), 0.53 (DEA).
Standard deviations: 0.09 (SFA), 0.19 (DEA). Pearson'’s correlation coefficient: 0.75.
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AN ENENENAN
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Figure A-1: Composition and development of revenue caps
Source: own figure

Household (3,500 kWh)

T T T T T T T T
2006 2007 2008 2009 2010 2011 2012 2013

Firm (540,000 kW h)

T T T T T T T
2006 2007 2008 2009 2010 2011 2012 2013

Figure A-2: Development of network access charges for representative users
by regulatory regime
Source: own figure
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