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Abstract
To provide the basis for evaluating the effectiveness of price policies, this paper contributes 
to the literature by estimating the heterogeneity in the response of residential electricity 
demand to price increases across household types. Drawing on household panel data 
from the German Residential Energy Consumption Survey (GRECS) that span over nine 
years (2006-2014), we gauge the response of residential electricity demand to price 
increases on the basis of the dynamic Blundell-Bond estimator to account for potential 
simultaneity and endogeneity problems, as well as Nickell bias. Estimating short- and 
long-run price elasticities of -0.44 and -0.66, respectively, our results indicate that 
price measures may be effective in dampening residential electricity consumption, 
particularly in the long run. Yet, we also find that responses to price changes are very 
heterogeneous across household groups, an outcome that has important implications 
for policy-making. Most notably, we do not find any significant price response for low-
income households.
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1 Introduction

Due to growing concerns about climate change, policy-makers from all around the

world establish measures that aim at cutting greenhouse gas emissions. For instance,

by 2030, the European Union (EU) strives for a 40% reduction in greenhouse gas emis-

sions relative to 1990. To this end, many EU countries have implemented promotion

schemes for renewable energy technologies, whose costs are borne by electricity con-

sumers (REN21, 2017). As an alternative instrument, a few countries, such as France

and Great Britain, have implemented carbon taxes on fossil fuels (RES, 2018) to dimin-

ish the use of fossil fuels and fossil-fuel-based electricity alike.

The effectiveness of such price measures, however, critically hinges on the mag-

nitude of the demand response to increasing electricity prices. Although the demand

for electricity has been analyzed for decades, a consensus on the magnitude of its price

elasticity has never been reached. In fact, the empirical literature reports a wide range

of price elasticity estimates of electricity demand, spanning from 0 to -2.50 (Espey

et al., 2004; Krishnamurthy and Kriström, 2015).

This wide range is due to numerous reasons among which are discrepancies across

empirical studies with respect to investigation periods, regional foci, the level of data

aggregation, the specification of the price variable, and, not least, the econometric

method employed (Alberini et al., 2011; Bernard et al., 2011; Fell et al., 2014). In this

respect, it bears noting that both standard OLS and panel estimation methods fail to

address the particularities of electricity demand, specifically the endogeneity of prices

(Borenstein, 2009; Ito, 2014; Taylor et al., 2004) and the sluggishness in the adjustment

of the appliance stock (e.g. Reiss and White, 2005).

To provide an informed, yet so far unavailable, basis for evaluating the effective-

ness of price policies to reduce electricity consumption as a means to combat climate

change, this paper contributes to the literature by estimating the heterogeneity in the

response of residential electricity demand to price changes across household types. In-

spired by concepts of behavioral economics, we establish a theoretical model in which
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attention (e.g. DellaVigna, 2009) to electricity consumption issues plays a key role in

explaining heterogeneity in electricity demand. While the model predicts that the con-

sumption levels of households with inattentive heads are higher than those of other

households, its predictions with respect to the responses to price changes are ambigu-

ous. We thus argue that, ultimately, the analysis of demand responses to price changes

across household groups remains an empirical issue.

To shed light on this issue, we draw on a large panel data set (2006-2014) on

the electricity consumption of individual households originating from the German

Residential Energy Consumption Survey (GRECS) to estimate the price responses of

households on the basis of the dynamic system estimator developed by Blundell and

Bond (1998). The main virtue of this estimator is to account for potential simultane-

ity and endogeneity problems, as well as Nickell bias. Following McFadden et al.’s

(1977) suggestion to use price components as an instrument for endogenous prices, in

line with Frondel and Kussel (2019), we employ the sum of the regulated price com-

ponents, such as grid fees, taxes, and levies, as an instrument to cope with the likely

endogeneity of electricity prices.

By comparing our preferred estimates with those resulting from both OLS and

standard panel methods, we demonstrate that price elasticity estimates may be bi-

ased if methodological challenges such as the sluggishness of demand response and

endogeneity issues are not adequately addressed. Our short- and long-run price elas-

ticity estimates of -0.44 and -0.66, respectively, are in line with the scarce empirical

evidence that is available for Germany. For instance, based on expenditure rather than

consumption data, Nikodinoska and Schröder (2016) and Schulte and Heindl (2017)

estimate long-run price elasticities of -0.81 and -0.43, respectively. Moreover, on the

basis of a single survey wave of the GRECS comprising the years 2011 and 2012, for

which information on households’ knowledge about electricity price levels is avail-

able, Frondel and Kussel (2019) obtain a short-run price elasticity estimate of -0.52,

finding that only those households that are informed about prices are sensitive to price

changes, whereas uninformed households are entirely price-inelastic.
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Our empirical results indicate that, particularly in the long run, price measures

may be effective instruments to dampen the electricity consumption of the residen-

tial sector, which accounts for a substantial share of about 30% in the EU’s electricity

consumption (Eurostat, 2018). Yet, price responses turn out to be very heterogeneous:

Wealthy households, as well as households with male heads and heads with college

degree, exhibit a particularly strong demand reaction, whereas we do not find any sig-

nificant price response for other household groups, most notably low-income house-

holds.

This heterogeneity suggests that increasing electricity prices, for instance via a car-

bon tax, may not be a universally effective means. Therefore, to reduce electricity con-

sumption and the resulting greenhouse gas emissions alike, in addition to price mea-

sures, targeted energy conservation programs may be implemented that include non-

pricing measures, such as means-tested subsidies for the purchase of energy-efficient

appliances and information campaigns on energy conservation, and focus on those

households that are hardly responsive to price increases, above all low-income house-

holds.

Given its ambitious aim to increase the share of renewable-based electricity in gross

consumption to 65% by 2030, Germany suggests itself as an interesting case study for

the analysis of demand reactions to power price increases. As a consequence of Ger-

many’s highly costly support scheme for the production of “green electricity” (Frondel

et al., 2015), German households face the highest electricity prices in the EU in terms

of purchasing power standards (Andor et al., 2017), with nominal prices averaging

about 30 cents per kilowatt-hour (kWh). Since the introduction of Germany’s feed-in-

tariff system to promote renewable energy technologies in 2000, household electricity

prices have more than doubled (BDEW, 2017). The major driver of this price increase

was the levy with which electricity consumers have to bear the cost of supporting re-

newable energy technologies (BDEW, 2017). While Germany’s support scheme has

proven highly successful in raising the share of “green” electricity in (gross) electricity

consumption, which increased from below 7% in 2000 to about 36% in 2017 (BMWi,
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2018), the levy for the support of renewable technologies rose substantially, from 0.30

to 6.79 cents per kWh in 2018, now accounting for over a fifth of household electricity

prices (BDEW, 2017).

The subsequent section provides a theoretical model to explain the heterogeneity

in demand responses across household groups. Section 3 describes the database un-

derlying our research and Section 4 presents the empirical methodology employed.

While Section 5 reports our estimation results for the residential sector as a whole,

Section 6 presents those for specific households groups. The last section summarizes

and concludes.

2 Theoretical Model

To theoretically analyze the heterogeneity in the electricity demand response to

price changes across household groups, inspired by concepts of behavioral economics

and Kotchen and Moore (2008), we employ a household production model in which

attention to electricity issues plays a key role (see also DellaVigna, 2009). We assume

that household i uses electricity in the amount of ei as an input to produce energy

services, such as lighting, and the household’s demand for electricity derives from the

demand for those energy services that are satisfied by electricity. Another important

determinant of ei is the energy efficiency ηi(ASi) := si/ei of the appliance stock ASi,

where si designates the desired service level.

Our model is based on the simplest setup capable of illustrating that the attention

that households devote to electricity issues is a key factor for the heterogeneity in

demand. Attention is captured in our model by the indicator variable ai, which equals

unity if household i pays attention to the its electricity consumption level and equals

zero otherwise, that is, if the household is inattentive.

We assume that the utility ui of attentive households is negatively influenced by

the attention to electricity issues, such as knowledge about the household’s electricity

expenditure and consumption level, because, for instance, the household is aware of
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the negative external effects of electricity production based on fossil fuels. In addition

to attention, the electricity price p and household income m are further key determi-

nants of the electricity consumption level: ei = ei(p, m, ai, oi), where oi denotes other

factors, such as energy efficiency ηi.

While household i is subject to the budget constraint xi + pei = m, it seeks to

maximize the additively separable utility function of the form

ui(xi, ei, ai) := f (xi) + g(ei)− aih(ei), (1)

where xi is a numeraire consumption good that captures all other goods and services

that the household demands and, for the sake of exposition, we define g(ei) := k(si) =

k(ηei), with k(si) denoting the utility derived from energy services si that are based on

electricity. All functions f , g, h map into R+
0 and their derivatives are strictly positive.

For the second derivatives, it is assumed that f ′′ ≤ 0, g′′ < 0 and h′′ ≥ 0.

The first-order condition of the maximization problem

max
ei

ui(xi, ei, ai) subject to xi + pei = m (2)

is given by

g′(ei) = p f ′(m − pei) + aih′(ei), (3)

implying that the marginal benefit of electricity consumption equals its marginal cost.

This cost consists of the value of the forgone consumption of the numeraire good and

the disutility derived from the attention to electricity consumption issues, which re-

sults, for example, from the awareness about the negative external effects of electricity

production.

From First-Order Condition (3), f ′ > 0, as well as g′′ < 0, it follows that, all

else equal, high-income households have a higher electricity consumption than low-

income households: emh
i > eml

i , where eml
i and emh

i denote the consumption levels of

low- and high-income households, respectively. In fact, by differentiating Equation
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(3) with respect to m, it follows that, in line with economic theory, the demand for

electricity weakly increases with increasing household income m:

∂ei

∂m
=

f ′′(m − pei)

g′′(ei) + p f ′′(m − pei)− aih′′(ei)
≥ 0, (4)

as the assumptions on the second derivatives of f , g and h ensure that the denominator

of the fraction on the right-hand side of Equation (4) is negative and the sign of the

numerator is determined by the assumption f ′′ ≤ 0.

In a similar vein, by differentiating Equation (3) with respect to p, in accordance

with economic theory, it follows that electricity consumption is weakly decreasing in

p:
∂ei

∂p
= − ei f ′′(m − pei)

g′′(ei) + p f ′′(m − pei)− aih′′(ei)
≤ 0. (5)

To investigate the heterogeneity in the demand response to price changes with re-

spect to income, we differentiate Equation (5) with respect to m, for the sake of sim-

plicity focusing on inattentive households (ai = 0):

∂2ei

∂m∂p
= − ei f ′′′(m − pei)

g′′(ei) + p f ′′(m − pei)
+

ei f ′′(m − pei)[g′′′(ei) + p f ′′′(m − pei)]

[g′′(ei) + p f ′′(m − pei)]2
. (6)

Apart from the fact that assumptions for the third derivatives of f and g have to

be invoked, given the complexity of the expression on the right-hand side of Equa-

tion (6), its sign remains unclear and we conclude that the demand response to price

changes with respect to income becomes an empirical matter. This conclusion is in

line with the literature from which two possible rationales for diverging price elas-

ticities across different income groups emerge: On the one hand, according to Reiss

and White (2005) and Silva et al. (2017), given their small budgets, low-income house-

holds would be more sensitive to electricity prices than wealthy households. But, on

the other hand, it is argued that wealthier households tend to exhibit a preference for

more energy-efficient appliances (Alberini et al., 2011) and are more capable of adjust-

ing their appliance stock towards less electricity-intensive equipment as a response to
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rising electricity prices (Spees and Lave, 2007). Both factors lead to an income elas-

ticity of the electricity demand that is higher for high-income households than for

low-income households.

From First-Order Condition (3), f ′ > 0, and g′′ < 0, it also follows that ceteris

paribus households that are attentive to electricity consumption issues (ai = 1) con-

sume less electricity than inattentive households (ai = 0): e1
i < e0

i , where e1
i and e0

i de-

note the respective household consumption levels. For example, assuming that well-

educated households are more attentive to energy issues than low-educated house-

holds, all else equal, we would expect well-educated households to exhibit a lower

electricity consumption than low-educated households.

Similarly, we would assume that with respect to energy issues, homeowners are

more attentive than tenant households and thus tend to have a lower electricity use

than tenants. These assumptions are supported by our empirical data, which indi-

cate that the annual electricity consumption per square meter is about 7.4% lower

for homeowners than for tenants, a difference that is non-vanishing also in statis-

tical terms (t =12.57). Likewise, the electricity consumption per square meter of

households whose head has a college degree is 8.0% lower than for other households

(t =12.46).

To theoretically analyze the heterogeneity in the demand response to price changes

with respect to attentiveness, we compare the derivative given by Equation (5) for

attentive households,

∂ei

∂p
|ai=0 = − e0

i f ′′(m − pe0
i )

g′′(e0
i ) + p f ′′(m − pe0

i )
, (7)

with that for inattentive households:

∂ei

∂p
|ai=1 = − e1

i f ′′(m − pe1
i )

g′′(e1
i ) + p f ′′(m − pe1

i )− h′′(e1
i )

. (8)

It remains unclear, though, whether ∂ei
∂p |ai=1 is larger in magnitude than ∂ei

∂p |ai=0, as
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these derivatives differ in two competing factors that affect the magnitude of the price

reaction in an opposing way, where the effect of attentiveness on the price response

is moderated by the difference in the electricity consumption level: e0
i > e1

i . Again,

we therefore conclude that the demand response to price changes with respect to at-

tentiveness is an empirical issue that will be addressed in the penultimate section, in

which we investigate the heterogeneity in the electricity demand response to price

changes across various household groups, such as homeowner versus tenants. These

groups can be expected to differ with respect to numerous characteristics, not least

their attention to electricity issues.

3 Data

Our empirical research on electricity demand responses to price changes draws

on a large household panel data set originating from the German Residential Energy

Consumption Survey (GRECS), a survey that has been regularly commissioned by the

Federal Ministry of Economics and Energy (BMWi) for more than a decade (RWI and

forsa, 2018) – for more information on the GRECS, see www.rwi-essen.de/GRECS. The

survey data was jointly gathered by RWI and the professional survey institute forsa,

using forsa’s household panel that is representative for the German population aged

14 and above – for more information, see www.forsa.com.

In five surveys spanning the period 2006 to 2014, each among 6,500 to 8,500 house-

holds, participants – the household heads in this case – reported information on their

household’s electricity consumption, prices, and costs. This information is drawn from

the households’ electricity bills that cover the years prior to each survey year. In the

best case, a household head reported electricity information for up to T = 9 years.

While this was the case for only 3 households, about 60% of the respondents reported

electricity information at least twice (see Table A1 in the appendix). Respondents also

provided numerous details on socio-economic and other household characteristics,

such as household size, household net income, age, education, as well as location and
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ownership of the household’s residence.

All this information is self-reported under close guidance of a state-of-the art sur-

vey tool that provides visual assistance to the respondents, particularly with respect

to electricity bills. For example, after being asked to indicate their electricity provider,

respondents received a picture of the respective billing sheet, with the position of the

required information being highlighted on the billing sheet. forsa’s survey tool allows

respondents to complete the questionnaire either online or, if internet access is not

available, using a television. Respondents can interrupt and continue the survey at

any time.

The billing information includes marginal prices per kWh, monthly fixed fees, total

electricity expenditures, and consumption levels for the billing period. In the frequent

case that a bill does not cover the entire calender year, we have extrapolated the an-

nual consumption on the basis of the mean consumption per day for the period for

which information is available. To exclude seasonal impacts, we only use informa-

tion from electricity bills with a duration of more than 180 days. Owing to possible

typing errors, we clean the data set via an iterative process that, separated by house-

hold size, drops observations whose consumption figure and average price do not lie

in intervals that span two standard deviations around the respective means. Despite

this loss of observations, our analysis benefits from an abundant database: Overall,

our estimation sample consists of 24,336 valid observations on electricity consump-

tion levels and prices originating from 10,915 households, implying a mean number

of 2,23 observations per household (see Table A1 in the appendix).1

Given the high share of 31% of respondents with a college degree in our sample

(Table 1), the database is not representative for German households (see Table A2 in

the appendix). This conclusion is further substantiated by the fact that single-person

households are less prevalent in our sample than in the population of German house-

1Households with night storage heating systems, which represent a small minority of about 3% of
the German household population (RWI and forsa, 2015), have been excluded from our sample, as their
electricity consumption is substantially above average and they enjoy a separate low tariff for heating
purposes.
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holds. Not least, about one third of them are female and, thus, women are consider-

ably less frequent in the sample than men. This fact is a consequence of our decision to

ask only household heads to participate in the survey, as, by definition, they typically

make financial decisions at the household level and are more likely to report billing

data.

Table 1: Descriptive Statistics for the Estimation Sample

Variable Explanation Mean Std. Dev.

Age Age of respondent 52.66 13.27
College degree Dummy: 1 if respondent has college degree 0.310 –
Female Dummy: 1 if female household head 0.321 –
Household size = 1 Dummy: 1 if household comprises one member 0.213 –
Household size = 2 Dummy: 1 if household comprises two members 0.446 –
Household size = 3 Dummy: 1 if household comprises three members 0.163 –
Household size = 4 Dummy: 1 if household comprises four members 0.131 –
Household size > 4 Dummy: 1 if household comprises five or more members 0.047 –
Homeowner Dummy: 1 if household lives in an own dwelling 0.647 –
East Germany Dummy: 1 if household resides in East Germany 0.204 –
Income Monthly net household income in e 2,748 1,181
Consumption y Annual electricity consumption in kWh 3,487 1,673
p Average electricity price in cent per kWh 24.52 4.28
z Sum of fees, taxes, and levies in cent per kWh 11.89 2.23

Note: Number of observations and households employed for estimations: 24,336 and 10,915, respec-
tively. Income information was provided ine500 intervals, from which a continuous variable has been
derived by assigning the mid-point of the interval reported.

As marginal prices are much less frequently reported from the household heads

than expenditure and consumption figures, the key variable employed in our analysis

is the average electricity price, calculated by dividing electricity expenditures by con-

sumption figures. The choice of the average, rather than the marginal price, however,

has hardly any bearing on our key results and conclusions: In qualitative terms, using

marginal, rather than average prices yields similar estimation results (see Table A5 in

the appendix). Moreover, although a central assumption in economic theory is that

consumers optimize with respect to marginal prices, recent empirical findings suggest

that consumers tend to react to average prices because of limited attention to complex

pricing schedules (Borenstein, 2009; Ito, 2014).

The average price is clearly an endogenous measure, as, by definition, it is a func-

tion of electricity consumption, the dependent variable of our analysis. Yet, endo-

geneity problems afflict both average and marginal prices, as nowadays German con-

sumers are free to choose from a broad range of electricity tariffs. Since the liberal-
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ization of Germany’s electricity market in 1998, changing both suppliers and tariffs is

a common phenomenon. Therefore, a simultaneity problem may arise (Taylor et al.,

2004): on the one hand, consumption levels tend to be affected by prices, but, on the

other hand, households’ tariff selection may depend on consumption levels.

Figure 1 provides a first notion on the relationship between average household

prices and their annual electricity consumption in the survey period 2006-2014. Mean

annual electricity consumption decreased from 3,807 kWh in 2006 to 3,111 kWh in

2014, whereas mean electricity prices rose from 19.7 to 29.9 cents per kWh in the same

period. Using these values, a first reference point for our price elasticity estimates

presented in Section 5 can be obtained by dividing the relative consumption decrease

by the percentage price increase. This back-of-the-envelope calculation yields a crude

estimate of the long-run price elasticity of -0.49 for the period 2006 to 2014.

Figure 1: Mean Household Electricity Consumption per Year and Average Household Elec-
tricity Prices in Cents per kWh (Source: German Residential Energy Consumption Survey
(GRECS)).
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The average prices resulting from the sample closely match the means that are re-

ported by the German Association of Energy and Water Industries (BDEW) for house-

holds consuming 3,500 kWh per year (Figure 2). According to BDEW (2017), for this

household type, the mean electricity price more than doubled between 2000 and 2016,
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rising from 13.94 to 28.69 cents per kWh. Fees, levies, and taxes, introduced and in-

creased by the German government over time, are blamed to be major drivers of this

sharp increase (BDEW, 2017). For instance, the so-called EEG levy for the promotion

of renewable technologies, which was introduced in 2000 at the level of 0.3 cents per

kWh, skyrocketed to 6.35 cents in 2016 and, including value-added tax, accounted for

about a quarter of the household electricity price reported by BDEW (2017).

Figure 2: Composition of Household Electricity Prices for a Household with an Annual Con-
sumption of 3,500 kWh (Source: BDEW, 2017).
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Another substantial electricity price component are grid fees, which have strongly

increased over time and vary substantially across regions. Grid fees are raised to cover

maintenance costs, as well as the costs that grid operators incur when connecting con-

sumers and new power plants to the grid. As grid operators are regional monopolies,

they are regulated by the federal grid agency (Bundesnetzagentur, BNetzA) and al-

lowed to pass on their costs to the customers. Currently, there are 884 grid operators

in Germany (BNetzA, 2017), which operate in regions that typically cover multiple zip

codes.

As instrumental variable z for the endogenous average price p, following Frondel

and Kussel (2019) we employ the sum of regulated price components. These consist
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of grid and concession fees, levies, and taxes, such as the German eco-tax, a tax on

electricity use of 2.05 cents per kWh. Hence, except for generation and transport cost,

instrumental variable z comprises all elements illustrated by Figure 2. While some

price components only exhibit temporal variation because they apply to all household

customers in Germany alike, such as the eco-tax, other price components vary notably

across both time and regions, in particular grid fees. This sum of the regulated price

components averaged 11.9 cents per kWh over the period 2006-2014 and remained rel-

atively stable around 10 cents per kWh between 2006 and 2010, but then rose up to 15

cents by 2014. This increase was mainly caused by a strong deployment of renewable

energy installations that resulted in both a higher EEG levy and higher grid fees due

to costs for connecting new installations (Andor et al., 2017).

Figure 3 illustrates that the regulated price components as captured by instrument

z exhibit strong regional variation, both across but also within federal states. Vary-

ing between 12.7 and 19.1 cents per kWh in 2014, z is higher in East and North Ger-

many than in South Germany, most notably because of a relatively high deployment

of windmills. In these regions, between 2006 and 2014, the increase in the grid fees, a

major component of z, was notably stronger than in other parts of Germany. Figure

A1, presented in the appendix, illustrates a similarly strong regional variation in our

instrument z for the year 2006, ranging from 7.7 to 13.0 cents per kWh. In addition, a

comparison of both figures reveals that z is substantially lower for 2006 than for 2014.

With a correlation coefficient of ρ = 0.68 that reflects the expected positive corre-

lation between the average price p and instrument z, there is evidence that the first

assumption for the validity of instrumental variables holds: Cov(p, z) �= 0. Moreover,

while grid fees are regional-specific and taxes and levies are uniform for all house-

holds, the sum of these price components is the same for all households of a certain

region and is exogenous to households. Thus, it is highly warranted to assume that

our instrument z satisfies the second identification assumption for valid instruments:

Cov(z, ν) = 0, that is, z is uncorrelated with the error term ν of the regression equation.
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Figure 3: Regional Variation of the Regulated Electricity Price Components (Grid Fees, Levies,
and the German Eco-Tax) in Germany in 2014.

4 Methodology

To provide for a reference point for the results obtained from employing dynamic

panel estimation methods, we first use a static model and estimate the double-log

specification that is typically employed for the estimation of demand elasticities:

ln yit = β + βp ln pit + βT
x xit + τt + μi + νit, (9)

where yit refers to the electricity demand of household i in year t, pit denotes the

average electricity price that household i had to pay in t, vector x comprises household

characteristics, and βx is the corresponding parameter vector. βp is the coefficient of

interest that reflects the demand elasticity with respect to prices, τt and μi are year- and

individual fixed effects, respectively, and νit designates the idiosyncratic error term.

To cope with the likely endogeneity of prices p, we pursue a panel IV approach and

employ the sum of regulated price components as instrumental variable z, thereby
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following the suggestion of McFadden et al. (1977), who argue that components of

the total price are a natural set of instruments. Employing the common two-stage

procedure (2SLS), in the first stage of our IV approach, we regress the logged average

price p on the log of instrument z, as well as the set of household characteristics x:

ln pit = γ + γz ln zit + γT
x xit + τt + μi + uit. (10)

In the second stage, the price prediction p̂ obtained from Equation (10), rather than the

actual price p, is employed to estimate Equation (9).

The static model given by Equation (9) assumes that households instantaneously

adjust their utilization behavior and their appliance stock as a response to varying

electricity prices. Implying that short- and long-run elasticities are identical (Alberini

and Filippini, 2011), this is a heroic assumption, given that electric appliances have

long life cycles and households often have to incur substantial costs to adapt their

appliance stock.

To account for sluggish appliance stock adjustments and, hence, utilization behav-

ior that is rather inflexible in the short run, the lagged value yi,t−1 of the dependent

variable is included among the regressors, being characteristic for dynamic panel data

models:

ln yit = β + βy ln yi,t−1 + βp ln pit + βT
x xit + τt + μi + νit, (11)

with νit designating another idiosyncratic error term and βy denoting the coefficient

on the lagged dependent variable. Dynamic panel data models are characterized by

two sources of persistence over time: Autocorrelation due to the presence of a lagged

dependent variable among the regressors and individual effects μi reflecting the het-

erogeneity among individuals.

Estimating dynamic Model (11) on the basis of OLS methods yields inconsistent

estimates, as the individual effect μi enters all values of the dependent variable y,

implying that the lagged dependent variable cannot be independent of the composite

error process μi + νit. For the same reason, estimating Equation (11) using random-
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effects estimation methods yields inconsistent estimates as well.

Moreover, when Equation (11) is estimated using fixed-effects methods, the result-

ing estimates suffer from the Nickell bias, particularly in short panels (Nickell, 1981),

that is, for small T (see e. g. Baltagi, 2005, p.136f.). As Nickell (1981) demonstrates,

this bias arises because the within transformation that is typically employed for fixed-

effects estimations creates a correlation between the regressors and the error term.

Note therefore that the Nickell bias is not due to an autocorrelated error process, but

arises even if the error terms νit were to be independent and identically distributed.

One alternative to consistently estimate Equation (11) involves taking first differ-

ences of the original Model (9) to eliminate the problems arising from the individual

effects μi:

Δ ln yit = βyΔ ln yi,t−1 + βpΔ ln pit + βT
x Δxit + Δτt + Δεit, (12)

and to use either Δyi,t−2 := yi,t−2 − yi,t−3 or yi,t−2 as an instrument for Δyi,t−1 :=

yi,t−1 − yi,t−2 (Anderson and Hsiao, 1982). These instruments will not be correlated

with Δνit := νit − νi,t−1 as long as the error terms νit are not serially correlated (Baltagi,

2005, p.136f.).

Yet, Arellano and Bond (1991) argue that, albeit consistent, this estimator is not nec-

essarily efficient, because it does not make use of all the available moment conditions.

Instead, they advocate for employing what is now frequently called the Arellano-Bond

difference GMM estimator, which uses the generalized method of moments (GMM)

and exploits all orthogonality conditions between the lagged values of yit and the er-

ror term νit (Blundell and Bond, 1998, p.118): E(yi,t−sΔνit) = 0 for t = 3, . . . , T and

s ≥ 2. For instance, for T = 3, yi1 is a valid instrument for Δyi2, since it is highly

correlated with yi2 − yi1, but uncorrelated with (νi3 − νi2) as long as the error terms

are not serially correlated. Next, for T = 4, both yi1 and yi2 are valid instruments for

Δyi4 := yi4 − yi3. One can continue in this fashion, adding an extra valid instrument

for each forward period, so that the set of valid instruments becomes yi1, yi2, . . . , yi,T−2

for any period T.
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According to Blundell and Bond (1998), however, the Arellano-Bond estimator can

have a large finite sample bias and poor precision, because lagged levels of yit are weak

instruments for first differences. Building upon Arellano and Bover (1995), Blundell

and Bond (1998) develop a system GMM estimator that uses both lagged differences

of yit to instrument for levels and lagged levels of yit as instruments for differences.

This results in a (stacked) system of T − 2 equations in first differences as well as T − 2

equations in levels, as for the periods 3, . . . T, valid instruments are available. Hence,

the Blundell-Bond estimator builds on a system of two sets of equations: the origi-

nal equation and that in first differences. In short, Blundell and Bond (1998) augment

the Arellano-Bond estimator by invoking the additional assumption that first differ-

ences of instrument variables are uncorrelated with the fixed effects, which allows the

introduction of more instruments and can dramatically improve efficiency.

To deal with gaps in unbalanced panels, we follow Arellano and Bover’s (1995)

suggestion and use forward orthogonal deviations, that is, the average of all future

available observations of a variable. Furthermore, following Roodman (2009a), we

use all valid lags of the untransformed variables as instruments, but limit the number

of instruments employed to prevent over-fitting.

5 Empirical Results

Presenting the estimation results of various model specifications and estimators,

this section serves to demonstrate how model design and the choice of the estima-

tion method may vary price elasticity estimates. Common to all specifications is the

set of socioeconomic characteristics, as well as the inclusion of year and federal state

dummies to capture differences in weather, geography, etc.

5.1 Results from the Static Model

Using the results originating from static Model (9) as a reference case for the out-

comes obtained from dynamic Model (11), we first report the OLS estimates (Table 2).
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Ignoring the endogeneity of average prices and failing to account for individual effects

μi yields an OLS estimate of the price elasticity that exceeds minus one, a magnitude

that is well-know from the literature (Taylor et al., 2004). Taking the endogeneity of

the electricity price into account by using the sum of regulated price components as an

instrument, the 2SLS estimation provides for a price elasticity estimate of about -0.64,

which is much lower in magnitude than the OLS estimate.

There is empirical evidence on the strength of our instrument: Given a correlation

coefficient of ρ = 0.68, instrument z exhibits a strongly positive correlation with price

variable p, a fact that is confirmed by the first-stage estimation results presented in

Table A3 in the appendix, where the coefficient estimate for instrument z is positive

and statistically different from zero at the 1% significance level. To further gauge the

strength of our instrument, we employ the rule of thumb of Staiger and Stock (1997),

according to which the F statistic for the coefficient γz of First-Stage Regression (10)

should exceed the threshold of 10 (Murray, 2006). With an F statistic of F(1; 18, 992) =

237.2 resulting from the first-stage estimation of the static 2SLS model, we can reject

the null hypothesis that the second-stage equation is weakly identified.

Table 2: Estimation Results for Static Model (9) on Electricity Demand based on various Esti-
mation Methods.

Non-Panel Methods Panel Methods

OLS 2SLS Fixed Effects Fixed Effects 2SLS

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

ln(p) -1.403*** (0.024) – – -0.486*** (0.026) – –
̂ln(p) – – -0.639*** (0.203) – – 0.076 (0.288)
ln (Income) 0.064*** (0.005) 0.076*** (0.006) 0.000 (0.012) -0.006 (0.013)
Household size = 2 0.355*** (0.007) 0.414*** (0.017) 0.225*** (0.023) 0.261*** (0.033)
Household size = 3 0.571*** (0.008) 0.652*** (0.023) 0.347*** (0.025) 0.390*** (0.037)
Household size = 4 0.661*** (0.009) 0.752*** (0.027) 0.414*** (0.027) 0.449*** (0.040)
Household size > 4 0.833*** (0.013) 0.922*** (0.029) 0.437*** (0.043) 0.486*** (0.054)
College degree -0.028*** (0.005) -0.032*** (0.006) 0.009 (0.015) 0.006 (0.016)
Age 0.004*** (0.000) 0.005*** (0.000) 0.002 (0.002) 0.002 (0.002)
Female -0.001 (0.005) -0.006 (0.005) -0.004 (0.019) 0.003 (0.018)
Homeowner 0.137*** (0.005) 0.152*** (0.007) 0.128*** (0.031) 0.144*** (0.036)
Constant 11.091*** (0.089) 8.642*** (0.648) 9.107*** (0.165) 7.424*** (0.886)

Year Dummies Yes Yes Yes Yes
State Dummies Yes Yes Yes Yes

Number of observations 21,918 19,026 21,918 19,026

Note: Standard errors are clustered at the individual level. ***,**, and * denote statistical significance at the 1 %, 5 %, and 10 %
level, respectively.

18



Upon exploiting the panel structure of our data and comparing the fixed-effects

with the random-effects results, based on a Hausman (1978) specification test, the null

hypothesis of equal sets of coefficient estimates can be rejected, suggesting that the

fixed-effects results should be preferred. Accordingly, we report the fixed-effects esti-

mation results in Table 2, while the random-effects estimates are presented in Table A4

of the appendix, the latter being generally larger in magnitude than the fixed-effects

estimates. Specifically, the short-run price elasticity estimate of about -0.71 originat-

ing from the random-effects estimation is higher in magnitude than the fixed-effects

estimate of about -0.49.

By additionally instrumenting price variable p to address endogeneity issues, the

resulting 2SLS fixed-effects estimate of the short-run price elasticity is not significantly

different from zero in statistical terms. For the remaining covariates, such as house-

hold size and income, coefficient estimates do not vary much across estimation meth-

ods. For instance, based on the fixed-effects 2SLS estimates, the average electricity

consumption of a household with two members is about 100[exp(0.261) − 1] =30%

higher than that of a single-person household. Likewise, homeowners tend to have a

higher consumption than other households.

5.2 Results from the Dynamic Model

As static models fail to account for sluggish adjustments of the appliance stock,

we continue by reporting the estimates from dynamic Model (11), in which lagged

electricity consumption is included as an additional variable to control for such ad-

justments. Referring to the 2SLS estimates, the short-run price elasticity of demand

amounts to about -0.23 (Table 3), an estimate that is substantially lower in magnitude

than the static price elasticity estimate of about -0.64 reported in Table 2. The small

magnitude of the short-run price elasticity is due to the fact that in dynamic Model

(11), the price variable merely captures short-run changes in utilization behavior, but

not any long-run adjustment.
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Using the estimate of 0.864 of the coefficient βy on the lagged consumption vari-

able, the long-run price elasticity can be computed by dividing the short-run price

elasticity estimate of -0.229 by 1 − βy: βp/(1 − βy) = -0.229/(1-0.864) = -1.684. The

corresponding standard error of 0.820 is computed using the delta method (Greene,

2003, p. 68). Accounting for the panel character of our data by using fixed-effects es-

timation methods yields a long-run elasticity that is close to zero. Interestingly, the

coefficient on the lagged consumption term drops to 0.188. While the 2SLS estimate is

biased upward because of the correlation between the lagged consumption term and

the fixed effects, in contrast, fixed-effects estimates are is downward biased. Hence,

the true value must lie in the interval spanned by the 2SLS and the fixed-effects esti-

mates (Roodman, 2009b).

Table 3: Estimation Results for Dynamic Model (11) on Electricity Demand based on various
Estimation Methods.

2SLS Fixed-Effects 2SLS Blundell-Bond
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

̂ln(p) -0.229* (0.137) -0.093 (0.325) -0.444* (0.236)
ln(yt−1) 0.864*** (0.016) 0.188*** (0.039) 0.330*** (0.104)
ln (Income) 0.002 (0.004) 0.003 (0.017) 0.042*** (0.011)
Household size = 2 0.063*** (0.007) 0.251*** (0.049) 0.292*** (0.047)
Household size = 3 0.094*** (0.009) 0.392*** (0.056) 0.455*** (0.072)
Household size = 4 0.103*** (0.009) 0.431*** (0.056) 0.514*** (0.082)
Household size >4 0.126*** (0.010) 0.407*** (0.074) 0.624*** (0.101)
College degree -0.002 (0.004) 0.008 (0.019) -0.018** (0.008)
Age -0.000 (0.000) 0.003 (0.002) 0.003*** (0.001)
Female -0.002 (0.003) 0.017 (0.022) -0.003 (0.007)
Homeowner 0.015*** (0.004) 0.041 (0.036) 0.095*** (0.018)
Constant 1.728*** (0.590) 6.328*** (1.233) 6.002*** (1.204)

Year Dummies Yes Yes Yes
State Dummies Yes Yes Yes

Number of observations 8,096 8,096 8,096
Number of instruments – – 40
Arellano-Bond test for AR(1) – – z=-4.48; p=0.000
Arellano-Bond test for AR(2) – – z=1.15; p=0.249
Hansen test of overid. restrictions – – χ2(6)=4.22; p=0.647

Long-run price elasticity -1.684*** (0.820) -0.115 (0.398) -0.663** (0.338)

Note: Standard errors are clustered at the individual level. ***,**, and * denote statistical significance at the 1 %, 5 %, and 10 %
level respectively. Standard errors for the long-run elasticities are computed using the delta method.

Given that in a dynamic setting fixed-effects estimation methods suffer from Nick-

ell bias, we finally present the results originating from the Blundell-Bond GMM system

20



estimator.2 By employing the differences of the dependent variable as instruments for

levels and lagged levels of the dependent variable as instruments for differences, the

correlation between the lagged consumption term and the fixed effects are eliminated

(Roodman, 2009b). It bears noting that, as to be expected, the coefficient on the lagged

consumption term lies between the 2SLS and the fixed-effects 2SLS estimates. Both

the coefficient estimates on the price variable and lagged consumption are statistically

different from zero, resulting in short- and long-run elasticity estimates of -0.44 and

-0.66, respectively. The long-run elasticity of -0.66 is in line with the few other esti-

mates that are available for Germany: Based on expenditure rather than consumption

data, Nikodinoska and Schröder (2016) and Schulte and Heindl (2017) find long-run

elasticities of -0.81 and -0.43, respectively.

Statistical tests indicate the validity of the Blundell-Bond estimates, with the results

benefitting from the large number of 8,096 observations that are available for the esti-

mations. Relative to this large data base, the number of 40 instruments is low. Arellano

and Bond (1991) proposed a test for the null hypothesis that there is no second-order

serial correlation for the disturbances of a first-differenced model, such as Model (12).

This test is important because the consistency of the GMM estimator relies upon the

assumption that E[ΔνitΔνi,t−2] = 0. The p-value of 0.249 reported in Table 3 indicates

that the test statistic for the AR(2) test on the lack of second-order correlation in the

first-differenced residuals is not different from zero in statistical terms, providing evi-

dence that it would not be appropriate to include a second-order lag of the dependent

variable in Model (12). In contrast, the corresponding statistic for the AR(1) test hints

to the appropriateness of including a first-order lag of the dependent variable as a

regressor in Model (12). Finally, the Hansen test on overidentifying restrictions indi-

cates that the null hypothesis of the joint validity of the instruments cannot be rejected.

This test not only shows that our set of instruments is valid, but also that the model is

2To this end, the Stata command xtabond2 written by Roodman (2009a) has been employed. Table
A6 of the appendix presents robustness checks in which we vary the way in which the endogenous
lagged variable is instrumented. The long-run price elasticity estimates originating from these estima-
tion variants are somewhat larger, but the differences across variants are not significantly different from
zero in statistical terms.
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correctly specified (Roodman, 2009b).

6 Heterogeneous Effects

Building upon our preferred estimation method, the Blundell-Bond estimator, and

exploiting the socioeconomic characteristics recorded in our data set, we now inves-

tigate the heterogeneity in demand responses to changing electricity prices by sepa-

rately estimating dynamic Model (12) for various types of households. Despite the

extensive empirical evidence on electricity price elasticities received from the litera-

ture, there are only a few studies that compare price elasticities across socioeconomic

groups, with previous studies concentrating on the role of income (e.g. Reiss and

White, 2005; Schulte and Heindl, 2017; Silva et al., 2017).

Beginning our heterogeneity analysis by distinguishing between low- and high-

income households, defined here by a monthly household net income below e1,250

and above e3,500, respectively, the estimation results suggest that the price respon-

siveness of high-income households is substantially higher than that of other house-

holds, with short- and long-run price elasticity estimates amounting to -0.86 and -1.29,

respectively (Table 4).3 Being in line with the results of Schulte and Heindl (2017) and

Nikodinoska and Schröder (2016), the finding that high-income households are highly

responsive to price changes may reflect the rationale that wealthy households tend

to exhibit a preference for more energy-efficient appliances (Alberini et al., 2011) and

are more capable of adjusting their appliance stock towards less electricity-intensive

equipment as a response to rising electricity prices (Spees and Lave, 2007). We can lend

support to the conjecture that high-income households own less electricity-intensive

appliances by merging our data set with detailed appliance stock data that we gath-

3Note that the confidence intervals reported in Table 4 for the long-run price elasticity estimates
overlap for all comparisons, such as that between low- and high-income groups. Only the point esti-
mate of -0.41 for tenants falls outside the confidence interval pertaining to the homeowners, indicating
that the price response for tenants is statistically different from that of homeowners. Apart from this
exception, though, all other comparisons do not indicate significant differences of the price elasticity
estimates in statistical terms. Nonetheless, based on all the strong differences in the point estimates, we
interpret our findings as tentative evidence for different demand responses.
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ered for a subset of our sample (see Frondel et al., 2017 for a description of the data

set). On this empirical basis, we find that high-income households are more likely to

hold new, and thus more energy-efficient, appliances, in particular freezers and dish-

washers (see Table A7 of the appendix).

Table 4: Heterogeneous Electricity Demand Responses to Price Changes across various House-
hold Groups based on the Blundell-Bond estimation of Dynamic Model (12)

̂ln(p) ln(yt−1) Long-run Price Elasticity Number of

Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error 95% CI Observations

Low-income household -0.424 (0.628) 0.251 (0.413) -0.57 (0.887) [-2.30,1.17] 1,232
High-income household -0.855** (0.352) 0.336* (0.155) -1.29*** (0.477) [-2.22,-0.35] 2,215
Tenant -0.281 (0.418) 0.311 (0.259) -0.41 (0.593) [-1.57,0.75] 2,899
Homeowner -0.715*** (0.210) 0.337*** (0.103) -1.08*** (0.278) [-1.62,-0.53] 5,197
Male household head -0.606** (0.236) 0.356** (0.103) -0.94** (0.212) [-1.63,-0.25] 5,606
Female household head -0.259 (0.219) 0.251 (0.193) -0.34 (0.279) [-0.89,0.20] 2,490
No college degree -0.334 (0.296) 0.210 (0.133) -0.42 (0.367) [-1.14,0.297] 5,552
College degree -0.645** (0.279) 0.499** (0.130) -1.29** (0.508) [-2.28,-0.29] 2,554
Low consumption -0.245 (0.237) 0.062 (0.156) -0.26 (0.253) [-0.757,0.234] 3,933
High consumption -0.416 (0.267) 0.277*** (0.100) -0.58 (0.360) [-1.282,0.131] 4,163

Note: Standard errors are clustered at the household level. ***,**, and * denote statistical significance at the 1 %, 5 %, and 10 % level
respectively. Standard errors for the long-run elasticities are computed using the delta method. All models include socioeconomic
characteristics, as well as year and state dummies.

We next split the sample into homeowners and tenants, motivated by the expec-

tation that homeowners are more attentive to electricity issues than tenants, finding

strong and statistically significant price responses for homeowners, yet not for ten-

ants. In addition to differences in attentiveness, this divergent result might be rooted

in the landlord-tenant dilemma (Allcott and Greenstone, 2012): If landlords bear the

tenants’ cost of electricity consumption, tenants have little incentive to use electric-

ity efficiently (Levinson and Niemann, 2004) and, hence, exhibit a low price elasticity.

Conversely, if tenants have to pay for the electricity costs, landlords do not have an

incentive to equip rental apartments with energy-efficient appliances, resulting in a

low demand response among tenants as well. These incentives might explain Davis’

(2011) finding that tenants are less likely to have energy-efficient appliances, a finding

that is not confirmed by our data, though (Table A7).

With respect to gender differences, the psychological literature indicates that women

have less experience with issues related to electricity (Chambers and Andre, 1997), a

circumstance that might translate into a lower degree of price responsiveness via var-
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ious channels, such as a lacking knowledge of consumption levels and prices. This

argument is in line with Frondel and Kussel (2019) and Jessoe and Rapson (2014), who

provide evidence that only those households heads who are informed about electricity

prices react to price changes.

Our results corroborate these studies: exploiting information gathered in two out

of four survey waves, in which we asked participants to guess their individual electric-

ity prices prior to requesting their billing data, we find that the share of women who

provide such a guess is almost 25 percentage points lower than the respective share

for men. As indicated by the t statistic of t =36.48, the difference in these shares is sig-

nificant in statistical terms. Furthermore, our data suggest that, on average, men are

nearly 5 percentage points more likely to report valid billing information than women

(t =11.81), presumably reflecting a higher availability of billing data due to a stronger

interest in electricity consumption issues. Both empirical results may be indications

of a higher attentiveness to electricity issues, potentially leading to a higher price re-

sponsiveness among households with a male head than for those with a female head

(Table 4).

The same line of reasoning may apply to respondents with higher education, as ed-

ucation may be positively correlated with attentiveness and price knowledge. In fact,

our data indicates that the likelihood to provide a guess of the electricity price is about

5 percentage points higher among college graduates than among other individuals

(t =5.69). This evidence on a better price knowledge of high-educated individuals

may explain our finding that households whose head has a college degree strongly

react to prices, whereas there is no price reaction among household heads without a

college degree (Table 4).

Lastly, splitting our observations at the median electricity consumption, we ana-

lyze the heterogeneity in price responses with respect to the consumption level. As a

result, with -0.58, the elasticity estimate is twice as large in magnitude for households

with high electricity consumption levels than that for the low-consumption group.

Albeit both estimates are statistically indistinguishable at conventional significance
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levels, our results contrast with those of Reiss and White (2005), who show that price

elasticities are lower in magnitude for consumers with high consumption levels.

7 Summary and Conclusions

The residential sector accounts for a substantial share of electricity demand in in-

dustrialized countries, being responsible for about a quarter of Germany’s total elec-

tricity consumption (AGEB, 2016). Strengthening incentives to reduce household elec-

tricity demand, such as raising a carbon tax, thus appears to be a promising avenue

to reach climate policy targets by diminishing the residential sector’s greenhouse gas

emissions. One has to bear in mind, though, that any endeavor to conserve electricity

via increasing taxes may have substantially adverse regressive effects for low-income

households (Frondel et al., 2015; Heindl and Schüssler, 2015). From a social policy per-

spective, it is therefore advisable that any such endeavor is accompanied by support

schemes to alleviate the resulting burden for poor households. The effectiveness of

such price measures, however, critically hinges on the response of household demand

to price increases.

Drawing on household panel data from the German Residential Energy Consump-

tion Survey (GRECS) that span over nine years (2006-2014), this paper has estimated

the response of household electricity demand to price changes using the composite

of regulated price components, including the levy raised for the promotion of renew-

able technologies, as an instrument to cope with the likely endogeneity of electricity

prices. A distinguishing feature of our study is that we empirically investigate the

heterogeneity in demand responses across households types to provide an informed,

yet so far unavailable, basis for evaluating the effectiveness of price policies to reduce

electricity consumption as a means to combat climate change. Inspired by concepts

of behavioral economics, we have established a theoretical model in which attention

to electricity consumption issues plays a key role in explaining heterogeneity in elec-

tricity demand across households. Ultimately, though, we argue that the analysis of
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demand responses to price changes across household groups remains an empirical

issue.

By comparing the results obtained from a dynamic model based on the GMM sys-

tem estimator developed by Blundell and Bond (1998) with those resulting from stan-

dard panel methods and a classic instrumental variable approach, we have demon-

strated that price elasticity estimates may be biased if the methodological challenges

resulting from the particularities of the residential demand for electricity are not ade-

quately addressed.

On the basis of the Blundell-Bond estimator for dynamic panel models, we find

short- and long-run price elasticity estimates of -0.44 and -0.66, respectively. These

results suggest that, at least in the long run, reductions in the residential electricity de-

mand can be triggered by increasing prices, for instance by raising Germany’s eco-tax

on electricity use introduced in 1999. Moreover, exploiting the abundance of our data

set by estimating dynamic models for various types of households individually, a dis-

tinguishing feature of our study is the finding of a large heterogeneity in household

responses. According to our results, in contrast to wealthy households and home-

owners, low-income households, tenants, and women do not adjust their electricity

demand as a response to increasing prices. These results suggest that increasing elec-

tricity prices, for instance via raising a carbon tax, may not be a universally effective

means.

The absence of any price responses among certain household groups, such as low-

income households, has important implications for energy conservation programs,

calling for additional non-pricing measures to reduce the greenhouse gas emissions

originating from fossil-based electricity generation. For instance, non-pricing mea-

sures, such as energy audits, information campaigns and subsidies for the purchase

of energy efficient appliances (Allcott et al., 2015; Fowlie et al., 2015), should be in-

cluded in energy conservation programs to target household groups that do not seem

to respond to price increases, such as low-income households. Targeted programs that

address these groups may ensure a more effective usage of resources than unspecific
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programs.
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Appendix

Table A1: Frequency in the GRECS Survey Participation of Households and Number of Ob-
servations

Number of Number of
Responses Frequency Share Cumulated Observations

1 4,421 40.5 % 40.5 % 4,421
2 3,100 28.4 % 68.9 % 6,200
3 1,682 15.4 % 84.3 % 5,046
4 727 6.7 % 91.0 % 2,908
5 486 4.4 % 95.4 % 2,403
6 235 2.2 % 97.6 % 1,410
7 194 1.8 % 99.4 % 1,358
8 67 0.57 % 99.97 % 536
9 3 0.03 % 100.0 % 27

Total 10,915 100.0 % – 24,336

Table A2: Comparison of our Estimation Sample with the Population of German Households

2006 2014

Variable Sample Population t Statistics Sample Population t Statistics

Age under 25 years 3.1% 5.0% -4.15*** 0.4% 4.7% -42.17***
Age 25 – 64 years 83.9% 67.7% 16.78*** 67.6% 67.0% 0.76
Age 65 years and more 13.0% 27.2% -16.09*** 32.0% 28.1% 4.99***
College degree 34.0% 15.7% 14.68*** 35.5% 19.0% 20.39***
Female 32.6% 34.1% -1.22 31.2% 35.4% -5.32***
Household size = 1 19.6% 38.8% 18.38*** 22.7% 40.8% -25.63***
Household size = 2 39.4% 33.6% 4.54*** 53.2% 34.4% 22.33***
Household size = 3 18.2% 13.5% 4.60*** 12.0% 12.4% -0.77
Household size = 4 16.7% 10.3% 6.54*** 9.1% 9.1% -0.06
Household size > 4 6.1% 3.7% 3.79*** 3.1% 3.3% -0.85
East Germany 24.4% 21.5% 2.61*** 19.8% 21.0% -1.79*
High income 12.2% 5.9% 7.28*** 12.8% 11.0% 3.25***

Note: Population data is drawn from Destatis (2008, 2015). This data source asks the main earner to complete the questionnaire,
whereas we ask the household member who usually makes the financial decisions for the household. Furthermore, the variable
High income is top-coded at 4,500 EUR, while in our sample the upper threshold is at 4,700 EUR. ***,**, and * denote statistical
significance at the 1 %, 5 %, and 10 % level respectively.
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Table A3: First Stage Estimation Results

Static Models Dynamic Models

Standard 2SLS Fixed Effects 2SLS Standard 2SLS Fixed Effects 2SLS
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

ln(z) 0.244*** (0.020) 0.186*** (0.026) 0.245*** (0.024) 0.228*** (0.048)
ln(yt−1) – – – – -0.113*** (0.004) -0.031*** (0.010)
ln (Income) -0.013*** (0.003) 0.001 (0.007) -0.003 (0.003) 0.010 (0.010)
Household size = 2 -0.078*** (0.003) -0.054*** (0.011) -0.029*** (0.004) -0.042* (0.022)
Household size = 3 -0.104*** (0.004) -0.068*** (0.011) -0.029*** (0.005) -0.056** (0.023)
Household size = 4 -0.121*** (0.004) -0.074*** (0.013) -0.028*** (0.006) -0.033 (0.026)
Household size >4 -0.123*** (0.006) -0.073*** (0.020) -0.016** (0.008) -0.028 (0.031)
College degree 0.007*** (0.002) 0.006 (0.007) 0.003 (0.003) 0.008 (0.009)
Age -0.001*** (0.000) 0.000 (0.001) 0.000 (0.000) 0.001 (0.001)
Female 0.005** (0.002) 0.007 (0.014) 0.004 (0.003) 0.032* (0.019)
Homeowner -0.021*** (0.002) -0.013 (0.013) -0.003 (0.003) -0.037** (0.017)
Constant 2.611*** (0.050) 2.587*** (0.050) 3.529*** (0.076) 2.905*** (0.185)

Year Dummies Yes Yes Yes Yes
State Dummies Yes Yes Yes Yes

Number of observations 19,026 19,026 8,096 8,096
F-statistic 237.2 50.2 134.6 25.1

Note: Standard errors are clustered at the individual level. ***,**, and * denote statistical significance at the 1%, 5%, and 10% level,
respectively.

Table A4: Random-Effects Estimation Results

Standard Method 2SLS Dynamic 2SLS

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

ln(p) -0.706*** (0.024) – – – –
̂ln(p) – – -0.209 (0.222) -0.247* (0.131)
ln(yt−1) – – – – 0.844*** (0.016)
ln (Income) 0.061*** (0.007) 0.063*** (0.008) 0.003 (0.004)
Household size = 2 0.354*** (0.012) 0.402*** (0.021) 0.070*** (0.007)
Household size = 3 0.530*** (0.013) 0.590*** (0.025) 0.107*** (0.009)
Household size = 4 0.634*** (0.014) 0.696*** (0.029) 0.118*** (0.010)
Household size > 4 0.748*** (0.024) 0.823*** (0.036) 0.144*** (0.011)
College degree -0.019*** (0.007) -0.020*** (0.008) -0.002 (0.004)
Age 0.004*** (0.000) 0.005*** (0.000) -0.000 (0.000)
Female -0.013* (0.006) -0.013* (0.007) -0.002 (0.003)
Homeowner 0.178*** (0.009) 0.186*** (0.011) 0.017*** (0.004)
Constant 9.060*** (0.097) 7.491*** (0.705) 1.924*** (0.567)

Year Dummies Yes Yes Yes
State Dummies Yes Yes Yes

Number of observations 21,918 19,026 8,096

Long-run price elasticity – – – – -1.583*** (0.700)

Note: Standard errors are clustered at the individual level. ***,**, and * denote statistical significance at the 1%, 5%, and 10% level,
respectively. Standard errors for the long-run elasticities are computed using the delta method.

29



Table A5: Estimation Results for Dynamic Model (12) based on various Estimation Methods
Using Marginal Prices mp.

2SLS Fixed Effects 2SLS Random Effects 2SLS Blundell-Bond

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

̂ln(p) -0.157 (0.186) 0.129 (0.549) -0.186 (0.182) -0.562 (0.348)
ln(yt−1) 0.887*** (0.008) 0.193*** (0.039) 0.863*** (0.009) 0.412*** (0.106)
ln (Income) 0.001 (0.005) 0.035 (0.030) 0.002 (0.005) 0.034*** (0.013)
Household size = 2 0.070*** (0.008) 0.277*** (0.060) 0.081*** (0.009) 0.283*** (0.050)
Household size = 3 0.100*** (0.010) 0.449*** (0.071) 0.119*** (0.011) 0.437*** (0.077)
Household size = 4 0.108*** (0.011) 0.482*** (0.071) 0.128*** (0.012) 0.481*** (0.085)
Household size >4 0.129*** (0.013) 0.564*** (0.092) 0.155*** (0.014) 0.580*** (0.103)
College degree -0.002 (0.005) 0.045** (0.023) -0.001 (0.005) -0.018* (0.010)
Age -0.000* (0.000) 0.003 (0.002) -0.000 (0.000) 0.002*** (0.001)
Female -0.003 (0.004) -0.013 (0.029) -0.003 (0.004) -0.006 (0.008)
Homeowner 0.013*** (0.004) 0.027 (0.056) 0.015*** (0.005) 0.085*** (0.019)
Constant 1.276** (0.650) 5.318*** (1.805) 1.531** (0.639) 5.759*** (1.474)

Year Dummies Yes Yes Yes Yes
State Dummies Yes Yes Yes Yes

Number of observations 5,485 5,485 5,485 5,485
Number of instruments – – – 40
Arellano-Bond test for AR(1) – – – z=-5.43; p=0.000
Arellano-Bond test for AR(2) – – – z=-0.16; p=0.873
Hansen test of overid. restrictions – – – χ2(6)=5.76; p=0.450

Long-run price elasticity -1.394 (1.691) 0.160 (0.680) -1.363 (1.314) -0.956* (0.567)

Note: Standard errors are clustered at the individual level. ***,**, and * denote statistical significance at the 1 %, 5 %, and 10 % level
respectively. Standard errors for the long-run elasticities are computed using the delta method. The marginal price is calculated
by dividing the difference between total expenditures and the fixed fee by the amount of electricity consumed.
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Table A6: Robustness Checks for Dynamic Model (12) based on the Blundell-Bond Estimator
using Various Ways to Instrument the Lagged Consumption Variable

First-Differences First-Differences Orthogonal-Deviations
Instruments Not Collapsed Instruments Collapsed Instruments Not Collapsed
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

ln(p) -0.461** (0.187) -0.508** (0.240) -0.511** (0.204)
ln(yt−1) 0.465*** (0.111) 0.384*** (0.102) 0.366*** (0.112)
ln (Income) 0.032*** (0.012) 0.037*** (0.012) 0.038*** (0.012)
Household size = 2 0.229*** (0.048) 0.262*** (0.045) 0.271*** (0.052)
Household size = 3 0.353*** (0.075) 0.406*** (0.068) 0.420*** (0.080)
Household size = 4 0.405*** (0.084) 0.462*** (0.078) 0.476*** (0.090)
Household size > 4 0.488*** (0.106) 0.560*** (0.097) 0.578*** (0.112)
College degree -0.012 (0.008) -0.016* (0.008) -0.016** (0.008)
Age 0.002*** (0.001) 0.002*** (0.001) 0.002*** (0.001)
Female -0.003 (0.007) -0.003 (0.007) -0.003 (0.007)
Homeowner 0.072*** (0.019) 0.086*** (0.018) 0.087*** (0.019)
Constant 5.113*** (1.089) 5.805*** (1.190) 6.004*** (1.094)

Year Dummies Yes Yes Yes
State Dummies Yes Yes Yes

Number of observations 8,096 8,096 8,096
Number of instruments 68 41 61
Arellano-Bond test for AR(1) z=-4.80; p=0.000 z=-5.50; p=0.000 z=-4.26; p=0.000
Arellano-Bond test for AR(2) z=1.30; p=0.194 z=1.30; p=0.195 z=1.13; p=0.258
Hansen test of overid. restrictions χ2(34)=26.38; p=0.821 χ2(7)=2.98; p=0.887 χ2(27)=24.93; p=0.579

Long-run price elasticity -0.862** (0.337) -0.825** (0.366) -0.8061** (0.331)

Note: Standard errors are clustered at the individual level. ***,**, and * denote statistical significance at the 1 %, 5 %, and 10 %
level respectively. Standard errors for the long-run elasticities are computed using the delta method

Table A7: OLS Estimation Results on the Likelihood of Holding Appliances that are Less Than
5 Years Old

Refrigerator Freezer Dishwasher Washing Machine Tumble Dryer
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Middle income 0.020 (0.046) 0.037 (0.060) 0.122** (0.054) 0.030 (0.046) 0.008 (0.069)
High income 0.011 (0.062) 0.136* (0.077) 0.116* (0.069) 0.076 (0.063) 0.001 (0.080)
Homeowner -0.029 (0.036) -0.057 (0.046) -0.009 (0.041) -0.089** (0.036) -0.050 (0.049)
Constant 0.445*** (0.108) 0.166 (0.134) 0.538*** (0.127) 0.571*** (0.112) 0.963*** (0.171)

Further controls Yes Yes Yes Yes Yes
Dep. variable means 0.350 0.255 0.363 0.350 0.300
Number of obs. 1,404 920 1,150 1,367 807

Note: The dependent variable is a binary indicator that equals unity if a household holds an respective appliance that is less than
five years old and zero otherwise. The high income group comprises household net incomes above e3,500, while the middle
income group covers the range between e1,250 and e3,500. Further controls encompass information on age, household size,
gender, high school degree, offspring, geography, building type, and employment situation. Robust standard errors are reported
in parentheses. ***,**, and * denote statistical significance at the 1 %, 5 % level, and 10 % level, respectively.
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Figure A1: Regional Variation of the Regulated Electricity Price Components (Grid Fees,
Levies, and the German Eco-Tax) in Germany in 2006.
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