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Non-technical summary

Research Question

Many central banks publish their macroeconomic forecasts together with measures of

the uncertainty surrounding these forecasts. In principle, these uncertainty measures are

liable to change with every new forecast. If, for instance, the current macroeconomic

environment is assessed as being more uncertain than when the previous forecast was

made, the measure of forecast uncertainty reported with the current forecast may be

higher as a result. Similarly, surveys of professional forecasters often ask participants to

state the level of current forecast uncertainty. However, recent research indicates that

these values can be subject to systematical biases. Furthermore, the changes in the

reported forecast uncertainty observed over time do not appear to be correlated with the

changes in the size of the corresponding forecast errors observed ex post. In our paper, we

investigate whether the forecast uncertainty published by central banks for their inflation

forecasts suffers from similar problems.

Contribution

We examine the quality of inflation forecast uncertainty data provided by several central

banks using the same methods as those employed to analyse survey-based measures of

forecast uncertainty. We focus on data of the Bank of England, the Banco Central do

Brasil (the Brazilian central bank), the Magyar Nemzeti Bank (the Hungarian central

bank) and the Sveriges Riksbank (the Swedish central bank) because they are particularly

suited, on account of their nature and scope, for this purpose. Additional methods we

apply in our paper enable us to draw more in-depth conclusions about the quality of the

measures published by the central banks.

Results

Much like the survey-based measures of forecast uncertainty, we find that the central

bank data we examine in our paper exhibit certain biases. The statistical evidence for

these biases is not particularly strong, however. Our paper also shows that a change

in forecast uncertainty reported by central banks tends to be a reliable indicator of a

corresponding change in the size of future forecast errors. We conclude that the inflation

forecast uncertainty reported by central banks appears to be more reliable than that

recorded by surveys of professional forecasters.



Nichttechnische Zusammenfassung

Fragestellung

Viele Zentralbanken machen bei ihren makroökonomischen Prognosen auch Angaben

über die mit diesen Prognosen verbundene Unsicherheit. Grundsätzlich können sich die-

se Angaben mit jeder neuen Prognose ändern. Wird beispielsweise das aktuelle mak-

roökonomische Umfeld im Vergleich zum vorherigen Prognosezeitpunkt als unsicherer

eingeschätzt, so kann bei der aktuellen Prognose eine entsprechend höhere Prognoseunsi-

cherheit ausgewiesen werden. Auch bei Umfragen unter professionellen Wirtschaftsprogno-

stikerinnen und -prognostikern wird häufig die Höhe der aktuellen Prognoseunsicherheit

abgefragt. Jüngere Forschungsergebnisse deuten allerdings darauf hin, dass diese Werte

nicht selten systematische Verzerrungen aufweisen. Darüber hinaus scheinen die im Zeit-

verlauf beobachteten Veränderungen der angegebenen Prognoseunsicherheit in keinem

Zusammenhang zu den Veränderungen des Ausmaßes der entsprechenden, im Nachhinein

beobachteten Prognosefehler zu stehen. In unserer Arbeit untersuchen wir, ob die von Zen-

tralbanken für die Inflation veröffentlichte Prognoseunsicherheit mit ähnlichen Problemen

behaftet ist.

Beitrag

Wir überprüfen die Güte von Daten zur Inflationsprognoseunsicherheit verschiedener Zen-

tralbanken mit denselben Methoden, welche auch zur Analyse von umfragebasierten An-

gaben zur Prognoseunsicherheit verwendet werden. Wir konzentrieren uns dabei auf die

Daten der Zentralbanken des Vereinigten Königreichs, Brasiliens, Ungarns und Schwedens,

da sie sich in Art und Umfang in besonderer Weise für diesen Zweck eignen. Zusätzliche

Verfahren, die in unserer Arbeit benutzt werden, erlauben tiefer gehende Aufschlüsse über

die Qualität der von den Zentralbanken veröffentlichten Angaben.

Ergebnisse

Ähnlich wie umfragebasierte Angaben zur Prognoseunsicherheit weisen auch die unter-

suchten Daten der Zentralbanken gewisse Verzerrungsmuster auf. Statistisch sind diese

Verzerrungen jedoch kaum belegbar. Zudem zeigt sich, dass eine Veränderung der an-

gegebenen Prognoseunsicherheit bei Zentralbanken oft in verlässlicher Weise auf eine

entsprechende Veränderung des Ausmaßes künftiger Prognosefehler schließen lässt. Die

von Zentralbanken für die Inflation angegebene Prognoseunsicherheit scheint also eine

verlässlichere Information darzustellen als jene, die in Umfragen unter professionellen

Wirtschaftsprognostikerinnen und -prognostikern erfasst wird.
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1 Introduction

Economic research concerning the measurement of macroeconomic uncertainty has in-

creased substantially since the Great Recession. The recent surge led to the construction

of uncertainty indices like in Baker, Bloom, and Davis (2016), Rossi and Sekhposyan

(2015) and Jurado, Ludvigson, and Ng (2015), where the latter two actually rely on

measures of forecast uncertainty. Central banks already reported measures of forecast

uncertainty long before the Great Recession, but their motivation for doing so is regarded

as different from the recent motivation in academia.

While academics mainly appear to be interested in the effects caused by changes

in uncertainty, like in Bloom (2009), several central banks have mainly intended to com-

municate that future realizations should not be expected to coincide exactly with the

central banks’ point forecasts. Central banks like the European Central Bank or the

Deutsche Bundesbank resort to reporting unconditional measures of forecast uncertainty

for this purpose. Others, however, have tried to provide additional information by pub-

lishing conditional measures, in line with the idea of Jurado et al. (2015) who suggest

relating macroeconomic uncertainty to conditional forecast uncertainty, i.e. to the con-

ditional volatility of the unforecastable component of macroeconomic time series. Our

study focuses on members of the latter group of central banks, namely the Bank of Eng-

land (BoE), the Banco Central do Brasil (BCB, the Brazilian central bank), the Magyar

Nemzeti Bank (MNB, the Hungarian central bank), and the Sveriges Riksbank (SR, the

Swedish central bank). In fact, these central banks have issued density forecasts for in-

flation which are displayed as fan charts. Broadly speaking, a central bank’s uncertainty

forecast corresponds to the width of its fan chart.

Point forecasts of central banks are often regarded as mean forecasts. Especially

the central banks’ point forecasts for inflation frequently turn out to outperform all com-

peting forecasts in terms of mean-squared forecast errors, as documented, for instance,

in Groen, Kapetanios, and Price (2009) and Faust and Wright (2009). Yet if the central
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bank does not have a quadratic loss function, these results must be interpreted with cau-

tion, because then, in general, point forecasts do not represent the mean of the forecast

density. In fact, empirical studies often find that several characteristics of central bank

forecasts are suggestive of more complicated loss functions, featuring asymmetry, state

dependence, or time-variation, like in Capistrán (2008), Wang and Lee (2014), or Patton

and Timmermann (2007). Given the existence of many potential loss functions, it might

actually be preferable to issue (and to evaluate) density forecasts. Each user can then

infer the point forecast corresponding to her loss function from this density forecast, and

the evaluation can rely either on the entire density or only on elements of interest. The

evaluation of density forecasts issued by central banks has mostly focused on the BoE with

important contributions by Clements (2004), Wallis (2004), and Mitchell and Hall (2005).

The asymmetry incorporated in central banks’ density forecasts is studied in Knüppel

and Schultefrankenfeld (2012). However, the dispersion of central banks’ forecast densi-

ties, i.e. uncertainty forecasts, has not been investigated explicitly yet. But, interestingly,

when the BoE’s density forecasts fail to pass tests for correct specification, this is often

explained by the excessive width of its fan charts, i.e. its excessively large uncertainty

forecasts, as done in Clements (2004), Wallis (2004), and Dowd (2007).

Conditional mean forecasts are typically evaluated with respect to their optimality

such as their bias, for instance, and their accuracy. In this work, we do the same for

the conditional uncertainty forecasts. With respect to bias, we investigate whether the

ex-ante uncertainty, i.e. the uncertainty surrounding a central bank’s mean forecast which

is predicted by the central bank, coincides, on average, with the ex-post uncertainty, i.e.

the size of the realized forecast errors of this mean forecast. The terms ‘ex-ante’ and ‘ex-

post uncertainty’ were coined by Clements (2014) in the context of macroeconomic survey

forecasts. He discovers that, for shorter horizons, survey participants tend to issue vari-

ance forecasts, i.e. forecasts for the uncertainty surrounding their mean forecasts which

are, on average, larger than the squared realized forecast errors of their mean forecasts.

Put differently, for the short term, survey participants are underconfident, i.e. they issue
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upward-biased uncertainty forecasts. However, at longer horizons, the participants are

overconfident, that is, they produce downward-biased uncertainty forecasts. In the words

of Clements (2014), at shorter (longer) horizons, the participants’ ex-ante uncertainty is

larger (smaller) than the ex-post uncertainty. Since central banks publish multi-horizon

forecasts, we can investigate whether their uncertainty forecasts are subject to a similar

horizon-dependent pattern, and we study the optimality of these forecasts using Mincer

and Zarnowitz (1969) regressions.

Moreover, we compare the forecast accuracy of the central banks’ ex-ante uncer-

tainty to the accuracy that would be obtained using two very simple benchmarks. One

benchmark forecast determines ex-ante uncertainty only based on the average size of past

forecast errors. The choice of this benchmark is motivated by the fact that it represents

the unconditional measure of ex-ante uncertainty used by central banks like the European

Central Bank or the Deutsche Bundesbank. What is more, Clements (2018) documents

this benchmark’s superior accuracy when comparing it to the conditional measures of

ex-ante uncertainty provided by survey participants, especially for inflation. Thus, if this

benchmark’s superiority could also be observed with respect to central banks’ conditional

uncertainty forecasts, it might be recommendable to replace them with unconditional fore-

casts, not least because the production of the latter does not require any modeling efforts.

However, it does require the availability of a sufficiently large number of past forecast

errors. Therefore, we also investigate the accuracy of simple model-based unconditional

measures of ex-ante uncertainty as an alternative.

The remainder of this paper is structured as follows. In Section 2, we explain how

the uncertainty forecasts will be evaluated. Section 3 contains a description of the data.

Section 4 shows the results of the empirical evaluations. Section 5 concludes.

3



2 Evaluating Forecast Uncertainty

2.1 Forecast Optimality

The object to be evaluated in this study is the forecast for the squared error of a cor-

responding conditional h-step-ahead mean forecast. The expected squared error is given

by

σ2
t+h|t = E

[
ê2t+h|t | It

]
= E

[(
yt+h − ŷt+h|t

)2 | It] ,
where It is the information set of the forecaster in period t and yt+h denotes the value of

the target variable in period t + h. The variable ŷt+h|t is the corresponding conditional

mean forecast made in period t which coincides with E [yt+h | It] only in the case of mean

forecast optimality. The variable êt+h|t is the forecast error of the forecast ŷt+h|t. It should

be stressed that σ2
t+h|t depends on the mean forecast ŷt+h|t, implying that all evaluations

of forecasts for σ2
t+h|t are conditional on ŷt+h|t.

1

The forecast for σ2
t+h|t is denoted by σ̂2

t+h|t. In Clements (2014), σ̂2
t+h|t is labelled

ex-ante uncertainty, while σ2
t+h|t is referred to as ex-post forecast uncertainty because it

cannot be assessed before yt+h is observed. If, for instance, the forecast density is normal,

the ex-ante uncertainty determines the width of the interval ±1.96σ̂t+h|t within which the

forecaster expects the forecast error êt+h|t to lie with a probability of 0.95. Independently

of the distribution of the forecast density, σ̂2
t+h|t is the forecaster’s prediction for the

expected squared forecast error E
[
ê2t+h|t | It

]
. The squared forecast error ê2t+h|t itself

is a noisy measure for the unobservable ex-post forecast uncertainty σ2
t+h|t, with their

relationship being given by ê2t+h|t = σ2
t+h|t + vt+h with E [vt+h | It] = 0.2

If the uncertainty forecast σ̂2
t+h|t is optimal, ex-ante and ex-post forecast uncertainty

1More on this follows in Subsection 2.3. It might be worth noting that we do not assume mean
forecast optimality in our uncertainty forecast evaluations.

2It would be more exact to write vh,t+h instead of vt+h, because, for instance, v1,t+1 6= v2,t+1 in
general. Yet, for notational convenience, we suppress the dependence of residuals and parameters on h
in what follows.
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coincide, so it holds that

σ̂2
t+h|t = σ2

t+h|t. (1)

Since σ2
t+h|t is not observable, tests for uncertainty forecast optimality rely on the noisy

measure for ex-post forecast uncertainty ê2t+h|t. For the unconditional expectations of

ex-ante uncertainty σ̂2
t+h|t and ê2t+h|t, uncertainty forecast optimality implies that

E
[
σ̂2
t+h|t

]
= E

[
σ2
t+h|t

]
= E

[
E
[
ê2t+h|t| It

]]
= E

[
ê2t+h|t

] (2)

holds.

Condition (2) can be used to test for bias of the uncertainty forecasts. Following

Clements (2014), we test the null hypothesis c = 1 in the regression equation

ê2t+h|t
σ̂2
t+h|t

= c+ ut+h, (3)

where ut+h denotes the error term.3 This test will be referred to as the Clements test.

Moreover, we test condition (1) employing Mincer and Zarnowitz (1969) regressions,

i.e. by testing the joint null hypothesis c = 0, b = 1 in the regression equation

ê2t+h|t = c+ bσ̂2
t+h|t + ut+h. (4)

Since ê2t+h|t can be strongly affected by outliers, as discussed, for example, in Violante and

Laurent (2012), we also test the null hypothesis b ≤ 0 in the regression equation

|êt+h|t| = c+ bσ̂t+h|t + ut+h (5)

3In fact, condition (2) suggests using the regression equation ê2t+h|t − σ̂
2
t+h|t = c + ut+h and testing

for c = 0. However, we decide to follow Clements (2014) here in order to ensure comparability. We also
used the test for c = 0 and found that the empirical results are broadly in line with the test based on
condition (2).
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in order to verify whether there is a significantly positive comovement between the (square

root of the) uncertainty forecasts and the size of the corresponding forecast errors.

2.2 Measuring Forecast Accuracy

Evaluating the accuracy of a forecast requires the specification of a corresponding loss

function. In the context of density forecasts, these loss functions are typically labeled

scoring rules. While the accuracy of mean forecasts can be assessed without further

information from the underlying forecast densities, this is not possible with variance fore-

casts. However, they can be evaluated jointly with the corresponding mean forecasts,

as explained in Gneiting (2011).4 Clements (2018) assumes that the forecast density is

normal, with the mean forecast and the variance forecast being its parameters.5 Then

he uses the logarithmic score to evaluate forecast accuracy. We avoid the assumption of

a normal distribution by employing the score proposed by Dawid and Sebastiani (1999).

This proper score, which is discussed in Gneiting and Raftery (2007) and used, for in-

stance, in Knüppel and Krüger (2017), evaluates mean and variance forecasts jointly. It

is given by

DSSt+h|t = log σ̂2
t+h|t +

ê2t+h|t
σ̂2
t+h|t

. (6)

If the underlying forecast density is normal, DSSt+h|t is equivalent to the logarithmic

score.6 The smaller the score, the more accurate is the forecast.

It might be interesting to note that, given the mean forecast and, thus, given ê2t+h|t,

the score described by equation (6) is minimized if σ̂2
t+h|t = ê2t+h|t. If this condition were

fulfilled in every period, the Mincer-Zarnowitz regressions (4) would yield a constant equal

to zero, a slope coefficient equal to one, and an R2 equal to one. The same parameter

4In the words of Gneiting (2011), the variance is not ‘elicitable’ as a forecast object, because there
is no loss function such that the correct forecast of the variance is the unique minimizer of the expected
loss. However, the pair (mean, variance) is jointly elicitable. For the concept of higher-order elicitability,
see Fissler and Ziegel (2016).

5If the forecasters provide insufficient information in order to fit normal distributions, Clements (2018)
resorts to triangular distributions as proposed by Engelberg, Manski, and Williams (2009).

6Therefore, we arrive at the same results that would be obtained with the approach of Clements
(2018), but without the need to make a distributional assumption.
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values and a lower R2 would be attained with the optimal feasible conditional uncertainty

forecast σ̂2
t+h|t = σ2

t+h|t. If one were not allowed to make conditional uncertainty forecasts,

but only to forecast a single value σ̂2
h for all periods, i.e. to make unconditional uncertainty

forecasts only, it would be optimal to use the average of ê2t+h|t over the N evaluation

periods. With a very small amount of noise added to this uncertainty forecast, the Mincer-

Zarnowitz regressions would yield a constant close to one, a slope coefficient close to zero,

but R2 close to zero. In all situations, the uncertainty forecasts would pass the Clements

test of equation (3), but with the conditional forecast σ̂2
t+h|t = σ2

t+h|t, one would obtain a

lower and, thus, better score than with the unconditional forecast σ̂2
h.

2.3 Benchmark Forecasts Based on Unconditional Uncertainty

While DSSt+h|t evaluates the mean and the variance forecast jointly, different variance

forecasts can be ranked according to their realized scores if the same mean forecast is

used in each instance. This case will be given below, because we will assess the different

variance forecasts in connection with the same conditional mean forecast ŷt+h|t of the

central bank. The usual Diebold and Mariano (1995) test can be used to test for equal

accuracy of two competing forecasts, where DSSt+h|t is the loss associated with the forecast

given by
(
ŷt+h|t, σ̂

2
i,t+h|t

)
, and i denotes the variance forecast used.

In addition to the central banks’ own variance forecasts σ̂2
t+h|t, we consider two alter-

native uncertainty forecasts. Both approaches yield unconditional forecasts, because both

implicitly assume that all parameters which determine the forecast uncertainty are con-

stant over time. Formally, this assumption means that σ2
t+h|t = σ2

h holds. In the absence

of estimation uncertainty, the unconditional uncertainty forecasts would therefore also be

constant over time, i.e. σ̂2
t+h|t = σ̂2

h would hold. However, variations in the uncertainty

forecasts of both approaches will be observed because both approaches use rolling win-

dows, i.e. time-varying finite samples for estimating σ2
h. The accuracy obtained with these

unconditional uncertainty forecasts will be compared to the accuracy of the conditional

uncertainty forecasts of the central banks. The same type of accuracy comparison, yet
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with forecasts by survey participants instead of central banks, is performed by Clements

(2018).

One approach uses the simple Bayesian autoregressive (AR) model

yt = c+

p∑
i=1

θiyt−i + ut, (7)

with ut iid N (0, σ2
u) and uninformative priors, with a uniform prior on c, θ1, θ2, . . . , θp and

a Jeffrey’s prior on σ2
u. With yt denoting the last available observation, samples from the

joint predictive distribution of
(
yt+1|t, yt+2|t, . . . , yt+H|t

)
can be generated employing the

algorithm described in Karlsson (2013). We use the variance

σ̂2
BAR,t+h|t = V ar

[
yt+h|t

]
(8)

as the uncertainty forecast of the model to be compared to the central bank’s uncertainty

forecast σ̂2
t+h|t. Each time the model is estimated, the lag length p will be determined by

the BIC criterion, with the largest value of p considered being equal to 8.

This approach will be referred to as the BAR approach. As mentioned above, when

calculating DSSt+h|t for the variance forecast σ̂2
BAR,t+h|t, we use the mean forecast ŷt+h|t

of the central bank to calculate the forecast errors êt+h|t in equation (6) because we only

intend to evaluate different approaches for generating uncertainty forecasts. Thus, the

mean forecasts obtained from the BAR approach are not employed in the evaluation

exercise.

The second approach is directly related to the way many central banks assess their

unconditional forecast uncertainty, namely by using past forecast errors. For example,

the BoE estimates its unconditional forecast uncertainty based on its forecast errors from

the preceding 40 quarters, as stated in Wallis (2004).7 This estimate serves as an initial

assessment of forecast uncertainty, which is then modified according to current conditions.

7Similarly, the Federal Open Market Committee (FOMC) employs the errors of different forecasts
made over the previous 20 years for its assessment of unconditional forecast uncertainty, as described in
Reifschneider and Tulip (2017).
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Clements (2018) uses forecast errors from the preceding 50 quarters in his analysis. We

also determine the unconditional forecast uncertainty based on past forecast errors, i.e.

by using the simple average of the past squared errors

σ̂2
PFE,t+h|t =

1

n

n−1∑
i=0

ê2t−i|t−h−i, (9)

where the mean forecasts of the central bank are used to calculate the forecast errors

êt+h|t. This approach will be referred to as the PFE approach.

While the PFE approach has the advantage of yielding — in the absence of struc-

tural breaks — the correct unconditional uncertainty forecasts asymptotically, it requires

a sufficiently large sample of past forecast errors. As for the BAR approach, it is likely

to produce excessively large uncertainty forecasts especially at short horizons, because it

ignores important information used by the central bank in the production of its mean fore-

casts, but it only requires the availability of a sufficiently large sample of past observations

of the target variable.

We employ rolling estimation windows for both approaches. However, given that

the forecast error samples of the SR and the MNB are very small, the PFE approach is

only applied to the samples of the BoE and the BCB. Although both of our approaches are

designed to yield unconditional uncertainty forecasts, they might capture low-frequency

movements or structural breaks in forecast uncertainty due to the use of using rolling

windows. Yet compared to conditional approaches, they would be expected to be relatively

slow in doing so.

Since there is no general consensus on the ideal size of the estimation window for

σ̂2
PFE,t+h|t, we determine n based on empirical results. To be more precise, we choose n

such that the score proposed by Dawid and Sebastiani (1999) becomes reasonably small

in the samples of the BoE and the BCB. Addressing this issue is interesting in its own

right, because it might provide guidance for central banks which have to choose n as well.

While it would be possible to choose different values of n for different horizons h,
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such an approach might be difficult to communicate in practice. Moreover, empirically

optimal horizon-dependent values of n could be unreliable due to the small sample sizes.

More robust results can be expected by choosing a single n for all horizons. The question

then arises how to weight the results for different horizons in order to choose a single

value of n for all of them. Instead of using an ad-hoc weighting scheme, we resort to the

Dawid and Sebastiani (1999) score for multivariate forecasts which is given by

DSSt+H|t = log |Σ̂t+H|t|+ ê′t+HΣ̂−1t+H|têt+H , (10)

with

êt =
(
êt|t−1, êt|t−2, . . . , êt|t−H

)′
and

Σ̂t+H|t =
1

n

n−1∑
i=0

(
êt−i ê

′
t−i
)
.

The fact that this approach also uses forecasts of covariances, which are not of interest

in the uncertainty forecasts published by central banks, is a consequence of the desire to

find a single value of n for all forecast horizons h = 1, 2, ..., H.8

3 Data

3.1 Central Bank Forecasts

As mentioned above, we use inflation forecasts from four central banks that are producing

conditional density forecasts. The BoE, the MNB and the SR use the two-piece normal

(TPN) distribution for their forecasts, of which one can calculate the mean and the

8Due to the relatively small samples we study, the value of n is going to be determined based on
a sample that will overlap with the sample to be used for the evaluation of the uncertainty forecast
accuracy. Therefore, it will not be a true out-of-sample evaluation, and the comparison will be biased
against the central banks’ uncertainty forecasts. However, the choice of n turns out to be of limited
importance unless n is set to excessively small values, thereby yielding relatively inaccurate uncertainty
forecasts. Moreover, we are going to choose the same value of n for the BoE and the BCB in order to
limit the potential for bias against the central banks’ uncertainty forecasts.
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variance.9 Yet, while the BoE publishes all parameters characterizing its forecast densities,

MNB and SR only provide the mode and quantiles corresponding to the 30, 50 and 70%

and 50, 75, and 90% prediction intervals, respectively, of their TPN distributions. The

BCB, in turn, publishes the forecast median and quantiles corresponding to the 10, 30

and 50% prediction intervals from its usually symmetric forecast distributions. Hence, we

have to back out the required parameters, where to the BCB data, a normal distribution

is fitted using a least squares criterion. For the MNB and the SR data, TPN distributions

are fitted using a likelihood ratio criterion as described in Garćıa and Manzanares (2007).10

The BoE and the BCB both have a fairly long history of publishing fan charts, with

the samples under study range from 1998Q1 and 1999Q4, respectively, to 2016Q4, yielding

up to 76 (BoE) and 69 (BCB) mean and variance forecasts for inflation, depending on

the forecast horizon used. MNB and SR have both discontinued their usage of the TPN

distribution and changed their approaches to quantifying forecast uncertainty. For the

MNB, we have 34 quarterly forecasts ranging from 2002Q4 to 2011Q2.11 The SR sample

ranges from 1999Q4 to 2006Q3 and includes 27 quarterly forecasts.12

From the BoE and the BCB, we use inflation forecasts made conditional on assuming

that short-term interest rates will follow market expectations. While both central banks

also publish forecasts using a constant-rates assumption, the MNB employed only the

constant-rates approach during the time period under consideration. The SR dropped

the constant-rates approach as of June 2005 and used market expectations before entirely

changing the forecasting methodology after the end of our sample.13 To consider samples

9We use BoE forecast data as provided under https://www.bankofengland.co.uk/

inflation-report/inflation-reports. BCB forecast data is taken directly from the bank’s inflation
report documents, available at http://www.bcb.gov.br/?INFLAREPORTFV. The MNB fan chart data can
be retrieved in “Charts and Data Series Chapter” files under https://www.mnb.hu/en/publications/

reports/inflation-report/quarterly-report-on-inflation-from-1998-march-2014. The
SR provides “numerical data on which the diagrams are based” under http://archive.

riksbank.se/en/Web-archive/Published/Published-from-the-Riksbank/Monetary-policy/

Monetary-Policy-Report/.
10Knüppel and Schultefrankenfeld (2012, 2017) provide descriptions of the details for these procedures.
11The MNB forecast data from 2008Q4 were not made publicly available.
12Originally, the SR issues monthly forecasts, from which we select forecasts in accordance with the

publication dates of the bank’s inflation reports. As the publication frequency of the reports was changed
from three to four per year as of 2001, there are only three inflation forecast dates in 2000.

13We gain two more observations for the BCB sample by filling in constant-rates forecasts for 2002Q4
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as long as possible, we focus on maximum forecast horizons of H = 8 quarters ahead for

the BoE, H = 5 for the BCB, H = 6 for the MNB and H = 7 for the SR.14 Since the

nowcast, i.e. the forecast for h = 0, is also considered, we have H + 1 horizons to evaluate

for each central bank.

Our evaluations of the uncertainty forecasts implicitly assume that the typical con-

ditioning assumptions about the future interest rate path made in central bank forecasts

have negligible effects on forecast uncertainty. Concerning the conditioning of forecasts

on interest rates as expected by financial markets, this assumption is in line with the

evaluations that are conducted by the BoE itself, as done by Elder, Kapetanios, Tay-

lor, and Yates (2005) or the bank’s Independent Evaluation Office in 2015.15 Given that

the choice between the market-rates assumption and the assumption of constant interest

rates has no detectable consequences for the mean-squared errors of mean forecasts and

the logarithmic scores of density forecasts for inflation, as documented in Knüppel and

Schultefrankenfeld (2017), we are confident that neither of the two typical conditioning as-

sumptions is relevant for the results of our evaluations. In fact, for the BoE and the BCB,

we also evaluated the constant-rates forecasts and obtained results virtually identical to

those reported below.16

3.2 Inflation Figures

The inflation figures we use as realizations to construct forecast errors of the central bank

mean forecasts and for the BAR approach are quarterly series of year-on-year changes

in the price indexes that these central banks actually target. The BoE moved from

an inflation target of 2.5% RPIX inflation towards targeting 2.0% CPI inflation and

the data used goes back to 1988Q1, which means that a rolling estimation sample of

and 2003Q1, because the market-rates scenarios are missing for these periods.
14In 2004, the BoE started to forecast up to 12 quarters out.
15The report on the BoE’s forecasting performance is available under https://www.bankofengland.

co.uk/independent-evaluation-office/forecasting-evaluation-november-2015.
16The conjecture concerning the irrelevance of the interest rate assumption for our evaluations is

further supported by the fact that, although the respective mean forecasts differ marginally, the BoE
provides identical uncertainty parameters for its constant-rates and its market-rates inflation forecasts.
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40 quarters is available for the BAR approach, and the uncertainty forecasts obtained

cover the BoE’s entire forecast sample period described above.17 The BCB adopted a

flexible inflation target of the IPCA index, the Brazilian national consumer price index

equivalent, in the late 1990s, to bring down huge inflation rates from the period before,

in which IPCA inflation as of 1996Q1 was still running at roughly 22%.18 Using IPCA

inflation figures from 1996Q1 onwards, utilizing 28 quarters for the rolling estimation

sample appears to provide a reasonable trade-off between a decent window size and a

sufficiently long evaluation period. However, the evaluation sample does not cover the

full sample of available BCB forecasts. Hungary also experienced high inflation rates in

the 1990s, ranging between 10 and 30%. We use CPI data from 1992Q4 onwards and a

rolling estimation sample of 40 quarters to produce variance forecasts covering the entire

MNB sample period. For Sweden, which comprises relatively more moderate CPI inflation

rates of up to 10% around 1990, the rolling estimation sample corresponds to 36 quarterly

observations, and the model’s variance forecasts cover the complete sample of the SR’s

forecasts outlined above.19

3.3 Properties of Inflation Forecasts and Figures

In Figures 2, 3, 4, and 5, we show the uncertainty forecasts of the respective central bank,

the uncertainty forecasts obtained from the BAR approach, the mean forecast errors of the

central bank, and, if available, the uncertainty forecasts obtained from the PFE approach.

In Figure 2 we see that the BoE’s forecast errors in the second half of the sample tend

to be larger than in the first half. Broadly in line with this development, the uncertainty

forecasts of the BoE increase substantially from about 2008 to 2010 and remain on their

elevated levels afterwards. The BAR approach and the PFE approach also pick up the

17The RPIX is the UK retail price index excluding mortgage payments. Since December 2003, the
BoE has targeted the consumer price index CPI.

18IPCA stands for Índice Nacional de Preços ao Consumidor Amplo.
19Analogously to the SR’s forecasts, the BAR approach for the SR sample is based on monthly year-

on-year inflation rates from 1988M01 to 2006M12. Results are converted to quarterly format selecting
the forecasts in accordance with the publication dates of the SR’s inflation reports.
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increase in forecast uncertainty, albeit a bit later than the BoE does.

The BCB’s forecast errors displayed in Figure 3 are extremely large around the year

2003, while they tend to be small especially from 2006 to 2014. The uncertainty forecasts

of the BCB are relatively large until 2007, when a pronounced decrease occurs, and the

forecasts continue to be small afterwards. Like in the case of the BoE, the uncertainty

forecasts obtained from the BAR approach and the PFE approach experience a similarly

large change several periods after those of the central bank.

For the MNB’s forecast errors in Figure 4, there are no protracted episodes where

forecast errors are particularly small or large. After a period with practically unchanged

uncertainty forecasts by the MNB from 2004 to 2008, these forecasts increase in 2009

and basically remain unchanged until the end of the sample. The BAR approach gives

large uncertainty forecasts for a few observations at the beginning of the sample, but they

quickly decrease.

Figure 5 indicates that the SR’s forecast errors do not experience large changes in

their magnitudes. The SR’s uncertainty forecasts only exhibit small variations, and the

same holds for the uncertainty forecasts from the BAR approach.

To sum up, large changes in the magnitudes of forecast errors and uncertainty

forecasts are only observed in the larger samples for the BoE and the BCB. While for the

BoE, the smaller samples used for the BAR and the PFE approach also cover the periods

where pronounced changes in the size of the forecast errors occur, this does not hold for

the corresponding smaller samples used in the case of the BCB.

An interesting observation not completely evident from the figures is that the un-

certainty forecasts of all central banks virtually never decrease as the horizon increases.

Thus, the conventional random walk stochastic volatility model might be an appropri-

ate way to describe time-varying inflation uncertainty as perceived by central banks. In

contrast to that, stochastic volatility following stationary AR processes or conventional

GARCH processes would eventually lead to a decrease of uncertainty for larger horizons.20

20Of course, it might also be that central banks have stationary but very persistent processes of time-
varying inflation uncertainty in mind. However, even for horizons up to 12 quarters ahead as published
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Figure 6 plots the average value of ê2t+h|t (average ex-post uncertainty) against the

average value of σ̂2
t+h|t (average ex-ante uncertainty) for each sample, each uncertainty-

forecast approach, and each horizon. Values above the 45 degree line indicate overconfi-

dent uncertainty forecasts, i.e. forecasts subject to a downward bias, whereas values below

the line correspond to underconfident uncertainty forecasts, i.e. forecasts subject to an

upward bias.

With the exception of the MNB, the uncertainty forecasts by central banks yield

results remarkably close to the 45 degree line in all samples considered. The MNB turns

out to be noticeably overconfident for all horizons except h = 0. By contrast, the BAR

approach produces pronouncedly underconfident uncertainty forecasts in all cases except

for the BoE’s sample. In the latter case, it behaves similarly to the BoE’s uncertainty

forecasts, being marginally underconfident for larger forecast horizons. Finally, the PFE

approach yields virtually unbiased uncertainty forecasts for the BoE’s sample, but pro-

nouncedly underconfident forecasts for the BCB’s sample.

4 Results

4.1 General Setup

The length n of the rolling estimation window for the PFE approach is determined based

on the Dawid and Sebastiani (1999) score for multivariate forecasts, as mentioned above.

We split the balanced samples of forecast errors of the BoE and the BCB such that the

rolling window can cover up to 32 quarters. While n = 12, 13, . . . , 32 values are used for

the estimation of Σ̂t+H|t, the remaining 28 values are used for the evaluation in the case

of the BoE. In the case of the BCB, the latter number equals 27.

by the BoE since 2004, uncertainty forecasts never decrease when the horizon increases. Interestingly,
the conventional random walk stochastic volatility model also tends to outperform its competitors when
making density forecasts of macroeconomic time series for the USA for up to 8 quarters ahead, as shown
by Clark and Ravazzolo (2015).
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Figure 1: Dawid-Sebastiani score and window length
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Notes: The lines plot the average Dawid-Sebastiani score DSSt+H|t for multivariate forecasts on the

Y axis over an expanding window size of n = 12, 13, . . . , 32 on the X axis. The red solid line is based

on Bank of England past forecast errors for h = 0, 1, . . . , 8, and the yellow solid line is based on Banco

Central do Brasil past forecast errors for h = 0, 1, . . . , 5. Values larger than 20 are not displayed.

The average scores obtained are displayed in Figure 1. For small values of n, the

scores are often very large, and they tend to decrease with n. The best results occur

for n ≥ 30, but these values would leave us with very small samples for the tests to be

conducted. Smaller values of n with relatively low scores are, for instance, given by n = 22

for the BCB and by n = 20 for the BoE. We choose to set n = 20 in the PFE approach,

corresponding to a window size of 5 years of quarterly data.21

In the following tests of forecast optimality and equal forecast accuracy, we use

a significance level of 0.05. For the uncertainty forecasts of the BoE and the BCB, we

consider two different samples for each horizon. The larger sample corresponds to the

evaluation sample of the BAR approach, and the smaller sample to the evaluation sample

of the PFE approach.22

21As mentioned above, the BoE employs a larger sample of 10 years of past quarterly forecast errors
for its assessment of unconditional forecast uncertainty. Our results suggest that it would be reasonable
to use samples larger than about 7 years if the evaluation sample size were of no concern.

22It might be worth noting that the latter sample sizes are larger than the evaluation samples used to
determine n, because only 20 instead of up to 32 quarters are employed for the rolling-window estimation,
and because unbalanced samples are used for the horizon-specific tests. Since these additional observations
were not considered when making the choice of n, the comparisons with the central banks’ forecasts
become less biased against those.
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4.2 Forecast Optimality — Clements Tests

The results of the Clements tests documented in Table 1 indicate that the BoE is over-

confident with respect to forecast uncertainty for most horizons. However, the downward

biases in its uncertainty forecasts are mostly insignificant, with the exception of h = 5

in the sample of the PFE approach. The sign of the bias is remarkable insofar as the

BoE was found to provide overly wide fan charts, i.e. to be underconfident in the earlier

contributions by Clements (2004), Mitchell and Hall (2005), Wallis (2004), and Dowd

(2007) mentioned above. With the larger sample in this study, only for the nowcast can

a significant upward bias of the uncertainty forecasts be found. The latter result also

holds for the BAR approach. Given that this approach determines forecast uncertainty

without taking current-quarter information into account, this result is not too surprising.

For horizons h ≥ 1, the BAR approach produces downward-biased uncertainty forecasts.

This bias is more pronounced than that observed for the BoE’s uncertainty forecasts,

and it is significant for all h ≥ 3. While the PFE approach produces more strongly

downward-biased uncertainty forecasts than the BoE for some horizons, none of its biases

are significantly different from zero.

When the Clements test is applied to the BCB samples, the results in Table 2

show that the BCB was overconfident for all horizons but h = 1. The upward bias in

the uncertainty forecasts for h = 1 is significant in both samples under study, while for

all other horizons, the biases are insignificant in both sample sizes considered. The BAR

approach yields underconfident uncertainty forecasts for h ≤ 2 and overconfident forecasts

for the larger horizons. The upward bias is significant for h = 0 and h = 1. The PFE

approach produces overconfident forecasts for all horizons except h = 1, but the biases

are not very large and always insignificant. Additional full-sample results for the BCB’s

uncertainty forecasts displayed in Table 9 turn out to be quantitatively similar to those

obtained in the smaller samples, but the biases are insignificant for all horizons.

It is interesting to compare the test results for the BCB with the results displayed

in Figure 3. While the plots for the BAR approach and the PFE approach suggest that
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both approaches produce highly underconfident uncertainty forecasts for all horizons, the

estimation results often indicate the opposite. This is due to the fact that for the plots,

squared errors and uncertainty forecasts themselves are averaged, whereas the regressions

use the average of the ratio of these quantities. While, on average, the uncertainty fore-

casts are larger than the squared errors, there are a few observations where large forecast

errors coincide with relatively small uncertainty forecasts. This often causes the ratio of

these quantities to exceed a value of one.

Concerning the results for the MNB displayed in Table 3, the average value of the

ratio ê2t+h|t/σ̂
2
t+h|t is very large for the horizons h ≥ 1, often exceeding 3. However, these

strong downward forecast biases turn out to be insignificant which might partly be due to

the small sample size. By contrast, the BAR approach yields underconfident uncertainty

forecasts for all horizons, and this bias is significant for h ≤ 2.

Finally, concerning the results of the SR sample displayed in Table 4, the SR’s uncer-

tainty forecasts are overconfident for h > 0, but these downward biases are insignificant.

Like in the case of the BoE, the uncertainty nowcast is underconfident, and its upward

bias is significant. The BAR approach yields underconfident uncertainty forecasts for all

horizons except h = 7, and the upward bias is significant for h = 0, 3, 4.

To sum up, underconfidence of central banks is only observed in some cases for

shorter horizons, whereas for h ≥ 2, their uncertainty forecasts are virtually always over-

confident. By and large, this corresponds to the findings of Clements (2014) for macroe-

conomic survey forecasts. However, in contrast to the results for survey participants,

the overconfidence of the central banks’ uncertainty forecasts is almost never significant.

The BAR approach tends to produce underconfident uncertainty forecasts especially at

smaller horizons, and its forecasts are significantly biased in several cases. Finally, while

the forecasts of the PFE approach are mostly overconfident, their biases are never signif-

icant.
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4.3 Forecast Optimality — Mincer-Zarnowitz Regressions

For the BoE samples, the results of the Mincer-Zarnowitz regressions, i.e. of the tests for

forecast optimality, and of the related tests for positive comovement of absolute forecast

errors and uncertainty forecasts measured by the standard deviation can be found in Table

5. In the larger sample, which forms the basis for the results in the upper half, forecast

optimality of the BoE’s uncertainty forecasts cannot be rejected for h ≥ 3 according to

the Mincer-Zarnowitz regressions. Moreover, for these horizons, neither the constant nor

the slope coefficient appears to be significantly different from its optimal value of zero and

one, respectively. These test results are remarkably good, given that the sample under

study is relatively large and, therefore, the power of the tests can be expected to be large

as well.

The optimality of the uncertainty forecasts of the BAR approach is rejected for all

horizons, and the slope coefficients are close to zero and always significantly different from

one.

A significantly positive comovement between absolute forecast errors and uncer-

tainty forecasts is found for the BoE for h ≥ 2. Thus, if the BoE widens its fan charts,

this tends to be a reliable indicator for larger future forecast errors. For the BAR ap-

proach, the slope coefficients are positive except for h = 0, but significance is observed

for h ≥ 7 only. Hence, due to the use of a rolling estimation window, the BAR ap-

proach probably captures some low-frequency movements of forecast uncertainty, but the

comovement of its uncertainty forecasts with absolute forecast errors is relatively low.

In the smaller sample, for the BoE’s uncertainty forecasts, optimality cannot be

rejected for five horizons, namely for h = 3, 4, 5, 6, 8. With the PFE approach, forecast

optimality can be rejected for all horizons except h = 0. A significantly positive comove-

ment between absolute forecast errors and the BoE’s uncertainty forecasts is observed for

h = 5, 6, 7, whereas with the PFE approach, almost all coefficients are very close to zero.

Thus, one may conclude that in the smaller sample the unconditional forecast uncertainty

as measured by the PFE approach does not capture movements in forecast uncertainty,
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and that the BoE considerably improves upon such unconditional forecasts by modifying

them according to current conditions.

Concerning the BCB samples, most uncertainty forecasts considered perform worse

than for the BoE samples. As shown in Table 6, forecast optimality is rejected for all ap-

proaches and all horizons except for the BCB’s uncertainty forecasts for h = 0. Moreover,

in the larger sample, the BCB and the BAR approach produce uncertainty forecasts which

are significantly positively related to the corresponding absolute forecast errors only for

h = 1. For most other horizons, the corresponding slope coefficients are negative or close

to zero. In the smaller sample of the PFE approach, the results for the slope coefficients

are similar. The only significantly positive coefficient estimate is again observed for h = 1.

For the MNB sample, the results in Table 7 are similar to those for the BCB samples.

Forecast optimality is rejected in all cases except for the MNB uncertainty forecast for

h = 2, 3, 6. However, all three slope coefficients are strongly negative. Therefore, the

inability to reject optimality in these cases might at least partly be due to the small

sample size and, consequently, the low power of the tests. With respect to the regressions

of the absolute forecast errors on uncertainty forecasts, negative slope coefficients are

obtained with the MNB forecasts for all h ≥ 1. With the BAR approach, most slope

coefficients are positive and relatively small. For h = 0 and h = 6, they turn out to be

significantly positive.

Finally, concerning the results for the SR samples shown in Table 8, there are

several cases where optimality cannot be rejected, but these might again be due to the

small sample size. While for the SR’s uncertainty forecasts, optimality cannot be rejected

for h = 1, h = 3, and h ≥ 5, only the slope coefficients for h = 0 and h = 3 are positive.

With the BAR approach, optimality is rejected for all horizons. Concerning the absolute

forecast errors, the slope coefficients are significantly positive only for h = 0 with the SR

forecasts and for h = 6 with the BAR approach. While all but two slope coefficients of

the SR’s forecasts are negative, the forecasts of the BAR approach yield four negative

slope coefficients.
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On the whole, these results suggest that it is difficult to forecast changes in uncer-

tainty with the approaches used by the central banks under study. Otherwise, the slope

coefficients obtained with the central banks’ uncertainty forecasts should be clearly closer

to one (in the Mincer-Zarnowitz regressions) and significantly positive (in the regressions

with absolute errors) much more often than those obtained with the unconditional ap-

proaches. However, one should also bear in mind that most of these comparisons are based

on relatively small samples. If central banks were able to forecast short-run changes in

forecast uncertainty very well, this ability should be detected by the tests even in such

small samples. Yet if the ability of central banks is mainly restricted to forecasting long-

run changes in forecast uncertainty, this can only be observed when larger samples are

used.

In fact, the results for the BoE in the larger sample suggest that low-frequency

movements in uncertainty are captured very well by its forecasts.23 This conjecture is not

only based on the test results described for the BoE, but also on the impressions gained

from Figure 2. Interestingly, the same conjecture applies to the BCB when considering

the full-sample results of its uncertainty forecasts displayed in Table 9. Notably, forecast

optimality cannot be rejected for any horizon. Moreover, all slope coefficients are posi-

tive, although this result is almost never significant. Figure 3 also indicates that the BCB

reasonably aligned its uncertainty forecasts to the strong, long-lasting reduction in uncer-

tainty. While this alignment only took place many quarters after the reduction occurred,

it still preceded the corresponding changes in the unconditional approaches by several

quarters. Thus, the joint results from the smaller and larger samples considered in our

study suggest the encompassing conclusion that central banks are able to detect long-run

changes in forecast uncertainty, potentially with a certain delay, and to incorporate them

into their uncertainty forecasts in an adequate manner, while they are not able to produce

reliable forecasts of short-run movements in forecast uncertainty.

23If the same were true for high-frequency movements, the results in the smaller sample should display
more evidence in favor of optimality.
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4.4 Forecast Accuracy

The results of the Diebold and Mariano (1995) test for equal predictive accuracy of the

central banks’ forecasts and the forecasts based on either the BAR approach or the PFE

approach are displayed in Table 10. Concerning the comparisons with the BAR approach,

the BoE produces more accurate uncertainty forecasts for all h ≥ 1. For h = 3, 4, 5, 6, 7,

the differences in accuracy are significant. A similar picture emerges for the BCB. Com-

pared to the BAR approach, its uncertainty forecasts are more accurate for all horizons,

with the differences for h = 1, 2, 3, 4 being significant. The MNB produces significantly

more precise uncertainty forecasts than the BAR approach for h = 0. For all larger hori-

zons, the BAR approach gives better results, but the differences are insignificant. Finally,

the SR’s uncertainty forecasts are more accurate than those of the BAR approach for all

horizons except h = 1, 5, 7, but all differences are insignificant.

Considering all 30 comparisons, the central banks’ uncertainty forecasts perform

better than the BAR approach in 20 cases. Moreover, in 10 of these cases, their uncertainty

forecasts are significantly better than those of the BAR approach, whereas the opposite

is never observed.

When the BoE’s uncertainty forecasts are compared to those of the PFE approach,

only the forecasts for h = 0 and h = 4 from the PFE approach are more accurate than their

BoE counterparts. Except for h = 0, all differences are significant. The BCB’s forecasts

are more accurate than those of the PFE approach for h ≥ 1, and these differences are

significant for h ≥ 3. Thus, for 12 out of 15 cases, the central banks’ uncertainty forecasts

are more accurate than those of the PFE approach. While for 3 of these 12 cases, the

differences in accuracy are significant, a significantly more precise PFE forecast is observed

in one case.

By and large, central banks’ uncertainty forecasts tend to outperform unconditional

uncertainty forecasts from simple autoregressions in terms of accuracy.24 Although central

24More sophisticated models such as those considered by Clements and Galváo (2017) might, of course,
lead to different results.
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banks also appear to deliver better uncertainty forecasts than the unconditional uncer-

tainty forecasts from the PFE approach, i.e. forecasts derived from a rolling window of

past forecast errors, it should be noted that the statistical evidence for the latter statement

is not particularly strong.

The results observed may be related to the presence of different uncertainty regimes

in the samples under study. For example, it might be possible that unconditional ap-

proaches give better uncertainty forecasts in normal times, whereas the conditional un-

certainty forecasts of central banks might be more accurate in turbulent times. In order

to test this hypothesis, we investigate the conditional predictive accuracy of the different

forecast approaches as proposed by Giacomini and White (2006). The conditioning in-

formation we consider is the monthly VIX (the volatility index published by the Chicago

Board Options Exchange) and a monthly measure of oil price volatility.25 For both of

these economic uncertainty measures, we always use the values in the month before the

forecasts are made.

First of all, it might be interesting to investigate whether these uncertainty mea-

sures are correlated with the uncertainty forecasts of central banks. As shown in Table

11, both measures actually exhibit moderately negative correlations with the BoE’s un-

certainty forecasts. This result suggests that none of these measures is considered to be

an important driver of inflation forecast uncertainty by the BoE. The same statement can

be made for the BCB, where all correlations are close to zero. On the other hand, the

correlations of the VIX with the MNB’s and the SR’s uncertainty forecasts mostly range

from 0.4 to 0.6. Concerning oil price volatility, the correlation only reaches around 0.2 for

the MNB, but mostly varies between 0.6 and 0.8 for the SR. Of course, these differences

between the central banks might at least partly be caused by the different sample periods.

While there are rather diverse relationships in place between the central banks’

uncertainty forecasts and the uncertainty measures, the test results for equal conditional

predictive accuracy shown in Tables 12 and 13 are always very similar to the previous

25We employ the variance of the daily percentage price changes within a month to measure this
volatility, using the Brent crude oil price in US dollars.
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test results for unconditional predictive accuracy. The signs of most test statistics do not

change when using the conditional version of the test. The changes in the magnitude

of the test statistics lead to a few changes concerning the significance of differences for

the BoE’s and the BCB’s forecasts. For instance, with both uncertainty measures, the

difference between the BCB’s and the BAR approach forecast becomes insignificant for

h = 4, while the difference between the BCB’s and the PFE approach forecast becomes

significant for h = 2. However, we cannot detect any pattern in the test results which

would allow us to draw conclusions about the behavior of uncertainty forecast accuracy

of central banks with respect to the state of economic uncertainty.

5 Conclusion and Outlook

The conditional inflation uncertainty forecasts of the Bank of England, the Banco Central

do Brasil, the Magyar Nemzeti Bank, and the Sveriges Riksbank are analyzed with respect

to forecast optimality and accuracy. While we can reject forecast optimality in several

cases based on Mincer-Zarnowitz regressions, the central banks’ uncertainty forecasts

hardly suffer from significant biases. However, there is a tendency for these forecasts to

be underconfident at short horizons and overconfident at longer horizons, which is broadly

consistent with findings for survey participants reported in Clements (2014). Often, we

are not able to find a significantly positive comovement between uncertainty forecasts and

the size of forecast errors. Given the samples under consideration, our results suggest that

short-run fluctuations in forecast uncertainty are not successfully detected by the central

banks under study, while this tends to happen when low-frequency movements in forecast

uncertainty take place.

From the two alternative approaches considered for producing unconditional un-

certainty forecasts based on a rolling estimation window, the BAR approach tends to

perform worse than the central banks’ conditional uncertainty forecasts. It often yields

significantly biased uncertainty forecasts. Although its uncertainty forecasts are some-

24



times preferable to the central banks’ forecasts with respect to their comovement with

the size of the forecast errors, by and large, its forecast accuracy turns out to be inferior.

The PFE approach, which can only be applied to the BoE’s and the BCB’s samples, never

produces significantly biased uncertainty forecasts. However, as might be expected, there

is hardly any comovement of its uncertainty forecasts with the size of the forecast errors.

The forecast accuracy of the PFE approach is mostly lower than the forecast accuracy of

the BoE and the BCB, but only a few of these differences are significant. On the whole,

we can conclude that the superiority of unconditional forecasts over survey forecasts as

described in Clements (2018) does not carry over to central banks’ uncertainty forecasts.

It remains to be investigated whether alternative conditional uncertainty forecasts

could outperform the central banks’ uncertainty forecasts. Since the PFE approach yields

very good uncertainty forecasts with respect to bias, but suffers from the lack of comove-

ment between its uncertainty forecasts and the size of forecast errors, the approach by

Clark, McCracken, and Mertens (2017) appears to be promising. This approach produces

conditional uncertainty forecasts based on past forecast errors and delivers good results

for survey forecasts. An application to central bank forecasts is awaited.
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Figure 2: Bank of England time series plots

0

1

2

3

4

BoE variance forecasts for h = 0, 1, . . . , 8

0

1

2

3

4

BAR approach variance forecasts for h = 0, 1, . . . , 8

0

1

2

3

4

PFE approach variance forecasts for h = 0, 1, . . . , 8

19
98

Q
1

19
99

Q
1

20
00

Q
1

20
01

Q
1

20
02

Q
1

20
03

Q
1

20
04

Q
1

20
05

Q
1

20
06

Q
1

20
07

Q
1

20
08

Q
1

20
09

Q
1

20
10

Q
1

20
11

Q
1

20
12

Q
1

20
13

Q
1

20
14

Q
1

20
15

Q
1

20
16

Q
1

-2

-1

0

1

2

3

4

BoE forecast errors of the mean forecast for h = 0, 1, . . . , 8

Notes: Each plot shows series for forecast horizons h = 0, 1, . . . , 8, with the color fading as the horizon

extends. The top panel plots the time series of the Bank of England inflation variance forecasts. The

second panel plots the variance forecasts obtained from the BAR approach, using UK RPIX/CPI

quarterly year-on-year inflation figures and a rolling window of n = 40. The third panel plots the

variance forecasts obtained from the PFE approach, using historical squared forecast errors of the

BoE’s mean forecast and a rolling window of n = 20. The bottom panel plots the historical forecast

errors of the BoE’s inflation mean forecasts.
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Figure 3: Banco Central do Brasil time series plots
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Notes: Each plot shows series for forecast horizons h = 0, 1, . . . , 5, with the color fading as the horizon

extends. The top panel plots the time series of the Banco Central do Brasil inflation variance forecasts.

The second panel plots the variance forecasts obtained from the BAR approach, using Brazilian IPCA

quarterly year-on-year inflation figures and a rolling window of n = 28. The third panel plots the

variance forecasts obtained from the PFE approach, using historical squared forecast errors of the

BCB’s mean forecast and a rolling window of n = 20. The bottom panel plots the historical forecast

errors of the BCB’s inflation mean forecasts.
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Figure 4: Magyar Nemzeti Bank time series plots
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Notes: Each plot shows series for forecast horizons h = 0, 1, . . . , 6, with the color fading as the horizon

extends. The top panel plots the time series of the Magyar Nemzeti Bank inflation variance forecasts.

The second panel plots the variance forecasts obtained from the BAR approach, using Hungarian

CPI quarterly year-on-year inflation figures and a rolling window of n = 40. The bottom panel plots

the historical forecast errors of the MNB’s inflation mean forecasts. Forecast data for 2008Q4 is not

provided.
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Figure 5: Sveriges Riksbank time series plots

0

1

2

3

4

SR variance forecasts for h = 0, 1, . . . , 7

0

1

2

3

4

BAR approach variance forecasts for h = 0, 1, . . . , 7

19
99

Q
4

20
00

Q
2

20
00

Q
3

20
00

Q
4

20
01

Q
1

20
02

Q
1

20
03

Q
1

20
04

Q
1

20
05

Q
1

20
06

Q
1

-2

-1

0

1

2

3

4

SR forecast errors of the mean forecast for h = 0, 1, . . . , 7

Notes: Each plot shows series for forecast horizons h = 0, 1, . . . , 7, with the color fading as the horizon

extends. Before 2001, only three inflation reports were published per year. The top panel plots the

time series of the Sveriges Riksbank inflation forecast variances. The second panel plots the variance

forecasts obtained from the BAR approach, using Swedish CPI quarterly year-on-year inflation figures

and a rolling window of n = 36. The bottom panel plots the SR’s historical forecast errors of the

inflation mean forecasts.

32



Figure 6: Comparing ex-ante and ex-post forecast uncertainty
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Notes: Panels from top row to bottom row: Bank of England, Banco Central do Brasil, Magyar

Nemzeti Bank, Sveriges Riksbank. Each marker represents a specific forecast horizon h. For h = 0,

the marker is closest to the origin, with the colors fading as the forecast horizon extends. First column:

The X axis plots the central banks’ average ex-ante forecast uncertainty, represented by the horizon-

wise time series average of the inflation forecast variance σ̂2
t+h|t against the corresponding ex-post

forecast uncertainty, represented by the horizon-wise time series average of the squared forecast errors

ê2t+h|t on the Y axis (markers: red, yellow, green, blue dots, respectively). The second column adds

the average forecast uncertainty based on σ̂2
BAR,t+h|t, on the X axis against the average of ê2t+h|t on

the Y axis (marker: grey dots). The third column repeats column 1 using a shorter sample to match

the rolling window of the PFE approach (MNB, SR: not available) and adds the average forecast

uncertainty based on σ̂2
PFE,t+h|t on the X axis against the average of ê2t+h|t on the Y axis (marker:

grey squares).
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Table 1: Bank of England: Comparing ex-ante and ex-post uncertainty

h 0 1 2 3 4 5 6 7 8

Regression equation: ê2
t+h|t/σ̂

2
t+h|t = c+ ut+h

c 0.43 0.96 1.20 1.55 1.86 1.96 1.83 1.66 1.64
(0.12) (0.27) (0.35) (0.43) (0.49) (0.53) (0.51) (0.49) (0.52)

p(c = 1) 0.00 0.88 0.57 0.20 0.08 0.08 0.10 0.18 0.22

Regression equation: ê2
t+h|t/σ̂

2
BAR,t+h|t = c+ ut+h

c 0.33 1.01 1.56 2.35 3.08 3.25 3.40 3.59 3.62
(0.07) (0.28) (0.45) (0.68) (0.81) (0.88) (0.94) (1.08) (1.19)

p(c = 1) 0.00 0.98 0.22 0.05 0.01 0.01 0.01 0.02 0.03

N 76 75 74 73 72 71 70 69 68

Regression equation: ê2
t+h|t/σ̂

2
t+h|t = c+ ut+h (with smaller PFE approach sample size)

c 0.29 1.07 1.51 1.83 2.11 2.40 2.33 2.22 2.27
(0.10) (0.35) (0.48) (0.52) (0.62) (0.69) (0.70) (0.72) (0.74)

p(c = 1) 0.00 0.84 0.30 0.11 0.08 0.05 0.06 0.10 0.09

Regression equation: ê2
t+h|t/σ̂

2
PFE,t+h|t = c+ ut+h

c 1.02 1.60 1.90 1.76 1.71 2.06 2.38 2.53 2.56
(0.23) (0.59) (0.67) (0.51) (0.57) (0.72) (0.92) (0.99) (0.97)

p(c = 1) 0.93 0.31 0.18 0.14 0.22 0.15 0.14 0.13 0.11

N 56 54 52 50 48 46 44 42 40

Notes: Andrews (1991) HAC standard errors using a quadratic spectral kernel and automatic band-
width determination in parentheses. Figures for p(•) denote the p-value of the respective hypothesis
given in parentheses. Bold figures imply statistical significance at the 5% level. N denotes the number
of observations.
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Table 2: Banco Central do Brasil: Comparing ex-ante and ex-post uncertainty

h 0 1 2 3 4 5 6 7 8

Regression equation: ê2
t+h|t/σ̂

2
t+h|t = c+ ut+h

c 2.22 0.53 1.09 1.37 1.37 1.35
(0.89) (0.12) (0.35) (0.54) (0.70) (0.77)

p(c = 1) 0.17 0.00 0.80 0.50 0.60 0.65

Regression equation: ê2
t+h|t/σ̂

2
BAR,t+h|t = c+ ut+h

c 0.15 0.21 0.66 1.30 2.12 2.54
(0.05) (0.07) (0.25) (0.60) (1.09) (1.47)

p(c = 1) 0.00 0.00 0.18 0.62 0.31 0.30

N 53 52 51 50 49 48

Regression equation: ê2
t+h|t/σ̂

2
t+h|t = c+ ut+h (with smaller PFE approach sample size)

c 2.02 0.57 1.20 1.56 1.59 1.60
(0.99) (0.13) (0.37) (0.58) (0.77) (0.87)

p(c = 1) 0.31 0.00 0.59 0.34 0.45 0.49

Regression equation: ê2
t+h|t/σ̂

2
PFE,t+h|t = c+ ut+h

c 1.15 0.91 1.05 1.42 1.70 1.92
(0.49) (0.33) (0.43) (0.72) (0.88) (0.96)

p(c = 1) 0.76 0.80 0.91 0.56 0.43 0.34

N 49 47 45 43 41 39

Notes: Andrews (1991) HAC standard errors using a quadratic spectral kernel and automatic band-
width determination in parentheses. Figures for p(•) denote the p-value of the respective hypothesis
given in parentheses. Bold figures imply statistical significance at the 5% level. N denotes the number
of observations.

35



Table 3: Magyar Nemzeti Bank: Comparing ex-ante and ex-post uncertainty

h 0 1 2 3 4 5 6 7 8

Regression equation: ê2
t+h|t/σ̂

2
t+h|t = c+ ut+h

c 1.05 2.49 3.95 3.37 3.24 3.48 2.85
(0.35) (0.87) (1.96) (1.84) (1.72) (1.60) (1.09)

p(c = 1) 0.89 0.10 0.14 0.21 0.20 0.13 0.10

Regression equation: ê2
t+h|t/σ̂

2
BAR,t+h|t = c+ ut+h

c 0.07 0.30 0.38 0.52 0.67 0.77 0.77
(0.02) (0.11) (0.18) (0.26) (0.31) (0.32) (0.29)

p(c = 1) 0.00 0.00 0.00 0.07 0.29 0.48 0.43

N 34 34 34 34 34 34 34

Notes: Andrews (1991) HAC standard errors using a quadratic spectral kernel and automatic band-
width determination in parentheses. Figures for p(•) denote the p-value of the respective hypothesis
given in parentheses. Bold figures imply statistical significance at the 5% level. N denotes the number
of observations.

36



Table 4: Sveriges Riksbank: Comparing ex-ante and ex-post uncertainty

h 0 1 2 3 4 5 6 7 8

Regression equation: ê2
t+h|t/σ̂

2
t+h|t = c+ ut+h

c 0.42 1.66 1.61 1.15 1.07 1.36 1.00 1.26
(0.08) (0.46) (0.57) (0.34) (0.28) (0.46) (0.34) (0.37)

p(c = 1) 0.00 0.16 0.30 0.66 0.80 0.45 1.00 0.49

Regression equation: ê2
t+h|t/σ̂

2
BAR,t+h|t = c+ ut+h

c 0.43 0.64 0.59 0.46 0.50 0.80 0.70 1.16
(0.12) (0.18) (0.23) (0.14) (0.12) (0.24) (0.27) (0.34)

p(c = 1) 0.00 0.06 0.08 0.00 0.00 0.42 0.29 0.64

N 27 27 27 27 27 27 27 27

Notes: Andrews (1991) HAC standard errors using a quadratic spectral kernel and automatic band-
width determination in parentheses. Figures for p(•) denote the p-value of the respective hypothesis
given in parentheses. Bold figures imply statistical significance at the 5% level. N denotes the number
of observations.
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Table 5: Bank of England: Assessing forecast optimality by Mincer-Zarnowitz and related
regressions

h 0 1 2 3 4 5 6 7 8

Regression equation: ê2
t+h|t = c+ bσ̂2

t+h|t + ut+h

c 0.03 0.18 0.33 0.52 0.60 0.56 0.39 0.34 0.66
(0.01) (0.07) (0.17) (0.29) (0.37) (0.44) (0.45) (0.46) (0.60)

b -0.01 0.07 0.23 0.45 0.77 1.09 1.32 1.25 0.90
(0.04) (0.12) (0.20) (0.30) (0.43) (0.52) (0.59) (0.47) (0.45)

p(c = 0, b = 1) 0.00 0.00 0.00 0.13 0.27 0.37 0.41 0.50 0.50

Regression equation: ê2
t+h|t = c+ bσ̂2

BAR,t+h|t + ut+h

c 0.03 0.21 0.50 0.94 1.35 1.58 1.65 1.56 1.43
(0.01) (0.08) (0.18) (0.35) (0.60) (0.78) (0.83) (0.74) (0.58)

b -0.01 0.00 -0.05 -0.10 -0.12 -0.05 0.03 0.13 0.31
(0.06) (0.09) (0.13) (0.18) (0.25) (0.30) (0.30) (0.27) (0.32)

p(c = 0, b = 1) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01

Regression equation: |êt+h|t| = c+ bσ̂t+h|t + ut+h

c 0.16 0.25 0.26 0.31 0.26 0.20 0.11 0.04 0.14
(0.03) (0.08) (0.14) (0.20) (0.24) (0.24) (0.23) (0.20) (0.26)

b -0.06 0.18 0.36 0.50 0.73 0.86 0.94 0.97 0.82
(0.08) (0.12) (0.20) (0.27) (0.29) (0.30) (0.31) (0.26) (0.26)

p(b ≤ 0) 0.79 0.08 0.04 0.03 0.01 0.00 0.00 0.00 0.00

Regression equation: |êt+h|t| = c+ bσ̂BAR,t+h|t + ut+h

c 0.17 0.29 0.44 0.64 0.77 0.78 0.76 0.68 0.59
(0.03) (0.08) (0.13) (0.21) (0.26) (0.27) (0.25) (0.21) (0.15)

b -0.08 0.11 0.10 0.09 0.14 0.23 0.28 0.37 0.48
(0.10) (0.11) (0.16) (0.21) (0.22) (0.23) (0.23) (0.22) (0.22)

p(b ≤ 0) 0.80 0.17 0.27 0.33 0.27 0.16 0.11 0.05 0.02

N 76 75 74 73 72 71 70 69 68

Regression equation: ê2
t+h|t = c+ bσ̂2

t+h|t + ut+h (with smaller PFE approach sample size)

c 0.04 0.32 0.68 1.02 1.22 1.42 1.34 1.46 2.21
(0.01) (0.13) (0.32) (0.54) (0.67) (0.68) (0.62) (0.63) (1.06)

b -0.02 -0.11 -0.07 0.12 0.42 0.63 0.84 0.73 0.23
(0.05) (0.18) (0.30) (0.40) (0.51) (0.56) (0.62) (0.56) (0.64)

p(c = 0, b = 1) 0.00 0.00 0.00 0.10 0.20 0.11 0.07 0.05 0.11

Regression equation: ê2
t+h|t = c+ bσ̂2

PFE,t+h|t + ut+h

c 0.06 0.40 0.79 1.28 1.92 2.63 3.00 2.93 2.94
(0.03) (0.16) (0.33) (0.61) (1.02) (1.38) (1.54) (1.36) (1.17)

b -0.80 -0.61 -0.30 -0.13 -0.16 -0.26 -0.32 -0.27 -0.23
(0.81) (0.52) (0.45) (0.43) (0.42) (0.43) (0.45) (0.44) (0.33)

p(c = 0, b = 1) 0.08 0.01 0.02 0.04 0.01 0.00 0.00 0.00 0.00

Regression equation: |êt+h|t| = c+ bσ̂t+h|t + ut+h (with smaller PFE approach sample size)
c 0.18 0.39 0.57 0.65 0.59 0.62 0.49 0.51 0.80

(0.04) (0.12) (0.21) (0.28) (0.31) (0.28) (0.25) (0.25) (0.37)
b -0.09 0.01 0.07 0.23 0.49 0.57 0.70 0.66 0.40

(0.10) (0.16) (0.24) (0.30) (0.32) (0.32) (0.33) (0.32) (0.36)
p(b ≤ 0) 0.83 0.47 0.38 0.22 0.07 0.04 0.02 0.02 0.14

Regression equation: |êt+h|t| = c+ bσ̂PFE,t+h|t + ut+h

c 0.30 0.39 0.67 0.82 0.92 1.15 1.24 1.26 1.28
(0.14) (0.16) (0.29) (0.38) (0.50) (0.56) (0.59) (0.56) (0.46)

b -0.91 0.01 -0.05 0.04 0.13 0.04 -0.01 -0.01 -0.02
(0.75) (0.29) (0.39) (0.37) (0.35) (0.33) (0.35) (0.35) (0.30)

p(b ≤ 0) 0.88 0.49 0.55 0.45 0.35 0.46 0.51 0.51 0.52

N 56 54 52 50 48 46 44 42 40

Notes: Andrews (1991) HAC standard errors using a quadratic spectral kernel and automatic band-
width determination in parentheses. Figures for p(•) denote the p-value of the respective hypothesis
given in parentheses. Bold figures imply statistical significance at the 5% level. N denotes the number
of observations.
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Table 6: Banco Central do Brasil: Assessing forecast optimality by Mincer-Zarnowitz and
related regressions

h 0 1 2 3 4 5 6 7 8

Regression equation: ê2
t+h|t = c+ bσ̂2

t+h|t + ut+h

c -0.06 -0.03 1.04 2.33 4.90 5.45
(0.12) (0.09) (0.35) (1.07) (2.46) (2.95)

b 2.14 0.52 -0.13 -0.21 -0.55 -0.51
(1.94) (0.11) (0.12) (0.22) (0.41) (0.40)

p(c = 0, b = 1) 0.80 0.00 0.00 0.00 0.00 0.00

Regression equation: ê2
t+h|t = c+ bσ̂2

BAR,t+h|t + ut+h

c 0.05 0.19 0.95 2.28 3.94 4.69
(0.03) (0.06) (0.33) (1.08) (2.04) (2.38)

b 0.06 0.03 -0.02 -0.07 -0.15 -0.21
(0.05) (0.02) (0.03) (0.08) (0.15) (0.17)

p(c = 0, b = 1) 0.00 0.00 0.00 0.00 0.00 0.00

Regression equation: |êt+h|t| = c+ bσ̂t+h|t + ut+h

c 0.06 0.00 0.85 1.32 2.38 2.52
(0.14) (0.15) (0.27) (0.46) (0.88) (1.03)

b 0.65 0.57 -0.11 -0.17 -0.55 -0.52
(0.60) (0.18) (0.18) (0.23) (0.37) (0.40)

p(b ≤ 0) 0.14 0.00 0.73 0.77 0.93 0.90

Regression equation: |êt+h|t| = c+ bσ̂BAR,t+h|t + ut+h

c 0.14 0.28 0.74 1.23 1.73 2.00
(0.06) (0.08) (0.20) (0.37) (0.53) (0.63)

b 0.10 0.09 -0.00 -0.07 -0.15 -0.23
(0.08) (0.04) (0.07) (0.10) (0.14) (0.16)

p(b ≤ 0) 0.12 0.02 0.51 0.75 0.87 0.92

N 53 52 51 50 49 48

Regression equation: ê2
t+h|t = c+ bσ̂2

t+h|t + ut+h (with smaller PFE approach sample size)

c 0.07 0.12 1.05 2.47 5.24 6.02
(0.03) (0.10) (0.41) (1.12) (2.63) (3.21)

b -0.07 0.27 -0.13 -0.25 -0.69 -0.73
(0.12) (0.17) (0.20) (0.24) (0.50) (0.54)

p(c = 0, b = 1) 0.00 0.00 0.00 0.00 0.00 0.00

Regression equation: ê2
t+h|t = c+ bσ̂2

PFE,t+h|t + ut+h

c 0.07 0.20 0.94 2.27 3.94 4.61
(0.03) (0.07) (0.36) (1.04) (1.94) (2.24)

b -0.04 0.09 -0.01 -0.05 -0.08 -0.11
(0.06) (0.06) (0.05) (0.07) (0.08) (0.08)

p(c = 0, b = 1) 0.00 0.00 0.00 0.00 0.00 0.00

Regression equation: |êt+h|t| = c+ bσ̂t+h|t + ut+h (with smaller PFE approach sample size)
c 0.21 0.11 0.84 1.34 2.56 2.96

(0.06) (0.17) (0.32) (0.46) (0.99) (1.25)
b -0.05 0.44 -0.09 -0.16 -0.67 -0.80

(0.18) (0.22) (0.26) (0.22) (0.46) (0.55)
p(b ≤ 0) 0.61 0.03 0.64 0.77 0.92 0.92

Regression equation: |êt+h|t| = c+ bσ̂PFE,t+h|t + ut+h

c 0.21 0.27 0.71 1.21 1.74 2.01
(0.06) (0.10) (0.23) (0.39) (0.52) (0.57)

b -0.03 0.19 0.03 -0.04 -0.12 -0.19
(0.10) (0.10) (0.10) (0.10) (0.11) (0.11)

p(b ≤ 0) 0.61 0.03 0.40 0.65 0.86 0.96

N 49 47 45 43 41 39

Notes: Andrews (1991) HAC standard errors using a quadratic spectral kernel and automatic band-
width determination in parentheses. Figures for p(•) denote the p-value of the respective hypothesis
given in parentheses. Bold figures imply statistical significance at the 5% level. N denotes the number
of observations.
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Table 7: Magyar Nemzeti Bank: Assessing forecast optimality by Mincer-Zarnowitz and
related regressions

h 0 1 2 3 4 5 6 7 8

Regression equation: ê2
t+h|t = c+ bσ̂2

t+h|t + ut+h

c 0.07 1.14 3.46 9.43 14.23 13.09 11.53
(0.03) (0.43) (1.60) (4.85) (7.52) (5.86) (5.23)

b -0.02 -0.93 -2.36 -4.77 -4.75 -2.89 -1.72
(0.07) (0.56) (1.38) (2.82) (2.92) (1.70) (1.22)

p(c = 0, b = 1) 0.00 0.00 0.06 0.10 0.04 0.04 0.10

Regression equation: ê2
t+h|t = c+ bσ̂2

BAR,t+h|t + ut+h

c 0.05 0.87 1.88 3.44 5.07 6.01 6.45
(0.03) (0.36) (1.08) (2.16) (3.19) (3.45) (2.93)

b 0.02 -0.04 -0.03 -0.02 0.01 0.03 0.01
(0.02) ( -0.04) ( -0.03) ( -0.02) (0.01) (0.03) (0.01)

p(c = 0, b = 1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Regression equation: |êt+h|t| = c+ bσ̂t+h|t + ut+h

c 0.18 1.12 2.09 4.23 4.74 4.01 3.20
(0.06) (0.34) (0.69) (1.59) (2.27) (1.81) (1.51)

b 0.07 -0.77 -1.38 -2.59 -2.21 -1.31 -0.61
(0.12) (0.48) (0.72) (1.23) (1.40) (0.97) (0.72)

p(b ≤ 0) 0.28 0.94 0.97 0.98 0.94 0.91 0.80

Regression equation: |êt+h|t| = c+ bσ̂BAR,t+h|t + ut+h

c 0.06 0.69 0.71 1.22 1.38 1.44 1.81
(0.08) (0.29) (0.41) (0.62) (0.75) (0.75) (0.55)

b 0.14 -0.03 0.10 0.04 0.11 0.19 0.11
(0.06) (0.12) (0.10) (0.16) (0.15) (0.12) (0.06)

p(b ≤ 0) 0.01 0.61 0.16 0.40 0.24 0.06 0.03

N 34 34 34 34 34 34 34

Notes: Andrews (1991) HAC standard errors using a quadratic spectral kernel and automatic band-
width determination in parentheses. Figures for p(•) denote the p-value of the respective hypothesis
given in parentheses. Bold figures imply statistical significance at the 5% level. N denotes the number
of observations.
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Table 8: Sveriges Riksbank: Assessing forecast optimality by Mincer-Zarnowitz and re-
lated regressions

h 0 1 2 3 4 5 6 7 8

Regression equation: ê2
t+h|t = c+ bσ̂2

t+h|t + ut+h

c -0.13 0.45 0.70 0.12 1.38 1.84 2.51 4.39
(0.06) (0.30) (0.30) (0.74) (0.55) (1.39) (1.59) (2.86)

b 1.84 -1.30 -1.38 0.81 -1.50 -1.29 -1.77 -2.44
(0.59) (1.64) (0.78) (2.01) (0.84) (1.79) (1.58) (2.26)

p(c = 0, b = 1) 0.00 0.33 0.00 0.90 0.00 0.42 0.19 0.32

Regression equation: ê2
t+h|t = c+ bσ̂2

BAR,t+h|t + ut+h

c 0.08 0.52 0.73 0.41 0.35 1.04 0.65 1.53
(0.05) (0.21) (0.38) (0.28) (0.27) (0.57) (0.38) (0.77)

b -0.33 -0.63 -0.51 -0.00 0.18 -0.08 0.19 -0.04
(0.39) (0.39) (0.36) (0.17) (0.19) (0.26) (0.20) (0.38)

p(c = 0, b = 1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03

Regression equation: |êt+h|t| = c+ bσ̂t+h|t + ut+h

c -0.47 0.57 1.04 -0.48 1.86 1.77 3.87 4.13
(0.20) (0.48) (0.31) (1.49) (0.87) (1.44) (1.93) (2.46)

b 2.06 -0.48 -1.14 1.70 -1.65 -1.17 -3.24 -2.84
(0.64) (1.17) (0.52) (2.43) (1.11) (1.62) (1.95) (2.14)

p(b ≤ 0) 0.00 0.66 0.98 0.25 0.93 0.76 0.95 0.90

Regression equation: |êt+h|t| = c+ bσ̂BAR,t+h|t + ut+h

c 0.28 0.87 1.00 0.30 0.28 0.85 0.11 0.60
(0.18) (0.30) (0.52) (0.45) (0.37) (0.65) (0.29) (0.56)

b -0.35 -0.76 -0.62 0.23 0.35 -0.06 0.59 0.38
(0.55) (0.42) (0.54) (0.38) (0.33) (0.53) (0.30) (0.43)

p(b ≤ 0) 0.73 0.96 0.87 0.27 0.15 0.54 0.03 0.20

N 27 27 27 27 27 27 27 27

Notes: Andrews (1991) HAC standard errors using a quadratic spectral kernel and automatic band-
width determination in parentheses. Figures for p(•) denote the p-value of the respective hypothesis
given in parentheses. Bold figures imply statistical significance at the 5% level. N denotes the number
of observations.
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Table 9: Banco Central do Brasil: Additional full sample results

h 0 1 2 3 4 5 6 7 8

Regression equation: ê2
t+h|t/σ̂

2
t+h|t = c+ ut+h

c 1.90 0.73 1.53 2.06 2.25 2.22
(0.69) (0.22) (0.57) (0.84) (0.94) (0.95)

p(c = 1) 0.20 0.22 0.35 0.21 0.19 0.20

Regression equation: ê2
t+h|t = c+ bσ̂2

t+h|t + ut+h

c 0.12 -0.37 -1.02 -0.52 -0.33 1.28
(0.06) (0.51) (2.26) (2.98) (4.28) (4.19)

b 0.43 1.34 2.35 2.41 2.42 2.00
(0.40) (0.96) (2.36) (2.28) (1.88) (1.35)

p(c = 0, b = 1) 0.08 0.32 0.72 0.39 0.48 0.54

Regression equation: |êt+h|t| = c+ bσ̂t+h|t + ut+h

c 0.17 -0.21 0.24 0.56 0.63 0.73
(0.06) (0.28) (0.58) (0.85) (1.09) (1.11)

b 0.26 0.90 0.64 0.60 0.71 0.69
(0.20) (0.41) (0.62) (0.72) (0.67) (0.61)

p(b ≤ 0) 0.10 0.02 0.15 0.21 0.15 0.13

N 69 68 67 66 65 64

Notes: Andrews (1991) HAC standard errors using a quadratic spectral kernel and automatic band-
width determination in parentheses. Figures for p(•) denote the p-value of the respective hypothesis
given in parentheses. Bold figures imply statistical significance at the 5% level. N denotes the number
of observations.

42



Table 10: Testing for unconditional predictive accuracy

h 0 1 2 3 4 5 6 7 8

Bank of England’s VS. BAR approach uncertainty forecasts
DM(BoE,BAR) 0.47 -0.97 -1.80 -2.15 -2.60 -2.34 -2.45 -2.40 -1.86

p(DM = 0) 0.64 0.33 0.07 0.03 0.01 0.02 0.01 0.02 0.06
N 76 75 74 73 72 71 70 69 68

Bank of England’s VS. PFE approach uncertainty forecasts
DM(BoE,PFE) 3.46 -0.13 -0.79 -0.29 0.46 -0.16 -1.13 -1.30 -1.31

p(DM = 0) 0.00 0.90 0.43 0.77 0.64 0.88 0.26 0.20 0.19
N 56 54 52 50 48 46 44 42 40

Banco Central do Brasil’s VS. BAR approach uncertainty forecasts
DM(BCB,BAR) -0.50 -3.07 -2.34 -2.37 -2.12 -1.85

p(DM = 0) 0.62 0.00 0.02 0.02 0.03 0.06
N 53 52 51 50 49 48

Banco Central do Brasil’s VS. PFE approach uncertainty forecasts
DM(BCB,PFE) 0.74 -1.18 -1.95 -2.62 -2.14 -2.11

p(DM = 0) 0.46 0.24 0.05 0.01 0.03 0.03
N 49 47 45 43 41 39

Magyar Nemzeti Bank’s VS. BAR approach uncertainty forecasts
DM(MNB,BAR) -4.41 0.25 0.95 0.79 0.85 1.05 0.95

p(DM = 0) 0.00 0.80 0.34 0.43 0.40 0.29 0.34
N 34 34 34 34 34 34 34

Sveriges Riksbank’s VS. BAR approach uncertainty forecasts
DM(SR,BAR) -1.92 0.04 -0.18 -1.59 -1.30 0.22 -0.18 0.09

p(DM = 0) 0.05 0.96 0.86 0.11 0.19 0.83 0.86 0.92
N 27 27 27 27 27 27 27 27

Notes: The unconditional predictive accuracy of central banks’ uncertainty forecasts is evaluated
using the test procedure of Diebold and Mariano (1995), where a forecast’s loss is measured by the
score DSSt+h|t as proposed by Dawid and Sebastiani (1999). Values of DM represent the Diebold-
Mariano test statistic, a negative sign implies that the central bank’s uncertainty forecast scores better
than the alternative, and p(•) denotes the p-value of the hypothesis given in parentheses. Bold figures
imply statistical significance at the 5% level. N denotes the number of observations.
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Table 11: Correlations of central bank variance forecasts with potential measures of eco-
nomic uncertainty

h 0 1 2 3 4 5 6 7 8

Bank of England
VIX -0.18 -0.17 -0.17 -0.16 -0.16 -0.14 -0.11 -0.08 -0.08

oilpvol -0.19 -0.18 -0.18 -0.17 -0.17 -0.16 -0.15 -0.13 -0.13

Banco Central Do Brasil
VIX 0.11 0.07 0.01 0.00 0.01 0.01

oilpvol -0.01 0.04 0.03 0.03 0.03 0.04

Magyar Nemzeti Bank
VIX 0.23 0.30 0.43 0.57 0.57 0.58 0.59

oilpvol -0.06 -0.04 0.05 0.12 0.16 0.20 0.22

Sveriges Riksbank
VIX 0.29 0.10 0.44 0.45 0.45 0.51 0.52 0.49

oilpvol 0.11 0.18 0.82 0.78 0.66 0.66 0.66 0.65

Notes: ‘VIX’ denotes the monthly Chicago Board Options Exchange Volatility Index, ‘oilpvol’ denotes
the variance of the daily oil price changes in percent within a month, using the Brent crude oil price
in US-Dollars. Data is selected as to precede the publication dates of the respective central bank’s
forecast by a month.
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Table 12: Testing for conditional predictive accuracy - VIX

h 0 1 2 3 4 5 6 7 8

Bank of England’s VS. BAR approach uncertainty forecasts
GW(BoE,BAR) 0.27 -1.01 -1.66 -2.09 -2.49 -2.16 -2.21 -2.52 -2.00

p(GW = 0) 0.79 0.31 0.10 0.04 0.01 0.03 0.03 0.01 0.05
N 76 75 74 73 72 71 70 69 68

Bank of England’s VS. PFE approach uncertainty forecasts
GW(BoE,PFE) 3.40 -0.26 -0.88 -0.55 0.32 -0.31 -1.36 -1.41 -1.39

p(GW = 0) 0.00 0.80 0.38 0.58 0.75 0.76 0.18 0.16 0.16
N 56 54 52 50 48 46 44 42 40

Banco Central do Brasil’s VS. BAR approach uncertainty forecasts
GW(BCB,BAR) -0.43 -3.38 -2.68 -2.24 -1.91 -1.88

p(GW = 0) 0.67 0.00 0.01 0.03 0.06 0.06
N 53 52 51 50 49 48

Banco Central do Brasil’s VS. PFE approach uncertainty forecasts
GW(BCB,PFE) 0.50 -1.16 -2.65 -3.14 -2.40 -2.21

p(GW = 0) 0.62 0.25 0.01 0.00 0.02 0.03
N 49 47 45 43 41 39

Magyar Nemzeti Bank’s VS. BAR approach uncertainty forecasts
GW(MNB,BAR) -3.96 0.04 0.68 0.35 0.42 0.75 0.65

p(GW = 0) 0.00 0.97 0.50 0.72 0.68 0.46 0.52
N 34 34 34 34 34 34 34

Sveriges Riksbank’s VS. BAR approach uncertainty forecasts
GW(SR,BAR) -1.58 0.16 -0.14 -1.61 -0.92 0.49 0.18 0.45

p(GW = 0) 0.11 0.88 0.89 0.11 0.36 0.63 0.86 0.65
N 27 27 27 27 27 27 27 27

Notes: The conditional predictive accuracy of central banks’ uncertainty forecasts is evaluated using
the test procedure of Giacomini and White (2006), where a forecast’s loss is measured by the score
DSSt+h|t as proposed by Dawid and Sebastiani (1999). Values of GW represent the Giacomoni-White
test statistic, a negative sign implies that the central bank’s uncertainty forecast scores better than the
alternative, and p(•) denotes the p-value of the hypothesis given in parentheses. Bold figures imply
statistical significance at the 5% level. N denotes the number of observations.
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Table 13: Testing for conditional predictive accuracy - Oil price volatility

h 0 1 2 3 4 5 6 7 8

Bank of England’s VS. BAR approach uncertainty forecasts
GW(BoE,BAR) -0.32 -1.29 -1.54 -2.05 -2.36 -2.28 -2.34 -2.26 -1.96

p(GW = 0) 0.75 0.20 0.12 0.04 0.02 0.02 0.02 0.02 0.05
N 76 75 74 73 72 71 70 69 68

Bank of England’s VS. PFE approach uncertainty forecasts
GW(BoE,PFE) 2.19 -0.10 -0.51 -0.15 1.10 0.83 -0.98 -1.22 -1.23

p(GW = 0) 0.03 0.92 0.61 0.88 0.27 0.41 0.33 0.22 0.22
N 56 54 52 50 48 46 44 42 40

Banco Central do Brasil’s VS. BAR approach uncertainty forecasts
GW(BCB,BAR) 0.23 -3.52 -2.62 -2.63 -1.51 -1.46

p(GW = 0) 0.82 0.00 0.01 0.01 0.13 0.15
N 53 52 51 50 49 48

Banco Central do Brasil’s VS. PFE approach uncertainty forecasts
GW(BCB,PFE) 0.68 -2.28 -2.43 -2.94 -2.19 -1.74

p(GW = 0) 0.50 0.02 0.02 0.00 0.03 0.08
N 49 47 45 43 41 39

Magyar Nemzeti Bank’s VS. BAR approach uncertainty forecasts
GW(MNB,BAR) -2.71 0.11 0.23 0.14 0.50 0.78 0.76

p(GW = 0) 0.01 0.91 0.82 0.89 0.62 0.44 0.44
N 34 34 34 34 34 34 34

Sveriges Riksbank’s VS. BAR approach uncertainty forecasts
GW(SR,BAR) -1.22 -0.00 0.21 -0.77 -1.36 -0.07 -0.85 0.40

p(GW = 0) 0.22 1.00 0.83 0.44 0.17 0.94 0.39 0.69
N 27 27 27 27 27 27 27 27

Notes: The conditional predictive accuracy of central banks’ uncertainty forecasts is evaluated using
the test procedure of Giacomini and White (2006), where a forecast’s loss is measured by the score
DSSt+h|t as proposed by Dawid and Sebastiani (1999). Values of GW represent the Giacomoni-White
test statistic, a negative sign implies that the central bank’s uncertainty forecast scores better than the
alternative, and p(•) denotes the p-value of the hypothesis given in parentheses. Bold figures imply
statistical significance at the 5% level. N denotes the number of observations.
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