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Abstract

This paper investigates the impacts of the Swiss CO2 levy on households’

heating demand. Using a difference-in-differences approach combined with in-

verse probability of treatment weighting, we test whether the 2016 carbon tax

rate increase had a short-term impact on Swiss households’ heating consump-

tion and propensity to renovate. Micro-level data from the 2016 and 2017

waves of the Swiss Household Energy Demand Survey (SHEDS) are used to

estimate the models. In both cases, no statistically significant effect can be

detected across a variety of specifications. Even though further research is

needed to investigate possible long-run impacts, our findings question the rel-

evance of this policy instrument under its current form to lower households’

greenhouse gas emissions. Additional measures might be implemented to im-

prove its efficiency.
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1 Introduction

Given science’s current state of knowledge concerning the role played by anthro-

pogenic greenhouse gas (GHG) emissions in climate change and the potentially

dreadful consequences they might cause (Stern 2007), it seems now clear that there

is a need for policy action, as illustrated by the 2015 Paris Agreement and the

engagements taken by several states to mitigate their GHG emissions. As part of

its strategy to limit its impact on climate change, Switzerland introduced a tax on

carbon dioxide on 1st January 2008. Carbon taxes are policy instruments based on

the idea of Pigouvian taxation to correct negative externalities (Baumol 1972; Pigou

1920); they give pollution a cost, hence incentivising emitters to take action to be-

come more environmentally friendly. Taxing GHG emissions is a cost-efficient way

to tackle the issue of human activities’ impact on the environment. By introducing

such a tax, the Swiss government hoped to lower GHG emissions relative to 1990

levels, as stated in the Federal Act on the Reduction of CO2 Emissions.

The Swiss carbon tax, known under the name of ‘CO2 levy’, is designed as a

steering tax: of its proceeds, about two-thirds are redistributed to households and

firms, while the remaining third is used to finance a building renovation programme

and a technology fund. Tax collection is performed by the Federal Custom Admin-

istration (FCA) when imported fuels crosse the Swiss borders or when it leaves a

tax-exempted warehouse to be sold. The tax rate is expressed in terms of CHF per

ton of CO2 equivalent (tCO2eq), with the greenhouse effect of GHG other than car-

bon dioxide being converted based on a standardised table. The tax level is adapted

if reduction targets set in the law are not met; hence, while it was at CHF 12/tCO2eq

when the levy was introduced in 2008, it was then raised several times as targets

were missed, reaching CHF 36 in 2010, CHF 60 in 2014, CHF 84 in 2016 and CHF 96

in 2018, with a legal potential maximum of CHF 120 under the current version of

the law.1

Although some firms can benefit from legal provisions that allow them to be

exempted from paying the tax and therefore request a full refund if they meet some

strict conditions, households cannot avoid paying it on all their fossil non-motor fuel

purchase, i.e., mainly extra-light oil and natural gas used for heating. Their only

way to escape the tax is by not using fossil fuels for heating, for instance by using

a heat pump, electricity, wood pellets or solar panels. They can also reduce the tax

burden by consuming less fossil fuels through two main different means: renovations

1The Federal Act on the Reduction of CO2 Emissions is planned to be revised in 2020, with a
potential increase in the maximum tax rate.
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(of windows, heating system, roof, façade, etc.) and behavioural changes (heating

less, using smart thermostats, ventilating less, etc.). The CO2 levy can therefore

be expected to lead to such adaptation strategies from households so that they

minimise their carbon tax burden. The higher the tax, the stronger the incentives

for renovating and adopting more energy-efficient behaviours.

However, there are reasons to put these claims in question. They rely on the

assumption that individuals are all homines oeconomici who perfectly understand

the price signal produced by a Pigouvian tax and react to it by lowering their fossil

fuel demand accordingly, thus maximising their welfare. Such a situation cannot

be taken for granted. Different factors may erode the impact of the carbon tax on

households: low price-elasticity of demand for fossil fuels; non-utility maximising in-

dividuals; imperceptibility of the price signal by economic agents; lack of knowledge

and incorrect perceptions of the CO2 levy. The literature in behavioural economics

argues that individuals tend to not always behave rationally from an economic point

of view (Congdon, Kling, and Mullainathan 2009); hence, the expectation that the

Swiss carbon tax pushes people to reduce their fossil fuel consumption is far from

obvious and deserves empirical investigations.

This paper focuses on the question of the effectiveness of the Swiss CO2 levy. It

investigates whether households adapt their energy demand for heating from fossil

sources and improve the energy efficiency of their homes following an increase of the

levy. More precisely, it analyses at the impacts of the 2016 40% tax rate increase

and test the hypotheses that the tax increase both led to lower fossil heating fuel

consumption and a higher propensity to renovate for those households who use oil or

gas as main heating fuel in comparison to the others. Household-level data collected

in two waves of the Swiss Household Energy Demand Survey (SHEDS) are used.

This survey is conducted yearly on a rolling panel of approx. 5,000 households.

The general analytical framework is a difference-in-differences (DID) estimation:

outcomes of the treated group (fossil fuel users) is compared to those of the control

group (non-fossil fuel users) before and after the 2016 carbon tax rate rise, so that

the average treatment effect on the treated (ATT) can be obtained. Because of

imbalances in covariates between the two groups, inverse probability of treatment

weights for the estimation of an ATT are used: treated households receive a weight

of 1 while each control household receives a weight that reflects how similar it is

to treated ones (see Austin 2011). This strategy makes the two groups comparable

regarding observable characteristics that could affect the outcome of interest, which

is an improvement over the standard DID estimation.
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The general conclusion of the econometric analysis is that the CO2 levy had no

visible effect on Swiss households’ energy consumption of fossil heating fuels or

propensity to renovate in the short term. The lack of salience from the tax can

be pointed as a probable cause, as it is hardly perceptible by households through

its impact on market prices. Limited decision capacity regarding heating consump-

tion and energy-efficient renovations might also play a role, as well as households’

probable lack of knowledge on the tax’s mechanisms.

The article is structured as follows. Section 2 provides background knowledge

by briefly reviewing relevant literature and by contextualising the Swiss CO2 levy.

Section 3 presents the analytical framework and the econometric models used to

test the two research hypotheses. Section 4 describes the data and explains the

estimation of the weights. Section 5 summarises the results and discusses them.

Section 6 concludes.

2 Informational background

As coined by Andersen (2010), research undertaken on the topic of carbon taxation

moved from ex-ante modelling that was prevalent in the 1990s (see for instance

Nordhaus 1993) to ex-post analyses that use actual data (e.g. Lin and X. Li 2011).

However, truly empirical studies are still scarce. Martin et al. (2014) assessed the

impact of the British carbon tax on manufacturing at the level of enterprises and

found it had a negative effect on energy intensity and electricity use. In their review

of British Columbia’s CO2 tax, Murray and Rivers (2015) quote a few studies that

use difference-in-differences approaches to estimate the impact of the tax on GHG

emissions and fossil fuel consumption, which all report the negative impacts that

could be expected from a theoretical point of view. None of those papers considers

the effects of carbon taxes on households at a microeconomic level, though.

Indeed, literature on the effect of carbon taxes on households in terms of GHG

emission reduction is very limited. Most studies focusing on households rather

consider distributional aspects (see Beck et al. 2015; Brännlund and Nordström 2004;

Callan et al. 2009; Chapa and Ortega 2017; Renner 2018; Tiezzi 2005; Williams et

al. 2014), leaving effectiveness aside. Labandeira and Labeaga (1999) provide one

of the rare attempts to evaluate the potential impact of a CO2 tax on households.

They combine an input-output analysis and a simulation with micro-level data to

look at the distributional and behavioural effects of an exogenously set hypothetical

carbon tax in 1994 in Spain. They find a small diminution of energy-related carbon
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dioxide emissions by households, but this result is limited in that it does not come

from an evaluation of the actual impact of a real carbon tax.

Tiezzi (2005) briefly discusses effectiveness considerations in her appraisal of the

welfare effects of the Italian carbon tax. She computes price-elasticities of demand

for domestic (i.e., mainly heating) and transport fuels and found them to be respec-

tively −1.057 and −1.282 at the sample mean, which suggests that taxing CO2 may

play a significant role in Italy’s environmental policy to lower its GHG emissions.

However, these elasticities only provide ex-ante information on potential effects and

might not hold in other socio-economic, geographical and institutional contexts than

Italy between 1985 and 1996. Moreover, tax-elasticities of demand for fossil fuels

might even be larger than that: Andersson (2017) estimated them to be about three

times larger than price-elasticities in the case of gasoline in Sweden, because of

consumers’ tax aversion.

Andersson’s findings are in line with most of the literature on tax salience (see

Fochmann et al. 2010), that is, that taxes tend to have larger behavioural impacts

than equivalent price changes. For instance, Chetty et al. (2009) find in an exper-

iment that posting tax-inclusive prices in shops reduces demand in comparison to

when only tax-free prices are displayed. This suggests that being aware of paying

taxes matters when deciding on a purchase. Both Rivers and Schaufele (2015) and

Bernard and Kichian (2018) find that British Columbia’s carbon tax had a larger

impact on gasoline demand than an equivalent increase in price. Li et al. (2014) in

the USA and Baranzini and Weber 2013 in Switzerland get similar results for the

gasoline tax, which suggests taxes on fossil fuels are likely to display salience.

This finding has some interesting implications, especially in times when fossil fuel

prices fluctuate strongly, as has been the case since the 1970s: it means that beside

their effects on prices, taxes can have an impact through their mere existence, as

consumers seem to dislike the idea of paying them. This is particularly relevant in

the case of the Swiss CO2 levy: since its introduction in 2008, it was raised several

times to reach in 2018 a level that is eight times higher than ten years before, but the

price of oil, the main fossil fuel consumed by Swiss households, sharply decreased at

the end of 2014 to stay at a lower level, as can be seen on Figure 1. In this context,

the impact of the tax on heating oil’s market price may well go unnoticed, which

would make consumer unlikely to react to it. Nevertheless, if the Swiss carbon tax

is salient, an effect can be expected even in the absence of a visible price increase,

because of tax aversion.
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Figure 1: Evolution of the average heating oil price in Switzerland, Europe Brent
Crude and the Swiss carbon tax rate

Existing research on the Swiss CO2 levy however does not address this type of

concern. It rather focuses on effectiveness by either using simulations (Ecoplan

2017; Ecoplan, EPFL, and FHNW 2015) to model counterfactuals of what would

have happened if there had been no carbon tax in Switzerland, or by surveying

firms (TEP Energy 2016). If Ecoplan et al. (2015) find the tax had a negative

effect on CO2 emissions and a positive one on energy substitution away from oil,

there results are by nature hypothetical and therefore might differ from those of an

observational study. Hence, there is plenty of room for other research projects on

the topic, especially empirical ones, as there seems to be a gap in the literature on

carbon taxation using empirical methods to establish causal effects.

3 Analytical framework

This paper uses a DID approach to figure out whether the 2016 increase in the

Swiss CO2 levy rate had any short-term impact on 1) households’ fossil heating

fuel consumption, and 2) fossil fuel users’ propensity to make energy-saving ren-

ovations. DID allows to estimate causal effects (Lechner 2011) under the classical

Rubin causal model (see Imbens and Rubin 2015). The idea behind DID is to model

the potential outcome for the treatment group if it had not been treated by using

the actual outcome of a control group that is similar enough to the treatment group

so that outcomes for both would have been the same if they had been assigned the

same treatment status. This is called the common trends assumption, i.e., without

intervention both groups would have followed the same evolution. The validity of

any finding in a DID model therefore relies on the comparability between the treat-
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ment and control groups, as the ATT is defined as the difference between the actual

outcome for the treated and their (unobserved) counterfactual outcome.

Randomised control trials (RCTs) are the gold standard in this regard: by ran-

domly sampling units of observation from the same population, it ensures that

treated and non-treated units do not systematically differ. However, outside the

lab, it is often impossible to achieve such a high degree of similarity; with the CO2

levy, we are in the situation of a natural experiment, which means the allocation of

treatment (paying the carbon tax) cannot be exogenously controlled to imitate an

RCT. We thus need to ensure ex-post that treatment and control units are compa-

rable.

To do so, inverse probability of treatment weighting (IPTW) is used. The idea

behind this method is to give a larger weight to units that are the most likely

to be in the treatment group in which they are not (Austin 2011), which helps

to estimate the average treatment effect on the whole population (ATE). When

one is interested in estimating the ATT instead, these weights are equal to 1 for the

treated units and to ei
1−ei

for the non-treated, where ei is unit i’s probability of being

treated, that is, a propensity score (PS) (Austin and Elizabeth A. Stuart 2015). It is

defined as ei = Pr(Treati = 1|Xi) where Xi is the set of covariates used to estimate

ei. IPTW relies on the covariate balancing properties of propensity scores (F. Li,

Morgan, and Zaslavsky 2016; Rosenbaum and Rubin 1983): conditional on the PS,

covariates included in Xi should be balanced between treatment and control units.

Said differently, all units with the same PS should have the same distribution of Xi

(Austin 2011). Confounding caused by observables can thus be mitigated.

With longitudinal data, weights need to be estimated for each time period if co-

variates vary across time (see Kupzyk and Beal 2017). However, it might happen

that instead of panel data, only repeated cross-sections are available. In this situa-

tion, Stuart et al. (2014) propose another IPTW method for cases with two periods

(Postt ∈ {0, 1}) and binary treatment (Treati ∈ {0, 1}), i.e., the most basic DID

situation. They split the sample into four groups: group 1 contains units for which

Treati = 1 & Postt = 0; group 2 contains units for which Treati = 1 & Postt = 1;

group 3 contains units for which Treati = 0 & Postt = 0; and group 4 contains

units for which Treati = 0 & Postt = 1. They propose to estimate four PS ek(Xi)

for each unit, i.e. one per group k, with k ∈ {1, 2, 3, 4}. They then construct

weights for each unit i: wi = e1(Xi)/eg(Xi) where e1(Xi) is the probability for unit

i of being in group 1 given Xi and eg(Xi) is the probability for the same unit of

being in its actual group g. This strategy balances covariate distribution between

groups according to the reference group of treated units in the pre-treatment period.
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Units in groups 2-4 that are the most likely to be in group 1 thus receive greater

weights than those which are not. Both types of weights are used in our analysis,

since the first hypothesis is tested using a combination of longitudinal and repeated

cross-sectional data, while the second hypothesis relies on a test using panel data

only.

Estimating the PS to compute the weights can be challenging because of two main

issues. The first concerns the variables to include, and therefore for which observ-

ables balance should be achieved. Brookhart et al. (2006) recommend to include

in the estimation procedure not only covariates that are related to the treatment

variable, but also those which are related to the outcome variable without necessar-

ily being linked to the treatment. As underlined by Caliendo and Kopeinig (2008),

omitting important variables might result in an increasing bias. The inclusion of

squared terms and interactions should also be considered (see Imbens and Rubin

2015). A thorough consideration of existing theory and a careful examination of

available information are therefore advisable to select relevant variables.

The second issue is how to estimate the PS. If the traditional approach is to use

logistic regression, some researchers (e.g., Lee et al. (2010)) suggest to use classifica-

tion and regression trees (CARTs), for instance. Imai and Ratkovic (2014) propose

another method based on generalised method of moments (GMM) framework that

includes a covariate balancing condition, which they call the covariate balancing

propensity score (CBPS). Deciding on which estimation method to use is thus far

from obvious; it is therefore advisable to test different ones until proper covariate

balance is achieved. In this paper, it has been decided to use both (multinomial) lo-

gistic regression and CBPS to construct the weights. As shown in section 4, weights

obtained through CBPS achieve a high level of balance among covariates, which

fulfils the goal of the IPTW method.

With the help of these weights, two different DID models are set up: a first one

to test the hypothesis that the 2016 carbon tax increase led to lower fossil heating

fuel demand, and a second one to test the hypothesis that the tax rise increased the

propensity to renovate of fossil fuel users. The first model takes a log-linear form,

with the dependent variable ln yit being the natural logarithm of yearly heating

expenditures, transformed to a quantity using an energy price index (more on this

in the next section) . It can be formalised as follows :

ln yit = β0 + Treatiβ1 + Posttβ2 + (Treati ∗ Postt)β3 +Gitβ4 + εit (1)
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where Git is a set of covariates and εit is a stochastic error term. The ATT is given

by β3.

The second model has a similar form, but slightly differs in that the dependent

variable rit is binary, as it indicates whether a household renovated its heating

system, windows, façade and/or roof during the year. It therefore takes the form

of a logit model, which affects the common trends assumption of DID. Indeed, as

shown by Puhani (2012), in non-linear DID models this assumption shall be replaced

by the common trends of the non-linear transformation assumption (on this, see also

Blundell and Dias 2009; Lechner 2011). The specification of the model is therefore

the following:

Pr(rit) = Λ
(
γ0 + Treatiγ1 + Posttγ2 + (Treati ∗ Postt)γ3 +Hitγ4 + υit

)
(2)

where Pr(rit) is the probability that rit = 1, Hit is a set of covariates, υit a stochastic

error term and Λ(·) is the logistic function, i.e., Λ(·) = exp(·)
1+exp(·) . The ATT is then

given by:

ATT = Λ
(
γ0 + γ1 + γ2 + γ3 + H̄γ4

)
− Λ

(
γ0 + γ1 + γ2 + H̄γ4

)
(3)

and not simply γ3 due to the non-linear transformation (Puhani 2012).

4 Data

4.1 Dataset

Data used in this study come from the Swiss Household Energy Demand Survey

(SHEDS). SHEDS is a multidisciplinary survey managed by the Swiss Competence

Center for Research in Energy, Society and Transition (SCCER-CREST)2 that cov-

ers a wide range of aspects related to Swiss households’ energy demand, preferences,

behaviour, as well as psychological and socio-economic characteristics. Since 2016,

approximately 5,000 households are surveyed every year, of which a share responded

several times. The database is therefore a combination between a panel and repeated

cross-sections. It should also be noted that some questions are usually added, up-

dated or dropped between survey waves, and some are also only asked once to

respondents so that they spend less time answering the questionnaire on the follow-

2https://www.sccer-crest.ch/
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ing year, if they decide to do so. Hence, depending on the variable considered, some

restrictions on the size and composition of the dataset need to be imposed.

Two subsets of the SHEDS database are used, both drawn from the 2016 and

2017 waves of the survey. The first one, which is used to test for the impact of the

change in CO2 tax rate on fossil heating fuel demand, consists in a combination

of longitudinal and repeated cross-sectional observations in order to keep as many

observations as possible. When asked about their heating expenditures, respondents

could state whether they used their last heating bill to answer or if they only provided

an estimation; as estimations are unlikely to be precise enough to detect real changes

in heating consumption, respondents who did not use their bill to answer are dropped

from the sample, which has a strong impact on its size. In this context, using only

observations for which longitudinal information is available would further restrict

the sample size to a point where results would be too imprecise, hence the need to

include also observations for which only cross-sectional information is available. The

top and bottom 1% of the sample have moreover been dropped to remove outliers

that are likely aberrant responses.

To test the hypothesis that the 2016 tax rate increase had a positive impact on

the propensity of fossil fuel users to renovate, longitudinal data need to be used as

precise information on renovations was only collected in the 2017 survey wave, while

information necessary to construct other covariates was collected in both waves.

Only households who did not move to a new home between the two waves are

included so that information on renovations can be used. Despite missing data, a

sample with a reasonable number of observations can be drawn from the SHEDS

database to carry out a statistical analysis.

SHEDS contains various characteristics about Swiss households. The most impor-

tant in our case are the two dependent variables, i.e., yearly heating expenditures

and whether any renovation took place and when. Heating expenditures per se do

not tell much about changes in volumes when compared across years because of

changes in energy prices. 2016 values are therefore divided by a price index that

takes 2015 as basis year so that expenditures in the post-treatment period are ex-

pressed in prices of the pre-treatment period. The influence of changes in energy

prices on the values of expenditures can thus be attenuated, so that only varia-

tions caused by changes in volumes remain. Data on the evolution of fuel prices

is obtained from the consumer price index of the Swiss Federal Statistical Office.

Another point to consider is that each survey wave was launched in April-May of

2016 and 2017; it is hence assumed that when asked about their last annual heat-

ing expenditures, respondents provided information from the previous year (hence

10



2015 and 2016, respectively), as most people pay their heating bills in Summer in

Switzerland.

Precise information on renovations was collected in the 2017 wave: people were

asked if and when a renovation last took place for four items: windows, heating

system, façade and roof. It is hence possible to construct a binary variable for each

household-year observation that tells if a renovation had been undertaken in the

preceding year (i.e., 2015 and 2016, before and after the carbon tax rate change).

Information on why the renovation took place is also available, making it possible to

know if a household consciously considered the CO2 levy while taking its decision.

Other relevant data include socio-economic characteristics (income, education,

age of respondent, household size), valuation of the environment,3 geographical in-

dications (type of living area, part of Switzerland), as well as information on the

accommodation (type of building, floor surface, building year, conformity to Min-

ergie standards4). Most of these variables will be used as controls in the regression

analyses.

4.2 Weights estimation

IPT weights are constructed using PS estimated by both logistic regression and the

CBPS method. For the first hypothesis, the multinomial extension of the logistic

regression needs to be used as four different PS are estimated (one per group). For

the second one, standard logistic regression and CBPS are used to estimate pre-

treatment and post-treatment weights. CBPS is implemented using the eponymous

package on R.5

The dependent variable for the estimations is the treatment indicator, i.e., a

dummy taking the value 1 for households whose heating system uses fossil fuels (oil

or gas). Independent variables are the ones over which balance is to be achieved. For

the first hypothesis, these variables are: being home-owner, living in a house, living

in the countryside, living in Romandie, building year of the home, floor surface,

conformity to Minergie standards, renovation of the heating system after 2010, val-

uation of the environment, having a tertiary level of education, natural logarithm

3This variable is constructed from two questions about how much the respondent valued the
protection of the environment and preventing pollution on a 1-to-5 scale, where 5 corresponds to
the maximum valuation. The variable is the average of these two indicators.

4www.minergie.ch

5https://cran.r-project.org/web/packages/CBPS/index.html
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of monthly income, size of the household and average room temperature. These

variables have been chosen because of their likely influence on both the probability

of treatment and the outcome variable. They cover most relevant characteristics of

households and their accommodations.

For the second hypothesis, most variable are kept, except that the renovation of

the heating system and the average room temperature are dropped because of endo-

geneity with the outcome variable (propensity to renovate), and a dummy indicating

if the respondent consider being risk-taker in financial terms is added, as it might

influence their probability of undertaking renovations due to potentially high costs.

For the first hypothesis, the weights described in Stuart et al. (2014) are used (see

previous section). For the second hypothesis, weights are constructed to estimate

the ATT, as described in Austin (2011): wi = Treati + (1−Treati)ei
1−ei

. Information

on the balance in covariates achieved with these weights is provided in the next

subsection.

4.3 Descriptive statistics

Table 1 presents a statistical summary of the characteristics of the four groups used

to test the first hypothesis; the second sample is very similar to it, except in terms of

number of observations (568 households over the two time periods). It can be noted

that group sizes tend to vary, with half the observations in group 2; however, when

only respondents whose heating expenses are based on their actual consumption are

considered, groups are more balanced.

The main differences between the treatment and control groups come from the

fact that the control groups tends to contain more house-owners than the treatment

groups, which contains more tenants living in apartments. The treatment groups

therefore tend to live in smaller, older and less energy-efficient homes, and have lower

incomes. The weighting strategy is therefore expected to give more importance to

non-house owners in the control groups to achieve a satisfactory covariate balance.

One noticeable thing is that heating and hot water expenditures seem not to have

changed a lot between the pre- and post-treatment periods when expressed in 2015

prices. This suggests it is likely that the 2016 carbon tax increase had no noticeable

impact on heating demand by fossil fuel users in comparison to non-fossil fuel users.

Results presented in the next section seem to confirm this observation.
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Table 1: Descriptive statistics

Statistic Group 1 Group 2 Group 3 Group 4

Heating and hot water 1,531.64 1,509.09 1,375.05 1,414.02
expenses (2015 prices) (863.27) (916.41) (1,041.52) (996.81)
Heating bill based on 0.49 0.50 0.75 0.78
actual consumption
Average room temperature 20.82 20.84 20.93 20.74

(1.03) (1.03) (1.08) (1.06)
Owner 0.47 0.41 0.69 0.62
House 0.31 0.33 0.51 0.56
Surface (m2) 123.02 116.00 149.01 140.92

(72.59) (65.02) (68.40) (68.71)
Building year 1,972.00 1,967.34 1,986.17 1,979.36

(28.78) (34.85) (37.04) (47.61)
Minergie 0.10 0.08 0.41 0.32
Recent renovation of 0.22 0.26 0.13 0.23
the heating system
Age of respondent 55.76 53.14 53.05 50.92

(14.40) (14.69) (13.65) (13.67)
Income 7,861.04 7,699.36 8,715.00 8,415.12

(2,706.07) (2,878.42) (2,903.33) (2,847.19)
Tertiary education 0.41 0.43 0.46 0.47
Household size 2.10 2.15 2.34 2.41

(1.09) (1.12) (1.13) (1.18)
Valuation of the 4.30 4.20 4.34 4.22
environment (0.71) (0.73) (0.61) (0.71)
Believe oil price 0.71 0.77 0.75 0.78
will increase
City 0.54 0.55 0.30 0.33
Agglomeration 0.28 0.29 0.40 0.32
Countryside 0.18 0.16 0.30 0.34
Romandie 0.25 0.23 0.25 0.23
Alps 0.22 0.21 0.21 0.24
East 0.27 0.31 0.30 0.29
West 0.25 0.25 0.24 0.24
Observations 376 1,012 100 377
% Total 20.16 54.26 5.36 20.21

Note: Standard deviation in parenthesis for non-binary variables. Group 1
contains treated units in the pre-treatment period; group 2 contains treated
units in the post-treatment period; group 3 contains control units in the pre-
treatment period; group 4 contains control units in the post-treatment period.
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Table 2 provides some balance measures for the sample when CBPS weights are

used for both the sample used to test hypothesis 1 and the sample used to test

hypothesis 2. It reports the maximum absolute values of standardised differences

in means as well as Kolmogorov-Smirnov statistics for continuous variables, and

only maximum absolute differences in proportions for binary variables, both before

and after adjustment across all groups. For the first sample, all four groups are

compared among themselves, while for the second sample only the treatment and

control groups are compared before and after the application of the treatment, as

the same households are considered in both periods, which is not the case in the first

sample. The smaller are these measures, the better, as it means the distribution

of covariates between the treatment and control groups is similar in both the pre-

and post-treatment periods. As can be seen, the balance in covariates achieved by

using these weights is quite good, especially for the second sample, which means the

comparability of the treatment and control groups should be improved by the use

of IPTW. The results of the regression analysis are therefore expected to be more

robust when weights are included than when they are not.
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Table 2: Covariate balance across treatment groups

Sample 1 Sample 2

Mean diff. KS Mean diff. KS

Unadj. Adj. Unadj. Adj. Unadj. Adj. Unadj. Adj.

Owner 0.598 0.073 0.277 0.000

House 0.522 0.057 0.384 0.000

House*Owner 0.425 0.062 0.316 0.000

Countryside 0.392 0.093 0.395 0.000

Romandie 0.046 0.081 0.136 0.000

Building year 0.508 0.049 0.401 0.193

Built before 2000 0.652 0.000

Surface (m2) 0.483 0.067 0.291 0.138 0.069 0.000 0.091 0.088

Minergie 0.664 0.027 0.969 0.000

Heat. sys. renov. 0.393 0.034

Avg. temp. 0.179 0.034 0.099 0.078

University 0.120 0.037 0.094 0.000

Income (log) 0.332 0.013 0.162 0.065 0.151 0.000 0.091 0.053

HH size 0.258 0.069 0.147 0.082 0.104 0.000 0.066 0.027

Envir. val. 0.230 0.061 0.076 0.040 0.146 0.000 0.045 0.052

Risk-taker 0.093 0.000

Note: Only maximum values across all groups are reported for both (standardised)
mean differences and Kolmogorov-Smirnov statistics.

5 Results

5.1 Regressions

Results for the first hypothesis are displayed in Table 3. The first two columns dis-

play the results from regressions without weights, while the four others include either

multinomial logit weights (columns 3 and 5) or CBPS weights (columns 4 and 6).

Out of robustness concerns, two models have been tested solely with observations

from respondents whose heating expenditures depend only on their actual consump-

tion, and not on some other parameters such as the size of their home (columns 5

and 6). These two models are therefore supposed to be the most robust of the six, as

data they use should be more reliable. As a better balance in covariates is achieved

by using CBPS weights, the sixth model is preferred over the others.

In all specifications, the coefficient of the interaction between the treatment and

the period dummies is not significant, indicating that the 2016 carbon tax increase

seems to have exerted a negligible impact on the heating demand of fossil fuel users.

Some covariates have a significant effect on the outcome variable across all models:
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living in a house, living in Romandie, building year of the dwelling, floor surface

and income. It is not surprising to find that living in a house or having a large floor

surface are linked to high expenditures for heating. Similarly, it can be expected

that the more recent the building, the more energy-efficient it is; hence the negative

impact of the building year variable. The effect found for income means that richer

households tend to demand more heating than poorer ones, everything else being

constant, which is again not a surprise, as richer households have the financial means

to afford heating more their homes than poorer ones. It is interesting to note that

inhabitants of the French-speaking part of Switzerland demand on average more

heating than the others; it is however hard to find a convincing explanation for

this phenomenon outside the ‘cultural difference’ one. Further research could be

done on that element. In general, it can be concluded that the tax rate increase

had no significant short term impact on fossil heating fuel consumers, even in the

most robust model. Most other coefficients are nevertheless significant and with the

expected signs, which shows that meaningful relationships can be detected by our

model where they exist.

Results from regressions used to test the second hypothesis are presented in Ta-

ble 4. The panel contains 568 households, of which 181 are in the control group and

387 in the treatment group. Again, models with and without weights have been run

to allow for a better check of the consistency of the results. Columns 1 to 3 display

models without IPT weights: the first and second ones are standard logit models,

while the third includes random effects. In these models, no statistically significant

effect can be found for the coefficient of the interaction term between the treatment

allocation and treatment period dummies. This could be due to imbalances in the

covariates; hence, IPTW models are run (columns 4 and 5), but the results do no

differ much, except that the coefficients of some covariates that were previously sig-

nificant are not any more. Only the dummy indicating if the construction year of

the building is before 2000 remains significant, but the coefficient of interest stays

statistically not different from 0. This means the CO2 tax increase had no visible

impact on the probability that fossil fuel users renovate when compared to non-fossil

fuel users. This result corroborates the previous one, that the 2016 carbon tax in-

crease had no short term effects on Swiss households in terms of heating demand

and propensity to renovate.

As robustness checks, three other specifications have been run. Columns 6 to 8 of

Table 4 present models that use only information from house-owners. House-owners

are the households who have the leeway regarding decisions over the renovation of

their homes; hence, short-term effects of the carbon tax increase might be easier

to detect in this subsample because they can decide to renovate more freely and
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Table 3: Results - Weighted DID models

Dependent variable:

Real heating & hot water expenditures (log)

(1) (2) (3) (4) (5) (6)

Post 0.01 0.02 −0.07 −0.12 0.02 −0.02
(0.08) (0.08) (0.14) (0.13) (0.12) (0.12)

Fossil fuel 0.20∗∗ 0.25∗∗∗ 0.23 0.18 0.14 0.11
(0.08) (0.08) (0.15) (0.14) (0.14) (0.14)

Post* −0.08 −0.06 0.03 0.08 0.02 0.06
Fossil fuel (0.09) (0.09) (0.14) (0.14) (0.13) (0.13)

Owner 0.11∗∗∗ 0.04 0.08∗ 0.001 −0.02
(0.04) (0.04) (0.04) (0.06) (0.06)

House 0.15∗∗∗ 0.27∗∗∗ 0.24∗∗∗ 0.50∗∗∗ 0.55∗∗∗

(0.05) (0.04) (0.04) (0.06) (0.06)

Countryside 0.002 −0.01 −0.04 0.03 0.03
(0.05) (0.04) (0.04) (0.04) (0.04)

Romandie 0.17∗∗∗ 0.15∗∗∗ 0.14∗∗∗ 0.20∗∗∗ 0.21∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.04)

Building year −0.001∗ −0.001∗ −0.001∗∗ −0.002∗∗∗ −0.002∗∗∗

(0.001) (0.001) (0.0005) (0.0005) (0.0005)

Surface (m2) 0.002∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗ 0.001∗∗∗

(0.0004) (0.0003) (0.0003) (0.0003) (0.0003)

Minergie −0.18∗∗∗ −0.12∗∗ −0.12∗∗ 0.04 0.03
(0.05) (0.05) (0.05) (0.06) (0.06)

Renovation of −0.003 −0.02 0.01 −0.03 −0.05
heat. sys. (0.04) (0.03) (0.03) (0.04) (0.04)

Envir. val. 0.04∗ 0.07∗∗∗ 0.04∗∗ 0.03 0.03
(0.02) (0.02) (0.02) (0.02) (0.02)

University −0.03 0.01 0.01 0.02 0.002
(0.04) (0.03) (0.03) (0.04) (0.04)

Income (log) 0.14∗∗∗ 0.15∗∗∗ 0.10∗∗ 0.15∗∗ 0.14∗∗

(0.05) (0.05) (0.04) (0.06) (0.06)

HH size 0.04∗∗ 0.02 0.04∗∗∗ −0.005 −0.01
(0.02) (0.01) (0.01) (0.02) (0.02)

Avg. temp. 0.02 0.01 0.02 0.02 0.02
(0.02) (0.02) (0.02) (0.02) (0.02)

Constant 6.97∗∗∗ 6.67∗∗∗ 6.49∗∗∗ 7.50∗∗∗ 8.01∗∗∗ 8.86∗∗∗

(0.07) (1.12) (1.16) (1.04) (1.19) (1.08)

Observations 1,865 1,865 1,865 1,865 1,057 1,057
IPTW No No MNL CBPS MNL CBPS
Actual cons. No No No No Yes Yes
Adjusted R2 0.01 0.12 0.11 0.11 0.12 0.12

Note: Standard errors in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: Results - IPTW logit DID models

Dependent variable:

Renovation

(1) (2) (3) (4) (5) (6) (7) (8)

Post 0.19 0.19 0.19 −0.28 −0.31 0.56 0.76 0.82
(0.38) (0.40) (0.41) (0.58) (0.61) (0.55) (0.65) (0.66)

Fossil fuel 0.69∗∗ 0.68∗ 0.70∗ 0.45 0.42 0.98∗ 1.13∗∗ 1.20∗∗

(0.33) (0.36) (0.37) (0.45) (0.48) (0.52) (0.55) (0.56)

Post*Fossil fuel −0.13 −0.14 −0.13 0.33 0.36 −0.37 −0.61 −0.67
(0.43) (0.44) (0.47) (0.61) (0.65) (0.63) (0.71) (0.71)

Owner 0.09 0.10 0.23 0.22
(0.24) (0.27) (0.34) (0.35)

House 0.49∗∗ 0.52∗ 0.33 0.41
(0.25) (0.27) (0.32) (0.31)

Countryside −0.20 −0.21 0.07 −0.07 −0.34 −0.22 −0.23
(0.25) (0.25) (0.30) (0.29) (0.35) (0.34) (0.34)

Romandie 0.42∗ 0.44∗ 0.18 0.17 0.42 0.34 0.32
(0.22) (0.23) (0.28) (0.28) (0.37) (0.31) (0.32)

Built before 2000 0.99∗∗∗ 1.02∗∗∗ 0.83∗∗ 0.80∗∗ 0.75 0.57 0.59
(0.32) (0.32) (0.34) (0.36) (0.46) (0.39) (0.39)

Surface (m2) 0.0001 −0.0000 −0.001 −0.002 0.0007 0.0000 −0.0001
(0.001) (0.001) (0.001) (0.002) (0.002) (0.001) (0.001)

Minergie 0.42 0.44 0.21 0.20 0.44 0.38 0.45
(0.31) (0.32) (0.33) (0.34) (0.48) (0.47) (0.47)

University 0.09 0.09 0.01 0.02 −0.36 −0.37 −0.42
(0.20) (0.21) (0.24) (0.24) (0.33) (0.30) (0.30)

Income (log) −0.36 −0.37 −0.10 −0.30 0.10 0.28 0.28
(0.29) (0.30) (0.34) (0.37) (0.51) (0.42) (0.42)

HH size 0.03 0.03 −0.09 −0.05 0.09 0.06 0.06
(0.09) (0.09) (0.11) (0.11) (0.14) (0.13) (0.13)

Envir. val. −0.05 −0.05 −0.13 −0.11 0.13 0.11 0.09
(0.11) (0.14) (0.13) (0.13) (0.24) (0.17) (0.17)

Risk-taker 0.57∗∗ 0.58∗∗ 0.20 0.28 0.86∗ 0.41 0.53
(0.27) (0.28) (0.31) (0.31) (0.45) (0.43) (0.42)

Constant −2.58∗∗∗ −0.61 −0.78 −1.70 0.12 −5.64 −6.43∗ −6.48∗

(0.30) (2.55) (2.74) (3.21) (3.55) (4.71) (3.74) (3.78)

Observations 1,136 1,136 1,136 1,136 1,136 566 566 566
IPTW No No No MNL CBPS No MNL CBPS
Random effects No No Yes No No Yes No No
Nagelkerke pseudo-R2 0.008 0.035 NA 0.022 0.024 NA 0.033 0.038

Note: Standard errors in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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therefore more rapidly. However, no such effect is found, either when a random

effect model is used or IPT weights are included. We are therefore unable to reject

the hypothesis that the 2016 carbon tax increase had no short-term impact on

renovation decisions among Swiss households.

5.2 Discussion and policy implications

Our results suggest that Swiss households cannot be expected to quickly react to the

progressive increase of the CO2 levy. Although heating expenditures corrected for

changes in fuel prices might not be the best proxy for heating demand, these results

provide some evidence that more action is needed to enhance the effectiveness of

the Swiss carbon taxation system regarding households. Decisions to renovate seem

not to be a direct consequence of the existence of the carbon tax: only few SHEDS

participants mention it as a reason for renovating. Figure 2 shows the reasons

provided by respondents who renovated in either 2015 or 2016 6 As can be seen,

the CO2 levy was mentioned only 3.85% of the time as a reason for renovations, the

lowest of all offered choices. Most of the time, saving energy, reducing energy costs

and replacing an outdated equipment were indicated. As previously said, the impact

of the tax on fossil fuels’ market prices is hardly visible given the large exogenous

variations affecting them. Hence, the Swiss carbon tax seems to lack salience as

households do not react to either its mere presence (tax aversion) or its effect on

prices, although the latter channel could be effective if the tax had a more visible

impact on fossil fuel prices, if we consider the reasons provided by respondents.

Of course, it should be remembered that only short-term effects are considered

here; it is probable that taxing CO2 will have some longer-term effects, especially

if the rate applied reaches higher levels. Another point is that most respondents

seem not to properly know how the Swiss CO2 levy works. In the 2018 SHEDS

report, Burger et al. (2018) underline the fact that most respondents tend to lack

understanding of this instrument: a third of fossil fuel users believe they pay no tax

at all, half of non-fossil fuel users incorrectly think they pay the carbon tax and only

14% of all respondents more or less correctly guessed how much they were receiving

through the tax redistribution scheme, an information they can easily find on their

health insurance bills. It should furthermore be noted that a short description of

the CO2 levy was provided before the question was asked. This apparent lack of

knowledge coupled with small share of respondents who mentioned the tax as reason

6It should be noted that there are data on reasons to renovate for only 52 observations of the
panel because only owners were asked to provide a reason, and not all of them answered.
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Figure 2: Reasons for renovating

that pushed them to renovate suggests Swiss households are unlikely to take action

to decrease the amount of carbon tax they pay because they are not fully aware of

how much it effectively costs them.

In addition, some households might lack the capacity of taking action to pay less

tax because they do not pay their heating bill on the basis of actual consumption

but on another factor such as the size of their home, which is often the case of

tenants and apartment-dwellers. In this context, a ‘split incentive issue’ arises (see

e.g., Gillingham, Harding, and Rapson 2012). Households in these situations have

indeed little incentive to lower their heating demand, as it would have only a minor

impact on their heating bills if their neighbours do not do the same. Moreover,

tenants and apartment-dwellers have less decision power over renovations, which

means that even if they wanted, they could not improve the energy-efficiency of their

homes because they would not have the capacity to do so. Therefore, a significant

share of Swiss households cannot be expected to substantially react to the CO2 levy,

as they have little reason and/or capacity to do so.

From a policy perspective, these findings have important implications. First, the

CO2 levy seems imperfectly designed to nudge households, as it only targets those

who can directly act on their heating demand. Second, people are on average not

well informed about how they are affected, which means it is unlikely to steer their

behaviour in the intended direction, hence the lack of effect found in the regression

analysis. Finally, as it is one of the main tools the Swiss government has set up

to fight climate change, its apparent lack of effectiveness questions its relevance:

complementary or alternative measures might be more effective, especially in the

short term. It should be noted that the short-term aspect of the issue is important
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to consider, as the tax rate is increased if GHG emission reduction thresholds are

not met, and up to 2018 the achievement of these thresholds was checked biennially.

This means short term efficiency is a criteria used to manage this policy instrument;

hence, in the absence of short-term effects on households, it becomes possible that

the tax be raised above its optimal middle-to-long-term level if households need time

to react.

6 Conclusion

Although more and more countries implement carbon taxation schemes to lower

GHG emissions, little empirical studies of their effectiveness exist, in particular

in the residential sector. To contribute to the literature on the topic, this paper

analyses the effectiveness of the Swiss CO2 levy to push households who use fossil

heating fuels to lower their heating consumption and to increase their propensity to

undertake energy-efficiency-enhancing renovations. Household-level data gathered

as part of the SHEDS project is used to construct two datasets to test the two

aforementioned hypotheses.

Using IPTW within a DID framework comparing the year before and the year

after the 2016 carbon tax rate increase, it is found that fossil fuel users seem not to

have followed different patterns in terms of heating consumption and propensity to

renovate than non-fossil fuel users in the short term. It can therefore be concluded

that the Swiss CO2 levy is likely to lack incentive power to reach its goal of lowering

GHG emissions from households. These findings question the adequacy of the design

of this policy instrument regarding households, especially given its central position in

the strategy of the Swiss federal government to fight anthropogenic climate change.

Further work should look at longer-term trends in fossil heating fuel consumption,

and should also look at the replacement rate of polluting heating technology by

cleaner ones. The question of the optimal tax rate should also be investigated in

order to better inform policy makers on the path to follow to efficiently lower GHG

emissions caused by households. Finally, qualitative information on households’

preferences regarding heating could also provide more information on how to more

efficiently nudge them so that they consume less fossil fuels.
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