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Abstract 

We investigate climate change impacts on productivity and production risk on U. S. Pacific 

Northwest winter wheat farms. Using farm-level data from the Census of Agriculture, we use a 

partial-moment-based approach to estimate climate and irrigation influences on winter wheat 

yield and farm net return distributions. Mean precipitation, growing degree-days, and freezing 

degree-days are shown to have highly distinct seasonal effects on the first three moments of the 

farm-level yield and net return distributions. Irrigation substantially increases the certainty 

equivalent of irrigated farms by shifting the winter wheat yield distribution outwards, and by 

increasing mean net returns but also decreasing the skewness of the net return distribution and 

thus reducing downside risk. By the mid-21st century, climate-change projections from 20 global 

climate models downscaled to the study region reveal a range of possible positive and negative 

effects on the winter wheat yield and net return distributions. 
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A variety of conclusions have recently been drawn about climate change’s impacts on U.S. crop 

yields, net returns, and farmland values (Adams 1989; Mendelson and Rosenberg 1994; 

Deschenes and Greenstone 2007, 2012; Lobell, Cahill, and Field 2007; Schlenker and Roberts 

2009; Ortiz-Bobea and Just 2013; Burke and Emerick 2016). Yet little attention has been paid to 

climate change’s impacts on weather-related production risk (Tack, Harri and Coble 2012; 

Huang, Wang and Wang 2015). For this purpose we use a partial-moment-based approach (Antle 

2010) to estimate climate’s effects on the mean, variance, and asymmetry or skewness of winter 

wheat yield and farm net return distributions in the U. S. Pacific Northwest (PNW).1 

Moment-based approaches have been used in a variety of production-risk studies, including 

mean-variance (Cooper 2010; Schoengold, Ding and Headlee 2015), mean-variance-skewness 

(Antle 1983; Antle and Goodger 1984; Di Falco and Chavas 2006; Huang, Wang and Wang 

2015), mean-variance-skewness-kurtosis (Koundouri, Nauges and Tzouvelekas 2006), and 

partial moments (Antle 2010). Most early studies of agricultural production risk examined 

production risk in an expected utility framework (e.g., Anderson, Dillon and Hardaker 1977). 

Just and Pope (1978) observed that the conventional method of estimating the production 

function in logarithmic form imposed a restriction on the relationship between the output mean 

and variance and proposed a heteroscedastic additive error model to relax this restriction. Antle 

(1983) showed Just and Pope’s proposed functional form imposed restrictions on the output 

distribution’s second and higher-order moments and domenstrated how to estimate a system of 

moment functions without cross-moment restrictions. In terms of modelling behavior, the 

                                                 
1 Describing changes in a distribution’s shape in terms of asymmetry is complicated by whether the distribution is 

negatively or positively skewed. Throughout this paper we equate skewness with the algebraic value of the third 

central moment. Thus, an increase in skewness (value of the third central moment) means a reduction in asymmetry 

if the distribution is negatively skewed, or an increase in asymmetry if the distribution is positively skewed. 
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expected utility framework is known to impose restrictions found systematically violated in 

experimental studies (Kahneman and Tversky 1979; Machina 1989; Conlisk 1996; Starmer 

2000), in part due to the way that decision makers respond differently to downside and upside 

deviations from an expected or reference value. To represent this behavior, downside risk has 

been used in the literature (Antle 1987) and quantified using the third central moment. 

Alternatively, the risk-value model was developed as a generalization of expected utility that 

uses partial moments to characterize decision makers’ differential responses to downside and 

upside deviations (Jia, Dyer and Butler 2001; Delquie and Cillo 2006). Antle (2010) 

demonstrated that partial moments provide a more flexible representation of asymmetric 

distributions than do full moments, and showed how partial moment functions can be estimated 

and used to analyze production risk behavior with a risk-value model. 

We contribute to this literature in four ways. First, we show how the full moment and partial 

moment models can be used to characterize the effects of climate on production risk. Second, we 

use farm-level panel data that can detect the farm-level, intra-seasonal interactions between 

management and yield and net return outcomes. Using farm-level data avoids the biases in 

aggregated data caused by averaging out farm-level variation (Fezzi and Bateman 2015), and is 

thus more appropriate for analysis of production risk. Third, we utilize seasonal data (spanning 

the winter wheat growing season of fall to early summer) to represent climate impacts, rather 

than annual average or growing-season average measures of climate that may mask the within-

growing-season effects on crop growth that have been demonstrated in agronomic research. 

Lastly, we use both moment-based (expected utility and risk-value) decision models as well as 

visualization of outcome distributions to interpret impacts of climate change. Visualization of 
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changes in outcome distributions provides a way to interpret climate impacts without imposing 

assumptions on farmers’ risk attitudes. 

Our results show that climate measures, including mean total precipitation, growing degree-

days and freezing degree-days, have differing effects at different stages of the growing season on 

the mean and high-order moments of winter wheat yield and farm net return distributions. These 

within-growing-season effects generally differ on the yield and net return distributions, as 

predicted by economic theory, because net returns embody economic responses that are not 

reflected in crop yields. Irrigation is shown to substantially boost irrigated farms’ income 

certainty equivalents by shifting winter wheat yield distributions outward and boosting mean net 

returns but also by reducing net return skewness and hence downside risk. Climate change 

projections – particularly mean precipitation and temperature –from twenty global climate 

models downscaled to the study region suggest a range of positive and negative effects on the 

winter wheat yield and farm net return distributions by the mid-21st century.  

Conceptual Framework 

We define a climate as a stochastic process generating a weather distribution at a specified place 

and period, so that weather is a particular realization of this underlying distribution. Weather, 

that is, represents a short-term atmospheric phenomenon including variables as temperature, 

precipitation and their interaction. We use fall temperature as an example to evaluate the 

asymmetric impacts of climate change and adaptation on farm-level output distribution. In 

Figure 1, the right horizontal axis represents average temperature in fall, 𝑤𝑤, generated from a 

climate, 𝜒𝜒(𝑤𝑤|𝜃𝜃), where 𝜃𝜃 is a vector of climate parameters that are expressed as the fall 

temperature distribution. A projected warmer climate due to climate change will shift the fall 

temperature distribution to the right, increase the frequency of medium and high temperatures, 
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and reduce the low-temperature frequency. Changes in low, medium, and high temperatures 

could have different impacts on crop production; a climate change impact assessment needs to 

take into account these differing temperature impacts. 

In the example of Figure 1, farmers use a single-output production technology, 𝑦𝑦 =

𝑓𝑓(𝑥𝑥,𝑤𝑤, 𝑒𝑒), where 𝑦𝑦 is output, 𝑥𝑥 represents management, and 𝑒𝑒 is other biophysical conditions. In 

Figure 1 the positive vertical axis represents output per unit, its upper bound 𝑦𝑦� being maximum 

output per unit, the genetically determined production frontier that we assume here to be fixed. 

Since the realization of fall average temperature is uncertain at the beginning of the growing 

season, farmers face an ex-ante output distribution conditional on climate as well as management 

and biophysical conditions. The left horizontal axis expresses the probability density of the ex-

ante output distribution, denoted by 𝜙𝜙(𝑦𝑦|𝑥𝑥,𝜃𝜃, 𝑒𝑒). This output distribution can be represented by 

its mean and high-order moments, which together describe its location and shape. 

Suppose first that farmers make no effort to adapt to climate changes. What would climate’s 

output-distribution impacts look like? In Figure 1, a projected warmer climate shifts the output 

distribution from 𝜙𝜙(𝑦𝑦|𝑥𝑥,𝜃𝜃, 𝑒𝑒) to 𝜙𝜙(𝑦𝑦|𝑥𝑥,𝜃𝜃′, 𝑒𝑒) by way of its effects on fall average temperature, 

and as represented in the parameter shift from 𝜃𝜃 to 𝜃𝜃′. In this example, a warmer climate 

negatively affects the output distribution by shifting it to the left, reducing the mean and shifting 

the higher-order moments. However, note that a warmer climate could have differing effects on 

yield and net returns at different crop growth stages, as we find in our analysis of winter wheat 

presented below.  

Farmers however can reduce climate change losses with the appropriate adaptation. They can 

adjust input use and management practices in the short term, for example by adjusting planting 

date, irrigation water use, seed variety, and crop insurance coverage. They can additionally alter 
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their long-term investments, for example by changing farmland use or irrigation technology. As 

shown in Figure 1, these adaptation strategies can shift the management level from 𝑥𝑥 to 𝑥𝑥′, 

pushing the production function rightward from 𝑓𝑓(𝑥𝑥,𝑤𝑤, 𝑒𝑒) to 𝑓𝑓(𝑥𝑥′,𝑤𝑤, 𝑒𝑒) and shifting the output 

distribution to the right from 𝜙𝜙(𝑦𝑦|𝑥𝑥, 𝑒𝑒,𝜃𝜃′) to 𝜙𝜙(𝑦𝑦|𝑥𝑥′, 𝑒𝑒,𝜃𝜃′), so that this output distribution 

assumes a higher mean and/or lower variance and skewness. 

Notice that a warmer climate in Figure 1 has an asymmetric effect on the output distribution’s 

lower and upper tails. Specifically, rising temperature in the absence of adaptation shifts the 

density from the upper to the lower tail. Probability mass becomes concentrated at lower outputs 

and the output distribution becomes right-skewed, with its greater risk of low yields or a crop 

failure. Symmetric measures of production risk, like the variance, cannot represent such 

asymmetric effects. We need a flexible model of asymmetric distributions to characterize the 

differential effects of climate change on the lower and upper tails of the output distribution. 

Economic Model 

In this section we use the expected utility model and a risk-value model to show how climate 

change can affect the welfare of a risk-averse farmer, taking into account the farmer’s decisions 

on input use. We assume farmers can optimally adjust input use (including variable input and 

capital service) to adapt to climate change. We show, with both full and partial probability 

moments, how farmer welfare can be influenced by climate change’s asymmetric effects on the 

output distribution. 

Model Setup 
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We consider a farm in which production is a single-period process on a single output. Along the 

process timeline, input use is selected, weather occurs, and output is realized. The production 

function is defined as 

(1) 𝑦𝑦 ≡ 𝑓𝑓(𝑥𝑥,𝑤𝑤, 𝑒𝑒), 

where 𝑦𝑦 is output per unit, 𝑥𝑥 is a vector of input uses, 𝑤𝑤 is a vector of weather variables, 𝑒𝑒 is a 

vector of soil conditions and farmer characteristics. We assume that: (i) the production function 

is strictly concave and twice differentiable in input use; (ii) weather 𝑤𝑤 follows distribution 

𝑤𝑤~𝜒𝜒(𝑤𝑤|𝜃𝜃), where 𝜃𝜃 is a vector of climate parameters on an individual farm; and (iii) farmers 

are risk averse as discussed below. 

We define partial moments of the output distribution in absolute terms. In particular, the 

lower 𝑗𝑗th partial moment is defined as 𝜂𝜂𝑗𝑗 ≡ 𝜂𝜂𝑗𝑗(𝑥𝑥,𝜃𝜃, 𝑒𝑒,𝑎𝑎) ≡ ∫ |𝑦𝑦 −𝑎𝑎
0

𝑎𝑎|𝑗𝑗𝜙𝜙(𝑦𝑦|𝑥𝑥, 𝜃𝜃, 𝑒𝑒)Φ(𝑥𝑥, 𝜃𝜃, 𝑒𝑒,𝑎𝑎)−1𝑑𝑑𝑦𝑦, 𝑗𝑗 ∈ ℕ, 𝑗𝑗 ≥ 2 and the upper 𝑗𝑗th partial moment as 𝜑𝜑𝑗𝑗 ≡

𝜑𝜑𝑗𝑗(𝑥𝑥, 𝜃𝜃, 𝑒𝑒,𝑎𝑎) ≡ ∫ |𝑦𝑦 − 𝑎𝑎|𝑗𝑗𝜙𝜙(𝑦𝑦|𝑥𝑥,𝜃𝜃, 𝑒𝑒)[1 −Φ(𝑥𝑥,𝜃𝜃, 𝑒𝑒,𝑎𝑎)]−1𝑑𝑑𝑦𝑦𝑦𝑦�
𝑎𝑎 , where 𝑎𝑎 is a reference level, 𝑦𝑦� 

a genetic yield potential, 𝜙𝜙(𝑦𝑦|𝑥𝑥, 𝜃𝜃, 𝑒𝑒) the output density function, Φ(𝑥𝑥, 𝜃𝜃, 𝑒𝑒,𝑎𝑎) the probability 

that output is below the reference level, and Φ(𝑥𝑥,𝜃𝜃, 𝑒𝑒,𝑎𝑎)  = ∫ 𝜙𝜙(𝑦𝑦|𝑥𝑥,𝜃𝜃, 𝑒𝑒)𝑑𝑑𝑦𝑦𝑎𝑎
0 . In the present 

study expected output is employed as the reference level, so that the central moments can be 

expressed as functions of the partial moments by way of 

(2) 𝜇𝜇𝑗𝑗 ≡ 𝜇𝜇𝑗𝑗(𝑥𝑥,𝜃𝜃, 𝑒𝑒) = (−1)𝑗𝑗𝜂𝜂𝑗𝑗Φ(𝑥𝑥,𝜃𝜃, 𝑒𝑒, 𝑎𝑎) + 𝜑𝜑𝑗𝑗[1 −Φ(𝑥𝑥,𝜃𝜃, 𝑒𝑒,𝑎𝑎)], 

where 𝜇𝜇𝑗𝑗 is the 𝑗𝑗th central moment of the output distribution. 

We assume expected output price is independent of output and define net return as  𝜋𝜋 ≡ 𝑦𝑦 −

𝑣𝑣𝑥𝑥, where v is a vector of input prices normalized by the expected output price. The goal of a 

risk-averse farmer is to maximize her value function 
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(3) max
𝑥𝑥

𝑉𝑉(𝜋𝜋; 𝑥𝑥,𝜃𝜃, 𝑒𝑒, 𝑣𝑣).  

The value function’s functional form depends on the manner of the farmer’s response to risk. In 

the next two subsections we present two decision models, based alternatively on expected utility 

and risk-value, to illustrate how climate change would affect producer welfare. 

Expected Utility Model  

In the expected utility approach, individual farmers are assumed to have a concave utility 

function depending on uncertain net return. The value function is specified as 𝑉𝑉(𝜋𝜋) = 𝐸𝐸[𝑈𝑈(𝜋𝜋)], 

where 𝐸𝐸[∙] is an expectation operator. The expected utility function instead can be approximated 

with the first three central moments of the net return distribution, that is by 𝑈𝑈(𝜇𝜇1 − 𝑣𝑣𝑥𝑥, 𝜇𝜇2, 𝜇𝜇3), 

where 𝜇𝜇1is mean output. To simplify, we treat x and θ as scalars. Define 𝑈𝑈𝑗𝑗 ≡
𝜕𝜕𝑗𝑗𝑈𝑈
𝜕𝜕𝜋𝜋𝑗𝑗

, so that the 

first-order condition of (3) is  

(4) 𝜕𝜕𝜇𝜇1 𝜕𝜕𝑥𝑥⁄ − 𝑣𝑣 = −1
2
𝑈𝑈2
𝑈𝑈1
𝜕𝜕𝜇𝜇2 𝜕𝜕𝑥𝑥⁄ − 1

6
𝑈𝑈3
𝑈𝑈1
𝜕𝜕𝜇𝜇3 𝜕𝜕𝑥𝑥⁄ . 

We can rewrite the first-order condition (4) in the elasticity form  

(4’) 𝜇𝜇1∗ − 𝑣𝑣𝑥𝑥 𝜇𝜇1⁄ = 𝑅𝑅2𝑠𝑠2𝜇𝜇2∗ − 𝑅𝑅3𝑠𝑠3𝜇𝜇3∗    ,   

where 𝜇𝜇𝑗𝑗∗ ≡
𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇𝑗𝑗
𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥

, 𝑠𝑠𝑗𝑗 ≡
𝜇𝜇𝑗𝑗

𝜇𝜇1(𝜇𝜇1−𝑣𝑣𝑥𝑥)𝑗𝑗−1 ,  and 𝑅𝑅𝑗𝑗 ≡ (−1)𝑗𝑗−1 𝑈𝑈𝑗𝑗
𝑈𝑈1

(𝜇𝜇1 − 𝑣𝑣𝑥𝑥)𝑗𝑗−1, 𝑗𝑗 = 2,3. 

Expression 𝑅𝑅2 is approximately one-half the Arrow-Pratt relative risk aversion coefficient, and 

𝑅𝑅3 is approximately one-sixth of the relative downside risk aversion coefficient (Antle 1987). 

They collectively represent the farmer’s risk attitude, reflecting her willingness to trade off a 

change in expected net return for a change in symmetric production risk (represented by the 

variance) and in downside risk (represented by the third moment), interpreted now as parameters. 

The optimal solution of equation (3) takes the form, 
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(5) 𝑥𝑥𝑜𝑜 = 𝑥𝑥𝑜𝑜(𝑣𝑣, 𝑒𝑒,𝜃𝜃), 

 𝑦𝑦𝑜𝑜 = 𝑦𝑦𝑜𝑜(𝑣𝑣, 𝑒𝑒,𝜃𝜃).  

Note that the expected utility function can be written in terms of the certainty equivalent (CE), 

namely that satisfying 𝐸𝐸[𝑈𝑈(𝜋𝜋)] ≡ 𝑈𝑈(𝐶𝐶𝐸𝐸) ≡ 𝑈𝑈(𝐸𝐸[𝜋𝜋] − 𝑅𝑅) = 𝑈𝑈(𝜇𝜇1 − 𝑣𝑣𝑥𝑥 − 𝑅𝑅), where R is the 

risk premium. The first-order condition of (3) is 

(6)  𝜕𝜕𝜇𝜇1 𝜕𝜕𝑥𝑥⁄ − 𝑣𝑣 = 𝜕𝜕𝑅𝑅 𝜕𝜕𝑥𝑥⁄ . 

Combining equations (4) and (6), we derive x’s marginal effect on the risk premium by way of  

(7) 𝜕𝜕𝑅𝑅𝑜𝑜

𝜕𝜕𝑥𝑥
=  −1

2
𝑈𝑈2
𝑈𝑈1

𝜕𝜕𝜇𝜇2
𝜕𝜕𝑥𝑥

− 1
6
𝑈𝑈3
𝑈𝑈1

𝜕𝜕𝜇𝜇3
𝜕𝜕𝑥𝑥

. 

The right-hand sides of equations (4’) and (7) can be interpreted as the marginal risk effects of 

the relevant input use, which in turn can be decomposed into variance and skewness effects. 

Note that (7) defines the reduced-form risk premium, which assumes input use is adjusted 

optimally according to equation (5) conditional on the climate variables. We emphasize here that 

input use, expected output, and risk premium, as shown in equations (4’) and (7), depend on 

climate parameters 𝜃𝜃 rather than on weather realizations, so our empirical estimates in the next 

section will be in terms of climate rather than the more derivative weather variables. 

The risk premium can be used to analyze climate change’s production risk effects. 

Considering R2 and R3 as parameters and using (7), the effect of a climate parameter on a 

farmer’s risk premium is 

(8) 𝜕𝜕𝑅𝑅𝑜𝑜

𝜕𝜕𝜕𝜕
= −1

2
𝑈𝑈2
𝑈𝑈1
�𝜕𝜕𝜇𝜇2
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜇𝜇2
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕
� − 1

6
𝑈𝑈3
𝑈𝑈1
�𝜕𝜕𝜇𝜇3
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜇𝜇3
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕
� 

                   = 𝜕𝜕𝑅𝑅𝑜𝑜

𝜕𝜕𝑥𝑥
𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕
− �1

2
𝑈𝑈2
𝑈𝑈1

𝜕𝜕𝜇𝜇2
𝜕𝜕𝜕𝜕

+ 1
6
𝑈𝑈3
𝑈𝑈1

𝜕𝜕𝜇𝜇3
𝜕𝜕𝜕𝜕
� . 



10 

 

Equation (8) shows that climate change influences the risk premium by way of its direct effects 

on the output distribution’s high-order moments as well as by way of its indirect effects, namely 

on optimal input decisions (5) and the corresponding high-order effects of those decisions. 

Risk-Value Model 

In the risk-value model, individual farmers’ value functions depend on a reference value 

interpreted here as expected net return, and on the negative and positive deviations from this 

reference value, a negative value assigned to deviations below and a positive value to those 

above this expected net return. Thus, the risk-value model provides a natural way to relate farmer 

decisions to the outcome distribution’s partial moments, which represent these asymmetric 

effects. 

To illustrate, let the risk-value model’s value function depend on the second-order partial 

moments of the net return distribution; that is, 𝑉𝑉(𝜋𝜋) = 𝑈𝑈(𝜇𝜇1 − 𝑣𝑣𝑥𝑥, 𝜂𝜂2,𝜑𝜑2). Define 𝑈𝑈2𝜂𝜂 = 𝜕𝜕𝑈𝑈
𝜕𝜕𝜂𝜂2

, 

𝑈𝑈2𝜑𝜑 = 𝜕𝜕𝑈𝑈
𝜕𝜕𝜑𝜑2

, allowing us to express the first-order condition for maximizing value function (3) as 

(9) 𝜕𝜕𝜇𝜇1 𝜕𝜕𝑥𝑥⁄ − 𝑣𝑣  =   −𝑈𝑈2𝜂𝜂
𝑈𝑈1
𝜕𝜕𝜂𝜂2 𝜕𝜕𝑥𝑥⁄ − 𝑈𝑈2𝜑𝜑

𝑈𝑈1
𝜕𝜕𝜑𝜑2 𝜕𝜕𝑥𝑥⁄ . 

We then can rewrite first-order condition (9) in the elasticity form 

(9’) 𝜇𝜇1∗ − 𝑣𝑣𝑥𝑥 𝜇𝜇1  ⁄ =   𝑠𝑠2�𝑅𝑅2𝜂𝜂𝜂𝜂2∗ − 𝑅𝑅2𝜑𝜑 𝜑𝜑2∗� , 

where 𝜂𝜂2∗ ≡
𝜕𝜕𝜕𝜕𝜕𝜕𝜂𝜂2
𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥

, 𝜑𝜑2∗ ≡
𝜕𝜕𝜕𝜕𝜕𝜕𝜑𝜑2
𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥

, 𝑅𝑅2𝜂𝜂 ≡ −𝑈𝑈2𝜂𝜂
𝑈𝑈1

𝜂𝜂2
𝜇𝜇2

(𝜇𝜇1 − 𝑣𝑣𝑥𝑥), and 𝑅𝑅2𝜑𝜑 ≡
𝑈𝑈2𝜑𝜑
𝑈𝑈1

𝜑𝜑2
𝜇𝜇2

(𝜇𝜇1 − 𝑣𝑣𝑥𝑥). 

Terms 𝑅𝑅2𝜂𝜂 and 𝑅𝑅2𝜑𝜑 represent the farmer’s risk attitude in the respectively negative and positive 

deviations from the expectation and can be interpreted as representing the psychological 

responses described as the disappointment and the elation in a risk-value model.  

The optimal solution of equation (9) takes the form 

(10) 𝑥𝑥𝑜𝑜𝑜𝑜 = 𝑥𝑥𝑜𝑜𝑜𝑜(𝑣𝑣, 𝑒𝑒,𝜃𝜃), 
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 𝑦𝑦𝑜𝑜𝑜𝑜 =  𝑦𝑦𝑜𝑜𝑜𝑜(𝑣𝑣, 𝑒𝑒,𝜃𝜃). 

As in the expected utility model, we can derive x’s marginal effect on the risk premium by 

combining equations (6) and (9): 

(11) 𝜕𝜕𝑅𝑅𝑜𝑜𝑜𝑜

𝜕𝜕𝑥𝑥
=  −𝑈𝑈2𝜂𝜂

𝑈𝑈1

𝜕𝜕𝜂𝜂2
𝜕𝜕𝑥𝑥

− 𝑈𝑈2𝜑𝜑
𝑈𝑈1

𝜕𝜕𝜑𝜑2
𝜕𝜕𝑥𝑥

, 

then obtaining climate change’s risk premium impact through 

(12) 𝜕𝜕𝑅𝑅𝑜𝑜𝑜𝑜

𝜕𝜕𝜕𝜕
= −𝑈𝑈2𝜂𝜂

𝑈𝑈1
�𝜕𝜕𝜂𝜂2
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜂𝜂2
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕
� − 𝑈𝑈2𝜑𝜑

𝑈𝑈1
�𝜕𝜕𝜑𝜑2
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜑𝜑2
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕
� 

                    = 𝜕𝜕𝑅𝑅𝑜𝑜𝑜𝑜

𝜕𝜕𝑥𝑥
𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕
− �𝑈𝑈2𝜂𝜂

𝑈𝑈1

𝜕𝜕𝜂𝜂2
𝜕𝜕𝜕𝜕

+ 𝑈𝑈2𝜑𝜑
𝑈𝑈1

𝜕𝜕𝜑𝜑2
𝜕𝜕𝜕𝜕
�. 

Note that if input-use effects on the output distribution’s full moments are symmetric, that is 

𝜇𝜇2∗ = 𝜂𝜂2∗ = 𝜑𝜑2∗ , 𝜇𝜇3∗ = 0, we can write 𝑅𝑅2 = 𝑅𝑅2𝜂𝜂 − 𝑅𝑅2𝜑𝜑. Optimal input use determined from (9’) 

then has the same risk implications as do those determined from (4’), so the risk-value and 

expected-utility models are equivalent (Antle 2010). If on the other hand the full-moment effects 

are asymmetric, the expected-utility and risk-value approaches draw generally conflicting 

pictures of the output risk and thus welfare implications of both an exogenous climate change 

and any input-use adjustments. 

Econometric Strategy 

We need an econometric strategy for estimating a covariate’s mean and high-order effects on an 

agricultural system. To find one, we specify partial moments useful for determining asymmetric 

influences on farm outcome distributions. Consider first the output function  

(13)        𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇1(𝑚𝑚𝑖𝑖𝑖𝑖,𝛽𝛽𝑖𝑖𝑖𝑖) + 𝜀𝜀𝑖𝑖𝑖𝑖 

in which 𝑦𝑦𝑖𝑖𝑖𝑖 is output at farm 𝑖𝑖 in year 𝑡𝑡, 𝑚𝑚𝑖𝑖𝑖𝑖 a vector of site and farm characteristics (including 

both time-varying and -invariant covariates), 𝛽𝛽𝑖𝑖𝑖𝑖 a vector of climate variables, 𝜀𝜀𝑖𝑖𝑖𝑖 an 
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idiosyncratic error term. The high-order central moments of the corresponding output 

distribution are 

(14) 𝜀𝜀𝑖𝑖𝑖𝑖
𝑗𝑗 = 𝜇𝜇𝑗𝑗(𝑚𝑚𝑖𝑖𝑖𝑖,𝛽𝛽𝑖𝑖𝑖𝑖) + 𝑣𝑣𝑖𝑖𝑖𝑖 ,      𝑗𝑗 =  2, 3 

and the partial-moment functions specified as 

(15) |𝜀𝜀𝑖𝑖𝑖𝑖|𝑗𝑗 = 𝜂𝜂𝑗𝑗(𝑚𝑚𝑖𝑖𝑖𝑖,𝛽𝛽𝑖𝑖𝑖𝑖) + 𝑣𝑣𝜕𝜕𝑖𝑖𝑖𝑖 if 𝜀𝜀𝑖𝑖𝑖𝑖 < 0 

 |𝜀𝜀𝑖𝑖𝑖𝑖|𝑗𝑗 = 𝜑𝜑𝑗𝑗(𝑚𝑚𝑖𝑖𝑖𝑖,𝛽𝛽𝑖𝑖𝑖𝑖) + 𝑣𝑣𝑝𝑝𝑖𝑖𝑖𝑖 if 𝜀𝜀𝑖𝑖𝑖𝑖 > 0. 

As Figure 1 illustrates we need a model flexible enough to quantify climate’s and input use’s 

asymmetric effects on this output distribution. Full moments, including those about zero and 

about the mean, as well as partial moments can be used to do so. But full moments cannot 

capture differential effects on the lower and upper tails as flexibly as partial moments can. 

Negative and positive partial moments involve twice as many parameters as the corresponding 

full moment does, providing a flexibility in the choice of subsets of parameters to represent the 

response of the lower and upper tails of the distribution to changes in exogenous variables. Thus, 

partial moments are likely to provide a better representation of asymmetric output distribution 

changes than full moments do. This comes at the cost of additional parameters, a minor cost if 

the observations are adequate. For comparative purpose we will use equations (14) and (15) to 

develop both a central- and a partial-moment approach to both of expected utility and a risk-

value model of climate and irrigation effects.  

Mean-function specification is important to the properties of the equation (13) residuals and 

hence to the properties of the partial- and full-moment functions. Tack, Harri and Coble (2012) 

suggested avoiding this problem by approximating its density function with the second and 

higher-order moments about zero. However, there are several arguments against using such high-

order moments. First, because misspecifying the mean contaminates the estimated distribution 
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whether or not high-order moments are biased. A good approximation to the mean function is 

important even if bias is absent. Second, because Taylor series models must be expanded about 

the point of approximation, they are valid only in the convergence radius, and zero is an 

unnatural point of approximation for yields or short-run net returns. Third, with output 

distributions bounded from below at zero, a risk-value model could never be expressed in terms 

of moments about zero.  

Accordingly, to implement both full and partial moment estimation, we use a flexible 

functional form for the mean function, quadratic in such continuous variables as climate and 

irrigation and farmer socio-economic characteristics as well as soil conditions described below. 2 

We use a linear model for third-central-moment functions, where the dependent variable is 

comprised of cubed residuals taking on positive and negative values. A constant-elasticity 

exponential form was specified for second-order full and absolute partial-moment functions, for 

which dependent variables are powers of positive absolute residuals. Like other studies in the 

climate change and agricultural literatures (Mendelsohn and Rosenberg 1994; Lobell, Cahill and 

Field, 2007; Schlenker and Roberts 2009; Olen, Wu and Langpap 2016), we rely on spatial and 

temporal variations in climate conditions to establish the relationship between historical climate 

and the mean and high-order moments of the output distribution by using pooled cross-sectional 

regressions.  

Consistent estimates of the mean function in equation (13) generate the residuals that are used 

to consistently estimate the high-order central and partial moment functions in equations (14) 

and (15). The error terms in (14) and (15) are heteroscedastic and correlated across moments. To 

                                                 
2 We also include interactions between irrigation and precipitation variables in estimating the mean and central and 

partial moment functions. To avoid multicollinearity, we exclude interactions among climate variables. 
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account for heteroscedasticity and the cross-equation correlations, we use the heteroscedastic-

consistent seemingly unrelated regression approach to jointly estimate second- and third-order 

moment functions. As in Antle (2010), joint estimation of equation (15)’s lower and upper partial 

moment functions also allows testing for the distributional symmetry necessary for ascertaining 

the equality of the partial moment parameters.3  

Although irrigation in the West is heavily subsidized and construction and operating costs 

rose substantially during the study period (Schlenker, Hanemann and Fisher 2005), selection bias 

for irrigation may be present. We control for such bias by including the distance from the given 

observation’s zip-code center to the nearest river. Wheat and input prices are excluded because 

they vary little in Pacific Northwest in a given census year. State by year fixed-effects are instead 

included to capture crop and factor price effects. 

Multiproduct Farms  

We have so far simplified our discussion to a single crop in a single production period. But in the 

PNW region analyzed below, annual cropping systems in the higher rainfall areas typically 

involve a rotation of winter wheat, spring wheat, and summer crops over a three- or four-year 

period. Some crop farms also raise livestock. To generalize the single-product output distribution 

utilized thus far, we aggregate multiple outputs in value terms and then use farm-level net return 

to model climate’s impact on multiproduct agricultural systems.4 In this way, farmers make 

                                                 
3 Econometric climate-change impact assessments exclude CO2 effects (Adams 1989; Mendelson and Rosenberg 

1994; Deschenes and Greenstone 2007; Lobell, Cahill and Field 2007; Schlenker and Roberts 2009; Ortiz-Bobea 

and Just 2013; Burke and Emerick 2016), and much uncertainty remains about the interactions between temperature, 

water, and nutrients. The present study focuses on climate-determined weather effects as abstracted from CO2 

effects. 
4 An alternative solution is to use a multi-output production function, which is limited by data availability (see the 

discussion in Antle and Capalbo 2001). 
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decisions about input use to maximize economic returns among multiple production activities. 

However, we need to bear in mind that this approach only allows adjustment within the type of 

system being used, e.g., cropping systems in the application below, not systematic adaptations 

such as changes in land use from cropland to pastureland and rangeland. 

Data Sources and Summary Statistics 

We use farm-level data from the 2002, 2007 and 2012 Census of Agriculture.5 Our economic 

variables include winter wheat yield, annual farm revenue and net return, irrigated winter wheat 

acreage shares and shares of farmland enrolled in the Conservation Reserve (CRP) and Wetland 

Reserve (WRP) Programs. Social variables include farm experience, land tenure, and off-farm 

employment. The study region is confined to the U.S. Pacific Northwest. 

Panel A in Table 1 reports summary statistics for these census years. Farms with less than 50 

cropland acres are regarded as non-commercial producers and excluded. The secular rise in 

winter wheat yield and in farm net return suggests the presence of year fixed-effects due to 

technology innovations. Not shown in Table 1 is that winter wheat yields are higher on irrigated 

than non-irrigated farms. The production share of large farms in our sample also was rising 

during this period, reflecting the ongoing consolidation of the grain farming industry. 

We rely on the Gridded Soil Survey Geographic (gSSURGO) database to construct soil 

variables. The gSSURGO data are derived from the Soil Survey Geographic database, consisting 

of detailed soil geographic information in the National Cooperative Soil Survey. Zip-code level 

soil variables are generated by overlaying a zip code map onto the given gSSURGO polygon and 

                                                 
5 A farm in the Census is any operation producing and selling at least $1,000 of product in a given census year. 
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taking acreage-weighted averages of the polygons in each zip-code area. Panel B of Table 1 

summarizes the winter wheat soil variable statistics in the PNW. 

Historical weather data are derived with Abatzoglou and Brown’s (2012) Multiplicative 

Adaptive Constructed Analogs (MACA) method, which downscales such daily weather variables 

as precipitation and maximum and minimum temperature. MACA data provide daily 1979-2013 

weather data with spatial resolution of 4-km for the entire coterminous United States. The 

MACA model and data are used here to develop daily precipitation and temperature measures for 

the farmland in each zip-code area. This is accomplished for each grid cell by overlaying a land 

use map on the MACA data, then taking the acreage-weighted average across that zip-code’s 

farmland. 

Daily precipitation and temperature data are used to calculate total precipitation, growing 

degree-days, and freezing degree-days for three crop growth stages: fall (September to 

November), winter (December to February), and spring (March to June). Growing degree-day 

and freezing degree-day variables are constructed as a step function of daily average 

temperature.6 Seasonal growing and freezing degree-days variables are then calculated by 

summing the daily measures across each season. Precipitation and temperature normals (or 

climate) are constructed by taking the 22-year averages of seasonal total precipitation and 

growing and freezing degree-days. Extreme-high-temperature events are left out of this study for 

two reasons: (i) their spatial variation during the growing season is inadequate; and (ii) the 35℃ 

                                                 
6 Following Deschenes and Greenstone (2007), daily average temperature below 0℃ generates zero growing degree-

day; a daily average temperature between 0℃ and 23℃ generates the number of growing degree-days above 0℃; a 

daily average temperature above 23℃ generates 23 growing degree-days. Similarly, a daily average temperature 

below 0℃ generates the number of freezing degree-days below 0℃ (in absolute values); a daily average 

temperature above 0℃ generates zero freezing degree-day. 
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threshold at which they damage winter wheat rarely occurs in the PNW. Panel C of Table 1 gives 

climate-variable summary statistics for winter wheat farms in the PNW.  

Results and Discussion 

We report marginal effects of climate and irrigation on the mean and high-order moments of 

winter wheat yield and farm net return distributioins in the elasticity form in Tables 2 and 3. 

Appendixes A1 and A2 report marginal effects of all covariates in the elasticity form. Lower 

third-partial-moments in Tables 2 and 3 are estimated in absolute terms, so that the elasticities 

show opposite effects on the third central moments of winter wheat yield and farm net return 

distributions. 

The Mean Effects of Climate and Irrigation 

Columns (1) in Tables 2 and 3 present elasticity estimates of mean winter wheat yield and farm 

net return functions. In Table 2, mean growing degree-days representing medium temperature 

has a negative yield effect in fall (-1.39) and a positive yield effect in spring (1.00), and the yield 

effect in winter is positive but statistically insignificant. By contrast, mean freezing degree-days 

representing extreme low temperature shows opposite mean effects: a positive yield effect in fall 

and a negative yield effect in winter and spring. This is intuitive because early emergence due to 

a warmer fall causes winter wheat susceptible to winterkill, while a warmer spring favors winter 

wheat growth. A warmer winter’s effect on winter wheat yield is a combination of two contrary 

effects: a cold winter lowers the survival rate of winter wheat but kills wheat pests and diseases. 

In Table 2, mean precipitation also shows distinct effects on winter wheat yield across 

seasons: a negative yield effect in fall and winter but a positive yield effect in spring, although 

the yield effect in fall and winter are statistically insignificant. This reflects the fact that a wetter 
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fall is bad for planting and seeding winter wheat; a wetter spring is beneficial for winter wheat 

growth, and a wetter winter’s yield effect depends on temperature. 

Table 3 shows that climate variables have different mean effects on farm net return compared 

to winter wheat yield. The seasonal effects of mean growing degree-days on farm net return are 

substantially larger than on winter wheat yield in terms of magnitude: a negative net return effect 

in fall (-2.66) and winter (-1.04), and a positive effect in spring (4.25). Mean precipitation also 

shows larger seasonal effects on farm net return than on winter wheat yield. Furthermore, mean 

freezing degree-days has shown opposite mean effects on farm net return and winter wheat yield: 

an increase in spring mean freezing degree-days has a negative yield effect but a positive net 

return effect. 

Climate variables’ differing effects on farm net return and winter wheat yield can be 

explained by two factors. First, wheat farms have more adaptive strategies to increase 

profitability than improving winter wheat yield, e.g., rotating winter wheat with spring wheat and 

other crops as well as raising livestock. These management practices can reduce negative effects 

or increase positive effects of climate change on farm net return. Second, climate’s effect on 

farm net return embodies economic responses on crop price as well as crop yield. Crop price can 

mitigate climate change’s yield effect on net return through a negative relationship between yield 

and crop price. 7 

                                                 
7 The prices of major field crops including wheat are determined by global markets, and thus wheat price in the 

PNW is fixed at the global level and less likely to be affected by climate change occurring within this region. 

However, summer crops and feed crops such as peas and hay are traded at the regional or local level, and thus their 

prices are more responsive to regional climate change and impose a larger impact on farm net return compared to 

wheat price. 
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The irrigation elasticity of the mean winter wheat yield in Table 3 is positive and statistically 

significant. In interpreting the irrigation effect, keep in mind that we estimate a reduced-form 

function for winter wheat production, so other input use is assumed to be optimally adjusted by 

equations (5) and (10) when irrigated winter wheat acreage increases. This implies that a rise in 

irrigated winter wheat acreage shifts the production function outwards by increasing input use 

like fertilizer. Irrigation also shows a positive effect on the mean farm net return, with a 

relatively larger effect (0.24) compared to the effect of irrigation on winter wheat yield (0.17). 

This may be because irrigated winter wheat farms can reduce fallow acreage or continuously 

grow crops in rotation. These positive mean yield and net return effects are consistent with 

positive price premiums associated with land values due to irrigation water use and irrigation 

water rights (Faux and Perry 1999; Buck, Auffhammer and Sunding 2014). 

The High-order Moment Effects of Climate and Irrigation 

Columns (2)-(7) in Tables 2 and 3 present the elasticity estimates of marginal effects on the high-

order moments of winter wheat yield and farm net return distributions. The p-values are 

calculated for the symmetry test for the equality of the partial moment parameters. Symmetry 

restrictions are rejected for the second and third partial moments. This implies that input use and 

climate have asymmetric effects on the lower and upper tails of winter wheat yield and farm net 

return distributions. Furthermore, the 𝑅𝑅2 statistics show that the partial moment functions fit the 

data better than the central moment functions. 

In Table 2, climate variables show asymmetric effects on the winter wheat yield distribution. 

We use fall mean growing degree-days as an example. Mean growing degree-days in fall has a 

positive effect on the yield distribution’s lower partial moments and a negative effect on the 

upper partial moments. An increase in fall mean growing degree-days expands the yield 
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distribution’s lower tail and reduces the upper tail, resulting in a reduction in the yield 

distribution’s skewness. By contrast, central moment parameters’ estimates show an increase in 

the yield distribution’s skewness due to a warmer fall. Mean precipitation and freezing degree-

days also present differential effects on the yield distribution’s lower and upper tails. These 

results suggest that partial moments are better at capturing asymmetric effects of climate change 

on the output distribution as Figure 1 illustrated. 

Climate variables have distinct seasonal effects on the winter wheat yield distribution’s high-

order moments in Table 2. In contrast to fall mean growing degree-days, a rise in winter and 

spring mean growing degree-days reduces probability mass concentrated on the yield 

distribution’ lower tail, expands the upper tail, and thus increases the distribution’s skewness. 

Similarly, mean precipitation and freezing degree-days present different effects on the yield 

distribution across seasons.  

Climate variables in general show different effects on the farm net return distribution’s high-

order moments as compared to the winter yield distribution in Tables 2 and 3. Again, we use fall 

mean growing degree-days as an example. Mean growing degree-days in fall increases the net 

return distribution’s skewness but reduces the yield distribution’s skewness. Moreover, the yield 

and net return distributions’ skewness effects differ in size due to an increase in mean freezing 

degree-days, although the two outcome distributions both become less negatively skewed in fall, 

more negatively skewed in winter and more positively skewed in spring. 

Irrigation also presents different high-order moment effects on the winter wheat yield and 

farm net return distributions in Tables 2 and 3. The two outcome distributions’ variances are 

increasing in irrigation, but with a substaintial larger increase on the net return distribution. Also, 

irrigation has asymmetric effects on the two outcome distributions’ lower and upper tails, but 
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with a larger reduction in the yield distribution’s skewness. Thus, both the yield and net return 

distributions impose an increasing risk from irrigation due to rising variance and declining 

skewness.  

Overall, Tables 2 and 3 show that climate variables have different seasonal effects on the 

winter wheat yield and farm net return distributions’ high-order moments, and these effects in 

general differ for the two outcome distributions. Climate and irrigation also show asymmetric 

effects on the two outcome distributions’ lower and upper tails. With asymmetric effects, we 

can’t interpret a rise in variance as necessarily increasing risk. We need decision models and 

visualized distributions to evaluate climate’s and irrigation’s risk attributes by combining 

variance and skewness effects. 

Risk Attributes of Climate and Irrigation 

We use two approaches to evaluate climate and irrigation’s risk attributes. We first use two 

decision models (expected utility and risk-value) to quantify climate and irrigation’s marginal 

risk effects. We set the Arrow-Pratt relative risk aversion coefficient to 1 and the downside risk 

aversion coefficient to 2 in the expected utility model, and 𝑅𝑅2𝜂𝜂 = 1, 𝑅𝑅2𝜑𝜑 = 0.5 in the risk-value 

model as in Antle (2010).  

Table 4 presents climate’s and irrigation’s marginal risk effects in the elasticity form under 

the two decision models. Climate variables’ risk attributes vary across seasons and are consistent 

in most cases under the risk-value model, except for fall and winter mean growing degree-days. 

Mean precipitation is risk-increasing in fall but risk-decreasing in winter and spring; freezing 

degree-days is risk-increasing in winter but risk-decreasing in fall and spring. Fall and winter 

mean growing degree-days’ risk implications depend on the outcome distribution used. This 
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reflects the farm net return distribution including economic responses from other crops and 

livestock as well as output prices and production costs excluded from winter wheat yield, as we 

discussed above on climate’s mean effects on winter wheat yield and farm net return. 

Table 4 also shows that climate variables’ risk implications may depend on the decision 

model used. We use spring mean growing degree-days as an example. Spring mean growing 

degree-days is risk-decreasing under the risk-value model but risk-increasing under the expected 

utility model. Since the choice of a suitable decision model is based on farmers’ risk behavior, it 

is of value to use visualized distributions to evaluate climate and input use’s risk implications 

without imposing any abitrary assumptions on farmers’ risk behavior as we discussed below. 

Both the expected utility and risk-value models show that irrigation is risk-increasing 

according to winter wheat yield and farm net return distributions in Table 4. It is important to 

keep in mind that irrigation has a large positive mean effect on winter wheat yield and farm net 

return, so that irrigation’s net effect on the certainty equivalent (mean effect minus risk 

premium) is positive. This implies that irrigated farms switch into irrigated agriculture because 

of increased productivity and profitability, rather than mitigating production risk (Koundouri, 

Nauges and Tzouvelekas 2006). 

Next, we visualize changes in winter wheat yield and farm net return distributions due to 

climate change and irrigation. We use the Pearson system to simulate the ex-ante distributions of 

winter wheat yield and farm net return (Johnson, Kotz and Balakrishnan 1994). The Pearson 

system includes a variety of distributions in the exponential family and requires the first four 

moments to simulate a distribution. We estimate and compute the first three moments based on 

partial moment parameters in Tables 2 and 3 using equation (2) and set the kurtosis parameters at 

the sample mean. 
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Figure 2 presents irrigation’s effects on winter wheat yield and farm net return distributions 

for irrigated farms. Irrigation shifts the yield distribution to the production frontier, and this 

mean-increasing effect dominates the variance and skewness effects. By contrast, irrigation 

substantially increases the net return distribution’s variance with a large mass concentrated on 

the upper tail. These results suggest a larger risk-increasing effect of irrigation on the net return 

distribution than on the yield distribution, which is consistent with findings using the two risk 

behavior models in Table 4. Also, these results are consistent with the conventional wisdom of 

production risk—higher returns associated with higher risk. 

We use mean growing degree-days as an example to visualize climate change’s effects on 

winter wheat yield and farm net return distributions as it shows the strongest effects among 

climate variables in Tables 2 and 3. In Figure 3, we simulate the seasonal effects of an increase 

of 150 growing degree-days for rainfed farms. A warmer fall or spring shows a mean-shifting 

effect on the yield distribution with almost no risk effect, while a warmer winter increases the 

production risk on yield due to increased variance and skewness. Regarding the farm net return 

distribution, a warmer winter or spring substantially increases the production risk from increased 

variance, while a warmer fall reduces the production risk. These results suggest that a warmer 

climate has distinct seasonal effects, and these effects generally differ on the winter wheat yield 

and farm net return distributions. 

Future Climate Impacts 

Our prediction relies on future climate projections from 20 global climate models in the fifth 

Coupled Model Intercomparison Project (CMIP5) under Representative Concentration Pathway 

(RCP) 4.5, representing a medium greenhouse gas emission scenario with moderate climate 
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policy. Daily climate model output is downscaled for both historical (1950-2012) and future 

(2015-2050) periods with the MACA method (Abatzoglou and Brown 2012). 

Most climate projections suggest the PNW will experience warmer and wetter growing 

seasons from September to June by 2050 compared to 2012 (Figure 4). Mean growing degree-

days on average has a large increase in fall, but mean freezing degree-days shows a large 

increase in winter (Figure 5). A substantial uncertainty exists in projecting future climate using 

20 global climate models. 

Figure 6 presents projected future climate change’s impacts on winter wheat yield and farm 

net return distributions.8 On average, the winter wheat yield and farm net return distributions 

become positively skewed with small increases in variances but almost no change in means. This 

implies that winter wheat farms on average will experience a small negative effect due to climate 

change. However, there is a substantial uncertainty in projected winter wheat yield and farm net 

return distributions under climate change with a wide range of positive and negative effects on 

production risk.9  

Conclusions 

We developed a conceptual framework to describe the relationships between climate change and 

adaptation with the location and shape of the output distribution. A partial-moment-based 

approach was used in this study to evaluate asymmetric risk effects of climate change and 

                                                 
8 17 global climate model projections are used for simulating farm net return distributions, and the other three 

projections are excluded because they produce extreme climates and generate irregular farm net return distributions.  
9 Our projections exclude CO2 effects. Results from Antle et al. (2017) show that climate change, in combination 

with CO2 effects, will increase average winter wheat yields and farm net returns by 24% for the PNW dryland 

wheat-based systems by 2050 under RCP 4.5.  
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irrigation on the winter wheat yield and farm net return distributions for PNW winter wheat 

farms. Expected utility and risk-value models as well as distribution visualizations were used to 

examine climate and irrigation’s risk implications. 

We find that climate measures, including mean precipitation, growing degree-days and 

freezing degree-days, have distinct seasonal effects on winter wheat yield and farm net return 

distributions’ mean and high-order moments. Our simulations show that irrigation substantially 

increases irrigated farms’ certainty equivalent by shifting the yield distribution to the production 

frontier and boosting mean net returns but also reducing net return skewness and hence downside 

risk. We project that, by the mid-21st century, PNW winter wheat farms on average will 

experience a small negative effect on the winter wheat yield and farm net return distributions due 

to increased production risk from rising variance and skewness. Simulated future climate change 

impacts on the two outcome distributions are uncertain due to climate modelling uncertainty, 

resulting in a wide range of positive and negative effects. 

This study improves scientific understanding of climate change impacts on agricultural 

systems, in particular on production risk (Adams 1989; Mendelson and Rosenberg 1994; 

Deschenes and Greenstone 2007, 2012; Lobell, Cahill, and Field 2007; Schlenker and Roberts 

2009; Ortiz-Bobea and Just 2013; Burke and Emerick 2016). Our analysis complements Tack, 

Harri and Coble (2012) and provides new insights by estimating climate’s asymmetric 

production risk effects at farm level. Our results show that with good data it is possible for 

econometric models to represent seasonal effects (Tack, Barkley and Nalley 2015); process-

based models (integrated assessment models) represent weather effects on a daily basis and 

hence capture seasonal effects. An advantage of econometric models is that they are better at 

representing risk, because process-based models so far exclude pests and diseases and other 
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management aspects that would affect risk on crop production. A topic for future work would be 

to compare the two approaches in modelling climate change impact on production risk. 

Several policy implications can be drawn from this paper. First, our results can help inform 

and design climate adaptation policies. With climate’s asymmetric effects on crop yield and farm 

net return distributions, agricultural investments in climate adapation should reduce economic 

losses and production risk (or increase economic gains) from climate change. It is necessary to 

consider production risk effects when evaluating potential climate adaptation policies and 

technologies. Second, our results show climate’s effects on crop yield and net return distributions 

depending on crop growth stages within the growing season. Farmers’ optimal climate 

adaptation strategies should reflect differences among crop growth stages. Third, climate’s risk 

implications on farmers’ certainty equivalent depend on the decision model used and hence risk 

behavior assumptions. Policy-makers need to understand farmers’ risk behavior to evaluate 

climate change and adaptation’s production risk effects. Our visualized distribution is a desirable 

tool for farmers making their management decisions without imposing any assumptions on their 

risk behavior.      

In interpreting findings from our econometric results it is important to keep in mind that 

factors such as CO2 effects are excluded from this study. Also, the projections do not incorporate 

changes in biophysical, socio-economic conditions, technologies, and policies in the future world 

accompanied with climate change. Future research need to combine statistical approaches with 

process-based approaches to examine rising CO2 level’ effects on winter wheat production, and 

to design scenarios with consistent climate, biophysical, socio-economic conditions, 

technologies, and policies for projecting climate change’s impacts in the future world. Moreover, 

irrigation in the historical period was subsidized by the government in the western US, and 
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irrigation water rights are regulated by the law, so that the percent of irrigated winter wheat 

acreage is fixed in the projections. Future research need to address this issue and explicitly model 

the decision making on irrigation in the context of climate change.  
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Figure 1: A conceptual framework of the impacts of climate change and adaptation on the 

output distribution 
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Figure 2: Simulated effects of irrigation on the distributions of winter wheat yield and farm 

net return for irrigated farms 
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(a) Fall 

 
(b) Winter 

 
(c) Spring 

 

Figure 3: Simulated effects of seasonal mean growing degree-days on the distributions of 
winter wheat yield and farm net return for rainfed farms 
Note: dashed lines indicate increases in the seasonal mean growing degree-days.   
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Figure 4: Projected changes in mean growing season total precipitation and average 

temperature by 2050 from 2012 

Note: each dot represents a projection from a particular global climate model in the CMIP 5 

under RCP 4.5. 
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Figure 5: Projected changes in seasonal climate variables by 2050 from 2012 

Note: each dot represents a projection from a particular global climate model in CMIP 5 under 

RCP 4.5. 
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Figure 6: Impacts of climate change on the winter wheat yield and farm net return 

distributions for the U.S. Pacific Northwest wheat-based systems by 2050 under RCP 4.5  

Note: each dashed grey line represents a predicted outcome distribution from a future climate 

projection. 
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Table 1: Summary Statistics of Winter Wheat Farms in the U.S. Pacific Northwest 
Variables 2002  2007  2012  Definition 

Mean Std. Mean Std. Mean Std. 
A. Economic and Social 
Variables 

       

Winter wheat yield 58.3 30.7 64.0 30.4 72.1 32.3 Winter wheat yield (bushel/acre) 
Farm net return 77.9 174.6 83.9 173.9 103.4 199.9 Farming net return over farmland acreage ($/acre) 
Large farm 0.6 0.5 0.8 0.4 0.9 0.3 Total annual farm revenue of over $250,000 (1 = yes, 0 = no) 
CRP and WRP programs 0.1 0.2 0.1 0.2 0.1 0.1 Share of cropland under CRP and WRP programs 
Experience 24.6 13.0 27.5 13.1 28.5 13.2 Farming experience (years) 
Land tenure  0.8 0.4 0.8 0.4 0.8 0.4 Farm fully or partially owned by operator (1 = yes, 0 = no) 
Farming occupation 1.0 0.2 0.9 0.2 1.0 0.2 Operator occupation (1 = farming, 0 = employed off-farm) 
Irrigation 18.8 37.5 20.7 39.0 21.9 39.7 Percent of irrigated winter wheat acreage  
Distance 33.2 22.1 33.7 22.1 32.6 22.1 Distance from zip-code center to the nearest river (km) 
        
B. Soil variables        
Slope 15.5 8.0 15.4 8.0 15.2 8.2 Average land slope in percent  
Sand content 26.4 12.0 26.4 12.0 26.6 11.8 Average percent of particles with 0.05-2 mm in diameters  
Soil organic content 7.3 3.9 7.3 3.8 7.4 4.0 Average soil organic content in 1 meter depth (kg C/m2) 
Wetland index  2.0 4.7 1.9 4.6 2.3 5.5 Index of wetland percent  
Soil loss tolerance factor 3.6 0.8 3.6 0.8 3.6 0.8 Soil loss tolerance factor (tons/acres/year) 
        
C. Climate variables        
Fall Precipitation    4.1 1.9 3.7 1.8 3.8 2.2 22-year averaged total precipitation in fall (inch) 
Winter Precipitation  5.2 3.0 5.0 2.7 5.5 3.6 22-year averaged total precipitation in winter (inch) 
Spring Precipitation  5.6 2.3 5.4 2.2 5.7 2.5 22-year averaged total precipitation in spring (inch) 
Fall GDD 8.9 1.0 8.9 1.0 9.1 1.0 22-year averaged growing degree-days in fall (100 degree-days) 
Winter GDD 1.6 0.9 1.6 0.9 1.7 1.0 22-year averaged growing degree-days in winter (100 degree-days) 
Spring GDD 13.5 1.5 13.6 1.5 13.3 1.6 22-year averaged growing degree-days in spring (100 degree-days) 
Fall FDD 0.3 0.1 0.3 0.1 0.2 0.1 22-year averaged freezing degree-days in fall (100 degree-days) 
Winter FDD 1.9 0.9 1.9 1.0 1.6 1.0 22-year averaged freezing degree-days in winter (100 degree-days) 
Spring FDD 0.0 0.1 0.1 0.1 0.1 0.1 22-year averaged freezing degree-days in spring (100 degree-days) 
Observations 5449 4542  4415   

Note:  Farm net return is in 2012 dollars. The growing period for winter wheat is from September to June (inclusive) with three 
different seasons: fall (Sep-Oct-Nov), winter (Dec-Jan-Feb) and spring (Mar-Apr-May-Jun).      
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Table 2: Elasticity Estimates of the Mean and High-order Moment Functions for Winter Wheat Yield 
 

Variables 

Mean Variance 3rd central moment Lower 2nd moment Upper 2nd moment Lower 3rd moment Upper 3rd moment 

mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat 

Fall precipitation  -0.10 -1.68 0.17 0.88 -13.00 -2.15 0.80 3.22 -0.49 -1.80 0.89 2.72 -0.47 -1.26 

Winter precipitation -0.05 -1.45 -0.10 -0.94 6.95 2.06 -0.25 -1.91 0.13 0.83 -0.27 -1.54 0.18 0.84 

Spring precipitation 0.26 7.63 0.39 2.76 6.66 1.77 -0.35 -2.01 0.67 3.45 -0.43 -1.82 0.61 2.22 

Fall GDD -1.39 -6.39 1.35 1.29 5.23 0.25 4.23 3.60 -4.35 -3.13 6.06 3.52 -5.16 -2.49 

Winter GDD 0.04 0.86 -0.08 -0.59 0.19 0.06 -0.07 -0.43 0.75 4.03 -0.04 -0.20 0.86 3.20 

Spring GDD 1.00 6.75 0.74 1.16 10.45 0.78 -2.03 -2.71 3.79 4.61 -3.24 -2.95 4.96 4.13 

Fall FDD 0.03 0.52 -0.23 -1.13 1.78 0.39 -0.17 -0.81 -0.37 -1.45 -0.36 -1.24 -0.27 -0.74 

Winter FDD -0.11 -1.84 -0.11 -0.69 -4.42 -1.17 0.22 1.14 -0.33 -1.60 0.51 1.84 -0.82 -2.78 

Spring FDD -0.05 -3.74 0.18 5.75 1.30 1.74 0.10 3.20 0.25 7.13 0.14 3.41 0.35 7.03 

Irrigation 0.17 29.48 0.22 18.16 -0.71 -1.84 0.24 15.26 0.08 4.75 0.35 15.48 0.08 3.39 

               
Intercept Yes    Yes   Yes   Yes   Yes   Yes   Yes   

Socio-economic variables Yes    Yes   Yes   Yes   Yes   Yes   Yes   

Soil variables Yes    Yes   Yes   Yes   Yes   Yes   Yes   

State by Year FE Yes  
 

Yes 
 

Yes 
 

Yes 
 

Yes 
 

Yes 
 

Yes 
 

Asymmetry test (p-value) 
    

  (<0.001)   (<0.001) 
  

R-square 0.6443  0.0654  0.0051  0.0895  0.0712  0.1041  0.0765 
 

Sample mean 75  373  750  367  378  12034  12094  

Observations 14,406   14085  14085  6622  7463  6622  7463   

Note: The lower third partial moment is estimated as an absolute moment, so the elasticities show opposite effects on the third central 
moment. Socio-economic variables used in estimation include whether a farm is classified as a large farm, share of farmland enrolled 
in the CRP and WRP programs, years of farming experience, land tenure, and off-farm employment. Soil variables used in estimation 
include slope, sand content, soil organic content, wetland index, and soil loss tolerance factor.  
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Table 3: Elasticity Estimates of the Mean and High-order Moment Functions for Winter Wheat Farm Net Return 
 

Variables 

Mean Variance 3rd central moment Lower 2nd moment Upper 2nd moment Lower 3rd moment Upper 3rd moment 

mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat 

Fall precipitation  -0.88 -3.00 0.99 4.51 -5.68 -2.72 0.67 2.81 0.55 1.94 0.77 2.26 0.40 1.06 

Winter precipitation 0.52 2.90 -0.33 -2.52 4.41 3.71 -0.61 -4.28 0.14 0.91 -0.96 -4.59 0.40 2.01 

Spring precipitation 0.65 3.98 -0.49 -2.57 2.28 1.74 -0.18 -0.89 -0.05 -0.23 0.02 0.07 0.10 0.34 

Fall GDD -2.66 -2.56 -4.34 -3.74 4.97 0.67 -8.11 -6.69 -1.26 -0.89 -10.80 -5.73 -2.26 -1.09 

Winter GDD -1.04 -5.06 0.29 1.96 -1.05 -0.92 1.15 7.61 -0.16 -0.86 1.74 7.91 -0.15 -0.58 

Spring GDD 4.25 6.01 4.08 6.01 1.99 0.42 2.98 3.96 3.47 4.26 3.24 2.71 5.10 4.32 

Fall FDD -0.12 -0.50 -1.42 -6.78 2.36 1.49 -2.68 -10.98 -0.49 -1.93 -4.36 -11.69 -0.48 -1.33 

Winter FDD -1.22 -4.29 0.82 4.28 -2.26 -1.72 2.09 9.46 -0.01 -0.02 3.49 10.04 -0.11 -0.36 

Spring FDD 0.15 2.28 0.18 3.96 0.06 0.22 0.09 1.76 0.18 3.99 0.13 1.57 0.22 3.60 

Irrigation 0.21 7.24 0.43 24.08 0.11 0.84 0.53 23.77 0.41 21.38 0.71 15.16 0.51 16.83 

               
Intercept Yes    Yes   Yes   Yes   Yes   Yes   Yes   

Socio-economic variables Yes    Yes   Yes   Yes   Yes   Yes   Yes   

Soil variables Yes    Yes   Yes   Yes   Yes   Yes   Yes   

State by Year FE Yes  
 

Yes 
 

Yes 
 

Yes 
 

Yes 
 

Yes 
 

Yes 
 

Asymmetry test (p-value) 
     

 (<0.001)   (<0.001) 
  

R-square 0.1426 0.1996 0.0060 0.2051 0.2296 0.1367 0.1784 

Sample mean 151 40535 3497949 33713 47500 13926480 21287105 

Observations 14406  14096  14096  7121  6975  7121  6975   

Note: The lower third partial moment is estimated as an absolute moment, so the elasticities show opposite effects on the third central 
moment. Socio-economic variables used in estimation include whether a farm is classified as a large farm, share of farmland enrolled 
in the CRP and WRP programs, years of farming experience, land tenure, and off-farm employment. Soil variables used in estimation 
include slope, sand content, soil organic content, wetland index, and soil loss tolerance factor.  
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Table 4: Elasticities of Risk Premium with Respect to Climate and Irrigation 

VARIABLES 
Expected Utility Model Risk-value Model 

mean t-stat mean t-stat 
  

   

A. Winter Wheat Yield Distribution     

Fall Precipitation 0.09 0.08 0.41 4.16 
Winter Precipitation  -0.05 -0.08 -0.13 -2.35 
Spring Precipitation 0.02 0.03 -0.28 -4.03 
Fall GDD 0.16 0.04 2.75 5.59 
Winter GDD -0.01 -0.02 -0.20 -3.12 
Spring GDD 0.05 0.02 -1.80 -5.94 
Fall FDD -0.04 -0.05 0.00 -0.03 
Winter FDD 0.01 0.01 0.22 2.88 
Spring FDD  0.02 0.13 -0.03 -2.14 
Irrigation 0.03 0.48 0.08 12.79 
     
B. Farm Net Return Distribution     
Fall Precipitation 4.48 3.67 0.96 0.51 
Winter Precipitation  -2.92 -4.20 -5.05 -4.78 
Spring Precipitation -1.91 -2.44 -0.60 -0.40 
Fall GDD -8.31 -1.85 -31.80 -3.11 
Winter GDD 0.96 1.43 7.12 5.56 
Spring GDD 4.02 1.44 -9.18 -1.52 
Fall FDD -3.14 -3.35 -13.13 -7.01 
Winter FDD 2.32 2.95 12.67 7.81 
Spring FDD  0.20 1.23 -0.55 -1.52 
Irrigation 0.48 6.26 0.32 1.76 
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Appendix A1: Elasticity Estimates of the Mean and High-order Moment Functions for Winter Wheat Yield 
 

Variables 
Mean Variance 3rd central moment Lower 2nd moment Upper 2nd moment Lower 3rd moment Upper 3rd moment 

mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat 
Fall precipitation  -0.10 -1.68 0.17 0.88 -13.00 -2.15 0.80 3.22 -0.49 -1.80 0.89 2.72 -0.47 -1.26 
Winter precipitation -0.05 -1.45 -0.10 -0.94 6.95 2.06 -0.25 -1.91 0.13 0.83 -0.27 -1.54 0.18 0.84 
Spring precipitation 0.26 7.63 0.39 2.76 6.66 1.77 -0.35 -2.01 0.67 3.45 -0.43 -1.82 0.61 2.22 
Fall GDD -1.39 -6.39 1.35 1.29 5.23 0.25 4.23 3.60 -4.35 -3.13 6.06 3.52 -5.16 -2.49 
Winter GDD 0.04 0.86 -0.08 -0.59 0.19 0.06 -0.07 -0.43 0.75 4.03 -0.04 -0.20 0.86 3.20 
Spring GDD 1.00 6.75 0.74 1.16 10.45 0.78 -2.03 -2.71 3.79 4.61 -3.24 -2.95 4.96 4.13 
Fall FDD 0.03 0.52 -0.23 -1.13 1.78 0.39 -0.17 -0.81 -0.37 -1.45 -0.36 -1.24 -0.27 -0.74 
Winter FDD -0.11 -1.84 -0.11 -0.69 -4.42 -1.17 0.22 1.14 -0.33 -1.60 0.51 1.84 -0.82 -2.78 
Spring FDD -0.05 -3.74 0.18 5.75 1.30 1.74 0.10 3.20 0.25 7.13 0.14 3.41 0.35 7.03 
Irrigation 0.17 29.48 0.22 18.16 -0.71 -1.84 0.24 15.26 0.08 4.75 0.35 15.48 0.08 3.39 
Distance -0.06 -923.88 0.07 3.10 1.34 2.49 -0.06 -2.36 0.02 0.80 -0.10 -2.68 0.07 1.58 
Large farm 0.06 17.47 -0.07 -3.40 0.59 1.42 0.00 -0.09 0.02 0.60 -0.01 -0.38 0.06 1.60 
CRP and WRP programs -0.01 -11.99 0.00 0.71 -0.32 -2.91 0.03 7.08 -0.04 -5.51 0.05 9.19 -0.07 -5.89 
Experience 0.00 0.17 0.01 0.41 1.29 2.36 -0.15 -5.40 0.09 2.71 -0.25 -6.27 0.10 2.30 
Land tenure 0.00 0.50 -0.01 -0.33 0.37 0.72 -0.11 -4.32 0.10 2.92 -0.19 -5.74 0.14 3.01 
Farming occupation 0.01 0.78 -0.11 -2.53 -0.44 -0.39 -0.07 -1.31 -0.13 -2.24 -0.11 -1.72 -0.20 -2.52 
Slope 0.00 -0.43 0.03 0.92 -0.54 -0.67 -0.09 -2.25 -0.01 -0.21 -0.19 -3.11 -0.09 -1.33 
Sand content -0.19 -15.34 0.02 0.66 0.46 0.57 -0.08 -1.98 -0.02 -0.54 -0.16 -2.92 -0.12 -1.90 
Soil organic carbon 0.08 5.77 -0.04 -0.67 -0.85 -0.67 0.04 0.60 -0.45 -5.53 0.11 1.28 -0.69 -5.95 
Wetland index 0.00 0.09 0.01 0.88 0.21 0.93 0.00 0.15 -0.01 -1.14 0.00 0.18 -0.02 -1.72 
Soil loss tolerance factor -0.01 -0.60 -0.30 -2.86 1.91 0.81 -0.48 -4.09 -0.09 -0.63 -0.81 -5.07 -0.14 -0.71 

               
Intercept Yes    Yes   Yes   Yes   Yes   Yes   Yes   
State by Year FE Yes   Yes  Yes  Yes  Yes  Yes  Yes  
Asymmetry test (p-value)       (<0.001)   (<0.001)   
R-square 0.6443  0.0654  0.0051  0.0895  0.0712  0.1041  0.0765  
Sample mean 75  373  750  367  378  12034  12094  
Observations 14,406   14085  14085  6622  7463  6622  7463   

Note: The lower third partial moment is estimated as an absolute moment, so the elasticities show opposite effects on the third central moment.  



43 

 

Appendix A2: Elasticity Estimates of the Mean and High-order Moment Functions for Winter Wheat Farm Net Return 
 

Variables 
Mean Variance 3rd central moment Lower 2nd moment Upper 2nd moment Lower 3rd moment Upper 3rd moment 

mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat 
Fall precipitation  -0.88 -3.00 0.99 4.51 -5.68 -2.72 0.67 2.81 0.55 1.94 0.77 2.26 0.40 1.06 
Winter precipitation 0.52 2.90 -0.33 -2.52 4.41 3.71 -0.61 -4.28 0.14 0.91 -0.96 -4.59 0.40 2.01 
Spring precipitation 0.65 3.98 -0.49 -2.57 2.28 1.74 -0.18 -0.89 -0.05 -0.23 0.02 0.07 0.10 0.34 
Fall GDD -2.66 -2.56 -4.34 -3.74 4.97 0.67 -8.11 -6.69 -1.26 -0.89 -10.80 -5.73 -2.26 -1.09 
Winter GDD -1.04 -5.06 0.29 1.96 -1.05 -0.92 1.15 7.61 -0.16 -0.86 1.74 7.91 -0.15 -0.58 
Spring GDD 4.25 6.01 4.08 6.01 1.99 0.42 2.98 3.96 3.47 4.26 3.24 2.71 5.10 4.32 
Fall FDD -0.12 -0.50 -1.42 -6.78 2.36 1.49 -2.68 -10.98 -0.49 -1.93 -4.36 -11.69 -0.48 -1.33 
Winter FDD -1.22 -4.29 0.82 4.28 -2.26 -1.72 2.09 9.46 -0.01 -0.02 3.49 10.04 -0.11 -0.36 
Spring FDD 0.15 2.28 0.18 3.96 0.06 0.22 0.09 1.76 0.18 3.99 0.13 1.57 0.22 3.60 
Irrigation 0.21 7.24 0.43 24.08 0.11 0.84 0.53 23.77 0.41 21.38 0.71 15.16 0.51 16.83 
Distance -0.08 -27.51 -0.09 -3.16 0.08 0.42 -0.09 -2.87 0.07 2.18 -0.16 -3.37 0.10 2.19 
Large farm 0.05 3.29 0.03 0.99 0.16 1.14 0.03 0.84 0.25 7.03 0.02 0.39 0.37 7.01 
CRP and WRP programs -0.07 -13.87 -0.16 -8.85 -0.12 -3.16 -0.09 -7.09 -0.22 -8.50 -0.11 -5.02 -0.27 -5.85 
Experience 0.01 0.46 -0.05 -1.93 -0.10 -0.52 0.10 3.22 -0.25 -8.04 0.13 3.07 -0.38 -8.99 
Land tenure 0.06 2.94 0.18 5.68 0.53 2.90 0.08 2.24 0.41 9.91 0.01 0.30 0.61 9.52 
Farming occupation 0.01 0.26 -0.09 -1.97 -0.28 -0.72 0.12 2.14 -0.12 -2.31 0.37 4.03 -0.16 -2.42 
Slope -0.07 -1.71 -0.21 -4.84 -0.16 -0.57 -0.17 -3.32 -0.05 -1.07 -0.26 -3.27 -0.11 -1.59 
Sand content -0.27 -4.66 0.14 4.37 -0.20 -0.71 0.10 2.44 0.44 12.14 0.15 2.66 0.64 13.46 
Soil organic carbon -0.10 -1.39 0.22 3.12 -0.55 -1.25 0.33 4.64 -0.05 -0.58 0.37 3.30 -0.10 -0.75 
Wetland index 0.02 1.05 -0.01 -1.90 -0.21 -2.71 0.00 0.20 -0.02 -1.82 0.01 0.55 -0.03 -2.03 
Soil loss tolerance factor 0.23 2.11 -0.33 -2.94 0.11 0.14 0.04 0.34 -0.03 -0.26 0.15 0.79 -0.01 -0.06 

               
Intercept Yes    Yes   Yes   Yes   Yes   Yes   Yes   
State by Year FE Yes   Yes  Yes  Yes  Yes  Yes  Yes  
Asymmetry test (p-value)       (<0.001)   (<0.001)   
R-square 0.1426  0.1996  0.0060  0.2051  0.2296  0.1367  0.1784  
Sample mean 151  40535 3497949 33713 47500 13926480 21287105 
Observations 14406  14096  14096  7121  6975  7121  6975   

Note: The lower third partial moment is estimated as an absolute moment, so the elasticities show opposite effects on the third central moment. 
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