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Abstract

With the development of large and long panel databases, the theory sur-
rounding panel causality evolves at a fast pace and empirical researchers
may sometimes find it difficult to run the most recent techniques de-
veloped in the literature. This article presents the Stata user-written
command xtgcause, which implements a procedure proposed by Du-
mitrescu and Hurlin (2012) for detecting Granger causality in panel
datasets, and thus constitutes an effort to help practitioners under-
stand and apply the test. The command offers the possibility to select
the number of lags to include in the model by minimizing the AIC, BIC,
or HQIC, and to implement a bootstrap procedure to compute p-values
and critical values.
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1 Introduction

Panel datasets comprised of many individuals and many time periods are be-
coming widely available. A particularly salient case is the growing availability
of cross-country data over time. As a consequence, the focus of panel data
econometrics is shifting from micro panel, with large N and small T , to macro
panels, where both N and T are large. In this setting, classical issues of time-
series econometrics, such as (non-)stationarity and (non-)causality, also arise.
This paper discusses the user-written command xtgcause, which implements
a procedure recently developed by Dumitrescu and Hurlin (2012) (hereafter
DH) in order to test for Granger causality in panel datasets.

Considering the fast evolution of the literature, practitioners may find it
difficult to implement the latest econometric tests. In this paper, we therefore
summarize the test built by DH and present xtgcause using examples based
on simulated and real data. The objective of our contribution is to support
the empirical literature using panel causality techniques. One recurrent con-
cern being related to the selection of the number of lags to be included in the
estimations, we have implemented an extension of the test based on Akaike,
Bayesian, and Hannan-Quinn information criteria to facilitate this task. Fi-
nally, and to deal with the empirical issue of cross-sectional dependence, we
have implemented an option to compute p-values and critical values based on
a bootstrap procedure.

2 The Dumitrescu-Hurlin test

In a seminal paper, Granger (1969) developed a methodology for analyzing the
causal relationships between time series. Suppose xt and yt are two stationary
series. Then the following model:

yt = α +
K∑
k=1

γkyt−k +
K∑
k=1

βkxt−k + εt with t = 1, ..., T (1)

can be used to test whether x causes y. The basic idea is that if past values
of x are significant predictors of the current value of y even when past values
of y have been included in the model, then x exerts a causal influence on y.
Using (1), one might easily investigate this causality based on an F-test with
the following null hypothesis:

H0 : β1 = ... = βK = 0 (2)

If H0 is rejected, one can conclude that causality from x to y exists. The
x and y variables can of course be interchanged to test for causality in the
other direction, and it is possible to observe bidirectional causality (also called
feedback).
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DH provide an extension designed to detect causality in panel data. The
underlying regression writes:

yi,t = αi+
K∑
k=1

γikyi,t−k +
K∑
k=1

βikxi,t−k +εi,t with i = 1, ..., N and t = 1, ..., T

(3)
where xi,t and yi,t are the observations of two stationary variables for individual
i in period t. Coefficients are allowed to differ across individuals (note the i
subscripts attached to coefficients) but are assumed time-invariant. The lag
order K is assumed to be identical for all individuals and the panel must be
balanced.

As in Granger (1969), the procedure to determine the existence of causality
is to test for significant effects of past values of x on the present value of y.
The null hypothesis is therefore defined as:

H0 : βi1 = ... = βiK = 0 ∀ i = 1, ..., N (4)

which corresponds to the absence of causality for all individuals in the panel.
DH test assumes there can be causality for some individuals but not nec-

essarily for all. The alternative hypothesis thus writes:

H1 : βi1 = ... = βiK = 0 ∀ i = 1, ..., N1

βi1 6= 0 or ... or βiK 6= 0 ∀ i = N1 + 1, ..., N

where N1 ∈ [0, N − 1] is unknown. If N1 = 0, there is causality for all individ-
uals in the panel. N1 must be strictly smaller than N , otherwise there is no
causality for all individuals and H1 reduces to H0.

Against this backdrop, DH propose the following procedure: run the N
individual regressions implicitly enclosed in (3), perform F-tests of the K linear
hypotheses βi1 = ... = βiK = 0 to retrieve the individual Wald statistic Wi, and
finally compute the average Wald statistic W :1

W =
1

N

N∑
i=1

Wi (5)

We emphasize that the test is designed to detect causality at the panel-level,
and rejecting H0 does not exclude non-causality for some individuals. Using
Monte Carlo simulations, DH show that W is asymptotically well-behaved and
can genuinely be used to investigate panel causality.

1See Dumitrescu and Hurlin (2012, p. 1453) for the mathematical definition of Wi. Note
however that T in DH’s formulas must be understood as the number of observations remain-
ing in the estimations, that is the number of periods minus the number of lags included.
In order to be consistent with our notation, we therefore replaced DH’s T by T −K in the
following formulas of the present paper.
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Under the assumption that the Wald statistics Wi are independently and
identically distributed across individuals, it can be showed that the standard-
ized statistic Z̄ when T → ∞ first and then N → ∞ (sometimes interpreted
as “T should be large relative to N”) follows a standard normal distribution:

Z̄ =

√
N

2K
·
(
W −K

) d−−−−−→
T,N→∞

N (0, 1) (6)

Also, for a fixed T dimension with T > 5+3K, the approximated standardized
statistic Z̃ follows a standard normal distribution:

Z̃ =

√
N

2K
· T − 3K − 5

T − 2K − 3
·

[
T − 3K − 3

T − 3K − 1
·W −K

]
d−−−→

N→∞
N (0, 1) (7)

The testing procedure of the null hypothesis in (4) is finally based on Z̄ and Z̃.
If these are larger than the standard critical values, then one should reject H0

and conclude that Granger causality exists. For large N and T panel datasets,
Z̄ can be reasonably considered. For large N but relatively small T datasets,
Z̃ should be favored. Using Monte Carlo simulations, DH have shown that
the test exhibits very good finite sample properties, even with both T and N
small.

The lag order (K) selection is an empirical issue for which DH provide no
guidance. One way to tackle this issue is to select the number of lags based
on an information criterion (AIC/BIC/HQIC). In this process, all estimations
have to be conducted on a common sample in order to be nested and therefore
comparable.2 Practically, this implies that the first Kmax

3 time periods must
be omitted during the entire lag selection process.

Another empirical issue to consider in panel data is that of cross-sectional
dependence. To this end, a block bootstrap procedure is proposed in sec-
tion 6.2 of DH to compute bootstrapped critical values for Z̄ and Z̃ instead of
asymptotic critical values. The procedure is composed of the following steps:4

1. Estimate (3) and obtain Z̄ and Z̃ as defined in (6) and (7).

2. Estimate the model under H0: yi,t = α0
i +
∑K

k=1 γ
0
ikyi,t−k+εi,t, and collect

the residuals in matrix ε̂(T−K)×N .

2We thank Gareth Thomas (IHS Markit EViews) for bringing this point to our attention.
3Kmax stands for the maximum possible number of lags to be considered in the entire

procedure.
4The procedure we present here differs slightly from that proposed by DH, in the num-

bering of the steps, but more importantly also in the definition of the initial conditions (our
step 4), which is not addressed in DH, and the construction of the resampled series (our
step 5). We are indebted to David Ardia (University of Neuchâtel) for his valuable advice
on the bootstrap procedure.
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3. Build a matrix ε?(T−K)×N by resampling (overlapping blocks of) rows

(i.e., time periods) of matrix ε̂. Block bootstrap is useful in presence of
autocorrelation.

4. Generate a random draw (y?
1, ...,y

?
K)′, with y?

t =
(
y?1,t, y

?
2,t, · · · , y?N,t

)
, by

randomly selecting a block of K consecutive time periods with replace-
ment (see Stine, 1987; Berkowitz and Kilian, 2000).

5. Construct the resampled series y?i,t = α̂0
i +
∑K

k=1 β̂
0
iky

?
i,t−k+ε?i,t conditional

on the random draw for the first K periods.

6. Estimate the model: y?i,t = αb
i +
∑K

k=1 γ
b
iky

?
i,t−k +

∑K
k=1 β

b
ikxi,t−k +εi,t, and

compute Z̄b and Z̃b.

7. Run B replications of steps 3 to 6.

8. Compute p-values and critical values for Z̄ and Z̃ based on the distribu-
tions of Z̄b and Z̃b, b = 1, ..., B.

3 The xtgcause command

The syntax of xtgcause is as follows:

xtgcause depvar indepvar
[
if
][

in
][
, lags(# | aic [#] | bic [#] | hqic [#])

regress bootstrap breps(#) blevel(#) blength(#) seed(#) nodots
]

lags specifies the lag structure to use for the regressions performed in com-
puting the test statistic. By default, 1 lag is included. Specifying lags(#)

requests that # lags of the series be used in the regressions. The max-
imum authorized number of lags is such that T > 5 + 3·#. Specifying
lags(aic|bic|hqic [#]) requests that the number of lags of the series be
chosen such that the average Akaike/Bayesian/Hannan-Quinn information
criterion (AIC/BIC/HQIC) for the set of regressions is minimized. Re-
gressions with 1 to # lags will be conducted, restricting the number of
observations to T−# for all estimations to make the models nested and
therefore comparable. Displayed statistics come from the set of regres-
sions for which the average AIC/BIC/HQIC is minimized (re-estimated
using the total number of observations available). If # is not specified in
lags(aic|bic|hqic [#]), then it is set to the maximum number of lags
authorized.

regress can be used to display the results of the N individual regressions
on which the test is based. This option is useful to have a look at the
coefficients of individual regressions. When the number of individuals in
the panel is large, this option will result in a very long output.
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bootstrap requests p-values and critical values to be computed using a boot-
strap procedure as proposed in section 6.2 of Dumitrescu and Hurlin (2012).
Bootstrap is useful in presence of cross-sectional dependence.

breps indicates the number of bootstrap replications to perform. By default,
it is set to 1000.

blevel indicates the significance level (in %) for computing the bootstrapped
critical values. By default, it is set to 95%.

blength indicates the size of the block length to be used in the bootstrap.
By default, each time period is sampled independently with replacement
(blength(1)). blength(#) allows to implement the bootstrap by dividing
the sample into blocks of # time periods and sampling the blocks indepen-
dently with replacement. Using blocks of more than one time period is
useful if autocorrelation is suspected.

seed can be used to set the random-number seed. By default, the seed is not
set.

nodots suppresses replication dots. By default, a dot is printed for each repli-
cation to provide an indication of the evolution of the bootstrap.

breps, blevel, blength, seed and nodots are bootstrap suboptions. They
can only be used if bootstrap is also specified.

3.1 Saved results

xtgcause saves the following results in r():
Scalars

r(wbar) average Wald statistic r(lags) number of lags used for the test
r(zbar) Z-bar statistic r(zbar pv) p-value of the Z-bar statistic
r(zbart) Z-bar tilde statistic r(zbart pv) p-value of the Z-bar tilde

statistic

Bootstrap scalars
r(zbarb cv) critical value for the Z-bar r(zbartb cv) critical value for the Z-bar tilde

statistic statistic
r(breps) number of bootstrap r(blevel) significance level for bootstrap

replications critical values
r(blength) size of the block length

Matrices
r(Wi) individual Wald statistics r(PVi) p-values of the individual Wald

statistics

Bootstrap matrices
r(ZBARb) Z-bar statistics from the r(ZBARTb) Z-bar tilde statistics from the

bootstrap procedure bootstrap procedure

4 Examples

Before presenting a couple of examples, we recall that the test implemented in
xtgcause assumes that the variables are stationary. We will not go through
this first step here, but it is the user’s responsibility to check his data sat-
isfy this condition. To this end, the user might consider xtunitroot, which
provides various panel stationarity tests with alternative null hypotheses (in
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particular Breitung, 2000; Hadri, 2000; Harris and Tzavalis, 1999; Im et al.,
2003; Levin et al., 2002). The user may also want to perform second generation
panel unit root tests such as the one proposed by Pesaran (2007) to control
for cross-sectional dependence.

4.1 Example based on simulated data

To illustrate the functioning of xtgcause, we first use simulated data provided
by DH at http://www.execandshare.org in the file data-demo.csv.5 We start by
importing the original Excel dataset directly from the website. In the original
CSV file, the dataset is organized as a matrix, with all observations for the
each individual in a single cell. Within this cell, the (10) values of variable
x are separated by tabs, a comma separates the last value of x and the first
value of y, and the (10) values of variable y are then separated by tabs. Hence,
the following lines of code allow shaping the data so as to be understood as a
panel by Stata.

. import delimited using "http://www.execandshare.org/execandshare/htdocs/data/M
> etaSite/upload/companionSite51/data/data-demo.csv", clear delimiter(",")
> colrange(1:2) varnames(1)
(2 vars, 20 obs)

. qui: split x, parse(`=char(9)´) destring

. qui: split y, parse(`=char(9)´) destring

. drop x y

. gen t = _n

. reshape long x y, i(t) j(id)
(note: j = 1 2 3 4 5 6 7 8 9 10)

Data wide -> long

Number of obs. 20 -> 200
Number of variables 21 -> 4
j variable (10 values) -> id
xij variables:

x1 x2 ... x10 -> x
y1 y2 ... y10 -> y

. xtset id t
panel variable: id (strongly balanced)
time variable: t, 1 to 20

delta: 1 unit

. l id t x y in 1/5

id t x y

1. 1 1 .55149203 .81872837
2. 1 2 .64373514 -.42077179
3. 1 3 -.58843258 -.40312278
4. 1 4 -.55873336 .14674849
5. 1 5 -.32486386 .42924677

5Data and MATLAB code are also available at
http://www.runmycode.org/companion/view/42 in a zip file.
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. l id t x y in 21/25

id t x y

21. 2 1 -1.4703536 1.2586422
22. 2 2 1.3356281 -.71173904
23. 2 3 -.21564623 -.73264199
24. 2 4 .08435614 -.67841901
25. 2 5 1.5766581 -.2562083

Some sections of the above piece of code are quite involved, and a few ex-
planations are in order. We started by importing the data as if values were sep-
arated by commas, which is only partly true. This created two string variables,
named x and y, each containing 10 values (separated by tabs) in each observa-
tion. We then invoked split, using char(9) (which indeed corresponds to a
tab) as the parse string. We used the prefix quietly in order to avoid a long
output indicating that 2 sets of 10 variables (x1, ..., x10, and y1, ..., y10) were
created. These variables were immediately converted from string to numeric
thanks to split’s destring option. In order to have a well-shaped panel that
Stata can correctly interpret, we combined these 2 sets of 10 variables into only
2 variables, which we did using reshape. A few observations (the first five for
individuals 1 and 2) are displayed to show how the data is finally organized.

Using the formatted and xtsetted data, we can now run xtgcause. The
simplest possible test in order to investigate whether x causes y would be:

. xtgcause y x

Dumitrescu & Hurlin (2012) Granger non-causality test results:
--------------------------------------------------------------
Lag order: 1
W-bar = 1.2909
Z-bar = 0.6504 (p-value = 0.5155)
Z-bar tilde = 0.2590 (p-value = 0.7956)
--------------------------------------------------------------
H0: x does not Granger-cause y.
H1: x does Granger-cause y for at least one panelvar (id).

Since we did not specify any lag order, xtgcause introduced a single lag by
default. In this case, the outcome of the test does not reject the null hypothesis.
The output reports the values obtained for W (W-bar), Z̄ (Z-bar), and Z̃ (Z-
bar tilde). For the latter two statistics, p-values are provided based on the
standard normal distribution.

One could additionally display the individual Wald statistics and their cor-
responding values by displaying the stored matrices r(Wi) and r(PVi) (which
we first combine into a single matrix for the sake of space):
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. mat Wi_PVi = r(Wi) , r(PVi)

. mat li Wi_PVi

Wi_PVi[10,2]
Wi PVi

id1 .56655945 .46256089
id2 .11648998 .73731411
id3 .09081952 .76701924
id4 8.1263612 .01156476
id5 .18687517 .67129995
id6 .80060395 .38417583
id7 .53075859 .47681675
id8 .00158371 .96874825
id9 .43635413 .5182858
id10 2.0521113 .17124367

Using the lags() option, we run a similar test introducing 2 lags of the
variables x and y :

. xtgcause y x, lags(2)

Dumitrescu & Hurlin (2012) Granger non-causality test results:
--------------------------------------------------------------
Lag order: 2
W-bar = 1.7302
Z-bar = -0.4266 (p-value = 0.6696)
Z-bar tilde = -0.7052 (p-value = 0.4807)
--------------------------------------------------------------
H0: x does not Granger-cause y.
H1: x does Granger-cause y for at least one panelvar (id).

The conclusion of the test is similar as before.
Alternatively, the test could also be conducted using a bootstrap procedure

to compute p-values and critical values:

. xtgcause y x, bootstrap l(1) breps(100) seed(20171020)

----------------------------
Bootstrap replications (100)
----------------------------
.................................................. 50
.................................................. 100

Dumitrescu & Hurlin (2012) Granger non-causality test results:
--------------------------------------------------------------
Lag order: 1
W-bar = 1.2909
Z-bar = 0.6504 (p-value* = 0.4700, 95% critical value = 1.7316)
Z-bar tilde = 0.2590 (p-value* = 0.7100, 95% critical value = 1.3967)
--------------------------------------------------------------
H0: x does not Granger-cause y.
H1: x does Granger-cause y for at least one panelvar (id).
*p-values computed using 100 bootstrap replications.

In this case, the bootstrapped p-values are relatively close to the asymptotic
ones displayed in the first test above.

4.2 Example based on real data

In order to provide an example based on real data, we searched for papers
reporting Dumitrescu and Hurlin’s tests and published in journals that make
authors’ datasets available. We found several such papers (e.g., Paramati
et al., 2016, 2017; Salahuddin et al., 2016). In particular, Paramati et al.
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(2016) (hereafter PUA) investigate the effect of foreign direct investment and
stock market growth on clean energy use.6 In their Table 8, they report a series
of pairwise panel causality tests between variables such as economic output,
CO2 emissions, or clean energy consumption. As indicated in their online
supplementary data (file Results.xlsx), they conduct the tests using EViews 8.
We replicate some of their results:

. import excel using Data-WDI.xlsx, clear first case(lower) cellrange(A1:I421)
> sheet(FirstDif-Data)

. xtset id year
panel variable: id (strongly balanced)
time variable: year, 1992 to 2012

delta: 1 unit

. xtgcause co2 output, l(2)

Dumitrescu & Hurlin (2012) Granger non-causality test results:
--------------------------------------------------------------
Lag order: 2
W-bar = 2.4223
Z-bar = 0.9442 (p-value = 0.3451)
Z-bar tilde = 0.1441 (p-value = 0.8855)
--------------------------------------------------------------
H0: output does not Granger-cause co2.
H1: output does Granger-cause co2 for at least one panelvar (id).

. xtgcause fdi output, l(2)

Dumitrescu & Hurlin (2012) Granger non-causality test results:
--------------------------------------------------------------
Lag order: 2
W-bar = 4.6432
Z-bar = 5.9103 (p-value = 0.0000)
Z-bar tilde = 3.7416 (p-value = 0.0002)
--------------------------------------------------------------
H0: output does not Granger-cause fdi.
H1: output does Granger-cause fdi for at least one panelvar (id).

The first line of the above code imports the dataset constructed by PUA
(file Data-WDI.xlsx, sheet “FirstDif-Data”). We then use xtgcause to test for
the causality from output to co2 and from output to fdi, which correspond to
some tests reported in PUA’s Table 8. We use 2 lags in both cases to match the
numbers indicated by PUA in their accompanying appendix file. Comparing
with PUA’s output, it turns out that the denomination “Zbar-Stat” used in
EViews corresponds to the Z-bar tilde statistic (while the Z-bar statistic is not
provided).

Optionally, xtgcause allows the user to request the lag order to be chosen
so that the Akaike, Bayesian, or Hannan-Quinn information criteria be mini-
mized. Given that DH offer no guidance regarding the choice of the lag order,
this feature might be appealing to practitioners. We can for instance test the
causality from output to fdi specifying the option lags(bic):

6See http://www.sciencedirect.com/science/article/pii/S0140988316300214.
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. xtgcause fdi output, l(bic)

Dumitrescu & Hurlin (2012) Granger non-causality test results:
--------------------------------------------------------------
Optimal number of lags (BIC): 1 (lags tested: 1 to 5).
W-bar = 1.3027
Z-bar = 0.9572 (p-value = 0.3385)
Z-bar tilde = 0.4260 (p-value = 0.6701)
--------------------------------------------------------------
H0: output does not Granger-cause fdi.
H1: output does Granger-cause fdi for at least one panelvar (id).

In practice, xtgcause runs all sets of regressions with a lag order from 1 to
the highest possible number (i.e., such that T > 5 + 3K or optionally specified
by the user below this limit), maintaining a common sample. Said otherwise,
if at most 5 lags are to be considered, the first 5 observations of the panel
will never be considered in the estimations, even if it would be possible to do
so with fewer than 5 lags. This is required in order to have nested models,
which can then be appropriately compared using AIC, BIC, or HQIC. After
this series of estimations, xtgcause selects the optimal outcome (i.e., such that
the average AIC/BIC/HQIC of the N individual estimations is the lowest) and
re-runs all estimations with the optimal number of lags and using the maximal
number of observations available. Statistics based on the latter are reported
as output.

In the above example, the optimal lag order using BIC appears to be 1,
which is different from the lag order selected by PUA for this test.7 Worry-
ingly, this difference is not without consequences, since the conclusion of the
test in this case is reversed. More precisely, the null hypothesis is not rejected
with the optimally-selected single lag, but PUA use 2 lags and therefore reject
the null hypothesis. Considering that empirical research in economics is used
to formulate policy recommendations, such inaccurate conclusions may poten-
tially be harmful. We therefore consider xtgcause’s option allowing to select
the number of lags based on AIC/BIC/HQIC as an important improvement.
It will allow researchers to rely on these widely accepted criteria and make the
selection in a transparent way.

Finally, xtgcause makes it possible to compute the p-values and critical
values associated with the Z-bar and Z-bar tilde via a bootstrap procedure.
Computing bootstrapped critical values (rather than asymptotic ones) may
be useful in presence of cross-sectional dependence. Extending our example
based on PUA data, we test the causality from output to fdi by adding the
bootstrap option (we also use seed for replicability reasons and nodots for
the sake of space):

7The number of lags would be 3 using HQIC and 4 using AIC. Therefore, while PUA
state in their Table 8 that “the appropriate lag length is chosen based on SIC”, we do not
find the same number with any of the information criterion considered.
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. xtgcause fdi output, l(bic) bootstrap seed(20171020) nodots

-----------------------------
Bootstrap replications (1000)
-----------------------------

Dumitrescu & Hurlin (2012) Granger non-causality test results:
--------------------------------------------------------------
Optimal number of lags (BIC): 1 (lags tested: 1 to 5).
W-bar = 1.3027
Z-bar = 0.9572 (p-value* = 0.4530, 95% critical value = 3.0746)
Z-bar tilde = 0.4260 (p-value* = 0.7080, 95% critical value = 2.1234)
--------------------------------------------------------------
H0: output does not Granger-cause fdi.
H1: output does Granger-cause fdi for at least one panelvar (id).
*p-values computed using 1000 bootstrap replications.

What xtgcause does in this case is first to compute the Z-bar and Z-bar
tilde statistics using the optimal number of lags as in previous series of esti-
mations, and it then computes the bootstrapped p-values and critical values.
By default, 1,000 bootstrap replications are performed. We observe that the
bootstrapped p-value for the Z-bar increases substantially compared to the
asymptotic p-value obtained before (from 0.34 to 0.45), while that for the
Z-bar tilde remains closer. This should be interpreted as a signal that the
estimations suffer from small sample biases, so that asymptotic p-values are
under-estimated. Bootstrapped p-values indicate that the null hypothesis is far
from being rejected, strengthening our above concerns about PUA conclusions
based on the asymptotic p-values and obtained with 2 lags.

5 Conclusion

This paper has presented the user-written command xtgcause, which auto-
mates a procedure introduced by Dumitrescu and Hurlin (2012) in order to
detect Granger causality in panel datasets. In this branch of econometrics,
the empirical literature appears to be lagging, with the latest theoretical de-
velopments being not always available in statistical packages. One important
contribution of our command is to allow the user to select the number of lags
based on the Akaike, the Bayesian, or the Hannan-Quinn information crite-
rion. This choice may have an impact on the conclusion of the test, but some
researchers may have overlooked it. As a consequence, several empirical pa-
pers might have reached erroneous conclusions. Another useful contribution
of xtgcause is that it allows to calculate bootstrapped critical values, a very
useful option in presence of cross-sectional dependence. With this command
and this article, we therefore hope to bring some useful clarifications and help
practitioners conduct sound research.
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