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1 Introduction

Dynamic and stochastic models are widely used for macro economic analysis and also for
many analyses in labour economics. When the development of these models started with the
formulation of stochastic growth models, a lot of emphasis was put on understanding formal
properties of these models. Does a unique solution exist, both for the control variables and
general equilibrium itself? Is there a stationary long-run distribution (of state variables being
driven by optimally chosen control variables) to which initial distributions of states converge?
The literature employing continuous-time models only initially put some emphasis on looking
at stability issues (Merton, 1975; Bismut, 1975; Magill, 1977; Brock and Magill, 1979; Chang
and Malliaris, 1987).
In very recent years, continuous-time idiosyncratic risk models allowing to study wealth dis-

tributions and, partially, their evolution over time have become very popular (see e.g. Benhabib,
Bisin and Zhu, 2016, Nirei and Aoki, 2016, Achdou et al., 2017, Aoki and Nirei, 2017, Cao and
Luo, 2017, Kaplan et al., 2018, Khieu and Wälde, 2018, Nuño and Moll, 2018). This does not
mean, however, that all formal problems have been solved. In fact, an existence proof for policy
functions and for a unique invariant wealth distribution is missing, as well as a proof for the
stability of this invariant wealth distribution. (See section 2 for a more detailed discussion.)
The goal of this paper is twofold: First, we introduce mathematical tools for analysing

existence of the consumption paths in models of this type. Individuals have constant relative
risk aversion and an infinite planning horizon. Their wealth follows a stochastic path, as does
their labour market status. Individuals can smooth consumption by accumulating wealth.
Second, we introduce methods from the stochastics literature to study the existence, unique-

ness and stability of distributions described by controlled stochastic processes. We use these
methods to analyse stability properties of a precautionary-savings model. We analyse under
which conditions an invariant (stationary) distribution for wealth and employment status exists,
is unique and when the distribution is stable in the sense that an initial distribution converges
to the unique invariant one. The corresponding theorem is proven.
The framework for our analysis consists of a one-person optimal consumption-saving prob-

lem. Properties of implied consumption, wealth and employment dynamics can (almost triv-
ially) be aggregated to represent aggregate consumption, wealth and employment dynamics
of a small open economy. The individual can accumulate a riskless asset. The employment
status (and thereby labour income) of the individual switches randomly (according to exoge-
nous arrival rates) between two levels. Factor rewards (labour income levels and the interest
rate) are (endogenously) fixed in our model. The underlying two-state Markov process implies
that state-variables are piecewise deterministic. Wealth and consumption evolve smoothly in
between changes of the employment status.
There are two sets of findings. Our existence proof for the policy function exploits the

fact that optimal behaviour in a piece-wise deterministic system2 is described by an ordinary
differential equation system. This system is particularly interesting as it has features many
models of precautionary saving in continuous time share. First, there is a singularity both at
the lower bound of the relevant range of the state variable (the ’natural borrowing limit’) and at
the upper bound (the temporary steady state). Second, while one boundary condition is almost
exogenous (the ’natural borrowing limit’), the second boundary condition (the temporary steady
state) is endogenous. We actually find it most convenient for our proof to proceed in two
steps. We first prove existence for a regularized system (i.e. we consider a reduced set where
singularities are absent), which is interesting in its own. We then enlarge the regularized system.

2This is a property of a large class of economic models with random transitions between employment states
(search and matching models) or for many innovation and growth or business cycle models where innovations
occur at exponentially distributed random points in time often determined by Poisson processes.
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While this is simple for the lower bound, we refer to an argument based on Fuchsian systems
(Kichenassamy, 2007, Rendall and Schmidt, 1991) to enlarge the regularized system also with
respect to the upper bound.
We find it most convenient to build the proof of the existence and uniqueness of an invariant

distribution and its ergodicity, i.e. of convergence to the said distribution, on the work of
Meyn and Tweedie (1993 a,b,c) and Down et al. (1995).3 Their work is especially useful for
understanding properties of systems driven by jump processes.4 One crucial component of our
proofs concerning the distribution of wealth is a smoothing condition. As we allow for counting
processes, we have to use more advanced methods based on T -processes than in the case of
a stochastic differential equation driven by a Brownian motion. In the latter case the strong
smoothing properties of Brownian motion can be used to obtain the strong Feller property. In
this sense, the corresponding analysis will often be more straightforward than the one presented
here. For the wealth-employment process of our model, we find that the wealth process is not
smoothing and the strong Feller property does not hold. However, for the economically relevant
parameter case (the low-interest rate regime), we can still show a strong version of recurrence
(namely Harris recurrence) by using a weaker smoothing property, and thus obtain uniqueness
of the invariant distribution. Ergodicity is then implied by properties of discrete skeleton chains.
The structure of our paper is as follows. The next section relates our analysis to the

literature. Section 3 presents the consumption-saving problem, derives the differential equations
describing optimal consumption between jumps and aggregates consumers of a small open
economy. Section 4 proves existence and properties of an optimal consumption function. Section
5 proves existence and uniqueness of an invariant measure for the state variables together with
convergence to the long-run invariant distribution. Before this is done, section 5 also provides
some general background to stochastic processes in continuous time which are needed for our
main proofs. The final section concludes.

2 Related literature

We first relate our analysis to the general economic background, i.e. the discrete-time Bewley-
Huggett-Aiyagari model. We then turn to the continuous-time stochastic growth literature more
generally. Finally, we relate our work to the very recent continuous-time literature that allows
for precautionary saving. While the latter is mostly in general equilibrium, the maximization
problems employed in these models are very similar if not, in some cases, identical to our
structure. We therefore see our maximization problem as a generic example of many of the
maximization problems in these models. As a consequence, our methods would be good starting
points to understand existence and stability issues in general equilibrium as well.
Our analysis was originally motivated by precautionary saving models of the Bewley-Huggett-

Aiyagari type (see Bewley, 1986, Huggett, 1993, and Aiyagari, 1994). Huggett (1993) analyses
an exchange economy with idiosyncratic risk and incomplete markets. Individual endowment
in each period is either high or low, following a stationary Markov process. Agents can smooth
consumption by buying and selling an asset. Huggett provides existence and uniqueness results

3The theory we will employ below provides a useful contribution to the economic literature as the latter, as
presented below, focuses on related, but different methods. For one, we treat Markov processes in continuous
time, while references in the macro-economic literature in the context of Markov-process stability are mostly
related to discrete time. But even in discrete time, the theory of T -processes of Meyn and Tweedie (a weaker
version of strong Feller processes), seems new in the economics literature. While relying on other results from
Meyn and Tweedie (1993a), Kamihigashi and Stachurski (2012, 2013), for instance, infer stability from order
mixing properties instead.

4These methods are also used for understanding how to estimate models that contain jumps (e.g. Bandi and
Nguyen, 2003) or for understanding long-term risk-return trade-offs (Hansen and Scheinkman, 2009).
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for the value function and the optimal consumption function and shows that there is a unique
long-run distribution function to which initial distributions converge. Regarding stability, he
relies on the results of Hopenhayn and Prescott (1992). An overview of the various directions
the precautionary savings model took is provided by Heathcote et al. (2009). Our household
maximization problem can be seen as the continuous-time version of the saving problem in
Huggett (1993). As the recent continuous-time literature on precautionary models has shown
(see below for more background), working in continuous time yields many novel results and
insights.
Concerning the continuous-time stochastic growth literature, the starting point is Merton’s

(1975) analysis of the continuous-time stochastic growth model. For the case of a constant
saving rate and a Cobb-Douglas production function, the “steady-state distributions for all
economic variables can be solved for in closed form”. No such closed form results are available
of course for the general case of optimal consumption. Chang and Malliaris (1987) also allow
for uncertainty that results from stochastic population growth as in Merton (1975) and they
assume the same exogenous saving function where savings are a function of the capital stock.
They follow a different route, however, by studying the class of strictly concave production
functions (thus including CES production function and not restricting their attention to the
Cobb-Douglas case). They prove “existence and uniqueness of the solution to the stochastic
Solow equation”. They build their proof on the so-called reflection principle. More work on
growth was undertaken by Brock and Magill (1979) building on Bismut (1975). Magill (1977)
undertakes a local stability analysis for a many-sector stochastic growth model with Brownian
motions using methods going back to Rishel (1970). All of these models use Brownian motion
as their source of uncertainty and do not allow for exponentially distributed jumps or counting
processes.
There is a recent continuous-time macro-labour literature where precautionary saving be-

haviour plays a central role for understanding the distribution of wealth. Lise (2013) studies
a partial equilibrium search model in the Burdett-Mortensen tradition allowing for on-the-job
search. Achdou et al. (2014) survey (general equilibrium) continuous-time models in macro-
economics with a focus on partial differential equations emphasizing theoretical open ends like
the lack of proofs of existence and uniqueness. They also present a precautionary saving model
where uncertainty results from Brownian motion. Benhabib, Bisin and Zhu (2016) study the
wealth distribution in a model with stochastic death. The quantitative fit for the upper-tail of
the wealth distribution was studied by Nirei and Aoki (2016), Aoki and Nirei (2017) and Cao
and Luo (2017). Kaplan et al. (2018) target moments of the wealth distribution and match
top shares in a New Keynesian model where households die according to an Poisson arrival
rate. Ahn et al. (2018) describe numerical methods for continuous-time models that would
allow to solve idiosyncratic risk models that include aggregate shocks. Nuño and Moll (2018)
follow a central planner approach to understanding wealth distributions. Achdou et al. (2017)
discuss mass points in a continuous time Bewley-Huggett-Aiyagari model. Khieu and Wälde
(2018) quantitatively study the dynamics of the wealth distribution to understand the NLSY
79 cohort.5

5These are by far not the only continous-time models with precautionary saving. Scheinkman and Weiss
(1986) study a precautionary savings setup with a borrowing constraint when the interest rate is zero (e.g. for
holding cash) in a two-type economy. Lippi et al. (2015) extend their framework to time-varying money supply.
There are also many papers that employ an instantaneous utility function of a CARA structure (as opposed to
our CRRA structure), see e.g. Wang (2007) and references therein. Wang et al. (2013) employ non-expected
recursive utility to study the effects of risk-aversion and intertemporal substitution on optimal consumption
behaviour. The effect of altruism in a setup with overlapping generations is studied by Barczyk and Kredler
(2014). Continuous time models are also heavily employed in the finance literature. As an example, Raimondo
(2005) proves existence of equilibrium in a model with incomplete and with complete markets. Anderson and
Raimondo (2008) prove dynamic completeness of the equilibrium price process.
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What is known about the existence of policy functions or wealth distributions in these
analyses? Achdou et al. (2014) report the absence of central existence proofs and refer to
(what is now) Achdou et al. (2017). The latter sketch analytical proofs for existence and
uniqueness of the stationary distribution. We prove the existence of a policy function. We also
provide an alternative and fully probabilistic proof of existence and uniqueness of stationary
distributions. In addition to the distinction between analytic vs. probabilistic approaches, we
establish ergodicity of the system, i.e., convergence in distribution for arbitrary initial distrib-
utions to the unique stationary distribution. In that sense, the system under consideration is
stable with respect to the wealth and employment distribution of one individual and also for a
whole population whose labour income and interest rate are constant.6 As is well-known from
deterministic systems (think of stable cycles), the existence and uniqueness of a steady state
does not imply that this is the relevant long-run state of a system. Given our stability proof,
we now know that the long-run unique stationary distribution is the one to which the system
converges. Interestingly, Achdou et al. (2017) find that the continuous time Bewley-Huggett-
Aiyagari model displays a mass-point at the lower end. When we prove existence, uniqueness
and stability of the stationary distribution, we do not require the existence of a density. Our
stability proof is valid when there is a mass point and when there is no mass point (see Theorem
5.18 and especially Lemma 5.20).

3 The model

3.1 Optimal saving of one household

Let an individual maximize a standard intertemporal utility function, Et
∫∞
t
e−ρ[τ−t]u (c (τ)) dτ,

where expectations need to be formed due to the uncertainty of labour income which in turn
makes consumption c (τ) uncertain. The expectations operator is denoted Et and conditions
on the current state in t. The planning horizon starts in t and is infinite. The time preference
rate ρ is positive. We assume that the instantaneous utility functions has a CRRA structure

u (c) =
c1−σ − 1

1− σ , σ > 0, σ 6= 1. (1)

Each individual can save and borrow in a riskless asset a at interest rate r > 0. The budget
constraint of an individual reads

da (t) = {ra (t) + z (t)− c (t)} dt. (2)

Wealth a (t) increases (or decreases) per unit of time dt if capital income ra (t) (where the
interest rate r is strictly positive) plus labour income z (t) is larger (or smaller) than consump-
tion c (t) . Labour income z (t) jumps between two constants (which are determined further
below). They could be called a real wage w > b and an unemployment benefit b > 0 or they
could simply be seen as two wage levels. We understand z(t) as a two-state Markov chain in
continuous time with state space {w, b}, where the transition w → b happens with rate s and
the transition b→ w with rate λ. Duration in states w and b is then exponentially distributed
with mean λ−1 and s−1, respectively. This description of z will be used in the remainder of
the paper. As usual, the wealth-employment process (a, z) is defined on a probability space
(Ω,F , P ) , equipped with the canonical filtration.
We now let the individual maximize her objective function by choosing a consumption

function c (a, z) subject to the budget constraint (2) and the Markov chain for the employment

6As written above, we provide proofs for the saving problem of the household which are also proofs for a
small open economy. We do not close the economy but assume that free international capital flows fix the
domestic interest rate. The domestic wage is also endogenous.
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status.7 In addition, we require that the individual holds wealth above the natural borrowing
constraint (Aiyagari, 1994), i.e.

a ≥ −b/r. (3)

This implies that consumption when unemployed at the natural borrowing limit is zero,

c (−b/r, b) = 0. (4)

The Bellman equation for this maximization problem reads8

ρV (a, z) = max
c(a,z)

{
c(a,z)1−σ−1

1−σ + [ra+ z − c (a, z)]Va (a, z)

+λ [V (a, w)− V (a, z)] + s [V (a, b)− V (a, z)]

}
, (5)

where Va stands for the partial derivative of V with respect to a. The first-order condition
equates marginal utility from consumption with the shadow price of wealth,

c (a, z)−σ = Va (a, z) . (6)

For our analysis to follow, we assume that the interest rate is lower than the time-preference
rate, r < ρ. For convenience, we also assume that the initial wealth level a(t) is chosen inside
the interval [−b/r, a∗w]. The lower bound −b/r is the natural borrowing constraint from (3).
The upper bound a∗w is endogenously determined further below.

9

3.2 An illustration of consumption and wealth dynamics

The dynamics of consumption and wealth can be illustrated in the wealth-consumption space.
The background for this illustration results from initially focusing on the evolution between
jumps (see Appendix B.1) and by eliminating time as exogenous variable. Computing the
derivatives of consumption with respect to wealth in both states and considering wealth as the
exogenous variable, we obtain (see Appendix A.1) a two-dimensional system of non-autonomous
ordinary differential equations (ODE). The dynamics between jumps reads

dc (a, w)

da
=
r − ρ+ s

[(
c(a,w)
c(a,b)

)σ
− 1
]

ra+ w − c (a, w)

c (a, w)

σ
, (7a)

dc (a, b)

da
=
r − ρ− λ

[
1−

(
c(a,b)
c(a,w)

)σ]
ra+ b− c (a, b)

c (a, b)

σ
. (7b)

With two boundary conditions, this system provides a unique solution for c (a, w) and c (a, b).
These solutions are the deterministic part of our piece-wise deterministic system. The stochastic
components result from the transitions at exponentially distributed points in time between
employment and unemployment. The effect of a jump is then simply the effect of a jump of
consumption from, say, c (a, w) to c (a, b) .
The economics behind these equations is interesting. First, we see standard components like

the budget constraints for both states in the denominators. We also see the usual determinants
of consumption growth like the difference between the interest rate and the time preference

7There is no general theorem stating that optimal consumption is Markovian. We follow the economic
tradition and restrict our attention to Markovian consumption functions.

8See Wälde (1999) or Keller et al. (2005) for related maximization problems with Bellman equations for
exponentially distributed events.

9Our discussion below suggests that wealth will lie within this interval after a finite length of time with
probability one even when initial wealth a (t) lies above the intervall, i.e. for a (t) > a∗w.
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rate, r − ρ, in both numerators and the measure of risk aversion σ. What this continuous time
version of an optimal consumption rule nicely reveals are the determinants for precautionary
saving (Leland, 1968, Aiyagari, 1994, Huggett and Ospina, 2001) in the good state — and
those for dis-saving in the bad state. The term s [. . .] term in (7a) shows that consumption
growth is faster under the risk of a job loss. Note that the expression (c (a, w) /c (a, b))σ −
1 is positive as consumption c (a, b) of an unemployed worker is smaller than consumption
of an employed worker c (a, w) (see Lemma A.12 for a proof) and σ > 0. When marginal
utility from consumption under unemployment is much higher than marginal utility when
employed, i.e. (c (a, w) /c (a, b))σ >> 1, individuals experience a high drop in consumption
when becoming unemployed. As relative consumption shrinks when wealth rises, reducing this
gap and smoothing consumption is best achieved by fast capital accumulation. This fast capital
accumulation would go hand in hand with fast consumption growth as visible in (7a).
Similarly, the λ [. . .] term in (7b) shows that consumption growth for unemployed workers

is smaller. The possibility to find a new job induces unemployed individuals to increase their
current consumption level. Relative to a situation in which unemployment is an absorbing state
(once unemployed, always unemployed, i.e. λ = 0), the prospect of a higher labor income in
the future reduces the willingness to give up today’s consumption. With higher consumption
levels, wealth accumulation is lower and consumption growth is reduced.
Properties of the system (7) can be illustrated in the usual way by plotting zero-motion lines

and by plotting the sign of the derivatives into a phase diagram. Following these steps, it turns
out (see Appendix A.2) that there is an endogenous upper limit a∗w of the wealth distribution
determined by the zero-motion line for consumption. The ratio of consumption at this point is
given by (

c (a∗w, w)

c (a∗w, b)

)σ
= 1− r − ρ

s
. (8)

Joint with the natural borrowing constraint (3), this allows us to plot a phase diagram as in
Figure 1. This figure displays wealth on the horizontal and consumption c (a, z) on the vertical
axis. It plots dashed zero-motion lines for aw, following from (2) for z = w, and for c (a, w)
and a solid zero-motion line for ab.10 We assume for this figure that the threshold level a∗w is
positive.11 The intersection point of the zero-motion lines for c (a, w) and aw is the temporary
steady state (TSS),

Θ ≡ (a∗w, c (a∗w, w)) . (9)

We call this point temporary steady state for two reasons. On the one hand, employed
workers experience no change in wealth, consumption or any other variable when at this point
(as in a standard steady state of a deterministic system). On the other hand, the expected
spell in employment is finite and a random transition into unemployment will eventually occur.
Hence, the state in Θ is steady only temporarily.
As we know from the proposition in Appendix A.2 that consumption for the unemployed

always falls, both consumption and wealth fall above the zero-motion line for ab. The arrow-
pairs for the employed workers are also added. They show that one can draw a saddle-path
through the TSS. To the left of the TSS, wealth and consumption of employed workers rise, to
the right, they fall.
Relative consumption when the employed worker is in the TSS is given by (8). A trajectory

going through (a∗w, c (a∗w, b)) and hitting the zero-motion line of ab at −b/r is in accordance
with laws of motions for the unemployed worker.

10Appendix A.2 and A.3 prove all properties of our system required for plotting this phase diagram.
11In an application explaining the evolution of the wealth distribution of the NLSY 79 cohort, Khieu and

Wälde (2018) find positive values for the threshold for reasonable parameter values. The threshold approaches
infinity for r approaching ρ.
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Figure 1 Policy functions for employed and unemployed workers

For our assumption of an interest rate being lower than the time preference rate, r < ρ,
the range of wealth a worker can hold is bounded. Whatever the initial wealth level, there is a
positive probability that the wealth level will be in the range [−b/r, a∗w] after some finite length
of time. For an illustration, consider the policy functions in Figure 1: Wealth decreases both
for employed and unemployed workers for a > a∗w. The transition into the range [−b/r, a∗w] will
take place only in the state of unemployment which, however, occurs with positive probability.
When wealth of an individual is within the range [−b/r, a∗w] , consumption and wealth will

rise while employed and fall while unemployed. While employed, precautionary saving motives
drive the worker to accumulate wealth. While unemployed, the worker runs down current
wealth as higher income for the future is anticipated —“postcautionary dis-saving”takes place.
When a worker loses a job at a wealth level of, say, a∗w/2, his consumption level will drop
from c (a∗w/2, w) to c (a∗w/2, b) . Conversely, if an unemployed worker finds a job at, say, a = 0,
her consumption increases from c (0, b) to c (0, w) . A worker will therefore be in a permanent
consumption and wealth cycle. Given these dynamics, wealth will never leave the interval
[−b/r, a∗w] and one can easily imagine a distribution of wealth over the range [−b/r, a∗w].

3.3 Aggregation for a small open economy

Having described one individual, we now consider an entire population with a very large number
NY of workers. Consider a small open economy that produces a final good Y (t) , employing
capital K (t) and labour L (t) . The final good is produced with a linearly homogenous pro-
duction function with positive first and negative second derivatives. The labour force is fixed
at NY and the unemployment rate is

(
NY − L (t)

)
/NY . Firms act under perfect competition

and there are free capital flows given a constant international interest rate r. This fixes the
consumers’interest rate in our small open economy at r as well. At invariant total factor pro-
ductivity, a constant interest rate implies (via well-known properties of linearly homogenous
functions) an invariant capital to labour ratio K (t) /L (t) in this economy. When the unem-
ployment rate changes, the capital stock per capita K (t) /NY changes but the capital stock
per worker K (t) /L (t) remains constant. As a consequence, the real wage w which, again by
linear homogeneity of the production function, is a function of K (t) /L (t) only, is a function
of r and thereby constant as well.
Unemployment benefits are determined as a fixed ratio (the replacement rate) of the wage

and are financed by lump-sum taxes. There is a government budget constraint which is balanced
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at each point. As lump-sum taxes do not affect the maximization problem of individuals, we
omit the tax term in the budget constraint (2) of the household.
Letting NY be a continuum or letting it go to infinity with NY being a discrete number, a

standard law of large numbers implies that distributional properties we show in what follows
apply to a population of a small open economy as well. When we show that the wealth
distribution for some future point in time of one individual converges to a stationary distribution
for this one individual, this implies at the same time that the cross-sectional distribution in an
economy converges to the same stationary distribution.

4 Existence and properties of the optimal consumption
path

This section provides a proof for the existence of a path c (a, z) as depicted in Figure 1 and
shows properties needed in our subsequent analysis of the distribution of wealth.

4.1 Existence of the optimal consumption path

In Figure 1, we implicitly considered solutions of our system in the set

Q = {a ≥ −b/r} ∩ {c (a, w) ≤ ra+ w} ∩ {c (a, b) ≥ ra+ b} ∩ {c (a, w) ≥ c (a, b)} . (10)

In words, wealth is at least as large as the maximum debt level b/r, consumption of the employed
worker is below the zero-motion line for her wealth, consumption of the unemployed worker is
above her zero-motion line for wealth (and thereby non-negative) and consumption of employed
workers always exceeds consumption of unemployed workers (see Lemma A.12). We will show
that the solution we construct indeed takes its values in the set Q.
In the following proofs we are faced with the problem that the coeffi cients in the equation (7)

may become singular in some situations (i.e. at the bounds of Q when c (a, b) = 0 or c (a, w) =
ra + w), preventing us from applying standard theorems. To overcome these diffi culties, we
regularize this equation (7) in certain ways by introducing small parameters. The regularized
equation is easier to solve. Once this has been achieved, the additional parameters can be
allowed to tend to zero in a controlled way, thus giving a solution of the original equation.
We start with a

Definition 4.1 (Optimal consumption path) A consumption path is a solution
(a, c (a, w) , c (a, b)) of the ODE-system (7) for the range −b/r ≤ a ≤ a∗w in Q with terminal
condition (a∗w, c (a∗w, w) , c (a∗w, b)). Given the TSS from (9),the terminal condition satisfies

c (a∗w, w) = ra∗w + w (11)

and (c (a∗w, w) /c (a∗w, b))
σ = 1− r−ρ

s
from (8) for an arbitrary a∗w > −b/r. An optimal consump-

tion path is a consumption path which in addition satisfies c (−b/r, b) = 0 from (4).

To prove existence of an optimal consumption path, we proceed in steps. We first regularize
the system by introducing a parameter v. This parameter is used to modify one of the conditions
to be satisfied by the solution at the right endpoint of the interval of existence. This motivates
the introduction of the modified domain

Qv = {(a, c (a, w) , c (a, b)) ∈ R3| (a, c (a, w) , c (a, b)) ∈ Q, c (a, w) ≤ ra+ w − v}, (12)

where v is a small positive constant, as an approximation to our “full” set Q. As Q0 = Q,
Qv simply excludes the zero-motion line for wealth of the employed workers. We need to do
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this as the quotient on the right-hand side of our differential equation (7a) is not defined for
the TSS. As v is small, however, we can get arbitrarily close to this zero-motion line and Qv

approximates Q arbitrarily well. We then prove

Lemma 4.2 An optimal consumption path exists for Qv where the terminal condition is given
by (â, cv (â, w) , cv (â, b)) and where cv (â, w) is defined in analogy to (11) as cv (â, w) = râ+w−v
and cv (â, b) is determined by (cv (â, w) /cv (â, b))σ = 1− r−ρ

s
in analogy to (8).

Proof. see Appendix A.4
Building on this lemma, we can then prove

Theorem 4.3 An optimal consumption path exists for Q.

Proof. see Appendix A.5

4.2 Properties of the consumption and wealth paths

This section gathers some properties of the system needed for the stability analysis of the wealth
distribution. As stated earlier, we assume that we are in the low-interest regime, r < ρ. We
introduce the notation ψz(a0, t) for the wealth at time t if the agent starts with initial wealth a0

at time 0 and her employment status is constant at level z (z ∈ {w, b}). Optimally controlled
wealth between jumps then follows

∂ψz(a0, t)

∂t
= rψz(a0, t) + z − c (ψz(a0, t), z) , ψz(a0, 0) = a0. (13)

We can then formulate

Proposition 4.4 Properties of optimal consumption and the implied wealth path between jumps
are as follows.

(a) The map a 7→ c(a, z) is C1 in the interior ]− b/r, a∗w[ of our system, z = w, b.

(b) t 7→ ψz(a0, t) is increasing for z = w and decreasing for z = b and strictly so while
ψw(a0, t) < a∗w and ψb(a0, t) > −b/r, respectively.

(c) a0 7→ ψz(a0, t) is continuous on [−b/r, a∗w],

(d) limt→∞ ψw(a0, t) = a∗w, limt→∞ ψb(a0, t) = −b/r.

Proof. see Appendix A.6.

5 Stability of the wealth-employment process

We would now like to formally understand the stability properties of the model just presented.12

As the fundamental state variables are wealth (2) and the employment status z (t) of an indi-
vidual, the process we are interested in is the wealth-employment process Xτ ≡ (a (τ) , z (τ)) .
All other variables (like control variables or e.g. factor rewards in a general equilibrium version)
are known deterministic functions of the state variables. Hence, if we understand the process
governing the state variables, we also understand the properties of all other variables in this
model. The state-space of this process Xτ is X ≡ [−b/r, a∗w]×{w, b} and has all the properties
12This proof circulated earlier in Bayer and Wälde (2010a,b).
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required for the state space in the general ergodicity theory for Markov processes, which we
review in section 5.1 below. Moreover, for the sake of simplicity, we now set the initial time
t = 0 —following the usual practice in the mathematical literature.
The goal of this section is a proof of stability of the Markov process Xτ in the sense that we

want to show that the distribution of Xτ converges for τ →∞ to a unique limiting distribution
(no matter what the initial value X0). (See Definition 5.10 for the precise meaning of that
statement.)
The general structure of the stability or ergodicity proof is quite usual:

• First we prove existence of an invariant probability measure, i.e., of a distribution µ on
the state space such that the process is stationary when started with this distribution, i.e.,
when X0 ∼ µ. Hence, the first step is looking for candidates for the limiting distribution,
if it exists. (Note that we here use “probability measure”and “distribution”essentially as
synonyms.) As our state space is already compact, existence will follow from a continuity
condition on the paths of X, more precisely the weak Feller property, cf. Definition 5.5
below. We review the theoretical underpinnings in section 5.1.2 and carry out the proofs
for our model in section 5.2.

• Then we prove uniqueness of such invariant probability measures. Technically, the usual
techniques actually only provide uniqueness of invariant measures (which may well be
infinite if no invariant probability measure exists), but the combination with the first
step, of course, gives existence and uniqueness of the invariant distribution. As in the case
of Markov chains, uniqueness follows from irreducibility (Definition 5.1) and recurrence
(Definition 5.3) of the process X. Proving the latter property requires us to have some
smoothing properties of X, which is often easy to verify in a diffusion setting, but not
so clear in a pure jump setting as ours. We critically rely on the notion of T -processes
defined in Definition 5.8. Verifying that our wealth-employment process X is a T -process
is the main task of section 5.3.

• The unique invariant distribution identified in the last step is the natural candidate for
the limiting distribution, so we only have to prove convergence in the third step. This is
done in section 5.4. Note that we are using the notion of convergence in total variation
sense as compared to the more usual (and weaker) convergence in distribution.

We now continue with an overview of ergodicity theory for Markov processes in continu-
ous time with continuous state spaces. All the results in section 5.1 are well known in the
mathematical literature and, hence, the reader only interested in the new results might directly
proceed with section 5.2.

5.1 Review of ergodicity results for continuous-timeMarkov processes

The wealth-employment process (a(τ), z(τ)) is a continuous-time Markov process with a non-
discrete state space [−b/r, a∗w]×{w, b}. Thus, we will rely on results from the general stability
theory of Markov processes as presented in the works of Meyn and Tweedie and their coauthors
cited above. In the present section, we will recapitulate the most important elements of the
stability for Markov processes in continuous time. Here, we will discuss the theory in full
generality, i.e., we assume that we are given a Markov process (Xt)t∈R≥0 on a state space
X, which is assumed to be a locally compact separable metric space endowed with its Borel
σ-algebra. All Markov processes are assumed to be time-homogeneous, i.e., the conditional
distribution of Xt+s given Xt = x only depends on s, not on t.13

13All the results presented here are strongly linked with (discrete-time) Markov chains embedded in the
continuous time Markov process. If one wanted to dig deeper, one would see that essentially all of the employed
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5.1.1 Preliminaries

Let (Xt)t∈R≥0 be a (homogeneous) Markov process with the state space X, where X is assumed
to be a locally compact and separable metric space, which is endowed with its Borel σ-algebra
B(X). Let P t(x,A), t ≥ 0, x ∈ X, A ∈ B(X), denote the corresponding transition kernel, i.e.

P t(x,A) ≡ P (Xt ∈ A|X0 = x) ≡ Px(Xt ∈ A), (14)

where Px is a shorthand-notation for the conditional probability P (·|X0 = x). Note that P t(·, ·)
is a Markov kernel, i.e. for every x ∈ X, the map A 7→ P t(x,A) is a probability measure on
B(X) and for every A ∈ B(X), the map x 7→ P t(x,A) is a measurable function. Similarly, by
a kernel we understand a function K : (X,B(X)) → R≥0 such that K(x, ·) is a measure, not
necessarily normed by 1, for every x and K(·, A) is a measurable function for every measurable
set A. Moreover, let us denote the corresponding semi-group by Pt, i.e.

Ptf(x) ≡ E(f(Xt)|X0 = x) =

∫
X

f(y)P t(x, dy) (15)

for f : X→ R bounded measurable. For a measurable set A, we consider the stopping time τA
and the number of visits of X in set A,

τA ≡ inf{t ≥ 0|Xt ∈ A}, ηA ≡
∫ ∞

0

1A(Xt)dt.

Let us further recall that a measure ϕ defined on B(X) is called σ-finite if we can decompose
X into countably many measurable sets An, n ∈ N,

⋃
n∈NAn = X, with ϕ(An) <∞.

Definition 5.1 Assume that there is a σ-finite, non-trivial measure ϕ on B(X) such that, for
sets B ∈ B(X), ϕ(B) > 0 implies Ex(ηB) > 0, ∀x ∈ X. Here, similar to Px, Ex is a short-hand
notation for the conditional expectation E(·|X0 = x). Then X is called ϕ-irreducible.

In the more familiar case of a finite state space and discrete time, we would simply require
η{x} to have positive expectation for any state x. In the continuous case, such a requirement
would obviously be far too strong, since singletons {x} usually have probability zero. The above
definition only requires positive expectation for sets B, which are “large enough”, in the sense
that they are non-null for some reference measure.
A simple suffi cient condition for irreducibility is given in Meyn and Tweedie (1993b, Propo-

sition 2.1), which will be used to show irreducibility of the wealth-employment process.

Proposition 5.2 Suppose that there exists a σ-finite measure µ such that µ(B) > 0 implies
that Px(τB <∞) > 0. Then X is ϕ-irreducible, where

ϕ(A) ≡
∫
X

R(x,A)µ(dx), R(x,A) ≡
∫ ∞

0

P t(x,A)e−tdt.

We call ϕ the irreducibility measure.

Definition 5.3 The process X is called Harris recurrent if there is a non-trivial σ-finite mea-
sure ϕ such that ϕ(A) > 0 implies that Px(ηA = ∞) = 1, ∀x ∈ X. Moreover, if a Harris
recurrent process X has an invariant probability measure, then it is called positive Harris.

concepts can be related to concepts on the level of sampled discrete-time chains, be it irreducibility, recurrence,
boundedness in probability or other. A truly comprehensive review of these connections would, however, go
beyond the scope of this paper. We refer to Meyn and Tweedie (1993b) for a thorough account.
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Like in the discrete case, Harris recurrence may be equivalently defined by the existence of
a σ-finite measure µ such that µ(A) > 0 implies that Px(τA <∞) = 1. As already remarked in
the context of irreducibility, in the discrete framework one would consider sets A = {y} with
only one element.
Let µ be a measure on (X,B(X)). We define a measure P t

µ by

P t
µ(A) =

∫
X

P t(x,A)µ(dx).

We say that µ is an invariant measure, iff P t
µ = µ for all t. Here, the measure µ might be

infinite. If it is a finite measure, we may, without loss of generality, normalize it to have total
mass µ(X) = 1. The resulting probability measure is obviously still invariant, and we call it
an invariant distribution. (Note that any constant multiple of an invariant measure is again
invariant.) In the case of an invariant distribution, we can interpret invariance as meaning that
the Markov process has always the same marginal distribution over time, when starting with
the distribution µ.

5.1.2 Existence of an invariant probability measure

The existence of finite invariant measures follows from a combination of two different types of
conditions. The first property is a growth property. Several such properties have been used in
the literature, a very useful one seems to be boundedness in probability on average.

Definition 5.4 The process X is called bounded in probability on average if for every x ∈ X
and every ε > 0 there is a compact set C ⊂ X such that

lim inf
t→∞

1

t

∫ t

0

Px(Xs ∈ C)ds ≥ 1− ε. (16)

The second property is a continuity condition.

Definition 5.5 The Markov process X has the weak Feller property if for every continuous
bounded function f : X → R the function Ptf : X → R from (15) is again continuous.
Moreover, if Ptf is continuous even for every bounded measurable function f , then X has the
strong Feller property.

Given these two conditions, Meyn and Tweedie (1993b, Theorem 3.1) establish the existence
of an invariant probability measure in the following

Proposition 5.6 If a Markov process X is bounded in probability on average and has the weak
Feller property, then there is an invariant probability measure for X.

5.1.3 Uniqueness

Turning to uniqueness, the following proposition is cited in Meyn and Tweedie (1993b, page
491). For a proof see Azéma, Duflo and Revuz (1969, Théorème 2.5).

Proposition 5.7 If the Markov process X is Harris recurrent and irreducible for a non-trivial
σ-finite measure ϕ, then there is a unique invariant measure (up to constant multiples).
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Proposition 5.7 gives existence and uniqueness of the invariant measure. A simple example
shows that irreducibility and Harris recurrence do not guarantee existence of an invariant
probability measure: Let X = R and Xt = Bt denote the one-dimensional Brownian motion.
The Brownian motion is both irreducible and Harris recurrent — irreducibility is easily seen,
while recurrence is well-known in dimension one (e.g. Karatzas and Shreve, 1988, Remark 6.20).
Therefore, there is a unique invariant measure. By the Fokker-Planck equation, the density f
of the invariant measure must satisfy f ′′ = 0. By non-negativity, this implies that f is constant,
f ≡ c for some c > 0.14 Thus, any invariant measure is a constant multiple of the Lebesgue
measure, and there is no invariant probability measure for this example.
Given this example and as we are only interested in invariant probability measures, we need

to combine this proposition with the previous section: Boundedness in probability on average
together with the weak Feller property gives us the existence of an invariant probability measure
as used in sect. 5.1.2, whereas irreducibility together with Harris recurrence imply uniqueness
of invariant measures. Thus, for existence and uniqueness of the invariant probability measure,
we will need all four conditions.
Whereas irreducibility, boundedness in probability on average and the weak Feller property

are rather straightforward to check in practical situations, this seems to be harder for Harris
recurrence. Thus, we next discuss some suffi cient conditions for Harris recurrence. If the
Markov process has the strong Feller property, then Harris recurrence will follow from a very
weak growth property, namely that Px(Xt → ∞) = 0 for all x ∈ X, see Meyn and Tweedie
(1993b, Theorem 3.2). Here, Xt → ∞ is understood as: for any compact set K there is a
time t0 s.t. ∀t ≥ t0 : Xt ∈ Kc. In the case of a normed space, we might equivalently say that
‖Xt‖ → ∞ for the relevant norm ‖·‖. While the strong Feller property is often satisfied for
models driven by Brownian motion (e.g., for hypo-elliptic diffusions), it may not be satisfied
in models where randomness is driven by a pure-jump process. Thus, we will next formulate
an intermediate notion between the weak and strong Feller properties, which still guarantees
enough smoothing for stability.

Definition 5.8 The Markov process X is called T-process, if there is a probability measure ν
on [0,∞[ and a kernel T on (X,B(X)) satisfying the following three conditions:

1. For every A ∈ B(X), the function x 7→ T (x,A) is continuous15.

2. For every x ∈ X and every A ∈ B(X) we have Kν (x,A) ≡
∫∞

0
P t(x,A)ν(dt) ≥ T (x,A).

3. T (x,X) > 0 for every x ∈ X.

The kernel Kν is the transition kernel of a discrete-time Markov process (Yn)n∈N obtained
from (Xt)t≥0 by random sampling according to the distribution ν: more precisely, let us draw a
sequence σn of independent samples from the distribution ν and define a discrete time process
Yn ≡ Xσ1+···+σn , n ∈ N. Then the process Yn is Markov and has transition probabilities given
by Kν . Using Definition 5.8 and Theorem 3.2 in Meyn and Tweedie (1993b), we can formulate

Proposition 5.9 Suppose that X is a ϕ-irreducible T-process. Then it is Harris recurrent
(with respect to ϕ) if and only if Px(Xt →∞) = 0 for every x ∈ X.

Hence, in a practical sense and in order to prove existence of a unique invariant probability
measure, one needs to establish that a process X has the weak Feller property and is an

14See our earlier discussion papers Bayer and Wälde (2010a,b) for a heuristic derivation and analysis of
Fokker-Planck equations for our model.
15Amore general definition requires lower semi-continuity only. As we can show continuity for our applications,

we do not need this more general version here.
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irreducible T -process which is bounded in probability on average (as the latter implies the
growth condition Px(Xt →∞) = 0 of Proposition 5.9).
Let us shortly compare the continuous, but compact case —where boundedness in probability

is always satisfied —with the discrete and finite case. In the latter situation, existence of an
invariant distribution always holds, while uniqueness is then given by irreducibility. In the
compact, continuous case irreducibility and Harris recurrence only guarantee existence and
uniqueness of an invariant measure, which might be infinite. On the other hand, existence of a
finite invariant measure is given by the weak Feller property. Thus, for existence and uniqueness
of an invariant probability measure, we will need the weak Feller property, irreducibility and
Harris recurrence —which we will conclude from the T-property. Thus, the situation in the
continuous (but compact) case is roughly the same as in the discrete case, except for some
required continuity property, namely the weak Feller property.

5.1.4 Stability

By now we have established a framework for showing existence and uniqueness of an invariant
distribution, i.e., probability measure. However, under stability we understand more, namely
the convergence of the marginal distributions to the invariant distribution, i.e., that for any
starting distribution µ, the law P τ

µ of the Markov process at time τ converges to the unique
invariant distribution for τ → ∞. In the context of T -processes, we are going to discuss two
methods which allow to derive stability. But first, let us define the notion of stability in a more
precise way.

Definition 5.10 For a signed measure µ consider the total variation norm

‖µ‖ ≡ sup
|f |≤1

∣∣∣∣∫
X

f(x)µ(dx)

∣∣∣∣ .
Then we call a Markov process (Xt)t∈R≥0 stable or ergodic iff there is an invariant probability
measure π such that

∀x ∈ X : lim
t→∞
‖P t(x, ·)− π‖ = 0.

Note that this implies in particular that the law P t
µ of the Markov process converges to π,

which is the unique invariant probability measure.
In the case of a finite state space in discrete time, ergodicity follows (inter alia) from ape-

riodicity. Down, Meyn and Tweedie (1995), also give one result for continuous state spaces in
this direction.

Definition 5.11 A ψ-irreducible Markov process (Xt) is called aperiodic iff there is a measur-
able set C with ψ(C) > 0 satisfying the following properties:

1. there is τ > 0 and a non-trivial measure ν on B(X) such that

∀x ∈ C, ∀A ∈ B(X) : P τ (x,A) ≥ ν(A); 16

2. there is T > 0 such that

∀t ≥ T, ∀x ∈ C : P t(x,C) > 0.

16Such a set C is then called small.
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If we are given an irreducible, aperiodic Markov process, then stability is implied by con-
ditions on the infinitesimal generator. In the following proposition we give a special case of
Down, Meyn and Tweedie (1995, Theorem 5.2) suitable for the employment-wealth process in
our model.

Proposition 5.12 Given an irreducible, aperiodic T-process Xt with infinitesimal generator A
on a compact state space. Assume we can find a measurable function V ∈ D(A) with V ≥ 1
and constants d, c > 0 such that

AV ≤ −cV + d.

Then the Markov-process is ergodic.

The problem with aperiodicity in the continuous-time framework is that it seems hard to
characterize the small sets appearing in Definition 5.11. For this reason, we also give an alter-
native theorem, which avoids small sets (but is clearly related with the notion of aperiodicity).

Definition 5.13 Given a fixed τ > 0, the Markov process in discrete time Yn ≡ Xτn, n ∈ N is
called a skeleton of X.

Meyn and Tweedie (1993b, Theorem 6.1) gives a characterization of stability in terms of
irreducibility of skeleton chains.

Proposition 5.14 Given a Harris recurrent Markov process X with invariant probability mea-
sure π. Then X is stable iff there is some irreducible skeleton chain.

5.2 Existence

After the review of the general ergodicity theory, we now come back and implement the scheme
for our particular model. Hence, from now on we again work with the two-dimensional Markov
process X(τ) = (a(τ), z(τ)). As seen above, in order to show existence for an invariant proba-
bility measure for X, we need (i) some compactness result for X like boundedness in probability
on average recalled in Definition 5.4 and (ii) a continuity property like the weak Feller property,
see Proposition 5.6. Showing that X is bounded in probability on average is straightforward:
According to Definition 5.4 we need to find a compact set for any initial condition x and any
small number ε such that the average probability to be in this set is larger than 1− ε. As our
process Xτ ≡ (a (τ) , z (τ)) is bounded, we can choose the state-space X ≡ [−b/r, a∗w]× {w, b}
as our set for any x and ε. Concerning the weak Feller property, we offer the following

Lemma 5.15 The wealth-employment process has the weak Feller property.

Proof. Let us first show that the wealth-employment process depends continuously on
its initial values. To see this, fix some ω ∈ Ω, the probability space, on which the wealth-
employment process is defined. Notice that zτ (ω) is certainly continuous in the starting values,
because any function defined on {w, b} is continuous by our choice of topology. Thus, we
only need to consider the wealth process. For fixed ω, aτ (ω) is a composition of solutions
to deterministic ODEs, each of which are continuous functions of the respective initial value.
Therefore, aτ (ω) is a continuous function of the initial wealth.
Now assume, without loss of generality, that the wealth-employment process has a determin-

istic initial value (a0, z0) and fix some bounded, continuous function f : [−b/r, a∗w]×{w, b} → R.
For the weak Feller property, we need to show that

Pτf(a0, z0) = E (f(aτ , zτ ))
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is a continuous function in (a0, z0). Thus, take any sequence (an0 , z
n
0 ) converging to (a0, z0) and

denote the wealth-employment process started at (an0 , z
n
0 ) by (anτ , z

n
τ ). Then, by continuous

dependence on the initial value, (anτ (ω), znτ (ω)) → (aτ (ω), zτ (ω)), for every ω ∈ Ω. By conti-
nuity of f , this implies convergence of f (anτ (ω), znτ (ω)). Since f is bounded, we may conclude
convergence Pτf (an0 , z

n
0 ) → Pτf(a0, z0) by the dominated convergence theorem. Thus, Pτf is,

indeed, bounded and continuous whenever f is bounded and continuous, and the weak Feller
property holds.

5.3 Uniqueness

Given existence of an invariant distribution, uniqueness will follow from (Harris) recurrence
together with irreducibility of the process X. The details are spelled out in section 5.1.3, in
particular in Proposition 5.7.

5.3.1 Irreducibility

We prove irreducibility in the following

Lemma 5.16 In the low-interest-regime with r < ρ, (a(τ), z(τ)) is an irreducible Markov
process, with the non-trivial irreducibility measure ϕ introduced in Proposition 5.2.

Proof. Let −b/r < a < a∗w, z ∈ {w, b}. Then, regardless of the initial point at ∈ [−b/r, a∗w]
and regardless of zt, it is possible to attain the state (a, z) in finite time with probability greater
than zero. Thus, Proposition 5.2 implies irreducibility with irreducibility measure

ϕ(A) ≡
∫
X

R(x,A)µ(dx), R(x,A) ≡
∫ ∞

0

P t(x,A)e−tdt,

where we can take the Lebesgue measure on [−b/r, a∗w] times the counting measure on {w, b}
as measure µ.

5.3.2 Harris recurrence

The proof of Harris recurrence is more elaborate and builds on some auxiliary results, most
importantly on being a T -process, compare Definition 5.8 which will be proved in Theorem 5.18
below. We start by giving an auxiliary result on the distribution of jumps in the employment
status.

Lemma 5.17 The conditional density of the time of the first jump in employment given that
there is precisely one such jump in [0, τ ] and that z(0) = w is given by

g(1)
τ (u) =

{
λ−s

e(λ−s)τ−1
e(λ−s)u, 0 ≤ u ≤ τ, λ 6= s,

1/τ, 0 ≤ u ≤ τ, λ = s.

Proof. Since the formula is well-known for λ = s, we only prove the result for λ 6= s. The
joint probability of the first jump τ1 ≤ u ≤ τ and Nτ = 1, where Nτ denotes the number of
jumps in [0, τ ], is given by

P (τ1 ≤ u, Nτ = 1) = P (τ1 ≤ u, τ2 ≥ τ − τ1) =

∫ u

0

P (τ2 ≥ τ − v)se−svdv

=

∫ u

0

e−λ(τ−v)se−svdv =
s

λ− se
−λτ
(
e(λ−s)u − 1

)
.
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Here, τ2 denotes the time between the first and the second jump, and we have used independence
of τ1 and τ2. Dividing through the probability of Nτ = 1, we get

P (τ1 ≤ u|Nτ = 1) =
e(λ−s)u − 1

e(λ−s)t − 1
,

and we obtain the above density by differentiating with respect to u.
Before starting the somewhat elaborate proof of the T -property, let us shortly discuss why

the conventional way to uniqueness of invariant measures is not open to us. As discussed in
section 5.1, uniqueness of the invariant distribution of a Markov process is implied by smoothing
properties of the process, and this approach is usually employed in the literature of continuous-
time models. However, the wealth-employment process (a, z) does not satisfy the strong Feller
property (see Definition 5.5). Indeed, assume that f : [−b/r, a∗w] × {w, b} → R is bounded
measurable, but not continuous. For the sake of concreteness, let us assume that f has a jump
at some point −b/r < a0 < a∗w. If there is no jump in the employment status until time τ (an
event with positive probability), then the trajectory of the wealth process a is deterministic
until time τ and z is even constant. Hence, on this event the jump cannot be smeared out.
On the other hand, the distribution of the jump times has a smooth density. If there is at

least one jump until time τ , we, therefore, expect the discontinuity of f to be smeared out due
to the density of the jump times. If both these heuristics are true, then

• the wealth-employment process is not strong Feller, as

Pτf(a0, z0) = E [f(aτ , zτ )] = E [f(aτ , zτ )1Nτ=0]︸ ︷︷ ︸
discontinuous in (a0,z0)

+E [f(aτ , zτ )1Nτ>0]︸ ︷︷ ︸
continuous in (a0,z0)

is discontinuous in (a0, z0) —where N denotes the number of jumps in the employment
status;

• the wealth-employment status conditioned on the number of jumps being greater then zero
should satisfy the strong Feller condition. Hence, the kernel T ((a0, z0), A) = P τ ((a0, z0), A∩
{Nτ > 0}) should be a continuous component of P τ in the sense of Definition 5.8. In
other words, the wealth-employment process is a T -process.

Indeed, it turns out that these heuristic considerations lead to a correct conclusion.

Theorem 5.18 The wealth-employment process (a(τ), z(τ)) is a T -process.

Given that there are some technical diffi culties concerning the proof of Theorem 5.18, we first
give a detailed heuristic sketch of the proof. A formal proof is provided afterwards. The main
step in establishing that a kernel T is a continuous component of P τ in the sense of Definition 5.8
is to show continuity. To this end, let us consider a measurable set A ⊂ [−b/r, a∗w]×{w, b} and
define

T>0((a0, z0), A) ≡
∫
1A(a, w)pτ>0((a0, z0), (a, w))daP (Nτ > 0) +∫

1A(a, b)pτ>0((a0, z0), (a, b))daP (Nτ > 0) ,

where pτ>0((a0, z0), (a, z)) denotes the transition density of the wealth-employment process con-
ditioned on {Nτ > 0}. That is, T>0 describes the Markov dynamics on {Nτ > 0}. Obvi-
ously, continuity of T>0 is equivalent to continuity of a0 7→ pτ>0((a0, z0), (a, w)) and a0 7→
pτ>0((a0, z0), (a, b)). Moreover, if the heuristic argument is correct, we may actually restrict
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ourselves to the case when there is exactly one jump in the employment process until time τ .
This means, we consider the kernel

T1((a0, z0), A) ≡
∫
1A(a, z′0)pτ1((a0, z0), (a, z′0))daP (Nτ = 1) ,

where z′0 ∈ {w, b}, z′0 6= z0 and pτ1 denotes the transition density conditioned on the event
that there is exactly one jump until time τ . Similar to T>0, T1 describes the Markov dynamics
on {Nτ = 1} . Now the picture becomes much clearer. Indeed, let us assume that the jump
in employment status happens at some time u < τ . Up to time u, the wealth process moves
deterministically according to the ODE (2), after time u it again moves in a deterministic way
according to (2). Hence, there is a deterministic function φz0 (see (19) for the precise definition)
such that

aτ = φz0(a0, u; τ)

provided that there is precisely one jump of the employment status at time u (and no other
jump before τ). Hence, we may express T1 by

T1((a0, z0), A) =

∫ τ

0

1A(φz0(a0, u; τ), z′0)g(1)
τ (u)duP (Nτ = 1) .

If u 7→ φz0(a0, u; τ) were smooth and invertible with smooth inverse y 7→ φ−1
z0

(a0, y; τ), then we
could re-write the equation as

T1((a0, z0), A) =

∫ up(a0)

low(a0)

1A(y, z′0)g(1)
τ (φ−1

z0
(a0, y; τ))

∣∣∣∣ ∂∂yφ−1
z0

(a0, y; τ)

∣∣∣∣ dy, (17)

which is continuous in a0 provided that a0 7→
∣∣∣ ∂∂yφ−1

z0
(a0, y; τ)

∣∣∣ and a0 7→ low(a0), a0 7→ up(a0)

are continuous (plus some boundedness assumption). Assuming that we can make all these
steps rigorous, we thus have proved the theorem.
In order to verify the various assumptions made in the above sketch , we need to understand

the solution of the ODE
daz(τ)

dτ
= raz(τ) + z − c(az(τ), z) (18)

better. Indeed, the properties would be essentially trivial, if it were not for the (possible)
singularity of the consumption function c(a, z) at a = −b/r and a = a∗w induced by the explosion
of the right hand side in (7). Nevertheless, by careful analysis we can establish the assumptions
made above, at least when we further restrain the domain.
We denote the solution of (18) started at a0 ∈ [−b/r, a∗w] at time 0 evaluated at time τ = u

by ψz(a0, u), i.e., ψz(a0, 0) = a0. Let T(a, z) ∈ [0,∞] be the time it takes for the deterministic
function ψz(a, ·) to reach the boundary {−b/r, a∗w} of the domain. Note that T may be infinite,
which is actually the good situation, as the consumption function c(a, z) is actually C1 in that
case– and, hence, stability holds. While it seems not clear how to obtain C1 on the whole
interval [−b/r, a∗w], it is clear how to get it on the interior of the domain, see Lemma 5.19. Of
course, if T(a, z) = ∞ for some a ∈] − b/r, a∗w[, then it is infinite for any such a. Lemma 5.19
directly implies that ψz(a, u) is C1 in both a and u for u < T(a, z), and continuous in both
variables even for u ≤ T(a, z).

Lemma 5.19 The map a 7→ T(a, z) is continuous on [−b/r, a∗w] \ {a∗z}. Moreover, if T(a, z) <
∞ for any −b/r < a < a∗w, then T(·, z) is continuous on the whole domain.17

17Otherwise, we have a jump from +∞ to 0 at a = a∗z.
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Proof. Let ψz(a, u) denote the solution map of the ODE driving az evaluated at time u
for initial value ψz(a, 0) = a. Obviously, ψw(a, ·) is strictly increasing (until the time that a∗w
is hit), while ψb(a, ·) is strictly decreasing. Hence, they have continuous inverse functions (in t,
for fixed a).
Fix any point a0 ∈]−b/r, a∗w[ and the corresponding value T0(z) ≡ T(a0, z). For any positive

t we obviously have
T(ψz(a, t), z) = T(a, z)− t.

Denoting ψ0
z(t) ≡ ψz(a

0, t), we get for any a < a0 for z = b and any a > a0 for z = w that

T(a, z) = T(ψ0
z((ψ

0
z)
−1(a)), z) = T 0(z) + (ψ0

z)
−1(a),

which is continuous in a. As a0 was arbitrary in the interior of the interval, the claim follows.

Let us introduce a little bit of notation: for z ∈ {w, b} we denote by z′ the other element
of {w, b}. Moreover, we define

φz(a, u; τ) ≡ ψz′ (ψz(a, u), τ − u) , 0 ≤ u ≤ τ, z ∈ {w, b}. (19)

In words, φz denotes the value of the wealth process at time τ given that the wealth process at
time 0 has the value a and there is precisely one change of the employment status (from z to
z′) in [0, τ ], which takes place at time u. We are going to identify a suffi ciently large set of us
on which u 7→ φz(a, u; τ) is differentiable and invertible with differentiable inverse.

Lemma 5.20 Define the set

S(a, z; τ) ≡ {u ∈ [0, τ ] | u > τ − T (ψz(a, u), z′)}.

If T(a, z′) =∞ for some −b/r < a < a∗w, i.e. when the boundary is never hit, then

S(a, z; τ) =

{
[0, τ ], a 6= a∗z′ ,

]0, τ ], a = a∗z′ .

Otherwise, when a boundary is hit in finite time, the following three properties hold:

1. There are numbers s(a, z; τ) such that S(a, z; τ) = ]s(a, z; τ), τ ].

2. a 7→ s(a, z; τ) is continuous on ]− b/r, a∗w[.

3. For every (a, z) ∈ [−b/r, a∗w]× {w, b} we have (uniformly) τ − s(a, z; τ) > 0.

Proof. The description for T(a, z′) = ∞ is obvious, so we assume that ∀a ∈ [−b/r, a∗w] \
{a∗z′} : T(a, z′) <∞.
First note that τ ∈ S(a, z; τ). Moreover, for u < v < τ we have that u ∈ S(a, z; τ) implies

v ∈ S(a, z; τ), since

τ − T (ψz(a, v), z′) ≤ τ − T (ψz(a, u), z′) < u < v,

which shows that S(a, z; τ) is an interval. However, for its lower endpoint the inequality is no
longer strict, implying that the interval is closed to the right, but open to the left.
For the continuity of s, let us consider any (monotone) converging sequence an → a ∈

[−b/r, a∗w]. First, assume that u ∈ S(an, z; τ) for all n ≥ N̄ , where N̄ is a natural number.
Then u > τ − T(ψz(an, u), z′). Thus, continuity of ψz(·, u) and T(·, z′) (cf. Lemma 5.19) imply
that

u ≥ τ − T (ψz(a, u), z′) .
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The right hand side of the inequality is decreasing in u, so that we can infer that every u′ > u
is contained in S(a, z; τ), hence u ∈ S(a, z; τ). In a similar way, we can show that u ∈
[0, τ ] \ S(an, z; τ) for every n ≥ N̄ implies that u ∈ [0, τ ] \ S(a, z; τ). However, this is only
possible if s(an, z; τ)→ s(a, z; τ), proving continuity in the interior of the domain.
It is obvious that τ > s(a, z; τ) as τ ∈ S(a, z; τ) and S(a, z; τ) is half-open. The uniformity

is also clear.

Lemma 5.21 The map u 7→ φz(a, u; τ) is differentiable on S(a, z; τ) and we have∣∣∣∣ ∂∂uφz(a, u; τ)

∣∣∣∣ > 0.

Proof. By (19), φz is differentiable in u provided that a′ 7→ ψz′(a
′, τ − u) is differentiable

at a′ = ψz(a, u). It is a well-known fact that the solution map of an ODE is differentiable in its
initial value provided that the right hand side is C1. By Proposition 4.4, the right hand side
of (18) (for z = z′) is C1 (in a) as long as we do not hit a∗z′ , which is precisely guaranteed by
u ∈ S(a, z; τ). Hence, we can apply the chain rule and obtain

∂

∂u
φz(a, u; τ) = −∂ψz

′

∂u
(ψz(a, u), τ − u) +

∂ψz′

∂a
(ψz(a, u), τ − u)

∂ψz
∂u

(a, u)

= − [rφz(a, u; τ) + z′ − c(φz(a, u, τ), z′)]︸ ︷︷ ︸
I

+

+
∂ψz′

∂a
(ψz(a, u), τ − u)︸ ︷︷ ︸

II

[rψz(a, u) + z − c(ψz(a, u), z)]︸ ︷︷ ︸
III

.

For z = w, we have I < 0 (with strict inequality as u ∈ S(a, z; τ)), and II ≥ 0, III ≥ 0,
implying that

∂

∂u
φw(a, u; τ) > 0.

On the other hand, for z = b, we have I > 0 (again, with strict inequality), II ≥ 0 and III ≤ 0,
implying that

∂

∂u
φb(a, u; τ) < 0.

By Lemma 5.21 together with Lemma 5.20 we now understand rigorously on which do-
mains of integration we can do the change of variables in (17), which is crucial for establishing
continuity. Therefore, we are now prepared to finish the proof of the theorem.
Proof of th. 5.18. We choose the measure ν(dt) = δτ (dt) for some fixed τ > 0 and define

a candidate T̃ for a continuous component of P τ by

T̃ ((a, z), A) ≡
∫ τ

0

1A(φz(a, u; τ), z′)1S(a,z;τ)(φz(a, u; τ))g(1)
τ (u)duP (Nτ = 1), (20)

for a ∈ [−b/r, a∗w], z ∈ {w, b}, A ⊂ [−b/r, a∗w]×{w, b} measurable, i.e., T̃ describes the dynamic
of the Markov system on the event that the number of jumps Nτ of the system before time τ
is equal to 1 such that the corresponding jump time T1 ∈ S(a, z; τ). Hence, it is clear that
T̃ ≤ P τ . Now, introduce a change or variables u→ y ≡ φz(a, y; τ) as in (17). By Lemma 5.21,
we get

T̃ ((a, z), A) =

∫ U(a,z;τ)

L(a,z;τ)

1A(y, z′)1S(a,z;τ)

(
φ−1
z (a, y; τ)

)
× · · ·

· · · × g(1)
τ

(
φ−1
z (a, y; τ)

) ∣∣∣∣ ∂∂yφ−1
z (a, y; τ)

∣∣∣∣ dy, (21)
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where the lower and upper limits of the integration are given by

L(a, z; τ) ≡
{
φz(a, 0; τ), z = w,

φz(a, τ ; τ), z = b,
U(a, z; τ) ≡

{
φz(a, τ ; τ), z = w,

φz(a, 0; τ), z = b,

respectively. Here, y 7→ φ−1
z (a, y; τ) denotes the inverse function of u 7→ φz(a, u; τ). Compar-

ing (21) with (20), we note two important differences: the integrand (including the limits of
the integration) in (21) is continuous in a almost everywhere but, on the other hand, generally
unbounded.
By a slight abuse of notation, let us denote S(a, z; τ) ≡]s(a, z; τ), τ ].18 Lemma 5.20 implies

that we may choose 0 < ε < inf(a,z) (τ − s(a, z; τ)). Now define Sε(a, z; τ) ≡]s(a, z; τ) + ε, τ ]
and

T ((a, z), A) ≡
∫ τ

0

1A(φz(a, u; τ), z′)1Sε(a,z;τ)(φz(a, u; τ))g(1)
τ (u)duP (N(τ) = 1). (22)

By the same change of variables as above, we arrive at

T ((a, z), A) =

∫ U(a,z;τ)

L(a,z;τ)

1A(y, z′)1Sε(a,z;τ)

(
φ−1
z (a, y; τ)

)
× · · ·

· · · × g(1)
τ

(
φ−1
z (a, y; τ)

) ∣∣∣∣ ∂∂yφ−1
z (a, y; τ)

∣∣∣∣ dy. (23)

Since the term I in the proof of Lemma 5.21 only gets close to 0 when u is close to s(a, z; τ),
now

1Sε(a,z;τ)

(
φ−1
z (a, y; τ)

) ∣∣∣∣ ∂∂yφ−1
z (a, y; τ)

∣∣∣∣
is uniformly bounded, implying that (a, z) 7→ T ((a, z), A) is continuous for any measurable set
A.
As, by construction, τ − (s(a0, z0; τ) + ε) > 0 we have T ((a, z), [−b/r, a∗w] × {w, b}) > 0.

Finally, it is obvious that T ((a, z), A) ≤ T̃ ((a, z), A) ≤ P τ ((a, z), A) for any (a, z) and any
measurable function A.

Corollary 5.22 The wealth-employment process (a(τ), z(τ)) is Harris recurrent.

Proof. By Lemma 5.16 and Theorem 5.18, the employment-wealth process (a(τ), z(τ)) is
an irreducible T -process. Thus, Proposition 5.9 implies that (a(τ), z(τ)) is Harris recurrent,
given that Px(Xt →∞) = 0 holds for our bounded state space.

5.3.3 Uniqueness

We can now complete our proof of uniqueness.

Theorem 5.23 Suppose that r < ρ. Then there is a unique invariant probability measure for
the wealth-employment process (a(τ), z(τ)).

Proof. By Proposition 5.7, there is a unique invariant measure (up to a constant multiplier),
and Proposition 5.6 implies that we may choose the invariant measure to be a probability
measure.
18This means that s(a, z; τ) ≡ 0 in the case T(a, z′) = ∞ and S(a, z; τ) = [0, τ ] is replaced by ]0, τ ] in that

case.
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5.4 Stability

Stability, i.e., convergence of the distribution of (a(τ), z(τ)) to the unique invariant distribution
for any given initial distribution is implied by the existence of an irreducible skeleton chain, see
Proposition 5.14.

Corollary 5.24 Under the assumptions of Theorem 5.23, the employment-wealth process is
stable in the sense of Definition 5.10.

Proof. Recall that the employment-wealth-process is a T -process, see Theorem 5.18. More-
over, we have shown irreducibility in Lemma 5.16. Proposition 5.14 will imply the desired
conclusion, if we can show irreducibility of a skeleton chain. Take any τ > 0 and consider
the corresponding skeleton Yn, n ∈ N, with transition probabilities P τ . By the proof of Theo-
rem 5.18, we see that (Yn) is also a T -process, where the definition of T -processes is generalized
to discrete-time processes in the obvious way. By Meyn and Tweedie (1993, Proposition 6.2.1),
the discrete-time T -process Y is irreducible if there is a point x ∈ X such that for any open
neighborhood O of x, we have

∀y ∈ X :
∞∑
n=1

P nτ (y,O) > 0. (24)

This property, however, can be easily shown for the wealth-employment process (a, z) as illus-
trated in Figure 1 and formally analysed in Appendix A.3.1 and 4. Indeed, take x = (−b/r, b).
Then any open neighborhood O of x contains [−b/r,−b/r + ε[×{b} for some ε > 0. We start
at some point y = (a0, z0) ∈ X and assume the following scenario: if necessary, at some time
between 0 and τ , the employment status changes to b, then it stays constant until the random
time Nτ defined by N ≡ inf{n | a(nτ) < −b/r + ε}. Note that the wealth is decreasing in a
deterministic way while z = b. Thus, we can find a deterministic upper bound N ≤ K(a0).
The event that the employment attains the value b during the time interval [0, τ ] and retains
this value until time K(a0)τ has positive probability. In this case, however, the trajectory
of the wealth-employment process reaches O, implying that

∑∞
n=1 P

nτ (y,O) > 0. Thus, the
τ -skeleton chain is irreducible and the wealth-employment process is stable.

6 Conclusion

This paper has introduced methods that allow us to prove existence of an optimal consumption
path that results from a setup with continuous time uncertainty. The fundamental stochastic
process is a two-state Markov chain for labour income. Consumption and wealth accumulation
is chosen optimally in our model of precautionary saving. We proved existence of a Markov
consumption being a function of wealth and labour income. We exploited the fact that in
our piecewise continuous system, the behaviour of optimal consumption between jumps can be
described by an ODE system.
We also proved existence, uniqueness and stability of distributions resulting from this sys-

tem. The distributions are a distribution of (optimally controlled) wealth and a distribution
for the labour market status. The results hold for an interest rate being lower than the time-
preference rate. By a standard law of large numbers, our findings also hold for the wealth and
employment dynamics of any population and also, as in our interpretation, for a population of
a small open economy.
The T -property turned out to be especially useful for models where randomness is introduced

by finite-activity jump processes, i.e., by compound Poisson processes. In diffusion models,
usually even the strong Feller property holds, which makes it easy to conclude the T -property.
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On the other hand, in models driven by infinite-activity jump processes, e.g., Lévy processes
with infinite activity, it does not seem clear whether the T -property can lead to useful results.
Indeed, in these models, the strong Feller property may and may not hold, see, for instance,
Picard (1995/97). On the other hand, the weak Feller property is satisfied for all Lévy processes,
implying existence of invariant distributions, see Applebaum (2004, Theorem 3.1.9). Looking
at these issues in economic applications offers many fascinating research projects for years to
come.

A Appendix

This section provides all properties of our system required for the phase diagram in Figure 1.

A.1 Obtaining the system of ODEs for consumption

When we derive the Keynes-Ramsey rules starting from the Bellman equation (5) and the
first-order condition (6) in the usual way (see Appendix B.1), we obtain the following system
consisting of two Keynes-Ramsey rules and two budget constraints. Optimal consumption when
employed follows

dc (aw (t) , w)

c (aw (t) , w)
=

{
r − ρ
σ

+
s

σ

[(
c (aw (t) , w)

c (aw (t) , b)

)σ
− 1

]}
dt+

[
c (aw (t) , b)

c (aw (t) , w)
− 1

]
dqs (t) (A.1a)

while wealth evolves according to

daw (t) = [raw (t) + w − c (aw (t) , w)] dt. (A.1b)

Optimal consumption when unemployed follows

dc (ab (t) , b)

c (ab (t) , b)
=

{
r − ρ
σ
− λ

σ

[
1−

(
c (ab (t) , b)

c (ab (t) , w)

)σ]}
dt+

[
c (ab (t) , w)

c (ab (t) , b)
− 1

]
dqλ (t) (A.1c)

and wealth follows
dab (t) = [rab (t) + b− c (ab (t) , b)]dt. (A.1d)

Note that we apply an index to the state variable a (t). Imagine, we had denoted the state
variable wealth by one variable a (t) in both states. Then the budget constraints would read
da (t) = [ra (t) + w − c (a (t) , w)] dt and da (t) = [ra (t)+b−c (a (t) , b)]dt. This might tempt to
conclude that w− c (a (t) , w) = b− c (a (t) , b) at each point even though one budget constraint
holds for one state and the other for the other such that an individual can never be in both
states at the same time. To avoid this, we index the single state variable a (t) by z to emphasize
for which state wealth is being studied.
This system is piece-wise continuous and our discussion of Figure 1 will distinguish times

between jumps and the effect of a transition from one labour market state to another. When
we study these equations for the time between jumps, we set dqs = dqλ = 0. We can eliminate
time by computing dc (aw, w) /daw and dc (ab, b) /dab and replace aw and ab by a.19 We can do
the latter as we now study the derivative of the consumption function with respect to wealth.
Here, the time component no longer plays a role and the “risk”of comparing wealth levels in
different states is no longer present. Going through these steps yields (7) in the main text. The
stochastic dq-terms in (A.1a) and (A.1c) (tautologically) represent the discrete jumps in the
level of consumption whenever the employment status changes.

19Eliminating time as exogenous variable means, simply speaking, to consider one ODE dy (x) /dx =
f (y (x) , x) /g (y (x) , x) instead of considering two ODEs of the type dy (t) /dt = f (y (t) , x (t)) and dx (t) /dt =
g (y (t) , x (t)) .
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A.2 A proposition on consumption growth

We focus on individuals in periods between jumps. Understanding the effects of jumps subse-
quently is trivial. The evolution of consumption between jumps is given by the deterministic
part, i.e. the dt-part, in (A.1a) and (A.1c). We then easily understand

Lemma A.1 Individual consumption rises if and only if current consumption relative to con-
sumption in the other state is suffi ciently high.
For the employed worker, consumption rises if and only if c (aw, w) relative to c (aw, b) is

suffi ciently high,

dc (aw, w)

dt
≥ 0⇔

(
c (aw, w)

c (aw, b)

)σ
≥ 1− r − ρ

s
⇔ c (aw, w)

c (aw, b)
≥ 1/ψ, (A.2)

where

ψ ≡
(

1− r − ρ
s

)−1/σ

. (A.3)

For the unemployed worker, consumption rises if and only if c (ab, b) relative to c (ab, w) is
suffi ciently high,

dc (ab, b)

dt
≥ 0⇔

(
c (ab, b)

c (ab, w)

)σ
≥ 1− r − ρ

λ
⇔ c (ab, b)

c (ab, w)
≥
(

1− r − ρ
λ

)1/σ

. (A.4)

Proof. Rearranging (A.1a) and (A.1c) for dqs = dqλ = 0 gives the results.
We rely on the following lemma for our proposition below. It reads

Lemma A.2 Relative consumption c (a, w) /c (a, b) is continuously differentiable in wealth a.

Proof. Consumption levels c (a, w) and c (a, b) are understood as solutions to our ODE
system (7). As the latter is well-behaved within the set Qv from (12), consumption levels
are continuously differentiable in Qv. This implies that c (a, w) /c (a, b) is also continuously
differentiable.
For what follows, it is important to strengthen the statement of Lemma A.2. Suppose that

I is an open interval of the real line. A real-valued function f on I is called analytic if the
following condition holds (see e.g. Krantz and Parks, 2002). For any fixed x0 ∈ I there exists
an ε > 0 and a sequence of real numbers ai such that (x0−ε, x0 +ε) ⊂ I and the series

∑∞
i=0 aix

i

converges uniformly to f on (x0 − ε, x0 + ε). In other words, the function f has a convergent
power series expansion on a neighbourhood of x0. Analytic functions of several variables can
be defined in an analogous way. The usual elementary functions such as powers are analytic
wherever they are differentiable. Sums, products, quotients (excluding division by zero) and
compositions of analytic functions are analytic (Krantz and Parks, 2002, Chapter 1). As long as
the unknowns remain in the set Qv the coeffi cients of the differential equations for x and y are
analytic. It follows that the solutions are also analytic by the theorem of Cauchy-Kovalevskaya
(Krantz and Parks, 2002, Chapter 1). Thus their quotient is analytic. Suppose now that f is
an analytic function on an open interval I and J ⊂ I is a closed interval. Then unless f is
identically zero the number of zeroes of f in J is finite (Krantz and Parks, 2002, Chapter 1).
This allows us to formulate

Lemma A.3 The number of sign changes of the derivative of relative consumption with respect
to wealth, i.e. d (c (a, w) /c (a, b)) /da, in any interval of finite length is finite.

Proof. The derivative of an analytic function is analytic and so we can apply the above
discussion, choosing the function f to be d (c (a, w) /c (a, b)) /da.
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Proposition A.4 Consider a low interest rate, i.e. 0 < r ≤ ρ. Define a threshold level a∗w by

u′ (c (a∗w, b))

u′ (c (a∗w, w))
≡ 1− r − ρ

s
. (A.5)

For our instantaneous utility function (1), this definition reads

c (a∗w, b) = ψc (a∗w, w) (A.6)

where ψ is from (A.3).
(i) Consumption of employed workers increases if the worker owns a suffi ciently low wealth

level, a < a∗w. Employed workers with a > a∗w choose falling consumption paths.
(ii) Consumption of unemployed workers always decreases.
(iii) Consumption of employed workers exceeds consumption of unemployed workers at the

threshold a∗w, i.e. ψ ≤ 1 in (A.6) for r ≤ ρ.

Proof. see Appendix A.3

A.3 Proof of the proposition on consumption growth

A.3.1 Proof of part (i)

• A local result

We first show that consumption c (aw, w) rises in time for wealth smaller than but close to
a∗w.
Consider relative consumption χ (a) ≡ x (a) /y (a) . By Lemma A.3, the number of sign

changes of χ′ (a) in any interval for a of finite length is finite. We can therefore for any a0

find an ε > 0 such that χ (a) is monotonic in [a0 − ε, a0]. Exploiting this for a∗w, whatever the
properties of relative consumption, we can always find an ε such that one of the following three
cases must hold for Ωε ≡ [a∗w − ε, a∗w[ ,

(i)
(ii)
(iii)

 χ′ (a)|a∈Ωε


<
>
=

 0.

Note that we do not make any statement about the derivative in a∗w. In fact, in case (i) χ
′ (a)|a∈a∗w

can be negative or zero, in case (ii), it can be positive or zero.

Lemma A.5 (a) Consumption of employed workers rises over time for a wealth level a ∈ Ωε

if and only if case (i) holds,

dc (aw(τ), w)

dτ
> 0 for aw(τ) ∈ Ωε ⇔ case (i) holds.

(b) Consumption c (aw(τ), w) falls over time for aw(τ) ∈ Ωε if and only if (ii) holds.

Proof. (a) By (A.2), dc(aw(τ),w)
dτ

> 0⇔ c (aw(τ), w) /c (aw(τ), b) > 1/ψ. As c (a∗w, w) /c (a∗w, b) =
1/ψ at a∗w, as w and b are parameters and using ass. A.3, this is a condition on the derivative of
relative consumption with respect to wealth a in Ωε: dc (aw(τ), w) /dτ is positive for aw(τ) ∈ Ωε

if and only if case (i) holds.
(b) By (A.2), consumption falls over time if relative consumption lies below 1/ψ. This can

be the case in Ωε only if case (ii) holds.
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Lemma A.6 Relative consumption falls in wealth for a ∈ Ωε, χ′ (a)|a∈Ωε
< 0, i.e. case (i)

holds.

Proof. a) Assume that case (ii) holds, i.e. χ′ (a)|a∈Ωε
> 0. Then, by Lemma A.5,

dc(aw(τ),w)
dτ

< 0 for aw(τ) < a∗w. Consumption of unemployed workers would still decrease in
time for all wealth levels. In our set Qv from (12), daw(τ)

dτ
> 0 and therefore dx(a)

da
< 0. As

dc(ab(τ),b)
dτ

< 0 and dab(τ)
dτ

< 0 in Qv, we know that
dy(a)
da

> 0. As a consequence, χ′ (a) < 0. This
contradicts the assumption that case (ii) holds and case (ii) can be excluded.
b) Now assume that case (iii) holds, i.e. relative consumption is flat, χ′ (a)|a∈Ωε∪a∗w = 0. As

c (a∗w, w) /c (a∗w, b) = 1/ψ, dc (aw(τ), w) /dτ = 0 for aw(τ) ∈ Ωε. As dc (ab(τ), b) /dτ < 0, relative
consumption is not constant —which contradicts the assumption that relative consumption is
flat in wealth. As case (iii) is thereby excluded as well, the proof is complete.

• A global result
We now complete the proof by a global result on consumption growth.

Lemma A.7 Consumption c (aw, w) (a) rises in time for all a < a∗w and (b) decreases in time
for all a > a∗w.

Proof. (a) Imagine to the contrary of “c (aw, w) rises in time for all a < a∗w”that there is
an interval ]Γ1,Γ2[ with Γ2 < a∗w such that this is is the last interval before a

∗
w where c (aw, w)

falls in time,
dc (aw(τ), w) /dτ < 0, ∀ Γ1 < aw(τ) < Γ2 < a∗w. (A.7)

We now proceed as in the proof of Lemma A.6. As daw(τ)
dτ

> 0 in Qv, this would imply that
dx(a)
da

< 0 for Γ1 < a < Γ2. We know that
dy(a)
da

> 0 in Qv. Hence, we would conclude that

χ′ (a) < 0, ∀ Γ1 < a < Γ2. (A.8)

By (A.2), the assumption in (A.7) would hold if and only if relative consumption c(aw,w)
c(aw,b)

is

below 1/ψ for Γ1 < a < Γ2:
dc(aw(τ),w)

dτ
< 0 ⇔ c(aw(τ),w)

c(aw(τ),b)
< 1/ψ. As x(a)

y(a)
is continuous in wealth

by Lemma A.2 and as case (i) holds by Lemma A.6, x(a)
y(a)

can be smaller than 1/ψ only if there
is some range ]Γ3,Γ2[ in which χ′ (a) > 0. (An example of such a path is shown in Figure 2.)
This is a contradiction to the conclusion in (A.8). Hence, consumption must rise in time for all
a < a∗w.
(b) This proof is in analogy to the proof of (a).

Figure 2 An example for relative consumption χ (a) ≡ x(a)
y(a)
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A.3.2 Intermediate steps

Before we prove the rest of Proposition A.4, we need some further intermediate results —which,
however, are of some interest in their own right. Given that marginal utility from (1) is positive
and decreasing, u′ (c) > 0 and u′′ (c) < 0, we can establish that x (a) > y (a) , i.e. consumption
in the state of employment is larger than in the state of unemployment, keeping wealth constant.
We prove in passing that the value functions V (a, z) are strictly concave in wealth a.

Lemma A.8 Consumption rises in wealth, ca (a, z) > 0.

Proof. Proposition A.4 (i) shows that dc (aw(τ), w) /dτ > 0 in Qv. As daw(τ)/dτ > 0 as
well, the derivative dx (a) /da in (7) is positive in Qv.

Lemma A.9 As marginal utility from consumption is positive, the value function V (a, z) rises
in wealth, Va (a, z) > 0.

Proof. The first-order condition for optimal consumption is given by (6) in the Referees’
appendix and reads

u′ (c (a, z)) = Va (a, z) . (A.9)

As marginal utility is positive by (1), the value function rises in wealth.

Lemma A.10 As u′′ (c) < 0 and as consumption rises in a by Lemma A.8, the value function
is strictly concave in a.

Proof. The partial derivative of the first-order condition with respect to wealth implies

u′′ (c (a, z)) ca (a, z) = Vaa (a, z) . (A.10)

As u′′ (c (a, z)) < 0 from the concavity of (1) and ca (a, z) is positive by Lemma A.8, Vaa (a, z)
must be negative. With Lemma A.9, the value function is strictly concave.

Lemma A.11 The shadow price for wealth is higher in the state of unemployment, Va (a, b) >
Va (a, w) .

Proof. The derivation of the Keynes-Ramsey rule gives us (see Appendix B.1)

(ρ− r)Va (a, z)− s (z) [Va (a, b)− Va (a, w)]− λ (z) [Va (a, w)− Va (a, b)]

= [ra+ z − c (a, z)]Vaa (a, z) .

In state z = w, this means

(ρ− r)Va (a, w)− s (z) [Va (a, b)− Va (a, w)] = [ra+ w − x (a)]Vaa (a, w) . (A.11)

Given the region we are interested in (where ra+w−x (a) > 0) and given Lemma A.10, the right-
hand side is negative. Hence, the left-hand side must be negative as well. As (ρ− r)Va (a, w)
is positive due to r < ρ, the second term must be negative. This is the case only for Va (a, b) >
Va (a, w) .

Lemma A.12 Consumption of the employed worker is higher than consumption of the unem-
ployed worker, x (a) > y (a) .

Proof. As Va (a, b) > Va (a, w) , the first-order condition implies u′ (y (a)) > u′ (x (a)) . As
the marginal utility is decreasing, x (a) > y(a).
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A.3.3 Proof of parts (ii) and (iii)

(ii) By (A.4), dc (ab(τ), b) /dτ < 0⇔ u′ (c (ab(τ), w)) < κu′ (c (ab(τ), b)) where κ ≡ 1− r−ρ
λ
≥ 1

as r ≤ ρ. As u′ (c (ab(τ), w)) < u′ (c (ab(τ), b)) with c (ab(τ), w) > c (ab(τ), b) from Lemma A.12,
this condition always holds.
(iii) This follows from solving (A.5) for relative consumption.

A.4 Proof of Lemma 4.2 (existence of an optimal consumption path
for v > 0)

For simple reference in what follows and to simplify notation, define

x(a) ≡ c(a, w), y(a) ≡ c(a, b), (A.12)

and express the reduced form (7) as

ẋ(a) =
r − ρ+ s

[(
x(a)
y(a)

)σ
− 1
]

ra+ w − x (a)

x (a)

σ
, (A.13a)

ẏ(a) =
r − ρ− λ

[
1−

(
y(a)
x(a)

)σ]
ra+ b− y (a)

y (a)

σ
. (A.13b)

The implication of the natural borrowing limit in (4) can be expressed here as

y (−b/r) = 0. (A.14)

Any solution to (A.13) must satisfy this condition.
We study a regularized version of this ODE system in the sense that we restrict attention

to the set Qv from (12). In addition we restrict the region further to make it bounded in order
to avoid technical diffi culties associated to the function c(a, w) becoming arbitrarily large. We
consider

Rv,Ψ =
{

(a, c (a, w) , c (a, b)) ∈ R3| (a, c (a, w) , c (a, b)) ∈ Qv, c (a, w) ≤ Ψ <∞
}
, (A.15)

where Ψ is a fixed positive constant which is suffi ciently large.20 A third parameter ε will also
be introduced shortly to avoid the singularity at (A.14). This temporarily restricts our analysis
further to the set

Rε,v,Ψ = Rv,Ψ ∩
{

(a, x, y) ∈ R3 | y ≥ ε
}
. (A.16)

A.4.1 Preliminaries

In what follows, we will use classical theorems for initial value problems for ODEs. Currently,
we have formulated our system (A.13) as a terminal value problem, since the definition of the
optimal consumption path in Definition 4.1 uses a terminal condition (a∗w, c (a∗w, w) , c (a∗w, b))
at the end of the interval [−b/r, a∗w] under consideration. Using the notation from (A.12) and
given our focus on Rv,Ψ from (A.15) in this section, this terminal condition can be written in
compact form as

Φ ≡ Φv (â) = (â, xv (â) , yv (â)) . (A.17)

20The constant Ψ only serves to make Rv,Ψ ⊂ R3 a compact set, which we need to obtain global, uniform
Lipschitz constants. We shall see below that Ψ has to be chosen larger than Ψ0 = ψw−b

(1−ψ)r . In this case, however,
Ψ does not interfere with the construction.
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Note that Φ depends on v, i.e. xv (â) is defined in analogy to (11) as xv (â) = râ + w − v and
yv (â) is determined by (xv (â) /yv (â))σ = 1− r−ρ

s
in analogy to (8).

For ease of notation and to help intuition, we shall now recast the problem into a classical
initial value problem, i.e. we will require the value Φ to be attained at the fixed beginning
τ = 0 of an interval [0, τ ∗], on which we study the problem. To this end, it is more useful
to work with an autonomous system. Hence, we rewrite (A.13) by including m (a) = a as
third variable which “replaces”wealth a, which now purely serves as a parameter, i.e. as the
independent variable. By using (A.12), this gives the system

ṁ(a) = 1,

ẋ (a) =
r − ρ+ s

[(
x(a)
y(a)

)σ
− 1
]

rm (a) + w − x (a)

x (a)

σ
,

ẏ (a) =
r − ρ− λ

[
1−

(
y(a)
x(a)

)σ]
rm (a) + b− y (a)

y (a)

σ
.

Now define τ ≡ â − a, x1 (τ) ≡ m (â− τ), x2 (τ) ≡ x (â− τ), x3 (τ) ≡ y (â− τ) . Then,
d
dτ
x1 (τ) ≡ ẋ1 (τ) = d

dτ
m (â− τ) = d

d[â−a]
m (a) = − d

da
m (a) = −ṁ (a) . Doing the same for x

and y, the “inverted”autonomous system therefore reads

ẋ1 (τ) = −1, (A.18a)

ẋ2 (τ) = −
r − ρ+ s

[(
x2(τ)
x3(τ)

)σ
− 1
]

rx1 (τ) + w − x2 (τ)

x2 (τ)

σ
, (A.18b)

ẋ3 (τ) = −
r − ρ− λ

[
1−

(
x3(τ)
x2(τ)

)σ]
rx1 (τ) + b− x3 (τ)

x3 (a)

σ
, (A.18c)

where now ẋi denotes the derivative of xi(τ) with respect to τ , i = 1, 2, 3.

Definition A.13 Given (A.18) and for τ ≥ 0, let X(τ ; Φ) = (x1(τ), x2(τ), x3(τ)) denote the
solution of (A.18) started at X(0; Φ) = Φ ∈ Rv,Ψ from (A.17) where −b/r ≤ â ≤ Ψ+v−w

r
. For

later use, we also introduce the notation xi(τ) = xi(τ ; Φ), i = 1, 2, 3.

By passing from (A.13) to (A.18) we have reversed the time-direction —more precisely, in
our setting, the wealth-direction —and turned a non-autonomous system into an autonomous
one by including the independent variable as an additional component of the solution. Thus,
the curve a 7→ (a, x(a), y(a)) with terminal value x(â) = xv(â), y(â) = yv(â) is equal to the
curve τ 7→ X(τ ; Φ) with Φ = Φ(â), which is the solution of an initial value problem in the
classical sense. However, the parametrization is reverted in the sense that in the former case
we start at the left endpoint (“left”in the sense of the smallest value of the a-component) and
end in the right endpoint, whereas in the latter case we start at the right endpoint and end in
the left one. In particular, the absolute value of the speed along the curve is equal, but the
direction is reversed.

A.4.2 Continuity of the solution in initial values

In order to be able to apply classical theorems, we need finite derivatives on the right-hand side
of an ODE system. The right-hand side of the ODE (A.13), however, exhibits singularities at
the boundary y = ra+ b of Qv. This is of particular importance as the definition of the optimal
consumption path in Definition 4.1 uses y (−b/r) = 0 —which lies on this boundary. We obtain
finite derivatives by (i) a coordinate transformation and by (ii) (temporarily) reducing the set
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on which we are interested in a solution by demanding that y ≥ ε. We will later show (see
remark A.23) how this reduction can then be removed again by passing ε→ 0.

Lemma A.14 (Coordinate transformation) Let x(a) and y(a) be solutions of (A.13). The
mapping a 7→ y(a) is bijective. Change variables a = a(y) and consider x and a as functions
of y. Then

x′(y) ≡ dx(y)

dy
=
r − ρ+ s

[(
x(y)
y

)σ
− 1
]

r − ρ− λ
[
1−

(
y

x(y)

)σ] x(y)

y

ra(y) + b− y
ra(y) + w − x(y)

, (A.19a)

a′(y) ≡ da(y)

dy
=

ra(y) + b− y
r − ρ− λ

[
1−

(
y

x(y)

)σ] σ
y
. (A.19b)

Proof. Since ẏ(a) > 0, y is a bijective function of a. As a′(y) = 1
ẏ(a)
, we obtain the second

equation by inserting (A.13b). The first equation follows from “dividing (A.13a) by (A.13b)”.

We are going to avoid the singularity at y (−b/r) = 0 by temporarily requiring (see remark
A.23 below) these properties to hold only “up to an arbitrarily small number ε”. We do this
by considering the domain Rε,v,Ψ as given in the following

Definition A.15 Fix a numbers ε > 0 and define Rε,v,Ψ from (A.16), reproduced here for
convenience,

Rε,v,Ψ = Rv,Ψ ∩
{

(a, x, y) ∈ R3 | y ≥ ε
}
.

This definition implies that we temporarily replace the requirement that y (−b/r) = 0 by
y (a) = ε for some −b/r ≤ a ≤ −b/r + ε/r.

Lemma A.16 The right-hand side given in (A.19) is uniformly Lipschitz on Rε,v,Ψ.

Proof. Consider the right-hand side of (A.19a). The only possible points, where the
Lipschitz constant can explode, are when the denominators in the right-hand side become 0
or when a term under a fractional power (i.e. with exponent σ) becomes 0. In R = Rε,v,Ψ, y
is uniformly bounded away from 0 and x is uniformly bounded away from ra + w. Moreover,
note that r − ρ − λ

[
1−

(
y
x

)σ]
= 0 if and only if

(
y
x

)σ
= 1 − r−ρ

λ
. Now 1 − r−ρ

λ
> 1 by the

assumption that r < ρ. On the other hand, y < x, implying that
(
y
x

)σ
< 1. Consequently, all

the denominators are uniformly bounded away from 0.
For the fractional powers, note that x/y > 1 is trivially uniformly bounded away from 0.

As x ≤ Ψ,
y

x
>

ε

Ψ

is uniformly bounded away from 0 on Rε,v,Ψ. This shows that (A.19a) is uniformly Lipschitz.
The same arguments show that the right-hand side of (A.19b) is uniformly Lipschitz, too.

Since the right hand side of (A.19) is uniformly Lipschitz, we can now apply the classical
theory of ODEs. For instance, we have existence and uniqueness of the solution by the Picard-
Lindelöf theorem, see Mattheij andMolenaar (2002, Theorem II.2.3, Theorem II.3.1). Moreover,
the solution will be continuous as a function of the initial value, see, again, Mattheij and
Molenaar (2002, Theorem II.4.7). In the lemma below, we will see how this even implies the
corresponding properties for the non-transformed system (A.18).
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Lemma A.17 (Continuity in initial values) Consider the set R = Rε,v,Ψ from (A.16) and the
solution X(τ ; Φ) from Definition A.13 with initial condition Φ given in (A.17). The solution
X(τ ; Φ) depends continuously on its initial values Φ. More precisely, there is a constant L > 0
and an increasing map κ : [0,∞[→ [0,∞[ (a modulus of continuity) with limt↘0 κ(t) = κ(0) = 0
such that

‖X(τ1; Φ1)−X(τ2; Φ2)‖ ≤ L‖Φ1 − Φ2‖+ κ(|τ1 − τ2|),
provided that Φ1,Φ2 ∈ R and X(τ ; Φi) ∈ R for all 0 ≤ τ ≤ max(τ1, τ2), i = 1, 2. Here, ‖·‖
denotes the Euclidean norm on R3.

Proof. By classical results from the theory of ordinary differential equations, see for in-
stance Mattheij and Molenaar (2002, Theorem II.4.7), the solution of an ODE-system depends
continuously on the initial data as long as the right-hand side is uniformly Lipschitz. More
precisely, let Y (τ ; Φ) denote the solution of an ODE with uniformly Lipschitz right-hand side
(with Lipschitz constant C), started at Y (τ0; Φ) = Φ, then

‖Y (τ ; Φ1)− Y (τ ; Φ2)‖ ≤ exp (C(τ − τ0)) ‖Φ1 − Φ2‖.

Now consider the transformed system (a(y), x(y)) from (A.19). By Lemma A.16, the right-
hand side is uniformly Lipschitz. The solution of (A.19) therefore depends continuously on
its initial data (a0, x0). It is then obvious that the trajectory (a(y), x(y), y) depends contin-
uously on (a0, x0, y0). As system (A.19) is a reparameterized version of (A.13), the solution
(a, x (a) , y (a)) to (A.13) from Definition 4.1 is also continuous in its boundary conditions —
even though the right hand side of (A.13) is not uniformly Lipschitz. Similarly, as (A.18) is
just a reparameterization of (A.13), the solution X (τ ; Φ) to (A.18) from Definition A.13 is also
continuous in its initial condition Φ.
In order to get the estimate, we now consider the ODE (A.18) and note that we only

consider it on the compact set Rε,v,Ψ. In the parametrization by y given in (A.19), y is the
independent variable, i.e. plays the role of τ in the above estimate. By compactness of Rε,v,Ψ, y
only runs through a bounded set, therefore we can rewrite the constant in the above inequality
as exp(C(y − y0)) ≤ L for some suitable L > 0.
Given Φ ∈ Rε,v,Ψ. Then a∗w ≤ Ψ−w+v

r
, which implies that the solution X(τ ;w) can only stay

inside Rε,v,Ψ until time τ = Ψ−w+v+b
r

, at most. Consider

D = {(τ,Φ) ∈ [0,∞[×Rε,v,Ψ |X(τ ; Φ) ∈ Rε,v,Ψ}.

Then D is a closed subset of
[
0, Ψ−w+v+b

r

]
×Rε,v,Ψ, implying that D is compact. Consequently,

X : D → Rε,v,Ψ is uniformly continuous, which implies the existence of a modulus of continuity
κ with

‖X(τ1; Φ1)−X(τ2; Φ2)‖ ≤ κ(|τ1 − τ2|+ ‖Φ1 − Φ2‖).
The inequality in the lemma then follows by the triangle inequality.

A.4.3 Continuity of the first hitting-wealth in initial values

While we have shown in the previous section that the solutions to all systems (A.13), (A.18)
and (A.19) are continuous in initial values, this does not automatically imply that the solutions
will be continuous on the boundary of the domain we are interested in, in the sense that the
place where the solution leaves the domain R might not depend continuously on the initial
data. This will now be proved in this section.
In the proofs and also in a later step, we will use the following
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Definition A.18 (First hitting-wealth) Consider the set Rε,v,Ψ from (A.16) and the solution
X (τ ; Φ) to the system (A.18). Consider the path y (a) that corresponds to x2 (τ) of this solution.
Then we define â1st = f (â) as the “first hitting-wealth”(in analogy to first hitting-time), i.e. the
wealth level where the path y (a) hits any boundary of Rε,v,Ψ for the first time. Similarly denote
τ(Φ) ≡ inf{τ ≥ 0 |X(τ ; Φ) ∈ ∂Rε,v,Ψ} and F (Φ) ≡ X(τ(Φ); Φ).

We know that â1st exists because in the set Rε,v,Ψ the derivatives in (A.18) are well-defined
and a solution therefore exists. Notice that â1st equals the first component of F (Φ(â)).
We also need

Definition A.19 Let N ⊂ Rε,v,Ψ with

N =

{
Φ(â)

∣∣∣∣ â ∈ [− br , ψ [w − v]− b
r [1− ψ]

]}
be the set of all potential initial conditions from (A.17) for a solution in the sense of Definition
4.1. Here we implicitly assume that Ψ is large enough that indeed N ⊂ Rε,v,Ψ.21 Define M as

M = M1 ∪M2 ∪M3 ⊂ Rε,v,Ψ (A.20)

with

M1 = {(a, x, y) ∈ Rε,v,Ψ | y = ra+ b},
M2 = {(a, x, y) ∈ Rε,v,Ψ | a = −b/r},
M3 = {(a, x, y) ∈ Rε,v,Ψ | y = ε}.

This set will turn out to be the set of all potential first hitting-wealths.

Since we know that x > y, the trajectory will not hit the boundary of R at the part {x = y}.
Therefore, we have the

Corollary A.20 F : N → M is a well-defined map, i.e. for every Φ ∈ N , the corresponding
solution path X(τ ; Φ) exists and stays in Rε,v,Ψ until it finally hits M (and no other boundary
of Rε,v,Ψ).

Before formulating the main lemma of this section, let us first derive a simple bound on the
derivative ẏ(a) of the consumption of the unemployed.

Lemma A.21 For (a, x, y) in the interior of Qv from (12), we have

ẏ(a) ≥ r − ρ
ra+ b− y(a)

y(a)

σ
.

Proof. By (A.13b) we have

ẏ (a) =
r − ρ− λ

[
1−

(
y(a)
x(a)

)σ]
ra+ b− y (a)

y (a)

σ

=

 r − ρ
ra+ b− y (a)

−
λ
[
1−

(
y(a)
x(a)

)σ]
ra+ b− y (a)

 y (a)

σ
>

r − ρ
ra+ b− y (a)

y (a)

σ
.

The last inequality follows from the fact that
λ[1−( y(a)x(a))

σ
]

ra+b−y(a)
is negative (and therefore −λ[1−( y(a)x(a))

σ
]

ra+b−y(a)

is positive) as ra+ b− y (a) is negative in the interior of Qv.
The key result in this section is presented in

21This is the only necessary condition on Ψ for the construction to work. In the sequel, we shall assume this
condition without further notice.
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Lemma A.22 The map F : N →M is continuous.

Proof. We need to prove that for every Φ ∈ N and every δ > 0 there is an η > 0 such that

‖Φ0 − Φ‖ < η =⇒ ‖F (Φ0)− F (Φ)‖ < δ. (A.21)

We start the proof by fixing Φ0, Φ ∈ N such that ‖Φ0 − Φ‖ < η for some η > 0. Let us first
assume that τ(Φ0) ≤ τ(Φ). By the triangle inequality and Lemma A.17, we have

‖X(τ(Φ0); Φ0)−X(τ(Φ); Φ)‖ ≤ ‖X(τ(Φ0); Φ0)−X(τ(Φ0); Φ)‖+

+ ‖X(τ(Φ0); Φ)−X(τ(Φ); Φ)‖
≤ L1 ‖Φ0 − Φ‖+ κ(|τ(Φ0)− τ(Φ)|), (A.22)

for a constant L1 > 0 and the modulus of continuity κ. In order to get an estimate for
|τ(Φ0)− τ(Φ)|, we have to distinguish between three different cases.
Case (i): F (Φ0) ∈M1.

By Lemma A.21, there are constants L2, `2 > 0 such that ẏ ≥ L2 for |y − (ra+ b)| ≤ `2. More
precisely, we can choose `2 > 0 freely and obtain the bound for L2 = 1

`2

(ρ−r)ε
σ
. If L1η ≤ `2, we

can bound the absolute value of the derivative of x3(τ ; Φ) from below by L2 (for t ≥ τ(Φ0)).
This implies that the path X(τ ; Φ) hits M1 before time τ(Φ0) + τ for

τ(L2 − r) = `2 ⇐⇒ τ =
`2

L2 − r
,

unless it hits another boundary of Rε,v,Ψ before that. Inserting into (A.22), this gives the
estimate

‖F (Φ0)− F (Φ)‖ ≤ L1η + κ

(
`2

L2 − r

)
.

Choosing `2 = L1η, the bound is smaller than δ provided that

κ

(
L1

C
L1η
− r

η

)
+ L1η < δ, (A.23)

where C ≡ (ρ−r)ε
σ
. Note that the left hand side in (A.23) converges to zero for η → 0, therefore

we can find an η0(δ) > 0 (only depending on the constants C, L1 and r and the modulus of
continuity κ, but not on Φ0 or Φ) such that the desired inequality (A.21) holds for η < η0. We
have tacitly assumed that L2 = C/`2 = C

L1η
> r, which can be realized by choosing η small

enough.
Case (ii): F (Φ0) ∈M2.

Let â denote the first component of Φ, and â0 the first component of Φ0. Note that x1(τ ; Φ) =
â− τ , for every τ ≥ 0. Since X(τ(Φ0); Φ0) ∈M2, we have −b/r = x1(τ(Φ0); Φ0) = â0 − τ(Φ0),
implying that τ(Φ0) = â0 + b/r. On the other hand, x1(τ(Φ); Φ) ≥ −b/r, implying that
τ(Φ) ≤ â+ b/r. Combining these two results, we obtain

|τ(Φ0)− τ(Φ)| = τ(Φ)− τ(Φ0) ≤ â− â0 ≤ ‖Φ0 − Φ‖ .

Consequently, the inequality (A.22) implies

‖F (Φ0)− F (Φ)‖ ≤ L1 ‖Φ0 − Φ‖+ κ(‖Φ0 − Φ‖) ≤ L1η + κ(η),

and (A.21) holds for η small enough such that

L1η + κ(η) < δ. (A.24)
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Case (iii): F (Φ0) ∈M3.
Since x3(τ(Φ0); Φ0) = ε, we have 0 ≤ x3(τ(Φ0); Φ)− ε ≤ L1η. By Lemma A.21, we can find a
constant L3 > 0 such that ẏ ≥ L3 on Rε,v,Ψ —note that L3 depends on ε. Thus, X(s; Φ) will
hit the boundary M3 before time τ(Φ0) + τ with τ = L1η/L3, unless it hits another boundary
of Rε,v,Ψ before. In any case, |τ(Φ0)− τ(Φ)| ≤ L1η/L3, and we obtain

‖F (Φ0)− F (Φ)‖ ≤ L1η + κ

(
L1

L3

η

)
,

and (A.21) is satisfied for

L1η + κ

(
L1

L3

η

)
< δ. (A.25)

Choosing η small enough that both (A.23) and (A.24) and (A.25) are satisfied, settles the
proof for τ(Φ0) ≤ τ(Φ). Notice that none of the conditions (A.23), (A.24) and (A.25) depends
on Φ0. Therefore, in the other case τ(Φ0) ≥ τ(Φ), we can just revert the rôles of Φ and Φ0 and
obtain the same results in cases (i), (ii) and (iii).

A.4.4 Existence of a solution for v > 0

This section proves our main result formulated in Theorem 4.3 regularized for v > 0, i.e. for
the set Rv,Ψ from (A.15) and the terminal condition from (A.17).
Proof. Fix some ε > 0 and consider Rε,v,Ψ. By an intermediate value theorem applied to

F : N → M , we will obtain a point or points Φ ∈ N such that F (Φ) ∈ M3 as used in (A.20),
i.e. x3(τ(Φ); Φ) = ε provided that we can show the existence of points (that could be called
upper and lower bounds) Φmin

v ,Φmax
v ∈ N with F (Φmin

v ) ∈ M2 and F (Φmax
v ) ∈ M1. (Note that

F = Fε and all the Mi = Mi(ε), i = 1, 2, 3, depend on ε and v, but not on Ψ, provided that Ψ
is large enough.)
Choose

Φmin
v = Φ(−b/r) = (−b/r, w − b− v, ψ [w − b− v]), Φmax

v = Φ

(
ψ(w − v)− b

(1− ψ)r

)
.

By construction, bothΦmin
v andΦmax

v are contained inN . Moreover, we trivially have Fε(Φmin
v ) ∈

M2(ε), Fε(Φmax
v ) ∈M1(ε) for every ε > 0 small enough. Note, in particular, that Lemma A.22

also implies continuity of F in the boundary points Φmin
v and Φmax

v of N . Therefore, the image
set Fε(N) is a connected set, with non-empty intersection with both M1 and M2. Since the
distance

dist(M1,M2) = inf {‖Φ1 − Φ2‖ |Φ1 ∈M1, Φ2 ∈M2} =
ε

r
> 0,

we may conclude that Fε(N) ∩M3(ε) 6= ∅. This establishes that there must be a Φ such that
Fε (Φ) ∈M3. In words, there is an initial condition Φ (â) such that the path (a, x(a), y (a)) hits
the boundary at y = ε.
Now define

N3(ε) ≡ F−1
ε (M3(ε)) = {Φ ∈ N |Fε(Φ) ∈M3(ε)} .

By continuity of Fε : N →M(ε), the bounded set N3(ε) is closed and thus compact. Moreover,
the family (N3(ε))ε>0 is directed in the sense that

0 < ε2 < ε1 =⇒ N3(ε2) ⊂ N3(ε1).

By standard results from topology, the intersection of a directed family of non-empty, compact
sets is non-empty, i.e.

N3(0) ≡
⋂
ε>0

N3(ε) 6= ∅.
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Indeed, take a decreasing sequence (εn)n≥1 of positive numbers converging to zero. For every n
choose some Φn ∈ N3(εn). By compactness of the largest set N3(ε1), we can find a subsequence
nk such that (Φnk)k≥1 converges to some Φ. Note that Φ ∈ N3(εnk) for every k, since Φ =
liml→∞, l≥k Φnl and each such Φnl lies in the closed set N3(εnk). Now choose any ε > 0 and pick
a k such that εnk < ε. Then Φ ∈ N3(εnk) ⊂ N3(ε), implying that Φ ∈

⋂
ε>0N3(ε).

We claim that every element Φ ∈ N3(0) satisfies the requirements of an optimal consumption
path regularized by v > 0. Indeed, the path (a, x(a), y(a)) with terminal value (â, x̂, ŷ) = Φ
(corresponding to the path X(τ ; Φ)) satisfies the ODE (A.13) on ]− b/r, â]. Moreover, it starts
at N by construction, and for every ε > 0, it takes on the value ε somewhere on the interval
]− b/r,−b/r + ε[. Thus, using monotonicity of y, we may conclude that

lim
a↘−b/r

y(a) = 0.

This establishes that there is an initial condition Φ (â) such that the path y (a) hits the boundary
at y = 0 in the sense that y(−b/r) = 0.

Remark A.23 Note that it is essential for the proof of Theorem 4.3 that the trajectory X(τ ; Φ)
—or, equivalently, (a, x(a), y(a)) —does not depend on ε, which only determines “how long”we
observe the trajectory. This means that we observe the trajectory X(τ ; Φ) for 0 ≤ τ ≤ τ(Φ),
with the hitting time τ(Φ) obviously depending on ε. Therefore, we can, for fixed Φ ∈ N3(0),
easily take the limit ε→ 0, which means that we take the limit in τ(Φ), but do not change the
trajectory itself. As a consequence, the ODE is automatically satisfied for the limit, at least for
0 ≤ τ < limε→0 τ(Φ).

Let us illustrate why we had to use the specific properties of the dynamic system (A.18)
in the proof of Lemma A.22. Continuity in initial conditions does not imply continuity of
“first hitting values” in general. Indeed, the first hitting times are inherently non-continuous
functionals, even if both the paths and the set, which determines the hitting times, are smooth.

0 2 4 6 8
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Figure 3 Non-continuity of the first hitting time

To see this most clearly, consider the differential equation ż (t) = (1− z (t)) z (t) whose
solution is z (t) =

(
1 +

(
z−1

0 − 1
)
e−t
)−1

. This solution is continuous in the initial level z0 (for
z0 > 0 which we assume) and the solution is plotted for z0 ∈ {0.1, 0.2} in Figure 3. Now
consider the first-hitting time on the straight line 0.05 + t/5 as drawn. Obviously, this time is
not continuous in the initial values z0.
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A.5 Proof of Theorem 4.3 (existence of an optimal consumption
path for v = 0)

The previous section proved an existence theorem for the regularized problem with v > 0. In
this section it is shown that there is a sequence vn of values of v with vn → 0 for n→∞ such
that the solutions for the regularized problem converge to a solution of the original problem
for the existence an optimal consumption path as n → ∞. In the case that the existence of a
solution on the interval [−b/r, a∗w] is known we can express the solution in terms of the reversed
independent variable τ = a∗w−a as before. The transformed solution then exists on the interval
[0, a∗w+b/r]. Note that the quantity a∗w may depend on the parameter v and thus we sometimes
denote it by a∗w,v or abbreviate a

∗
w,vn by a

∗
n. We now consider the equations written in terms

of the variable τ and look for solutions of those equations on the interval [0, a∗w + b/r]. Since
we are looking for solutions satisfying particular boundary conditions for a→ a∗w, we introduce
new functions X and Y by the relations

τX(τ) = x(a∗w − τ)− ra∗w − w + v, (A.26)

τY (τ) = y(a∗w − τ)− ψ(ra∗w + w − v). (A.27)

If x and y are functions defined on (−b/r, a∗w) which have smooth extensions to a = a∗w and
satisfy the desired boundary conditions, then X and Y are defined on (0, a∗w+b/r) and bounded
on the intervals of the form (0, a) with a > 0. Thus the aim is to find suitably bounded solutions
of the equations obtained by rewriting the equations for x(a) and y(a) in terms of X(τ) and
Y (τ). This gives

τ
dX

dτ
+X = −

r − ρ+ s
[(

ra∗w+w−v+τX(τ)
ψ(ra∗w+w−v)+τY (τ)

)σ
− 1
]

−rτ + w − τX(τ)

ra∗w + w − v + τX(τ)

σ
, (A.28)

τ
dY

dτ
+ Y = −

r − ρ− λ
[
1−

(
ψ(ra∗w+w−v)+τY (τ)
ra∗w+w−v+τX(τ)

)σ]
r(a∗w − τ) + b+ ψ(τa∗w + w − v)− τY (τ)

ψ(ra∗w + w − v) + τY (τ)

σ
. (A.29)

These equations can be written in the form

τ
dX

dτ
+ (1 + A)X +BY = c1(v) + τf(τ,X, Y, v), (A.30)

τ
dY

dτ
+ Y = c2(v) + τg(τ,X, Y, v), (A.31)

where f and g are smooth functions, A = sψ−σ

rσ
> 0, B is a constant and c1 and c2 smooth

functions of v whose exact values are not important. This is a Fuchsian system22 and can
therefore be treated using the following existence theorem which concerns a system of the form

s
df

ds
+Nf = sG(s, f(s)) + g(s). (A.32)

Theorem A.24 (Rendall and Schmidt, 1991) Let V be a finite-dimensional real vector space
N : V → V a linear mapping, G : V × I → V a smooth mapping and g : I → V a smooth
mapping, where I is an open interval in R containing zero. Consider the equation (A.32) for
a function f defined on a neighbourhood of 0 in I and taking values in V . Suppose that each
eigenvalue of N has a positive real part. Then there exists an open interval J with 0 ∈ J ⊂ I
and a unique bounded C1 function f on J \ {0} satisfying (A.32). Moreover f extends to a C∞
solution of (A.32) on J . If N , G and g depend smoothly on a parameter z and the eigenvalues
of N are distinct then the solution also depends smoothly on z.

22For more information on Fuchsian systems in general the reader is referred to Kichenassamy, 2007.
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Note that the solution whose existence is asserted by the theorem satisfies Nf(0) = g(0).
Evidently the evolution equations for X and Y define a system of the form (A.32). It follows
that this system has a unique smooth solution defined in a neighbourhood of τ = 0 and that
this solution satisfies (1 +A)X(0) + bY (0) = c1 and Y (0) = c2. Thus the original system for x
and y has a smooth solution in a neighbourhood of a = a∗w which satisfies the desired boundary
conditions for a = a∗w. In fact this is the unique solution satisfying these conditions since it
can be checked that for any smooth solution (x, y) with the desired boundary conditions the
corresponding functions (X, Y ) are bounded close to a = a∗w. The solution obtained in this way
depends smoothly on the parameters a∗w and v.
It was proved in the last section that for v > 0 the equations for x and y have a solution

which is smooth on (−b/a, a∗w(v)) and satisfies the desired limiting conditions at the ends of the
interval. Consider now a sequence vn of positive real numbers which tends to zero as n→∞.
For each n we obtain a solution (xn, yn) satisfying the equation with parameter vn and the
desired boundary conditions. Solving the Fuchsian system gives a two-parameter family (x, y)
of solutions with parameters (v, a∗w) arising from a two-parameter family (X, Y ) of solutions of
the Fuchsian system. The value a∗w,n of the parameter a

∗
w for the solution (xn, yn) depends on n.

The sequence a∗w,n is bounded since by construction it is contained in the interval
[
− b
r
, ψ[w−v]−b

r[1−ψ]

]
and a fortiori in the interval

[
− b
r
, ψw−b
r[1−ψ]

]
. It follows that by passing to a subsequence we can

assume that a∗w,n tends to some a
∗
w,∞ for n→∞. Then a∗w,n+ b

r
converges to a∗w,∞+ b

r
. It follows

that if Xn and Yn are the solutions of the Fuchsian system corresponding to xn and yn then
(Xn, Yn) converges uniformly to (X, Y ) on each interval of the form [0, η] for η positive and less
than a∗w,∞+ b

r
. On the interval [0, a∗w,∞+ b

r
) the functions X and Y are decreasing and bounded

below. Hence they converge to some limiting values X∗ and Y ∗ as τ → a∗w,∞+ b
r
. If Y ∗ = 0 then

the solution (x, y) corresponding to (X, Y ) has all the desired properties. We will now show
that assuming Y ∗ > 0 leads to a contradiction. In that case the right hand side of the equation
for y remains regular in the limit a → −b/r. Hence dy

da
is are bounded in a neighbourhood of

x = −b/r, say by a constant C. Consider now the regionK defined by the inequalities x > −b/r,
0 < y < 2w and y ≥ 2(ra + b). On the region K we have y

y−ra−b ≤
2(w−b)
ra+b

. Thus as long as a
solution remains in K the quantity y

ra+b−y is bounded. This gives a bound for the right hand
side of the evolution equation for y. Increase the size of C if necessary so that it is greater than
this bound. Since y is an increasing function y(a) ≥ Y ∗ for all a. Let ξ be a positive number.
Since yn(−b/r+ ξ) converges to y(−b/r+ ξ) for n→∞ it follows that yn(−b/r+ ξ) ≥ 1

2
Y ∗ for

n suffi ciently large. Choose ξ small enough that Cξ ≤ 1
4
Y ∗ and ξ ≤ Y ∗/4r. Then yn(a) remains

in K for all a ∈ (−b/r,−b/r + ξ]. It follows that ȳn(−b/r) ≥ ȳn(−b/r + ξ)− 1
4
Y ∗ ≥ 1

4
Y ∗ > 0,

a contradiction.

A.6 Proof of Proposition 4.4

(a) c(a, w), c(a, b) is given as the solution of the reduced system (7), see also (A.13) for a more
compact version. The right hand side in (A.13) is locally Lipschitz in the interior of the domain.
Now fix some point a0 in ] − b/r, a∗w[ and consider the initial value problem (A.13) as started
in a0, i.e., for the domain [a0, a

∗
w[. By the standard existence and uniqueness result for ODEs,

the solution is C1 in a on this domain. On the other hand, (c(a, w), c(a, b)) also solves an ODE
system on ] − b/r, a0] backward in the a direction with right hand side simply obtained by
changing the sign of the right hand side of (A.13). Hence, the solution is also C1 on ]− b/r, a0].
(b) Let us concentrate on z = w. The reduced system (A.13) and the definition of a∗w shows

that c(a, w) < ra+ w for a < a∗w. Hence, the claimed monotonicity follows.
(c) For any a0 ∈] − b/r, a∗w[, the right hand side of the ODE for ψz is locally Lipschitz

(until the boundary is hit), hence we have continuity in the initial value by standard results.
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Furthermore, there is no jump when the boundary is hit, see (d). For the boundary, we have to
distinguish cases. If z = b and a0 = −b/r, then ψz ≡ −b/r, so continuity holds. On the other
hand, for a0 = a∗w, we note that c(a, b) —unlike c(a, w) —is regular at a∗w, as the right hand side
of the second equation in (A.13) is uniformly Lipschitz around a = a∗w, even if the derivative
of c(a, w) may explode. Hence, a0 7→ ψb(a0, t) is continuous on the whole domain. The proof
for z = w is analogous.
(d) The system (7) has a unique solution if two boundary conditions are added. One

boundary condition requires c (−b/r, b) = 0 from (4). The other boundary condition follows
from (11), which is a property of the TSS in (9) and (c (a∗w, w) /c (a∗w, b))

σ = 1− r−ρ
s
from (8).

The ODE system (7) with these three conditions fixes a unique path c (a, z) plus a∗w. The first
property, limt→∞ ψw(a0, t) = a∗w, follows from standard properties of a saddle path: Assume
the TSS lies to the left of a∗w. Then (7) would imply that wealth still increases at this assumed
TSS, leading to a contradiction. If the TSS lay to the right, wealth would fall, leading also to a
contradiction. The second property follows from conceptionally identical arguments, only that
the TSS cannot lie below −b/r by assumption.23

B Referees’appendix

The Referees’appendix is available at www.waelde.com/pub.
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