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of heterogeneity does not yield larger stable coalitions. In particular, we

show that, in the case of two types, when stable coalitions exist their size is

very small, and, if the asymmetry is strong enough, they include only one
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1 Introduction

The most important environmental problem, that of climate change, has an inter-

national dimension and thus, it can only be addressed effectively through interna-

tional cooperation. However, the absence of a supranational authority that could

enforce environmental actions on sovereign states necessitates the development of

self enforcing agreements. Such an agreement should provide countries with incen-

tives to join and remain as members. A country will join an agreement if its net

benefits as a signatory exceed its net benefits as a non-signatory. D’Aspremont et

al. (1983) introduced a concept of coalitional stability whereby no member has an

incentive to leave (internal stability) and no non-member has an incentive to join

(external stability), assuming that the rest of the agents do not change their mem-

bership decision. The notion is essentially a Nash equilibrium where the strategy

choice is to join a coalition or not.

The main body of the literature models the formation of IEAs as a two-stage

non-cooperative game: in the first stage countries decide whether to join the coali-

tion, while in the second they choose their emission level depending on their

membership status. In the second stage, it is assumed that either all countries

(signatories or not) choose emissions simultaneously or that the coalition acts as

a leader and the non-signatories follow1. The subgame perfect Nash equilibrium

of the resulting two-stage game is usually derived by applying the notions of the

aforementioned internal and external stability conditions.

Although it is clear that all countries benefit from cooperation, each country

has strong incentives to free ride on the coalition’s efforts. Free-riding incentives

increase as the costs of reducing emissions increase. The literature shows that the

size of a stable coalition is small, regardless of the total number of countries. As-

suming quadratic cost and benefit functions and simultaneous choice of emissions,

it has been shown that stable coalitions consist of no more than two countries (De

Cara and Rotillon, 2001; Finus and Rundshagen, 2001; and Rubio and Casino

2001; among others). If the coalition is assumed to be a leader, a stable coali-

tion could have more than two members, but still a maximum of four countries

(Barrett, 1994; Diamantoudi and Sartzetakis, 2006)2.

1The two approaches yield similar results.
2Barrett 1994 suggests that a stable coalition may achieve a high degree of cooperation,

including the grand coalition, but only when an accumulation of stock pollutant is assumed and
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One of the most restrictive assumptions of the literature so far is the homo-

geneity of countries’ costs and benefits. It is widely accepted that both damages

suffered from a global pollutant and benefits derived from emitting the pollutant

(related to production and consumption) differ significantly among countries. The

present paper addresses this issue by introducing k types of countries that differ

in their sensitivity to the global pollutant. We find that the introduction of het-

erogeneity does not yield larger stable coalitions. In particular, we show that, in

the case of two types, the internal stability condition holds only for coalitions with

maximum two members from each type of countries. Furthermore, the external

stability condition holds only for coalitions consisting of one type of countries,

if the asymmetry is strong. Only for very small asymmetry, a mixed coalition

consisting of one country from each type is stable. Finally, we demonstrate that

coalitions that are stable under asymmetry they become unstable when asymmetry

is introduced. Therefore, the assumption of homogeneity is not the determining

factor driving the pessimistic result of small stable coalitions.

Despite its apparent importance, only a few papers have addressed the issue of

heterogeneity within a theoretical framework, albeit in a limited way. Assuming

two types of countries, Barrett (1997) finds no substantial difference in the size of

the stable coalition relative to the homogeneous case. On the contrary, McGinty

(2007), allowing for transfer payments through a permit system, finds that hetero-

geneity can increase the coalition size. Chou and Sylla (2008) consider two types of

countries (denoted developed and developing) and provide a theoretical framework

to explain why it is more likely that some developed countries form a small stable

coalition first and then engage in monetary transfers to form the grand coalition.

Osmani and Tol (2010) assume also two types of countries but allow the formation

of two separate coalitions. They demonstrate that in the case of high environmen-

tal damages, forming two coalitions yields higher welfare and better environmental

quality relative to a unique coalition. Biancardi and Villani (2010) introduce asym-

metry in environmental awareness and find that the coalitions’ stability depends

on the level of the asymmetry and that the grand coalition can be obtained only

by transfers. Fuentes-Albero and Rubio (2010) assume that countries differ either

in abatement costs or environmental damages (which are assumed to be linear on

therefore per period abatement can exceed per period emissions. In contrast, Diamantoudi and

Sartzetakis (2006) demonstrate that when no stock pollutant is present and emissions must be

positive (interior solution) the stable coalition cannot have more than four members.
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emissions) and find that heterogeneity has no important effect without transfers,

but if transfers are allowed the level of cooperation increases with the degree of

heterogeneity. Finally, Pavlova and Zeeuw (2013) assuming differences in both

emission-related benefits and environmental damages (which are assumed to be

linear on emissions), find that large stable coalitions are possible without transfers

if the asymmetries are sufficiently large, however, the gains of cooperation are very

low. As the above review indicates, results of the theoretical literature are mixed.

Most of the literature based on simulations finds that under some circumstances,

heterogeneity may improve coalitions’ effectiveness. Some papers support the idea

that the introduction of heterogeneity yields larger stable coalitions, with or with-

out transfers, while some others find that transfers are necessary to induce larger

stable coalitions.

The present paper derives analytical results and proves that introducing het-

erogeneity in environmental damages does not increase the size of the coalition.

On the contrary, if heterogeneity is strong enough, a smaller stable coalition re-

sults relative to the homogeneous case. The main difference between our model

and those developed by Fuentes-Albero and Rubio (2010) and Pavlova and Zeeuw

(2013) is the functional form of the environmental damages, since they use a linear

damage function3. With a quadratic environmental damage function the analysis

becomes more complex but also more interesting, since we can capture the in-

teraction between heterogeneous countries due to the aggregate global emission

level. Our results demonstrate that, introducing asymmetry into a stable under

symmetry agreement can disturb stability. Moreover, when stable coalitions exist

their size is small and, when the asymmetry is strong enough, they can not include

both types of countries. Our analysis also confirms that the symmetric approach

is a special case of the asymmetric approach. When we simplify the asymmetric

analysis, assuming that there exist only one type of countries, the results from our

model can be paralleled with those in Rubio and Casino (2001).

The rest of the paper is structured as follows. Section 2 describes the model for

the  asymmetric types and solves for the countries’ choice of emissions. Section 3

presents the stability conditions. Section 4, studies the two-type case, examines the

existence and stability of an IEA when countries are asymmetric in environmental

3We employ the damage functional form, 

 () =

1
2
2. To be consistent with the analysis

derived in Fuentes-Albero and Rubio (2010) and Pavlova and Zeeuw (2013) our damage function

should be simplified to 

 () = .
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damages and presents a counterexample where a stable coalition is not possible.

Section 5 concludes the paper.

2 The model

We assume that there are  asymmetric types of countries. Let  = {1  }
denote the set of types and the letters   ∈  denote types. For each type

 ∈  there exists a set of   countries,   = {1 2 3     }. Let the total set
of countries be  =

[
∈

  and the total number of countries be  =
P

∈ .

Each country  of type  ∈  generates emissions 

  04 as a result of its

economic activity. It derives benefits, expressed as a function of those emissions



 (


 ), which are assumed to be strictly concave, 


 (0) = 0, 

0
 ≥ 0 and 00

  0.

It also suffers damages from the aggregate emissions of the global pollutant, 

 (),

which are assumed to be strictly convex, 

 (0) = 0, 

0
 ≥ 0 and 

00
  0. In

particular and in accordance with the literature, we use the following functional

forms,



 (


 ) = (


 −

1

2
(


 )
2) and 


 () =

1

2
2 (1)

where ,  and  are type specific, positive parameters, and  =
P

∈ ∈ 



is the aggregate emission level.

The social welfare of each country  of type , 

 , is defined as the difference

between total benefits from its own emissions and environmental damages from

aggregate emissions,



 = 




¡




¢−

 () (2)

Substituting the specific functional forms, country ’s of type  social welfare is,



 = 

µ



 −

1

2

¡




¢2¶− 1
2


⎛⎝ X
∈ ∈





⎞⎠2

 (3)

where  ∈   = {1 2 3     } and  ∈ .

4The superscript  denotes the type of the country and the subscript  denotes a particular

country belonging to type .
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2.1 Coalition formation

Wemodel the process of the heterogeneous countries’ decision as a non-cooperative

two stage game and we examine the existence and stability of a self-enforcing coali-

tion aiming at controlling emissions. In the first stage, each country  of type 

decides whether or not to join the coalition, while in the second stage, chooses

its emission level. We assume that only a single coalition can be formed and we

determine the equilibrium number and type of countries participating in the coali-

tion by applying the notions of internal and external stability of a coalition as

was originally developed by D’Aspremont et. al (1983) and extended to IEAs by

Carraro and Siniscalco (1993) and Barrett (1994). We also assume that when a

country contemplates joining or defecting from the coalition, it assumes that no

other country will change its decision regarding participation in the coalition. Fur-

thermore, we consider that members of the coalition act cooperatively, maximizing

their joint welfare, while non-members act in a non-cooperative way, maximizing

their individual welfare, and that in the second stage all countries decide their

emission level simultaneously (Cournot approach).

In particular, for each type  ∈  a set of countries  ⊂   sign an agreement

to reduce the emissions of the global pollutant and  \ do not. Let  = ||
for all  ∈ . Each signatory of type  emits , such that  = , and thus

the coalition’s total emissions are  =
P

∈ . Similarly, each non-signatory

of type  emits , such that  = ( − ), yielding aggregate emissions

of non-signatories,
P

∈(
 − ). Therefore, the aggregate emission level is,

 =  +, hence,  =
P

∈  +
P

∈(
 − ), for all  ∈ .

2.2 Choice of emissions

Signatories maximize the coalition’s welfare given by =
P

∈  
 . Therefore,

signatories choose  by solving the following maximization problem,

max




X
∈


¡

(


)−

()
¢
 (4)

Non-signatories maximize their own welfare given by  
 by choosing 


. So

that,

max





(


)−

() (5)
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For each type  ∈  let the parameter  be the ratio between environmental

damages and benefits due to emissions for all countries  . Thus,

 =



 (6)

Let,

Ψ = 1 +
X
∈

( − ) +
X
∈

()2 +
X
∈

Ã




Ã X
6=∈



!!
 (7)

The expression Ψ is always positive since  ≥  and is not type specific. The

value of the parameter depends only on the total number of the asymmetric types.

The equilibrium emission level for some signatory country of type  ∈  is,

 =  − 1



³P
∈ 

´³P
∈ 

´
Ψ

 (8)

The aggregate emission level by all signatories is,

 =
X
∈

 −

³P
∈ 

´
Ψ

X
∈

Ã




ÃX
∈



!!
 (9)

The equilibrium emission level for some non-signatory country of type  ∈ 

is,

 =  − 

³P
∈ 

´
Ψ

 (10)

The aggregate emission level by all non-signatories is,

 =
X
∈
( − ) −

³P
∈ 

´
Ψ

X
∈
( − ) (11)

The aggregate emission level is,  =  +, hence,

 =

P
∈ 

Ψ
 (12)
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The indirect welfare function for some signatory country of type  ∈  is,

W
 =

1

2


⎡⎢⎣()2 − 

³P
∈ 

´2
Ψ2

⎛⎝1 + 1



ÃX
∈



!2⎞⎠
⎤⎥⎦  (13)

The indirect welfare function for some non-signatory country of type  ∈ 

is,

W
 =

1

2


⎡⎢⎣()2 − 

³P
∈ 

´2
Ψ2

(1 + )

⎤⎥⎦  (14)

3 Stable coalition

To determine the existence and stability of a coalition, we use the notions of the

internal and external stability developed by D’Aspremont et. al (1983). The

internal stability implies that no coalition member has an incentive to leave the

coalition, while the external stability implies that no country outside the coalition

has an incentive to join the coalition. In our case, these conditions should be

specified for all types of countries,  ∈ . Let s be a −dimensional vector that
denotes the numbers of signatories of each type, i.e., s = (1  ) Similarly, let

s− be a  − 1 dimensional vector that denotes the numbers of signatories of all
types but .

Thus, for some country of type  ∈ , the internal and external stability con-

ditions take the following form respectively:

W
 (

 s−) ≥W
(

 − 1 s−) (15)

W
 (

 + 1 s−) ≤W
(

 s−) (16)

In this context, a coalition is characterized stable only if the internal and ex-

ternal conditions are satisfied at the equilibrium s for all countries of all  types.

Substituting the values of the indirect welfare functions from (13) and (14),

the internal and external stability conditions are derived.

The internal stability condition for some country of type ∈  is the following,

9



1

2


ÃX
∈



!2
⎡⎢⎣ 1 + ³

Ψ+ 2 − 1


P
∈  − 

P
∈





´2 − 1 + 
³
1


P
∈ 

´2
Ψ2

⎤⎥⎦ ≥ 0
(17)

The external stability condition for some country of type  ∈  is the follow-

ing,

1

2


ÃX
∈



!2 ⎡⎢⎣ 1 + (1 + 1


P
∈ )2³

Ψ+ 1


P
∈  + 

P
∈





´2 − 1 + 

Ψ2

⎤⎥⎦ ≥ 0 (18)

4 Two-type case

Considering two types of countries, such that  ∈ {}5, the analysis presented
in the general case of  types can be simplified as follows.

For each type  ∈ {} we set the parameters,

 =



and  =




 (19)

where  is the ratio of the slopes of the marginal environmental damages and 

is the ratio of the slopes of the marginal benefits, of type  over type  countries.

The expression Ψ takes the form,

Ψ = 1+ (− ) + ( − ) + ()2+ ()2+(



+



) (20)

Alternative, we can write the expression Ψ as,

Ψ = 1+(−)+(−)+()2+()2+(−1+) (21)
5For the case with two types, we use the notation  ∈ {} instead of  ∈ {1 2} for

presentation reasons in order to prevent superscript from being interpreted as a power.
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Signatories maximize the coalition’s welfare given by  =
P

 
 

 , with

 ∈ {}, that is,  = 
 + 

 . Therefore, signatories choose 

 by

solving the following maximization problem,

max




£

¡

 (


 )−

 ()
¢
+ 

¡

 (


 )−

 ()
¢¤
 (22)

where  =  +  + (
 − ) + (

 − ).

The equilibrium emission levels are,

 =  − ( + )( + −1)
Ψ

 (23)

 =  − ( + )( + )

Ψ
 (24)

The aggregate emission level by all signatories is,

 =  +  − (
 + )

Ψ
( + −1)

¡
 + 

¢
 (25)

Non-signatories maximize their own welfare given by  
, with  ∈ {}, by

choosing . That is,

max




£

(


)−

()
¤
 (26)

where  =  +  + (
 − ) + (

 − ).

The equilibrium emission levels are,

 =  − ( + )

Ψ
 (27)

 =  − ( + )

Ψ
 (28)

The aggregate emission level by all non-signatories is,

 = (− )+ ( − )− (
 + )

Ψ
((− )+ ( − ))

(29)

From (25) and (29), the aggregate emission level is,

 =
( + )

Ψ
 (30)
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Substituting the equilibrium values of the choice variables from (23), (24), (27)

and (28) into equation (3), we derive the indirect welfare function of signatories

(W
 and W

 ) and non-signatories (W
 and W

) for both types of countries.

The indirect welfare functions of signatories are,

W
 =

1

2

∙
()2 − ( + )2(1 + ( + −1)2)

Ψ2

¸
 (31)

W
 =

1

2

∙
()2 − ( + )2(1 + ( + )2)

Ψ2

¸
 (32)

The indirect welfare functions of non-signatories are,

W
 =

1

2

∙
()2 − ( + )2(1 + )

Ψ2

¸
 (33)

W
 =

1

2

∙
()2 − ( + )2(1 + )

Ψ2

¸
 (34)

4.1 The case of homogeneity

Before we proceed we compare our result to the homogeneous case. When countries

are identical, it means that there is only one type of countries. Without loss of

generality, we assume that  =  = 
2
and  =  = 

2
. Moreover, we simplify

the parameters as follows6:  =  =    =  =   and  =  =  .

Therefore, in the symmetric case,  =  = 1 since  = 


and  = 


. In addition,

we define  = 


, which indicates the relationship between environmental damages

and benefits due to emissions for all countries  ∈  = {1 2 3     }. Emissions
of signatories are , and of non-signatories . The welfare of signatories and

non-signatories are W and W, respectively.

The signatories’ equilibrium emission level is,

 = 
³
1− 

Ψ

´
 (35)

where Ψ = 1 + (− ) + 2.

The aggregate emission level by all signatories is,

 = 
³
1− 

Ψ

´
 (36)

6The superscript  is used to define that countries are identical.
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The non-signatories’ equilibrium emission level is,

 = 
³
1− 

Ψ

´
 (37)

The aggregate emission level by all non-signatories is,

 = (− )
³
1− 

Ψ

´
 (38)

From (36) and (38), the aggregate emission level is,

 =


Ψ
 (39)

Substituting the equilibrium values of the choice variables from (35) and (37)

into equation (3), assuming that there is only one type of countries, we derive the

indirect welfare functions of both signatories (W) and non-signatories (W).

W =
1

2

¡

¢2

∙
1− 2(1 + 2)

Ψ2

¸
 (40)

W =
1

2

¡

¢2

∙
1− 2(1 + )

Ψ2

¸
 (41)

By collapsing the results of the previous Section to homogeneous countries,

we get the same results derived in Rubio and Casino (2001), noting that we use

different notations and a slightly different benefit function7. Consequently, as

expected, the symmetric country is a special case of the asymmetric assumption.

4.2 Existence and stability of a coalition assuming hetero-

geneity in environmental damages

In order to derive analytical results we restrict the asymmetry between the two

types of countries in the environmental damage function. Given that we have

to restrict heterogeneity, the choice of keeping heterogeneity of countries’ damages

seems more appropriate since the strongest part of countries’ strategic interactions

is captured, in the model, through global pollution. That is, we assume  6= 

while  =  =  and  =  = 8. For simplicity we set  =  = .

7Rubio and Casino (2001) assume that the quadratic benefit function for each country takes

the form: () = − 
2
2 with   0 and   0.

8Following the same notation as in Section 4.1, the superscript  in parameters  and , i.e.

 and  , is used to define that countries are identical with respect to benefits.
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Furthermore, without any loss of generality, we assume that   1, implying that

   and since  = 


= 1,   . Therefore, in this context, type

 countries have a steeper marginal environmental damage function compared

to type  countries. Thus, type  countries suffer higher marginal environmental

damages at any level of global pollution, which implies that they are more sensitive

to environmental pollution.

Under these assumptions and using the internal stability condition (17), we

derive the internal stability conditions for the two types of countries:

Type  countries,

()2

2

"
1 + 

(Ψ− 2( − 1)− Γ)
2
− 1 + 

¡
 + −1

¢2
Ψ2

#
≥ 0 (42)

where Γ = (+),  = 


(since  = 1) and Ψ = 1+(−)+(−)+

()2 + ()2 + Γ.

Type  countries,

()2

2

"
1 + 

(Ψ− 2( − 1)− Γ)
2
− 1 + 

¡
 + 

¢2
Ψ2

#
≥ 0 (43)

Similarly, using the external stability condition (18), we derive the external

stability conditions for the two types of countries:

Type  countries,

()2

2

"
1 + 

¡
1 +  + −1

¢2
(Ψ+ 2 + Γ)

2
− 1 + 

Ψ2

#
≥ 0 (44)

Type  countries,

()2

2

"
1 + 

¡
1 +  + 

¢2
(Ψ+ 2 + Γ)

2
− 1 + 

Ψ2

#
≥ 0 (45)

The following result asserts that no stable coalition can contain more than 2

members of the same type.

Lemma 1 For all  ≥ 3, the internal stability conditions are violated for all

 ∈ {}.
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Table 1: Stable agreements



0 1 2

0 (0 1) (0 2)

condition (48)

 1 (1 0) (1 1) (1 2)

condition (46)

2 (2 0) (2 1) (2 2)

condition (49)

Therefore, if a stable coalition exists, it can consist of maximum four members

since   3, for all  ∈ {}. Table 1, presents the cases along with the

appropriate conditions under which stable agreements exist.

Lemma 2 Only the coalitions ( = 1  = 1), ( = 0  = 2) and ( =

2  = 0) can be stable for    and   3.

For   3 and    only the coalitions along the main diagonal of the Table

1 can support stable agreements. For those coalitions, the internal stability con-

ditions are satisfied under some necessary and sufficient conditions. In particular,

we have the following three cases.

Case 1:

The coalition ( = 1  = 1) is a stable agreement only if,

 ≤ 1

2
¡
− 2 +√42 − 6+ 3¢  (46)

In the specific case where  =  the model represents the symmetric case.

Under symmetry, a coalition consisting of two countries is the unique self-enforcing

IEA if and only if,

 = (= ) ≤ 1

− 4 + 2√2 − 3+ 3  (47)

The derived restriction (47) is identical to the one presented in the literature

with symmetric countries (De Cara and Rotillon, 2001; Rubio and Casino, 2001)

under which an agreement of size two is stable.
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Case 2:

The coalition ( = 0  = 2) is a stable agreement only if,

 ≤ 2
p
(1 + ) (1 + 4)− ¡1 + (3− 2) ¢

3


 
1

2
¡
− 2 +√42 − 6+ 3¢  (48)

Case 3:

The coalition ( = 2  = 0) is a stable agreement if and only if,

 ≤
2
³
2 +

p
3 +  ( (1− ) (1− 4)− 3 (1− 2))

´
− ¡1 + (3− 2)¢

(− 2)(2 + 3) 

 
1

2
¡
− 2 +√42 − 6+ 3¢  (49)

The following Proposition summarizes the results of the above analysis.

Proposition 3 Stable coalitions and membership:

i) The mixed coalition ( = 1  = 1) is stable only under minimal asymmetry,

that is, when countries are almost identical ( is very close to ).

ii) When asymmetry increases, the coalition consists only of one type of countries.

iii) When the coalition ( = 0  = 2) is stable, the coalition ( = 2  = 0) is

stable as well.

iv) When the mixed coalition is stable, the other two coalitions, ( = 0  = 2)

and ( = 2  = 0), are stable as well.

4.2.1 Aggregate emissions

According to the above analysis, a stable agreement can exist in three possible

ways. That is, Case 1: ( = 1  = 1), Case 2: ( = 0  = 2), and Case 3:

( = 2  = 0). We can now compare the aggregate emissions among these three

possible cases.

Case 1: ( = 1  = 1)

The aggregate emission level is,

 =
2

1 + Γ(+ 1)
 (50)
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Case 2: ( = 0  = 2)

The aggregate emission level is,

 =
2

1 + Γ+ 2
 (51)

Case 3: ( = 2  = 0)

The aggregate emission level is,

 =
2

1 + Γ+ 2
 (52)

Since   , we can easily verify that global emissions are lower in Case

3 and higher in Case 2. Hence, with a high level of asymmetry such that only

the coalition ( = 2  = 0) satisfies stability, we can achieve the lower level of

global emissions.

Lemma 4 The constraints presented in Section 4.2 guarantee that emissions of

both signatories and non-signatories are always positive.

4.3 Case of instability under heterogeneity

The literature (De Cara and Rotillon, 2001; Finus and Rundshagen, 2001; Rubio

and Casino, 2001) has shown that when countries are symmetric, a coalition con-

sisting of two members is the unique self-enforcing agreement. Nonetheless, when

we allow countries to be heterogeneous, the analysis shows that asymmetry can

have an inverse effect on stability. The result, presented in the Proposition below,

indicates that heterogeneity has negative implications on the scope of cooperation

relative to the homogeneous case. Specifically, we demonstrate that introducing

asymmetry into a stable, under symmetry, coalition could disturb stability.

Proposition 5 Assuming heterogeneous countries, a stable agreement where
P

 
∗ 

1 for some  ∈ {} may not exist, unlike the case of homogeneous countries.

Proof. To prove the above proposition, we provide a numerical counterexample

where a non-trivial stable coalition does not exist when we relax the homogeneity

assumption. We set the following values of the parameters:  = 10,  = 69 and

9Following the same notation as in Section 4.1,  and  are used to define that countries

are identical with respect to benefits.
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 = 5 implying that  = 10, while  = 055 and  = 025. Using these values,

we derive,  = 


= 00916̄ and  = 


= 00416̄.

Consider first the case that all countries are symmetric (they are all of type

). The condition for the coalition ( = 2) to be stable is given in (47). For

the numerical example, the stability condition requires that  ≤ 00433125, which
is satisfied given that  = 10,  = 6 and  = 025. Therefore, in the case

of ten type  countries, a coalition of two countries is stable (in accordance to

the literature) and the aggregate emission level is given by equation (39), thus

 = 
1+(−)+2 = 667.

We now examine stability in the case of two types of countries. Table 2 presents

the stability conditions that fail in each of the possible coalitions. As already

noted, only the coalitions along the main diagonal of the Table 1 can support

stable agreements under the conditions presented in Section 4.2. However, in all

three possible coalitions, ( = 1  = 1), ( = 0  = 2) and ( = 2  = 0),

the corresponding internal stability conditions are violated. Consequently, stability

can be achieved only under the trivial coalition ( = 1  = 0), indicating that

there is no stable agreement where
P

 
∗  1 for some  ∈ {}.

Table 2: No stable agreement



0 1 2

0 − (0 2)


 (0 2)  

(0 1)

 1 (1 0) (1 1) −
 

 (1 1)   
(0 1)

2 (2 0) − −


 (2 0)  
(1 0)

We first check the stability conditions for the coalition ( = 2  = 0), i.e.

conditions (49). The second condition, given that  = 5, yields the following

threshold for the parameter ,   00433125. This condition is satisfied since

for the values of the parameters of the present example,  = 00416̄.

The first of the conditions in (49), given that  = 5 and  = 00416̄, requires

that  ≤ 00463334. This condition is not satisfied, since for the values of the
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parameters in our example,  = 00916̄. Therefore, the first of the conditions in

(49) is violated, implying that the coalition ( = 2  = 0) is unstable. Note that,

both conditions (46) and (48) are more restrictive for the parameter  relative

to (49) (Proof, see Appendix). As a consequence, none of the other two coalitions

( = 1  = 1) and ( = 0  = 2) can be stable as well. Thus, stability is

achieved only under the trivial coalition ( = 1  = 0) and the aggregate global

emission level is  = 2
1+(+)

= 60.

Therefore, in the case of symmetric type  countries, a stable agreement of

size two is possible. On the contrary, if half of the countries are more sensitive

to pollution (higher value of ) relative to the other halve of type  countries, a

stable agreement is not always possible. The latter result holds when asymmetry

is very strong, that is, when parameters  and  differ significantly.

Note that aggregate emissions in the case of ten symmetric type  countries,

two of which form a coalition to reduce their emissions, are  = 667. In the case of

five type  and five type  countries, case that does not allow the formation of any

stable coalition, aggregate emissions are  = 60. Although this is expected since

half of the countries (type  countries), being more sensitive to pollution, emit

less than the other half (type  countries), it is worth noting that the existence

of stable coalitions is not necessary related to lower global emissions.

Figure 2 illustrates the effect of heterogeneity on the stability in the case of the

above numerical counterexample. We set  = 0 and investigate at which  the

internal stability condition of type  countries is satisfied. In particular, we plot

the indirect welfare functions of type  countries against different coalition size 

when  = 0. The welfare for the signatories, i.e. W
 (

 ), is depicted by the

solid line and the welfare for the non-signatories, i.e. W
(

 ), is depicted by

the dotted line. Moreover, the welfare W
(

 − 1 ) is depicted by the dashed
line and represents the welfare for the non-signatories shifted by one (we use that

line to represent graphically the internal stability condition).

As indicated in the figure, when  = 0 the internal stability condition of type

 countries, condition (42), is satisfied only at  = 1. In particular, at this point

( = 1  = 0) the internal stability condition is satisfied with equality, i.e.

W
 (1 0) = W

(0 0). Obviously, at the point (
 = 2  = 0) the condition is

violated sinceW
(1 0) W

 (2 0). Hence, the only stable coalition is the trivial

coalition ( = 1  = 0) confirming once more that a stable agreement whereP
 

∗  1 for some  ∈ {} does not exist.
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Figure 2

5 Conclusions

The present paper examines the existence and stability of IEAs in a two stage non-

cooperative game assuming heterogeneous countries that differ in their sensitivity

to the global pollutant. A coalition is considered stable when none of the coalition’s

members wish to withdraw and no country outside the coalition wishes to join. We

use quadratic functions and further assume that in the second stage all countries

make their decisions simultaneously.

Our results show that, relaxing the widely used in the literature assumption of

symmetric countries, the size of stable coalitions attempting to mitigate environ-

mental problems remains small. The largest possible coalition that can be achieved

includes only two countries and the membership of the coalition is mainly driven

by the degree of the asymmetry. In particular, the mixed coalition that includes

one country of each type, i.e. ( = 1  = 1), is possible only when asymme-

try is very small. This case is close to the symmetric case, where according to

the literature a coalition of two countries is the unique self-enforcing agreement.

When heterogeneity is strong enough, a possible coalition consists of two countries

again but they belong only to one type, either type  or type , depending on
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the level of asymmetry. Under moderate heterogeneity, a coalition can contain

either two type  countries, i.e. ( = 0  = 2), or two type  countries, i.e.

( = 2  = 0). However, when the level of heterogeneity is stronger, a stable

coalition can consist only of two type  countries, i.e. ( = 2  = 0), and this

coalition supports the lower level of global emissions.

An important outcome of the present analysis is that, heterogeneity can have

grave implications on the scope of cooperation in comparison with the homoge-

neous case. We show that, introducing asymmetry into a stable, under symmetry,

agreement can disturb stability. We provide a counterexample where a coalition

does not exist when countries exhibit a strong level of asymmetry in environmen-

tal damages. Consequently, heterogeneity can exacerbate rather than reduce the

free-riding incentives.
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7 Appendix

In what follows we present the proofs of Lemmas and Propositions in the document.

Proof of Lemma 1. The internal stability condition for type  countries is
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satisfied if and only if condition (42) is satisfied. Rearranging,

1

2
()2∙

(1 + )Ψ2 − (1 + ( + −1)2)(Ψ− 2( − 1)− Γ)2

Ψ2(Ψ− 2( − 1)− Γ)2

¸
≥ 0 (53)

The sign of this condition depends on the sign of the expression in the numer-

ator. Hence,

(1 + )Ψ2 − (1 + ( + −1)2)(Ψ− 2( − 1)− Γ)2 ≥ 0 (54)

Recalling that  = 


, Γ =  + , and Ψ = 1 + (− ) + (− ) +

()2 + ()2 + Γ and rearranging terms we obtain,

(1 + )(1 + Γ+ ( − 1) + ( − 1) + Γ)2−

(1 + ( +



)2)(1 + Γ+ ( − 3) + ( − )( − 2) + Γ)2 ≥ 0

(55)

The term (1+(+ 


)2) is greater (or at least equal) to the term (1+)

for  ≥ 1. The above expression can be positive only if   3 given . For all

 ≥ 3, the second term: (1 + ( + 


)2)(1 + Γ+ ( − 3) + ( −

)(−2)+Γ)2, is greater than the first term: (1+)(1+Γ+(−
1) + ( − 1) + Γ)2, and the internal stability condition is violated.

The internal stability condition for type  countries is satisfied if and only if

condition (43) is satisfied. Rearranging,

1

2
()2∙

(1 + )Ψ2 − (1 + ( + )2)(Ψ− 2( − 1)− Γ)2

Ψ2(Ψ− 2( − 1)− Γ)2

¸
≥ 0 (56)

The sign of this condition depends on the sign of the expression in the numer-

ator. Hence,

(1 + )Ψ2 − (1 + ( + )2)(Ψ− 2( − 1)− Γ)2 ≥ 0 (57)

Rearranging terms we obtain,

(1 + )(1 + Γ+ ( − 1) + ( − 1) + Γ)2−

(1 + (



 + )2)(1 + Γ+ ( − )( − 2) + ( − 3) + Γ)2 ≥ 0

(58)
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The term (1+(



+)2) is greater (or at least equal) to the term (1+)

for  ≥ 1. The above expression can be positive only if   3 given . For all

 ≥ 3, the second term: (1 + (



 + )2)(1 + Γ + ( − )( − 2) +

(−3)+Γ)2 is greater than the first term: (1+)(1+Γ+(−
1) + ( − 1) + Γ)2, and the internal stability condition is violated.

Consequently, the two internal stability conditions, i.e. (42) and (43), are satisfied

at the equilibrium for all countries of both types  ∈ {} for all   3.
Proof of Lemma 2. Table 3, presents more analytically the cases under

which stable agreements exist. According to Lemma 1, the two internal stability

conditions are satisfied for all   3 for all  ∈ {}. Consequently, we have to
examine only the cases where  ≤ 2. An agreement is considered stable if the four
stability conditions, presented in equations: (42), (43), (44) and (45), are satisfied

at the equilibrium. Table 3 includes all the possible coalitions. For each stable

coalition, we state the appropriate conditions that ensure stability, while for each

non-stable coalition we mention the condition that is violated. For   3,   

Table 3: Possible coalitions



0 1 2

(0 1) (0 2)

0 Trivial coalition conditions (68)

and (70)

 (1 0) (1 1) (1 2)

1 Trivial coalition conditions (64) condition (61)

and (66)

(2 0) (2 1) (2 2)

2 condition (72) condition (62) condition (63)

and  ∈ {} we have the following cases.
Trivial coalition:

Each combination above the main diagonal of Table 3, i.e. ( = 1  = 0) and

( = 0  = 1), consists a trivial coalition.

The coalitions ( = 1  = 0) and ( = 0  = 1) are stable if one of the

following conditions is satisfied,
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either,

 
1

2
¡
− 2 +√42 − 6+ 3¢  (59)

or,

 
2
³
2 +

p
3 +  ( (1− ) (1− 4)− 3 (1− 2))

´
− ¡1 + (3− 2)¢

(− 2)(2 + 3) 

 
1

2
¡
− 2 +√42 − 6+ 3¢  (60)

Violation of internal stability:

The coalitions below the main diagonal of Table 3, i.e. ( = 1  = 2), ( =

2  = 1) and ( = 2  = 2), fail to satisfy the internal stability condition for

type  countries. In particular, we have:

At ( = 1  = 2) the internal stability condition for type  countries is violated.

That is,

−(
 + 3)


[(+ 1)2()3 + (+ 1)(3(+ 1) + 2)()2

+((4 + 3)()2 + (1 + 2) + 1) + ((2 − 4)()2 − 5 − 1)]  0
(61)

At ( = 2  = 1) the internal stability condition for type  countries is violated.

That is,

−4(
 + )


[(+ 2)2()3 + 2(+ 2)(1 + )()2

+(((− 1)− 3)()2 + (− 3) + 1) − (1 + )(1 + (+ 1))]  0

(62)

At ( = 2  = 2) the internal stability condition for type  countries is violated.

That is,

− 1


[4(+ 4)()4 + 8(+ 4)(2(+ 3) + 1)()3

+((+ 2)(23+ 86)()2 + 20(+ 3)() + 4))()2

+2((12 + 7(+ 4))()2 + (5− 2)() + 2)
+
¡
(− 2)(3+ 10)()2 − 2(+ 14) − 5¢ ()2]  0 (63)
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Possible stable agreement:

Only the coalitions lying along the main diagonal of Table 3, i.e. ( = 1  = 1),

( = 0  = 2) and ( = 2  = 0), can support stable agreements under some

necessary and sufficient conditions.

The coalition ( = 1  = 1) is stable under the following conditions:

The internal stability conditions for both types are satisfied. These conditions

hold if and only if,

 ≤ 1

2(− 2 +√42 − 6+ 3) 

2()4 + 2(1 + 2)()3 + ((52 − 2− 1)()2 + (4− 1) + 1)()2−
2((−2 + 2+ 1) + 2)()2 − (1 + )((2+ 1) + 2)()2 ≤ 0 (64)

The external stability conditions for both types are satisfied. The conditions

hold if and only if,

(1+(2+



)2)(1+++(+))2−(1+)(1+2(2+)+(+))2 ≥ 0

(65)

Rearranging terms and simplifying,

(2 − 4)()3 + ((4 + 3) − 5)()2+
((3(1 + )2()2 + (2+ 1))− 1) + ((+ 1) + 1)2 ≥ 0 (66)

When countries are identical, an agreement consisting of two countries is stable

if and only if,

 = (= ) ≤ 1

− 4 + 2√2 − 3+ 3 . (67)

The condition (67) is derived by replacing  with 
2
in the first condition in

(64), since in the symmetric case  =  = 
2
while in the asymmetric case we

assume that  =  = . The derived restriction (67) is identical to the one

presented in the literature with symmetric countries (De Cara and Rotillon, 2001;

Rubio and Casino, 2001) under which an agreement of size two is stable.

The coalition ( = 0  = 2) is stable under the following conditions:

The internal stability condition for type  countries is satisfied. The condition

holds if and only if,
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 ≤ 2
p
(1 + )(1 + 4)− ¡1 + (3− 2) ¢

3


 
1

2(− 2 +√42 − 6+ 3)  (68)

The external stability conditions for both types are satisfied. The conditions

hold if and only if,

(1+(1+
2


)2)(1+2+(+))2−(1+)(1+2(+2)+(+))2 ≥ 0

(69)

Rearranging terms and simplifying,

−(+ 1)()3 − ((3 + (1− )) + + 2)()2+

(2(+ 2)()2 + (− 3) − 1) + ((+ 2) + 1)2 ≥ 0 (70)

The external stability conditions (66) and (70) are non-binding if parameter

 satisfies the following condition,

 ≥ 2

5(− 1) + 4√42 − 6+ 3 . (71)

The coalition ( = 2  = 0) is stable under the following conditions:

The internal stability condition for type  countries is satisfied. The condition

holds if and only if,

 ≤
2
³
2 +

p
3 +  ( (1− ) (1− 4)− 3 (1− 2))

´
− ¡1 + (3− 2)¢

(− 2)(2 + 3) 

 
1

2
¡
− 2 +√42 − 6+ 3¢  (72)

The external stability conditions for both types are satisfied.

Proof of Propotision 3. For   1

2(−2+
√
42−6+3)

, condition (64), regard-

ing parameter , is always stricter than condition (68), which is always stricter

27



than condition (72). That is,

2
³
2 +

p
3 +  ( (1− ) (1− 4)− 3 (1− 2))

´
− ¡1 + (3− 2)¢

(− 2)(2 + 3) 

2
p
(1 + )(1 + 4)− ¡1 + (3− 2) ¢

3


1

2
¡
− 2 +√42 − 6+ 3¢  (73)

The mixed coalition ( = 1  = 1) is stable only if  ≤ 1

2(−2+√42−6+3) . In

this case, asymmetry is minimal ( is very close to  implying that  is very

close to ) and countries are almost identical.

When asymmetry increases, meaning that   1

2(−2+
√
42−6+3) , the mixed coali-

tion is unstable. In this case, a stable coalition consists only of one type of countries

and its membership depends on the degree of heterogeneity.

Given that, condition (68), regarding parameter , is always stricter than condi-

tion (72), when the coalition ( = 0  = 2) is stable, the coalition ( = 2  =

0) is stable as well.

Moreover, given that condition (64), regarding parameter , is always stricter

than condition (68), when the coalition ( = 1  = 1) is stable, the coali-

tion ( = 0  = 2) is stable as well, and as a consequence the coalition

( = 2  = 0) is also stable.

To summarize, when the coalition ( = 1  = 1) is stable the other two coali-

tions, ( = 0  = 2) and ( = 2  = 0), are stable as well and when the

coalition ( = 0  = 2) is stable, the coalition ( = 2  = 0) is also stable.

Therefore, if the coalition ( = 2  = 0) fails to satisfy stability requirements,

none of the other two coalitions, i.e. ( = 0  = 2) and ( = 1  = 1), can

be stable.

Proof of Lemma 4. The emissions of signatories are given by equations (23)

and (24). The emissions of non-signatories are given by equations (27) and (28).

When countries differ only in environmental damages, emissions are simplified as

follows:

 =  =  − 2
( + )

Ψ
 (74)

 =  − 2


Ψ
 (75)
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 =  − 2


Ψ
 (76)

where Γ = + and Ψ = 1+(−)+(−)+()2+()2+

Γ.

Emissions from both signatories and non-signatories are positive for   3 and

   under the following conditions.

When ( = 0  = 0), ( = 1  = 0) and ( = 0  = 1),

 ≤ 1 + 


 (77)

In all other cases,

 
1

(2−  − )( +  − 1) 

 ≤ 1 + (− ) + ( +  − 2)
(1 + 2−  − ) − 

 (78)

For the stable coalitions, i.e. ( = 1  = 1), ( = 2  = 0) and ( = 0  =

2), the condition in (78) regarding parameter  is simplified as follows,

 
1

2(− 1)  (79)

We can verify that for   3, 2
¡
− 2 +√42 − 6+ 3¢  2( − 1). Hence, the

condition regarding parameter , i.e.   1

2(−2+
√
42−6+3) , is always stricter

than the condition   1
2(−1) . That is,

1

2
¡
− 2 +√42 − 6+ 3¢  1

2(− 1)  (80)

Given that   1

2(−2+
√
42−6+3)

, the conditions for the parameter  given by

(68) and (72) are also stricter than its condition in (78).

Therefore, emissions of both signatories and non-signatories are always positive

under any possible stable coalition.
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