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AND THE ‘TRIVIAL’ STEADY STATE 
 
 

Abstract 
 
A common perception about the neoclassical growth model is that an economy devoid of 
capital cannot evolve to strictly positive levels of output if capital is essential. We challenge 
this view by positing a broad class of production functions, encompassing the neoclassical 
production function, that—surprisingly—show that a take-off is possible even though the 
initial capital stock is zero and capital is essential. Since the marginal product of capital is 
initially infinite, the “trivial” steady state becomes so unstable that the solution to the equation 
of motion involves the possibility of a take-off. When it happens, the take-off is spontaneous: 
there is no causality, not even randomness. 

JEL Code: O11, O14, O41, N6. 
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Neolassial Growth and the \Trivial" Steady State 11 IntrodutionMost spei�ations of the neolassial growth model of Solow (1956) and Swan(1956) exhibit an unstable state with zero apital, often referred to as the trivialsteady state. Intuitively, it obtains in a losed eonomy devoid of apital if apitalis essential to generate inome. Based on this intuition, one is inlined to draw theonlusion that the evolution of apital must be at a point of rest. For instane,Romer (2006, p. 16) writes, \If k [the apital intensity per unit of eÆient labor℄is initially zero, it remains there". This assessment may be based on Solow (1956,p. 70), who notes, \If K = 0, r = 0 [the apital intensity℄ and the system an'tget started; with no apital there is no output and hene no aumulation. Butthis equilibrium is unstable: the slightest windfall apital aumulation will startthe system o� ...". Our analysis hallenges these assessments. We show that aneolassial eonomy may take o� even though the initial apital stok is zero andapital is essential, i. e., the system an get started, even without a slight windfallapital. When this happens, the ignition of the proess of apital aumulation isspontaneous: there is no immediate ause.Our �nding is based on a areful analysis of the instability assoiated with thetrivial steady state. We show for a broad lass of aggregate prodution funtions(inluding the neolassial prodution funtion) that the solution to the equationof motion for apital annot be unique when apital is zero. Two assumptions, theessentiality of apital and the Inada ondition for apital (Inada (1963)), imply thisresult. Together they impose opposing fores on the aumulation proess whenthere is zero apital. On the one hand, sine apital is essential, there is nothingto invest; on the other hand, due to the Inada ondition, the ontribution of amarginal inrement in apital to the hange in apital is in�nite. The behavior ofthe trajetory for apital is then indeterminate. Depending on whih of these twofores \gets the upper hand", the eonomy may either remain without apital, ortake o�. The purpose of the following setions is to larify the tehnial and intuitive



Neolassial Growth and the \Trivial" Steady State 2underpinnings of this somewhat ounterintuitive phenomenon.1Setion 2 develops our main result for a (neo)lassial eonomy that is equipped witha Cobb-Douglas prodution funtion. We link our �nding to the lak of Lipshitzontinuity in the equation of motion. This property allows for multiple solutions. InSetion 3, we extend the setting to more general prodution funtions and developour main theorem. Here, we identify the tension between the essentiality of api-tal and the Inada ondition as the driving fore behind the spontaneous take-o�.Setion 4 onludes.
2 Neolassial Growth under Cobb-DouglasConsider a losed eonomy in ontinuous time, equipped with the aggregate produ-tion funtion Y (t) = F (K(t); L(t)) = AK(t)� L(t)� T 1����; (1)where A > 0 is total fator produtivity, K(t) � 0 the apital stok at time t,L(t) = en t the employed population at t (growing at rate n � 0), and T theavailable land.2 Assume that �; � 2 (0; 1). If, in addition, 0 < �+ � < 1, then thisprodution funtion (i) exhibits onstant returns to sale, (ii) it has positive anddiminishing returns, (iii) it satis�es the Inada onditions, and (iv) all of its inputsare essential. Swan (1956) alls this a lassial ase as opposed to an unlassialase for whih he stipulates � + � = 1. In the latter ase, the amount of available1It is worth noting that several reent growth models, inluding Mankiw, Romer, and Weil(1992) and Kremer (1993), exhibit the possibility of a spontaneous take-o�. A detailed disussionis available from the authors upon request. Hakenes and Irmen (2005) show that suh phenomenonalso arises in dual eonomies in the spirit of Harris and Todaro (1970).2To allow for exogenous tehnologial progress, one may simply replae n by ~n = n+ x, wherex > 0 is the growth rate of some fator multiplied with L(t). All results of this paper extend tosettings with exogenous labor-augmenting tehnial progress.



Neolassial Growth and the \Trivial" Steady State 3land has no inuene upon aggregate output, and the four properties hold withrespet to apital and labor, i. e. the prodution funtion is neolassial in the senseof Barro and Sala-��-Martin (2004, pp. 26{28).The equation of motion for the apital stok is_K(t) = s Y (t)� Æ K(t); (2)where s 2 (0; 1) is the savings rate and Æ � 0 the instantaneous depreiation rate.Without loss of generality we normalize and set T = 1. Then, the evolution ofapital beomes _K(t) = sAK(t)� en� t � Æ K(t): (3)Sine our fous is on the trivial solution, we restrit attention to the initial valueproblem, with K(t) = 0 for some time t. This problem has two algebrai solutions,K1(t) = �A s (1� �)n � + Æ (1� �)�en� t � en� t e�(1��) Æ (t�t)�� 11�� ; andK2(t) = 0 for all t.In addition, piee-wise ombinations of K1 and K2 qualify as a solution as longas these are ontinuous and di�erentiable at the joint. The solution K1(t) obtainsbeause (3) is a Bernoulli equation that an be solved by appropriate substitution(see, e. g. Gandolfo (1997, p. 436)).3 We refer to K2(t) as the trivial solution.Observe that K1(t) = 0. For t < t, K1(t) may either beome positive or negative.In the former ase, the impliation is _K1(t) < 0, whih is ontraditory to (3):when the apital stok is rather small, it annot shrink sine the additions to theapital stok exeed depreiation. In the latter ase, K(t) � 0 is violated. Hene,K1(t) an only be part of a solution for t � t. Sine K1(t) = K2(t) = 0 and3For Æ > 0, there are additional algebrai solutions if we do not impose an initial value equalto zero. These solutions generate stritly positive levels of apital at all times. Generially, apitaldoes not even get lose to zero but onverges to in�nity for some t < 0.



Neolassial Growth and the \Trivial" Steady State 4Figure 1: The Ambiguous Evolution of Capital.
PSfrag replaements t

K
All trajetories qualify as possible evolutions of apital. The later the take-o�, the steeper is thetrajetory for t > t._K1(t) = _K2(t) = 0, the path of apital is not unique at eah ritial date t: apitalis zero before t and may either followK1(t) or K2(t) after t. We may interpret t asthe moment of a take-o� and onlude that the solution to the di�erential equation(3) may take o� at any time t, or never (see Figure 1).The behavior following the take-o� is determined by the level of population at thattime. If apital takes o� late and n > 0, then the apital stok grows faster beauseits population is larger. For large t, K1(t) beomes approximately proportional toen� t=(1��). Hene, the asymptoti growth rate of apital is n �=(1 � �). For thetrivial solution K2(t), the growth rate is ill-de�ned.The fat that the evolution of apital is not unique for K = 0 is linked to the missingLipshitz ontinuity of the di�erential equation. A di�erential equation _K = f(K; t)is said to satisfy the Lipshitz ondition if jf(K; t)� f(K 0; t)j < L jK �K 0j withinthe de�nition interval for some �nite onstant L (see, e. g., Aliprantis and Border(1998)). In partiular, when �f(K; t)=�K = 1 for some K and t, the di�erentialequation annot be Lipshitz ontinuous at this point sine di�erentiability impliesLipshitz ontinuity. We know from Piard's Existene Theorem that a solution toa di�erential equation is unique if the equation is Lipshitz ontinuous. Here, the



Neolassial Growth and the \Trivial" Steady State 5test for Lipshitz ontinuity fails,limK(t)!0 � _K(t)�K(t) = limK(t)!0 sA� en� tK(t)1�� � Æ =1: (4)Sine en� t is always positive, the fration is unbounded for small K(t).Thus, ontrary to the ommon pereption in the literature (see the quotes given inthe Introdution), the basi onlusion of this setion is that the eonomy with zeroapital at some time may either go on without aumulation forever or depart on atrajetory with positive growth of the apital stok, albeit with no ause. No �rstpiee of apital is needed to trigger aumulation initially. The take-o� happensspontaneously.
3 Essentiality and the Inada ConditionWe now turn to more general prodution funtions. Our entral �nding is thefollowing theorem.Theorem Consider the equation of motion (2) with Y (t) = F (K(t); L(t)), whereF 2 C2(R2+) is stritly onave in K. Let K(t) = 0 at some time t. Then,1. if F (0; L) = 0 and limK!0 �F=�K = 1, then the evolution of apital is notunique: apital takes o� spontaneously at some t � t or remains at zero;2. if F (0; L) = 0 and limK!0 �F=�K <1, apital remains at zero;3. if F (0; L) > 0, apital takes o� immediately.Proof. Sine the proof of the non-uniqueness result stated under Case 1 of thetheorem is tehnially involved, it is relegated to an Appendix. The remainder ofthe proof is given in the main text below. �



Neolassial Growth and the \Trivial" Steady State 6Aording to Case 1, a spontaneous take-o� may our for quite general produtionfuntions if apital is essential and the Inada ondition is satis�ed. An intuitiveexplanation of this result is as follows.If F (0; L) = 0, then apital is essential and the trivial solution always satis�es theequation of motion: K = 0 for all t implies _K = s F (K;L)� Æ K = s F (0; L) = 0.The Inada ondition for apital requires limK!0 �F=�K =1. It is usually imposedto exlude a stable trivial steady state. What matters here an be seen from thederivative of the equation of motion (2) with respet to K and its limit� _K�K = s �F�K � Æ; and limK!0 � _K�K = s limK!0 �F�K � Æ:Due to the Inada ondition, � _K=�K onverges to in�nity for small K. As a result,the di�erential equation is not Lipshitz ontinuous at K = 0, and its solution neednot be unique. In the tehnial appendix we strengthen this result and prove thatthe solution to (2) in fat is not unique. Thus, although apital is essential, theremust be solutions that spontaneously take o� from zero.Intuitively, this ambiguity arises from two opposing fores that a�et the equationof motion at K = 0. On the one hand, no apital an be aumulated sine apitalis essential. On the other hand, the marginal produt of apital is in�nite. Roughlyspeaking, even a zero amount of apital an lead to positive output, and thereuponto aumulation. Whih of these fores dominates at eah date t is unpreditable.Either the essentiality of apital dominates and produes the trivial solution, i. e.apital remains zero, or the Inada ondition gets the upper hand and triggers aninstantaneous take-o�.It is worth noting that the property of onstant returns to sale in onjuntion withthe Inada ondition implies essentiality (see, e. g. Barro and Sala-��-Martin (2004,p. 77)). Hene, we have the following orollary.Corollary Consider the assumptions of the theorem. If F is a neolassial produ-tion funtion, then apital may take o� spontaneously at any time t or remain atzero.



Neolassial Growth and the \Trivial" Steady State 7In Case 2, F violates the Inada ondition. Aordingly, the equation of motion isLipshitz ontinuous; its solution is unique. Sine essentiality implies _K = 0, a take-o� is exluded. Case 3 states that a take-o� must our if apital is not essential.Here, however, the take-o� is not spontaneous, but due to a stritly positive amountof investment.The role of essentiality and the Inada ondition an be illustrated for the CESprodution funtion F (K;L) = �a (bK) + (1 � a)((1 � b)L) �1= , where  <1 determines the elastiity of substitution between apital and labor. Capital isessential for  � 0, i. e. for a suÆient degree of omplementarity. Moreover, theInada ondition holds for 0 �  < 1. Hene, Case 1 of the Theorem only applies for = 0; the prodution funtion is Cobb-Douglas. For  < 0, Case 2 applies, i. e. ifapital is ever zero, it stays there. For  > 0, the prodution funtion satis�es theInada ondition, yet apital is not essential. Aording to Case 3, if apital is zero,it takes o� instantaneously. Somewhat paradoxially, the analysis of the \trivial"steady state is most omplex for the textbook example involving a Cobb-Douglastehnology.We may use the CES example to build intuition for the two algebrai solutions K1(t)and K2(t) that we derived in Setion 2 for the Cobb-Douglas ase. For  < 0 theonly solution to the di�erential equation (2) is the trivial solution K = 0. Sine theCobb-Douglas funtion obtains as the limit of the CES as  ! 0 from below, it isquite intuitive that in the limit K2(t) obtains as a solution, and the eonomy maynot take o�. For  > 0, the di�erential equation (2) exhibits an immediate take-o�.Now, onsider the Cobb-Douglas as a limit of the CES as  ! 0 from above. Inthe limit, the solution K1(t) preserves the property of an immediate take-o�. Thus,from a CES viewpoint both solutions K1(t) and K2(t) have intuitive appeal.44An alternative intuition for K1(t) and K2(t) starts from the disrete-time di�erene equationK(t+�t)�K(t) = (sAK(t)� en� t�Æ K(t))�t, with the initial value K(t) > 0. Then, one �ndsthat limK(t)!0 lim�t!0K(t) = K1(t), but lim�t!0 limK(t)!0K(t) = K2(t). In other words, theorder of the limits determines whether K1(t) or K2(t) obtains. If the di�erential equation were



Neolassial Growth and the \Trivial" Steady State 8Observe that the intuition behind the Theorem an be used to allow for a sponta-neous take-o� from a state with stritly positive output. To see this, replae theequation of motion (2) by _K = g(K) � Æ K, where g(K) relates aggregate outputto gross investment. Denote �K the initial amount of agriultural apital, and let �Ksatisfy g( �K) = Æ �K. Then, the eonomy is initially in a stationary state with posi-tive output, savings, and investment. If in addition g0( �K) = 1, then the eonomymay either stay in the stationary state forever or take o�.
4 Conluding RemarksThe purpose of this paper is not to delve into the metaphysis of apital aumulationor into the origin of eonomi live. Rather, it aims at a omplete understanding ofthe dynamis of the seminal growth model of Solow (1956) and Swan (1956). Fora broad lass of prodution funtions, enompassing the neolassial produtionfuntion, we show that the evolution of an eonomy devoid of apital annot beunique. The eonomy may either take o� at any date or remain without apitalforever.The explanation of this paradoxial feature relies on the subtle interation of twoommon assumptions. As we have shown, essentiality alone preludes a take-o�, andthe Inada-ondition alone implies an immediate take-o�. Yet, when both propertieshold, a take-o� is possible, but need not happen. These �ndings suggest that thezero-apital state of the neolassial growth model is not neessarily steady, and byno means trivial.
Lipshitz ontinuous, then the limit of the solution would be unique and independent of the orderof the limits.



Neolassial Growth and the \Trivial" Steady State 9A Proof of Case 1 of the TheoremThis appendix establishes the non-uniqueness result stated in Case 1 of the Theorem.To aomplish this, we proeed in two steps, eah omprising the proof of a Lemma.Without loss of generality, we set t = 0.Lemma 1 Assume that the solution of (2) at K = 0 is not unique for a produtionfuntion F (K;L). Then, for a prodution funtion G(K;L) 2 C2(R2+) satisfyingG(0; L) = 0 and G(K;L) > F (K;L) in a neighborhood of K = 0 and some L > 0,the solution to (2) is not unique either.Proof of Lemma 1: AsG(K;L) > F (K;L) in the neighborhoodK 2 (0; �K), the left-hand side of (2) is greater with the prodution funtion G than with F . Aordingly,for any K 2 (0; �K), K evolves faster under tehnology G.Consider the non-trivial solution K1 under the prodution funtion F . Denote �t thepoint in time for whih K1(�t) = �K. Next, onsider (2) with prodution tehnologyG, and let KG(t) be the solution of the assoiated initial value problem whereKG(�t) = �K. Sine _KG > _K1 for any K > 0, moving bakwards in time reveals thatthere is a time tG 2 [0; �t) suh that KG(tG) = 0. Hene, starting from tG undertehnology G, apital may take o�.Finally, essentiality implies that K = 0 is another solution desribing the evolutionunder the prodution funtion G. Hene, there are at least two solutions. �In the following lemma, we show that for any stritly onave prodution funtionG(K;L) satisfying the Inada ondition and essentiality of apital, one an �nd aCobb-Douglas prodution funtion F (K;L) = AK� L1�� with G(K;L) > F (K;L)in a neighborhood of K = 0. To redue lutter, we shall suppress the argument Lsuh that G(K;L) simpli�es to G(K) and F (K) =  K�, where  > 0 is a summarystatisti of units and labor input.



Neolassial Growth and the \Trivial" Steady State 10Lemma 2 Let G 2 C2(R+) be a stritly onave prodution funtion with G(0) = 0and G0(0) =1. Then, there are parameters  > 0, � 2 (0; 1), and �K > 0 suh thatG(K) > F (K) =  K� for all K 2 (0; �K).Proof of Lemma 2 (by ontradition): Assume a funtion G(K) with the above-mentioned properties. Suppose there is no Cobb-Douglas funtion F (K) =  K�with G(K) > F (K) in a neighborhood of K = 0. Consider both funtions on adouble logarithmi sale, i. e., let ~G(x) = logG(exp x) and ~F (x) = logF (exp x) =�x + log . By assumption, there is no �x = log �K suh that ~G(x) < ~F (x) for allx 2 (�1; �x). The latter is only possible if lim infx!�1 ~G0(x) =1.Bak from the double-log sale to the linear sale, we have G(K) = exp ~G(logK)and G00(K) = exp ~G(logK)K2 � ~G00(logK)� ~G0(logK) + ~G0(logK)2�:G00(K) < 0 implies ~G00(x)� ~G0(x) + ~G0(x)2 < 0, or ~g0(x)� ~g(x) + ~g(x)2 < 0, where~g(x) := ~G0(x). This gives rise to the di�erential inequality ~g0(x) < ~g(x)2 � ~g(x).The solution to the assoiated di�erential equation is~g(x) = exp x1=~g0 � 1 + exp x:Sine lim infx!�1 ~G0(x) = 1, ~g(x) is not bounded above for x ! �1. Hene, atsome point, ~g(x) > 1. Consider the di�erential inequality with an initial value x0satisfying ~g(x0) > 1. For x < x0, we obtain the inequality~g(x) � exp(x� x0)1=g0 � 1 + exp(x� x0) :The solution to the di�erential equation beomes in�nite at a �nite x = x0+log(~g0�1) � log(~g0). Sine this solution is a lower bound for ~g(x), the latter must beomein�nite, too. Hene, ~G0(x) must beome in�nite. We arrive at ontradition to ~G(x)being onave. A onave funtion annot beome in�nite in the interior. �Hene, parameters  and � exist, suh that there is a Cobb-Douglas funtion belowG(K). The solution to the di�erential equation (2) is neessarily non-unique. �
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