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Abstract 
 
A common perception about the neoclassical growth model is that an economy devoid of 
capital cannot evolve to strictly positive levels of output if capital is essential. We challenge 
this view by positing a broad class of production functions, encompassing the neoclassical 
production function, that—surprisingly—show that a take-off is possible even though the 
initial capital stock is zero and capital is essential. Since the marginal product of capital is 
initially infinite, the “trivial” steady state becomes so unstable that the solution to the equation 
of motion involves the possibility of a take-off. When it happens, the take-off is spontaneous: 
there is no causality, not even randomness. 
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Neo
lassi
al Growth and the \Trivial" Steady State 11 Introdu
tionMost spe
i�
ations of the neo
lassi
al growth model of Solow (1956) and Swan(1956) exhibit an unstable state with zero 
apital, often referred to as the trivialsteady state. Intuitively, it obtains in a 
losed e
onomy devoid of 
apital if 
apitalis essential to generate in
ome. Based on this intuition, one is in
lined to draw the
on
lusion that the evolution of 
apital must be at a point of rest. For instan
e,Romer (2006, p. 16) writes, \If k [the 
apital intensity per unit of eÆ
ient labor℄is initially zero, it remains there". This assessment may be based on Solow (1956,p. 70), who notes, \If K = 0, r = 0 [the 
apital intensity℄ and the system 
an'tget started; with no 
apital there is no output and hen
e no a

umulation. Butthis equilibrium is unstable: the slightest windfall 
apital a

umulation will startthe system o� ...". Our analysis 
hallenges these assessments. We show that aneo
lassi
al e
onomy may take o� even though the initial 
apital sto
k is zero and
apital is essential, i. e., the system 
an get started, even without a slight windfall
apital. When this happens, the ignition of the pro
ess of 
apital a

umulation isspontaneous: there is no immediate 
ause.Our �nding is based on a 
areful analysis of the instability asso
iated with thetrivial steady state. We show for a broad 
lass of aggregate produ
tion fun
tions(in
luding the neo
lassi
al produ
tion fun
tion) that the solution to the equationof motion for 
apital 
annot be unique when 
apital is zero. Two assumptions, theessentiality of 
apital and the Inada 
ondition for 
apital (Inada (1963)), imply thisresult. Together they impose opposing for
es on the a

umulation pro
ess whenthere is zero 
apital. On the one hand, sin
e 
apital is essential, there is nothingto invest; on the other hand, due to the Inada 
ondition, the 
ontribution of amarginal in
rement in 
apital to the 
hange in 
apital is in�nite. The behavior ofthe traje
tory for 
apital is then indeterminate. Depending on whi
h of these twofor
es \gets the upper hand", the e
onomy may either remain without 
apital, ortake o�. The purpose of the following se
tions is to 
larify the te
hni
al and intuitive



Neo
lassi
al Growth and the \Trivial" Steady State 2underpinnings of this somewhat 
ounterintuitive phenomenon.1Se
tion 2 develops our main result for a (neo)
lassi
al e
onomy that is equipped witha Cobb-Douglas produ
tion fun
tion. We link our �nding to the la
k of Lips
hitz
ontinuity in the equation of motion. This property allows for multiple solutions. InSe
tion 3, we extend the setting to more general produ
tion fun
tions and developour main theorem. Here, we identify the tension between the essentiality of 
api-tal and the Inada 
ondition as the driving for
e behind the spontaneous take-o�.Se
tion 4 
on
ludes.
2 Neo
lassi
al Growth under Cobb-DouglasConsider a 
losed e
onomy in 
ontinuous time, equipped with the aggregate produ
-tion fun
tion Y (t) = F (K(t); L(t)) = AK(t)� L(t)� T 1����; (1)where A > 0 is total fa
tor produ
tivity, K(t) � 0 the 
apital sto
k at time t,L(t) = en t the employed population at t (growing at rate n � 0), and T theavailable land.2 Assume that �; � 2 (0; 1). If, in addition, 0 < �+ � < 1, then thisprodu
tion fun
tion (i) exhibits 
onstant returns to s
ale, (ii) it has positive anddiminishing returns, (iii) it satis�es the Inada 
onditions, and (iv) all of its inputsare essential. Swan (1956) 
alls this a 
lassi
al 
ase as opposed to an un
lassi
al
ase for whi
h he stipulates � + � = 1. In the latter 
ase, the amount of available1It is worth noting that several re
ent growth models, in
luding Mankiw, Romer, and Weil(1992) and Kremer (1993), exhibit the possibility of a spontaneous take-o�. A detailed dis
ussionis available from the authors upon request. Hakenes and Irmen (2005) show that su
h phenomenonalso arises in dual e
onomies in the spirit of Harris and Todaro (1970).2To allow for exogenous te
hnologi
al progress, one may simply repla
e n by ~n = n+ x, wherex > 0 is the growth rate of some fa
tor multiplied with L(t). All results of this paper extend tosettings with exogenous labor-augmenting te
hni
al progress.



Neo
lassi
al Growth and the \Trivial" Steady State 3land has no in
uen
e upon aggregate output, and the four properties hold withrespe
t to 
apital and labor, i. e. the produ
tion fun
tion is neo
lassi
al in the senseof Barro and Sala-��-Martin (2004, pp. 26{28).The equation of motion for the 
apital sto
k is_K(t) = s Y (t)� Æ K(t); (2)where s 2 (0; 1) is the savings rate and Æ � 0 the instantaneous depre
iation rate.Without loss of generality we normalize and set T = 1. Then, the evolution of
apital be
omes _K(t) = sAK(t)� en� t � Æ K(t): (3)Sin
e our fo
us is on the trivial solution, we restri
t attention to the initial valueproblem, with K(t
) = 0 for some time t
. This problem has two algebrai
 solutions,K1(t) = �A s (1� �)n � + Æ (1� �)�en� t � en� t
 e�(1��) Æ (t�t
)�� 11�� ; andK2(t) = 0 for all t.In addition, pie
e-wise 
ombinations of K1 and K2 qualify as a solution as longas these are 
ontinuous and di�erentiable at the joint. The solution K1(t) obtainsbe
ause (3) is a Bernoulli equation that 
an be solved by appropriate substitution(see, e. g. Gandolfo (1997, p. 436)).3 We refer to K2(t) as the trivial solution.Observe that K1(t
) = 0. For t < t
, K1(t) may either be
ome positive or negative.In the former 
ase, the impli
ation is _K1(t) < 0, whi
h is 
ontradi
tory to (3):when the 
apital sto
k is rather small, it 
annot shrink sin
e the additions to the
apital sto
k ex
eed depre
iation. In the latter 
ase, K(t) � 0 is violated. Hen
e,K1(t) 
an only be part of a solution for t � t
. Sin
e K1(t
) = K2(t
) = 0 and3For Æ > 0, there are additional algebrai
 solutions if we do not impose an initial value equalto zero. These solutions generate stri
tly positive levels of 
apital at all times. Generi
ally, 
apitaldoes not even get 
lose to zero but 
onverges to in�nity for some t < 0.



Neo
lassi
al Growth and the \Trivial" Steady State 4Figure 1: The Ambiguous Evolution of Capital.
PSfrag repla
ements t

K
All traje
tories qualify as possible evolutions of 
apital. The later the take-o�, the steeper is thetraje
tory for t > t
._K1(t
) = _K2(t
) = 0, the path of 
apital is not unique at ea
h 
riti
al date t
: 
apitalis zero before t
 and may either followK1(t) or K2(t) after t
. We may interpret t
 asthe moment of a take-o� and 
on
lude that the solution to the di�erential equation(3) may take o� at any time t
, or never (see Figure 1).The behavior following the take-o� is determined by the level of population at thattime. If 
apital takes o� late and n > 0, then the 
apital sto
k grows faster be
auseits population is larger. For large t, K1(t) be
omes approximately proportional toen� t=(1��). Hen
e, the asymptoti
 growth rate of 
apital is n �=(1 � �). For thetrivial solution K2(t), the growth rate is ill-de�ned.The fa
t that the evolution of 
apital is not unique for K = 0 is linked to the missingLips
hitz 
ontinuity of the di�erential equation. A di�erential equation _K = f(K; t)is said to satisfy the Lips
hitz 
ondition if jf(K; t)� f(K 0; t)j < L jK �K 0j withinthe de�nition interval for some �nite 
onstant L (see, e. g., Aliprantis and Border(1998)). In parti
ular, when �f(K; t)=�K = 1 for some K and t, the di�erentialequation 
annot be Lips
hitz 
ontinuous at this point sin
e di�erentiability impliesLips
hitz 
ontinuity. We know from Pi
ard's Existen
e Theorem that a solution toa di�erential equation is unique if the equation is Lips
hitz 
ontinuous. Here, the



Neo
lassi
al Growth and the \Trivial" Steady State 5test for Lips
hitz 
ontinuity fails,limK(t)!0 � _K(t)�K(t) = limK(t)!0 sA� en� tK(t)1�� � Æ =1: (4)Sin
e en� t is always positive, the fra
tion is unbounded for small K(t).Thus, 
ontrary to the 
ommon per
eption in the literature (see the quotes given inthe Introdu
tion), the basi
 
on
lusion of this se
tion is that the e
onomy with zero
apital at some time may either go on without a

umulation forever or depart on atraje
tory with positive growth of the 
apital sto
k, albeit with no 
ause. No �rstpie
e of 
apital is needed to trigger a

umulation initially. The take-o� happensspontaneously.
3 Essentiality and the Inada ConditionWe now turn to more general produ
tion fun
tions. Our 
entral �nding is thefollowing theorem.Theorem Consider the equation of motion (2) with Y (t) = F (K(t); L(t)), whereF 2 C2(R2+) is stri
tly 
on
ave in K. Let K(t
) = 0 at some time t
. Then,1. if F (0; L) = 0 and limK!0 �F=�K = 1, then the evolution of 
apital is notunique: 
apital takes o� spontaneously at some t � t
 or remains at zero;2. if F (0; L) = 0 and limK!0 �F=�K <1, 
apital remains at zero;3. if F (0; L) > 0, 
apital takes o� immediately.Proof. Sin
e the proof of the non-uniqueness result stated under Case 1 of thetheorem is te
hni
ally involved, it is relegated to an Appendix. The remainder ofthe proof is given in the main text below. �
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lassi
al Growth and the \Trivial" Steady State 6A

ording to Case 1, a spontaneous take-o� may o

ur for quite general produ
tionfun
tions if 
apital is essential and the Inada 
ondition is satis�ed. An intuitiveexplanation of this result is as follows.If F (0; L) = 0, then 
apital is essential and the trivial solution always satis�es theequation of motion: K = 0 for all t implies _K = s F (K;L)� Æ K = s F (0; L) = 0.The Inada 
ondition for 
apital requires limK!0 �F=�K =1. It is usually imposedto ex
lude a stable trivial steady state. What matters here 
an be seen from thederivative of the equation of motion (2) with respe
t to K and its limit� _K�K = s �F�K � Æ; and limK!0 � _K�K = s limK!0 �F�K � Æ:Due to the Inada 
ondition, � _K=�K 
onverges to in�nity for small K. As a result,the di�erential equation is not Lips
hitz 
ontinuous at K = 0, and its solution neednot be unique. In the te
hni
al appendix we strengthen this result and prove thatthe solution to (2) in fa
t is not unique. Thus, although 
apital is essential, theremust be solutions that spontaneously take o� from zero.Intuitively, this ambiguity arises from two opposing for
es that a�e
t the equationof motion at K = 0. On the one hand, no 
apital 
an be a

umulated sin
e 
apitalis essential. On the other hand, the marginal produ
t of 
apital is in�nite. Roughlyspeaking, even a zero amount of 
apital 
an lead to positive output, and thereuponto a

umulation. Whi
h of these for
es dominates at ea
h date t
 is unpredi
table.Either the essentiality of 
apital dominates and produ
es the trivial solution, i. e.
apital remains zero, or the Inada 
ondition gets the upper hand and triggers aninstantaneous take-o�.It is worth noting that the property of 
onstant returns to s
ale in 
onjun
tion withthe Inada 
ondition implies essentiality (see, e. g. Barro and Sala-��-Martin (2004,p. 77)). Hen
e, we have the following 
orollary.Corollary Consider the assumptions of the theorem. If F is a neo
lassi
al produ
-tion fun
tion, then 
apital may take o� spontaneously at any time t or remain atzero.



Neo
lassi
al Growth and the \Trivial" Steady State 7In Case 2, F violates the Inada 
ondition. A

ordingly, the equation of motion isLips
hitz 
ontinuous; its solution is unique. Sin
e essentiality implies _K = 0, a take-o� is ex
luded. Case 3 states that a take-o� must o

ur if 
apital is not essential.Here, however, the take-o� is not spontaneous, but due to a stri
tly positive amountof investment.The role of essentiality and the Inada 
ondition 
an be illustrated for the CESprodu
tion fun
tion F (K;L) = �a (bK) + (1 � a)((1 � b)L) �1= , where  <1 determines the elasti
ity of substitution between 
apital and labor. Capital isessential for  � 0, i. e. for a suÆ
ient degree of 
omplementarity. Moreover, theInada 
ondition holds for 0 �  < 1. Hen
e, Case 1 of the Theorem only applies for = 0; the produ
tion fun
tion is Cobb-Douglas. For  < 0, Case 2 applies, i. e. if
apital is ever zero, it stays there. For  > 0, the produ
tion fun
tion satis�es theInada 
ondition, yet 
apital is not essential. A

ording to Case 3, if 
apital is zero,it takes o� instantaneously. Somewhat paradoxi
ally, the analysis of the \trivial"steady state is most 
omplex for the textbook example involving a Cobb-Douglaste
hnology.We may use the CES example to build intuition for the two algebrai
 solutions K1(t)and K2(t) that we derived in Se
tion 2 for the Cobb-Douglas 
ase. For  < 0 theonly solution to the di�erential equation (2) is the trivial solution K = 0. Sin
e theCobb-Douglas fun
tion obtains as the limit of the CES as  ! 0 from below, it isquite intuitive that in the limit K2(t) obtains as a solution, and the e
onomy maynot take o�. For  > 0, the di�erential equation (2) exhibits an immediate take-o�.Now, 
onsider the Cobb-Douglas as a limit of the CES as  ! 0 from above. Inthe limit, the solution K1(t) preserves the property of an immediate take-o�. Thus,from a CES viewpoint both solutions K1(t) and K2(t) have intuitive appeal.44An alternative intuition for K1(t) and K2(t) starts from the dis
rete-time di�eren
e equationK(t+�t)�K(t) = (sAK(t)� en� t�Æ K(t))�t, with the initial value K(t
) > 0. Then, one �ndsthat limK(t
)!0 lim�t!0K(t) = K1(t), but lim�t!0 limK(t
)!0K(t) = K2(t). In other words, theorder of the limits determines whether K1(t) or K2(t) obtains. If the di�erential equation were



Neo
lassi
al Growth and the \Trivial" Steady State 8Observe that the intuition behind the Theorem 
an be used to allow for a sponta-neous take-o� from a state with stri
tly positive output. To see this, repla
e theequation of motion (2) by _K = g(K) � Æ K, where g(K) relates aggregate outputto gross investment. Denote �K the initial amount of agri
ultural 
apital, and let �Ksatisfy g( �K) = Æ �K. Then, the e
onomy is initially in a stationary state with posi-tive output, savings, and investment. If in addition g0( �K) = 1, then the e
onomymay either stay in the stationary state forever or take o�.
4 Con
luding RemarksThe purpose of this paper is not to delve into the metaphysi
s of 
apital a

umulationor into the origin of e
onomi
 live. Rather, it aims at a 
omplete understanding ofthe dynami
s of the seminal growth model of Solow (1956) and Swan (1956). Fora broad 
lass of produ
tion fun
tions, en
ompassing the neo
lassi
al produ
tionfun
tion, we show that the evolution of an e
onomy devoid of 
apital 
annot beunique. The e
onomy may either take o� at any date or remain without 
apitalforever.The explanation of this paradoxi
al feature relies on the subtle intera
tion of two
ommon assumptions. As we have shown, essentiality alone pre
ludes a take-o�, andthe Inada-
ondition alone implies an immediate take-o�. Yet, when both propertieshold, a take-o� is possible, but need not happen. These �ndings suggest that thezero-
apital state of the neo
lassi
al growth model is not ne
essarily steady, and byno means trivial.
Lips
hitz 
ontinuous, then the limit of the solution would be unique and independent of the orderof the limits.



Neo
lassi
al Growth and the \Trivial" Steady State 9A Proof of Case 1 of the TheoremThis appendix establishes the non-uniqueness result stated in Case 1 of the Theorem.To a

omplish this, we pro
eed in two steps, ea
h 
omprising the proof of a Lemma.Without loss of generality, we set t
 = 0.Lemma 1 Assume that the solution of (2) at K = 0 is not unique for a produ
tionfun
tion F (K;L). Then, for a produ
tion fun
tion G(K;L) 2 C2(R2+) satisfyingG(0; L) = 0 and G(K;L) > F (K;L) in a neighborhood of K = 0 and some L > 0,the solution to (2) is not unique either.Proof of Lemma 1: AsG(K;L) > F (K;L) in the neighborhoodK 2 (0; �K), the left-hand side of (2) is greater with the produ
tion fun
tion G than with F . A

ordingly,for any K 2 (0; �K), K evolves faster under te
hnology G.Consider the non-trivial solution K1 under the produ
tion fun
tion F . Denote �t thepoint in time for whi
h K1(�t) = �K. Next, 
onsider (2) with produ
tion te
hnologyG, and let KG(t) be the solution of the asso
iated initial value problem whereKG(�t) = �K. Sin
e _KG > _K1 for any K > 0, moving ba
kwards in time reveals thatthere is a time tG 2 [0; �t) su
h that KG(tG) = 0. Hen
e, starting from tG underte
hnology G, 
apital may take o�.Finally, essentiality implies that K = 0 is another solution des
ribing the evolutionunder the produ
tion fun
tion G. Hen
e, there are at least two solutions. �In the following lemma, we show that for any stri
tly 
on
ave produ
tion fun
tionG(K;L) satisfying the Inada 
ondition and essentiality of 
apital, one 
an �nd aCobb-Douglas produ
tion fun
tion F (K;L) = AK� L1�� with G(K;L) > F (K;L)in a neighborhood of K = 0. To redu
e 
lutter, we shall suppress the argument Lsu
h that G(K;L) simpli�es to G(K) and F (K) = 
 K�, where 
 > 0 is a summarystatisti
 of units and labor input.
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lassi
al Growth and the \Trivial" Steady State 10Lemma 2 Let G 2 C2(R+) be a stri
tly 
on
ave produ
tion fun
tion with G(0) = 0and G0(0) =1. Then, there are parameters 
 > 0, � 2 (0; 1), and �K > 0 su
h thatG(K) > F (K) = 
 K� for all K 2 (0; �K).Proof of Lemma 2 (by 
ontradi
tion): Assume a fun
tion G(K) with the above-mentioned properties. Suppose there is no Cobb-Douglas fun
tion F (K) = 
 K�with G(K) > F (K) in a neighborhood of K = 0. Consider both fun
tions on adouble logarithmi
 s
ale, i. e., let ~G(x) = logG(exp x) and ~F (x) = logF (exp x) =�x + log 
. By assumption, there is no �x = log �K su
h that ~G(x) < ~F (x) for allx 2 (�1; �x). The latter is only possible if lim infx!�1 ~G0(x) =1.Ba
k from the double-log s
ale to the linear s
ale, we have G(K) = exp ~G(logK)and G00(K) = exp ~G(logK)K2 � ~G00(logK)� ~G0(logK) + ~G0(logK)2�:G00(K) < 0 implies ~G00(x)� ~G0(x) + ~G0(x)2 < 0, or ~g0(x)� ~g(x) + ~g(x)2 < 0, where~g(x) := ~G0(x). This gives rise to the di�erential inequality ~g0(x) < ~g(x)2 � ~g(x).The solution to the asso
iated di�erential equation is~g(x) = exp x1=~g0 � 1 + exp x:Sin
e lim infx!�1 ~G0(x) = 1, ~g(x) is not bounded above for x ! �1. Hen
e, atsome point, ~g(x) > 1. Consider the di�erential inequality with an initial value x0satisfying ~g(x0) > 1. For x < x0, we obtain the inequality~g(x) � exp(x� x0)1=g0 � 1 + exp(x� x0) :The solution to the di�erential equation be
omes in�nite at a �nite x = x0+log(~g0�1) � log(~g0). Sin
e this solution is a lower bound for ~g(x), the latter must be
omein�nite, too. Hen
e, ~G0(x) must be
ome in�nite. We arrive at 
ontradi
tion to ~G(x)being 
on
ave. A 
on
ave fun
tion 
annot be
ome in�nite in the interior. �Hen
e, parameters 
 and � exist, su
h that there is a Cobb-Douglas fun
tion belowG(K). The solution to the di�erential equation (2) is ne
essarily non-unique. �
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