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1 Introduction

What price should a policy maker put on emissions of greenhouse gases such

as CO2 in order to internalize climate change? In this paper, I address this

question while taking into account that climate change policy is set by gov-

ernments that resort to income taxation to finance public goods. Specifically,

I show how the optimal carbon price is affected when adding two real-world

features, distortionary income taxation and the inability of the government to

commit to future policies, to an otherwise standard climate-economy model.

Qualitatively, I find that the interaction between taxing income and pricing

polluting production inputs that was previously established in a static frame-

work (Bovenberg and Goulder, 1996) generalizes in an intuitive way to a dy-

namic setting with persistent environmental damages such as climate change.

In more detail, compared to a setting with lump-sum taxes, emitting carbon

is linked to additional effects – positive or negative – on welfare under distor-

tionary income taxation. These “second-best” benefits or costs are caused by

the emission level affecting the households’ labor supply and savings decisions,

which are distorted by the income tax. As a consequence, the optimal carbon

price – which must equal the marginal social cost of carbon (SCC) in order

to fully internalize climate change – is in general not at the level of marginal

climate change impacts on welfare caused by the emission of an additional unit

of carbon (MCD). This deviation of the optimal carbon fee from its Pigouvian

level is referred to as the “tax-interaction effect”.

However, a quantitative assessment shows that the aforementioned second-

best costs and benefits tend to offset each other. Depending on how impacts

from climate change are modeled – specifically, whether climate change affects
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the economy through the level of productivity or has direct welfare impacts

– I find that in reasonable calibrations of the model, the optimal second-best

carbon price is about 2 − 11% below the MCD level in 2010; this deviation

increases over time to around 9−15% by 2100. Hence, the interaction between

fiscal policy and climate change mitigation does not seem an important factor

in the design of optimal climate policy. This also implies that studies on op-

timal carbon pricing that have abstracted from distortionary income taxation

can be seen as a valid approximation for guiding policy makers.

This paper builds on “integrated assessment models” (IAM), such as, for

example, the DICE model (Nordhaus, 2008) or the model of Golosov et al.

(2014), that are widely used to inform policy makers about the size of the social

cost of carbon and hence the optimal carbon fee.1,2 These models typically

prescribe a Pigouvian tax that equals the marginal global damage caused by

climate change, which is defined as the present value of the damage caused

globally by emitting an additional unit of carbon.

As in these studies, I analyze optimal climate change mitigation in a stan-

dard deterministic neoclassical growth model. However, I take into account

that a government’s role is not limited to implementing climate policy, but it

must also raise revenue in order to finance expenditures on public goods, by
1In this paper, a carbon fee could be either a direct carbon tax or the price of tradable

emission permits. I will use the terms “price”, “tax” and “fee” as synonyms. Note that in
order to optimally correct a pollution externality, the emission fee must be set equal to the
(marginal) social cost of pollution evaluated at the efficient emission level (Kolstad, 2000).
The question of what carbon tax is optimal is therefore equivalent to asking what is (a good
estimate for) the marginal social cost of carbon.

2For example, an Interagency Working Group of the US government published a report
determining the social cost of carbon to be used in cost-benefit analysis (IWG, 2010, 2013).
They have used DICE as well as the PAGE model (Hope, 2006, 2008) and the FUND model
(Tol, 2002a,b; Anthoff et al., 2009).
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taxing labor and capital income.3 This introduces distortions into the econ-

omy that make the first-best allocation unfeasible, even if the government is

assumed to be benevolent. When modeling distortionary taxation, I assume

that all tax rates are optimally chosen.4 In addition, it is well-known that in

models with distortionary income taxes, one has to take a stand on whether

the government is able to credibly commit to future policies (Klein et al.,

2008). I assume that there is no such commitment device.5 This assumption

is arguably more realistic and plausible than allowing a government to commit

to all future tax rates.

I provide an analytical characterization of the optimal second-best carbon

price which shows that it is in general not equal to the marginal climate dam-

age and hence is not at the Pigouvian rate. This tax-interaction effect is caused

by additional effects of taxing carbon that only materialize in a setting with

distortionary income taxes, and that are caused by the interaction of carbon

emissions with current and future “wedges”, that is, distortions of a first-best

margin. For example, under certain conditions, an emission tax leads to a

decrease in labor supply, which results in a welfare loss if the intratemporal

labor-leisure margin is distorted by a labor income tax. This second-best cost

of regulating emissions causes the optimal emission fee to deviate from the

Pigouvian rate. This was a prominent finding in earlier studies, which consid-
3Throughout this paper, I assume that the government is restricted to a total income

tax, and has no access to lump-sum taxation. If a lump-sum tax were feasible, a Pigouvian
carbon price would be optimal.

4There is a large literature in environmental economics that instead analyzes partial tax
reforms, where non-environmental tax rates, and possibly the pollution tax, are exogenously
given. An example is Glomm et al. (2008) for a dynamic growth model. Compare also the
quantitative results in Barrage (2016).

5Note that throughout this paper, I focus on Markov-perfect equilibria when solving the
model with distortionary taxation.
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ered second-best environmental taxation in a static model with a labor income

tax (Bovenberg and de Mooij, 1994; Parry, 1995; Bovenberg and Goulder,

1996) and hence focused on the labor-leisure wedge.6

In a dynamic model, however, taking into account only the second-best

effect of carbon emissions on current labor supply gives an incomplete char-

acterization of the optimal carbon price. For example, taxing carbon has a

negative effect on household savings, thereby exacerbating the intertemporal

distortion caused by the tax on capital income. This effect represents an addi-

tional second-best cost of emission reductions and thus further decreases the

carbon price. In addition, I show that current carbon emissions also impact

labor and savings margins in subsequent periods, as their effect is propagated

into the future by capital accumulation and temperature change dynamics.

This propagation induces further cost and benefits of current carbon emis-

sions.

To investigate the quantitative importance of these second-best effects,

I solve a calibrated climate-economy model using recursive methods. This

exercise shows that the deviation of the optimal carbon price from the level of

marginal damage from climate change appears to be small, although it depends

on how climate impacts are modeled.

The remainder of this paper is structured as follows. Section 2 discusses

some related literature. Section 3 presents the framework. In sections 4 and 5,

I analyze a global climate-economy model with distortionary taxation. Section

6 concludes the paper.
6Those studies usually found that the tax-interaction effect dominates “revenue recy-

cling”, that is, using the revenue raised with the emission tax to lower distortionary income
taxes, which results in an efficiency gain.
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2 Related Literature

This paper is related to different strands of the literature, both in climate-

economy modeling and public finance. In the context of climate change eco-

nomics, numerous studies have used IAMs to compute the social cost of carbon

and the optimal carbon tax, often in a global planner model without distor-

tionary taxation.7 One of the earliest and most influential IAMs is the DICE

model (Nordhaus, 2008, 2011), which features a neoclassical growth model

similar to the one used below.8,9 The estimates for the SCC in DICE have

increased over the past versions. The most recent version, DICE-2013R, finds

an optimal carbon price of 66$/tC in 2015 (Nordhaus, 2013). A multi-region

version of this framework is the RICE model (Nordhaus and Yang, 1996; Nord-

haus, 2010). Here, in a cooperative regime, a planner sets carbon prices op-

timally in all regions to maximize global welfare for a given set of welfare

weights.10 Nordhaus (2010) finds an optimal carbon tax of 29$/tC in 2010.

Golosov et al. (2014) consider a climate-economy model similar to DICE,

although with a different formulation of the carbon cycle and an explicit mod-

eling of fossil fuel use. Notably, they derive a closed-form expression for the

expected social cost of carbon under certain conditions - in particular, loga-
7One example of a “second-best” model is Gerlagh and Liski (2018). They compute

Markov-perfect optimal carbon fees in a setting without distortionary taxes, but where the
government is unable to commit to future policies and has time-inconsistent preferences.

8A notable difference is that in DICE, fuel use is not explicitly modeled. Instead, carbon
emissions are linked proportionally to output. The planner can invest in abatement, which
reduces the amount of pollution for a given output level (Nordhaus, 2008).

9Other examples of frequently used IAMs are the PAGE model (Hope, 2006, 2008) and
the FUND model (Tol, 2002a,b; Anthoff et al., 2009). Note that these are not optimal
growth models, but instead take output scenarios as given.

10Hence, in the cooperative regime, the RICE model does not explicitly model climate
agreements. See Barrett (2005) for an overview of the literature on environmental agree-
ments and Harstad (2012, 2013) for recent work on agreements in a dynamic climate model.
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rithmic utility and full depreciation - and show that the optimal tax as a share

of contemporaneous output is constant. Quantitatively, they find an optimal

carbon tax 57$/tC in 2010.

A complementary analysis to this paper is done by Barrage (2016). While

the motivating research question is the same – what is the optimal carbon

price under distortionary income taxation? – her analysis differs from this

paper with respect to assumptions and, as a consequence, methods and results.

Importantly, she studies a setting where the government is assumed to be able

to commit to future income tax rates. Under these conditions, as shown by

Judd (1985) and Chamley (1986), it is optimal to set the tax on capital income

to zero. In her main result, she then shows that there is a qualitative difference

between internalizing impacts from climate change that have a direct effect on

utility and impacts that affect productivity, with only the latter being fully

internalized.

In this paper, the lack of commitment and the assumption of a total income

tax prevent equilibria that feature zero capital tax rates. Hence, the distinc-

tion between productivity and utility damages is less important, even though

there are some qualitative differences, as discussed below. Instead, I focus on

the different channels, most of them dynamic, that introduce wedges between

the optimal carbon price and the level of marginal climate change damage.

Quantitatively, the findings by Barrage (2016) are of a similar order as in this

paper.11

As indicated above, the present model is a generalization of the literature
11Specifically, she finds that in a setting where both income and carbon taxes are set

optimally – as they are in this paper – the optimal carbon price is between 4% and 18%
below the marginal climate damage level. It should be noted that her COMET model differs
from the model in this paper in a number of dimensions.
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on the interaction between income and pollution taxation in static models

initiated by Bovenberg and de Mooij (1994). While Bovenberg and de Mooij

(1994) analyze a model with a pollution-intensive consumption commodity,

Parry (1995) and Bovenberg and Goulder (1996) examine the case of a “dirty”

input in the production process, similar to the setting in this paper.12

Methodologically, this paper is related to Klein et al. (2008), Azzimonti

et al. (2009), and Martin (2010) who analyze time-consistent Markov-perfect

equilibria in a standard neoclassical growth model without environmental qual-

ity.13 Analogous to Klein et al. (2008), I derive the current government’s

generalized Euler equations, which are weighted sums of intertemporal and in-

tratemporal wedges that the government trades off against each other. Similar

to Azzimonti et al. (2009), this paper analyzes a stock of a public good, rather

than a pure flow.14 Note that while the application here is with respect to an

environmental public good, the analysis would be similar to the case of the

stock of a non-environmental public good. For example, one could think of

infrastructure such as public roads and buildings as a persistent public good,

i.e., expenditures today are of importance for the stock tomorrow.

3 The Climate-Economy Model

In this section, I introduce a simple dynamic framework in which I analyze op-

timal carbon and income taxation. Consider the standard neoclassical growth
12Compare also Bovenberg and van der Ploeg (1994), Goulder (1995), Goulder et al.

(1997) and Bovenberg and Goulder (2002).
13See Fischer (1980) and Lucas and Stokey (1983) for earlier work on the time incon-

sistency of optimal policy in the presence of distortionary incomes taxes. Kehoe (1989)
extended the model in Fischer (1980) to a two-country setting.

14Battaglini and Coate (2007, 2008) also consider an environment with distortionary
income taxation and public good provision, but their focus is on the political economy of
fiscal policy, in particular on legislative decision making.
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model, extended by “fossil fuel”, which is used as a factor of production, in

addition to capital and labor. Burning fuel causes emissions of a pollutant,

here carbon dioxide (CO2). The amount of emissions generated in the pro-

duction process is a determinant of climate change, which affects both the

utility function of the representative household – as in the static second-best

literature following Bovenberg and de Mooij (1994) – and the productivity of

the representative firm, as, for example, in Golosov et al. (2014). Producers

do not take into account how their decisions affect the climate; hence, carbon

emissions represent an externality.

Note that throughout this paper, to keep the analysis tractable, I employ

a deterministic model and abstract from all uncertainty related to the climate

or economic development. Moreover, technological growth is exogenous.15

3.1 Utility and Household Problem

In each period t, there are Lt identical households. The population size grows

with an exogenous rate gL: Lt = L0 exp(gLt). An individual household’s per-

period utility is given by u(C/L, h,G/L, T ), where C/L denotes private per-

capita consumption of a final good; h ≤ 1 the share of hours worked in the total

time endowment, which is normalized to unity; and G public consumption. T

is an indicator of climate change. Specifically, it represents the change in mean

global surface temperature relative to the preindustrial period. The two latter

variables are not chosen by the household; hence, they represent public goods.

The utility function is increasing in its first three arguments and decreasing in

T . In other words, a higher T corresponds to a “worse” state of the climate.

There are several channels through which permanently warmer temperatures
15These assumptions are discussed in more detail in the conclusion.
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cause disutility (Barrage, 2016), for example, by affecting health and general

well-being, as well as through the possible loss of biodiversity. Note that in

contrast to many papers in public finance, I have assumed that the public

consumption good is valued by the household; therefore, the amount provided

is a choice variable of the government.

Denote Ct = Ct/Lt. A household maximizes its dynasty’s lifetime utility,

subject to its budget constraint, taking price and tax sequences as given:

max
{Ct,ht,It,Kt+1}∞t=0

∞∑
t=0

βtLtu(Ct, ht, Gt/Lt, Tt), (1)

subject to

Ct + It ≤ (1− τt)(rtKt +Wtht) + τtδKt. (2)

and

Kt+1 exp(gL) = (1− δ)Kt + It. (3)

Kt denotes the household’s asset holdings in period t, while It are its net

savings. δ denotes the rate of capital depreciation. rt and Wt are the factor

prices per unit of capital and per unit of time (“hours”) spent working, respec-

tively, while τt is a linear tax rate on capital and labor income. Note that in

the former case, the tax base is the capital income net of depreciation. Solv-

ing this problem yields two standard optimality conditions, one intertemporal

(consumption-savings) and one intratemporal (consumption-leisure).

As is standard in the environmental economics literature, I let preferences

between private consumption (of goods and leisure) and public goods be ad-

ditively separable (for example Cremer and Gahvari, 2001):

u(C, h,G, T ) = u(v(C, h), G/L, T ). (4)
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The assumption of additivity is convenient, since it facilitates the analytical

and numerical analysis. Moreover, with respect to environmental quality, re-

laxing this assumption is not straightforward. While there is some evidence

that higher temperatures have an effect on the marginal utility of leisure (for

example Graff Zivin and Neidell, 2014), it is unclear whether, on aggregate,

leisure and climate are substitutes or complements. In addition, how to specify

a non-separable utility function with temperature change in a macroeconomic

model is an open research question.

3.2 Production, Fuel Use and Firm’s Problem

The consumption good is produced with a technology represented by a function

F , which uses capital, labor and fossil fuel as inputs. Burning fuel causes CO2

emissions. I assume that there is a proportional relationship between the

amount of fuel used in production and the level of CO2 emissions. Hence, for

simplicity, I model emissions Et as a direct input into the production process.

Let gross output Yt be given by:

Yt = F (Kt, AH,tHt, AE,tEt), (5)

where F is assumed to exhibit constant returns to scale. Ht is the total amount

of labor supplied in period t. With a total population size of Lt and each house-

hold having a total time endowment normalized to one, Ht = Ltht. Similarly,

Kt denotes the economy’s capital stock, with Kt = LtKt. AH,t denotes labor-

augmenting productivity, while AE,t captures energy-augmenting productivity,

which could also be interpreted as “energy efficiency”. Both grow exogenously

with rate gA,j: Aj,t = Aj,0 exp(gA,jt).

Temperature change T does not only affect utility, but also has an impact
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on the production process. “Net” output - taking damages from climate change

into account - is given by Ỹt = F̃ (Kt, AH,tHt, AE,tEt, Tt). Following Nordhaus

(2008) and Golosov et al. (2014), I assume that T enters the production func-

tion multiplicatively:

Ỹt = F̃ (Kt, AH,tHt, AE,tEt, Tt) = [1− d(Tt)]F (Kt, AH,tHt, AE,tEt) (6)

The “damage function” d captures damages to productivity, with 0 ≤ d(T ) ≤ 1.

It is assumed to be convex and increase in temperature (dT > 0, dTT > 0). A

common functional form for the damage function is:

d(T ) =
b1T

2

1 + b1T 2
. (7)

This specification is used, for example, in the DICE model (Nordhaus, 2008).

Moreover, I assume that the private marginal cost of emissions is paid in

terms of the final good.16 It is given by κt and grows with rate gκ: κt =

κ0 exp(gκt). This captures, for example, the cost for extracting fossil fuel, an

activity which is commonly expected to become more expensive over time.

The economy’s resource constraint then reads:

Ct+Gt+κtEt+Kt+1 = [1−d(Tt)]F (Kt, AH,tLtht, AE,tEt) + (1− δ)Kt. (8)

A representative firm solves the following problem:

max
Kt,Ht,Et

[1− d(Tt)]F (Kt, AH,tHt, AE,tEt)− κtEt − rtKt −WtLtht − θ̃tEt,

where θ̃t denotes a tax on carbon emissions. From the corresponding first-order

condition, it follows that the carbon tax satisfies:

θ̃t = [1− d(Tt)]FE(t)− κt. (9)
16Alternatively, one could let the cost be a function of the resources left in the ground,

or model the production of fossil fuel as a production sector that uses labor and possibly
capital as in Golosov et al. (2014) or Barrage (2016).
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3.3 Climate Change

In addition to the private extraction cost, using fuel has a social cost: it causes

carbon emissions, which negatively affect the state of the climate by increasing

the mean global surface temperature. Many IAMs model this mechanism in

two steps (Nordhaus, 2008; Golosov et al., 2014): first, past (and possibly

current) carbon emissions, plus a vector of initial carbon concentrations in the

atmosphere and other reservoirs like the upper and lower oceans, translate into

current carbon concentrations. Second, the current vector of carbon stocks,

st, maps into the mean global temperature change in period t: Tt = F(st).17

One consequence of this modeling strategy is that many IAMs typically feature

multiple variables summarizing the state of the climate (Nordhaus, 2008; Cai

et al., 2015).

To keep the number of state variables low, I use a more reduced-form

approach in this paper. Specifically, I assume a direct mapping Tt = q̃(Et),

where Et = {Et, Et−1, ..., Et0} denotes the history of past global CO2 emissions

back to period t0, and ∂q̃/∂Ej > 0 ∀j. In words, the current flow of carbon has

an impact on the state of the climate in future periods. This is a reasonable

assumption, given that carbon stays in the atmosphere for a very long time.

The functional form for q̃ that is used below is based on Matthews et al.

(2009). They define the “climate-carbon response” (CCR) as the ratio of global

mean temperature change and total cumulative carbon emissions over some pe-

riod of time. Using both historical emission data and an ensemble of climate

models, they show that this variable is almost constant over time and, in par-
17Carbon is sometimes referred to as a “stock pollutant”, since the stock in the atmosphere,

rather than the flow, matters for climate change.
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ticular, it is independent of the atmospheric carbon concentration. From this

observation, it follows that the increase in the global mean surface temperature

can be written recursively as:

Tt+1 = Tt + CCR · Et. (10)

For the quantitative analysis, this specification is convenient, since it summa-

rizes the climate side of the model in one state variable, Tt, while abstracting

from the carbon concentrations in the different reservoirs. Note that in con-

trast to other climate-economy models (Nordhaus, 2008; Golosov et al., 2014;

Gerlagh and Liski, 2018), this specification implies that an increase in the

global mean temperature due to carbon emissions is irreversible. This has

quantitative implications for the size of the optimal carbon tax, as discussed

below.

3.4 Government

The government must finance the public good by taxing labor and capital in-

come. By assumption, lump-sum taxes are not available. Its budget constraint

reads:

Gt ≤ τt[(rt − δ)Kt +WtHt] + θ̃tEt. (11)

Note that throughout this paper, I assume that the government has to balance

its budget in every period. In other words, it can neither borrow from nor lend

to households. The latter assumption is crucial, as pointed out by Azzimonti

et al. (2006). They show that if the government were allowed to accumulate

assets, it would be able to dispense with distortionary taxation after a finite

number of periods. Hence, even in the absence of commitment, a government

14



would set a zero tax rate on capital income in the long run. The intuition for

this result is that the government could confiscate all income in the first period,

and then lend to households every period and accumulate assets over time.

After a sufficiently large number of periods, the government’s wealth would

be large enough to finance the public good without resorting to distortionary

taxation. Therefore, since I want income tax rates to be non-zero in every

period, I abstract from government assets.

3.5 Quasi-Stationary Transformation

Next, I transform the model variables into units such that in the absence

of climate change (i.e. with d(Tt) = 0), this transformed “quasi-stationary”

economy converges towards a steady state. In other words, the original model

is assumed to move along a balanced growth path.

Inspecting the resource constraint (8), we can see that a sufficient condition

for quasi-stationarity is that output, private and public consumption, capital

and emission expenditures κtEt grow with the same rate:

gY = gC = gG = gK = gκ + gE. (12)

In addition, given that F is assumed to display constant returns to scale, a

sufficient (but not necessary) set of conditions is that energy efficiency AE,t

grows with the same rate as κt (gκ = gA,E) and that gY = gL + gA,H .

In the baseline specification of the model below, I will assume a Cobb-

Douglas production function:

F (Kt, AH,tHt, AE,tEt) = Kα
t (AE,tEt)

γ(AH,tLtht)
1−α−γ. (13)

In this case, it can be shown that using (12), balanced growth is characterized
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by:

gA =
γ

1− α− γ
(gA,E − gκ) + gA,H , (14)

where gA is the growth rate of output per capita Yt/Lt: gY = gL + gA.18

From this, it follows that a transformation of the model variables can be

achieved in the following way: for variable X ∈ {Y,K, I, C,G}, define xt as

xt ≡
Xt

LtAH,tA
γ

1−α−γ
E,t exp(−gκt)

γ
1−α−γ

=
Xt

LtAt
. (15)

Moreover, define Et as

et ≡
Et

LtAH,tA
γ

1−α−γ
E,t exp(−gκt)

1−α
1−α−γ

=
Et

LtAt exp(−gκt)
. (16)

At can be interpreted as factor-augmenting productivity, which grows with

rate gA as defined above. It can be shown that dividing both sides of the

resource constraint (8) by LtAt - the level of “effective population” - gives:

ct+gt+κ0et+kt+1 exp(gA) exp(gL) = [1−d(Tt)]F (kt, ht, et)+(1−δ)kt. (17)

Moreover, I can rewrite the household’s problem in units per effective capita:

max
{ct,ht,it,kt+1}∞t=0

∞∑
t=0

βtLtu(Atct, ht, Atgt, Tt), (18)

subject to

ct + it ≤ (1− τt)(rtkt + wtht) + τtδkt. (19)

and

kt+1 exp(gA) exp(gL) = (1− δ)kt + it. (20)
18Compare the appendix for a proof. Also note that if gκ = gA,E , this condition implies

gY = gL + gA,H , which is the sufficient condition in the general case.
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Hence, the first-order conditions are given by:

uc(t)− βuc(t+ 1)[1 + (1− τt+1)(rt+1 − δ)] = 0 (21)

uh(t) + uc(t)(1− τt)wt = 0 (22)

Note that wt ≡ Wt/At is the price per unit of effective labor. Since wt is

assumed to be constant in the transformed economy’s steady state, Wt must

grow with gA along the (hypothetical) balanced growth path. Therefore, the

product WtHt – the factor payments to labor – grow with gA + gL = gY , the

same as output.

Finally, note that the relationship between emissions per effective capita et

and temperature change can be written as:

Tt+1 = q(Tt, et, t). (23)

since by (16), emissions are a function of et and period t:

Et = etL0A0 exp((gL + gA − gκ)t).

3.6 Social Planner’s Problem and First-Best Allocation

The social planner maximizes the present value of the population’s welfare.

Expressed in units per effective capita, her problem can be written as:

max
{ct,ht,kt+1,et,gt,Tt}∞t=0

∞∑
t=0

βtLtu(Atct, ht, Atgt, Tt), (24)

subject to the resource constraint (17) and the law of motion for temperature

change (23).
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The first-best equilibrium is characterized by the following set of equations:

ωCS(t) ≡ uc(t)− βuc(t+ 1)[F̃k(t+ 1) + 1− δ] = 0 (25)

ωLL(t) ≡ uh(t) + uc(t)F̃h(t) = 0 (26)

ωPG(t) ≡ ug(t)− uc(t) = 0 (27)

and

ωCC(t) ≡ uc(t)(F̃e(t)− κ)

+qe(t)
∞∑

j=t+1

β̂j−t

(
j−1∏
i=t+1

qT (i)

)
[uT (j) + uc(j)F̃T (j)] = 0

(28)

where uc(t) = ∂u(Atct,ht,AtLtgt,Tt)
∂ct

etc.

In the expressions above, I define “wedges” for the consumption-savings

margin (ωCS), the labor-leisure margin (ωLL), and the public-private good

margin (ωPG) and the “climate change” margin (ωCC). The first-best equilib-

rium is characterized by all these wedges being simultaneously zero, and hence

all of the margins being undistorted.

The first term on the right-hand side of (28) captures the marginal benefit

of current carbon emissions in utils, net of marginal private cost. Without

a climate externality, F̃e(t) = κ in the optimum. With climate change, the

difference between the marginal benefit and the marginal private cost must be

the marginal social cost of emitting carbon, which is commonly referred to as

the “social cost of carbon” (SCC). I divide by by the current marginal utility

uc(t) to express the SCC in monetary terms:

SCC(t) ≡ F̃e(t)− κ. (29)

The second term on the left-hand side of (28) represents the discounted sum

of future disutility and productivity damages caused by emitting an additional
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unit of carbon in period t, measured in utils. Dividing this term by the current

marginal utility uc(t) gives the marginal global climate change damage caused

by emitting carbon in monetary units:

MCD(t) ≡ − qe(t)
uc(t)

∞∑
j=t+1

β̂j−t

(
j−1∏
i=t+1

qT (i)

)
[uT (j) + uc(j)F̃T (j)]. (30)

Hence, I can write (28) more concisely as SCC(t) = MCD(t). In other words,

in first best, the social cost of carbon is equal the marginal climate damage in

every period, which is equivalent to saying that the climate change margin is

undistorted and climate change mitigation, a public good, is provided at the

first-best margin.

Finally, note that in a decentralized economy, the price on carbon emis-

sions, θt, must be equal to the SCC in order to internalize the climate exter-

nality. This can be seen from the firms’ optimality condition which respect to

emissions, which reads:

F̃e(t) = κ+ θt (31)

Hence, the first-best carbon fee equals the MCD and hence represents a Pigou-

vian price:

θpt = − qe(t)
uc(t)

∞∑
j=t+1

β̂j−t

(
j−1∏
i=t+1

qT (i)

)
(uT (j) + uc(j)F̃T (j)). (32)

In the next section, I show that in dynamic models without commitment,

climate policy interacts with distortionary taxation and the optimal carbon

price is in general not at the Pigouvian level.
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4 Decomposing the Tax-Interaction Effect

4.1 Preliminaries

Consider a decentralized equilibrium of the economy outlined in the last sec-

tion. If the government has access to lump-sum taxes in order to finance public

consumption expenditures, the equilibrium is characterized by equations (25)

- (28), and the first-best allocation is attained. In this section, I relax the

assumption that lump-sum taxation is feasible. Instead, the government must

resort to a distortionary tax on labor and capital income for financing public

consumption. In addition, I assume that it does not have access to a tech-

nology that allows it to commit to future tax rates. When solving for the

outcome under lack of commitment, I look for the time-consistent differen-

tiable Markov-perfect equilibrium in this economy.19 The basic idea of this

equilibrium concept is that only current payoff-relevant states, but not the

history of states and actions, matter for a player’s action choice.

Note that in this setting, the current government plays a game with its

successor.20 This implies that the current government takes into account the

optimal behavior of next period’s government when solving its problem. While

the current government cannot directly choose policies in the following period,

it can affect them by choosing the economy’s future state variables.

I define the Markov-perfect equilibrium in a setting where the government

has access to a total income tax. That is, it is restricted to impose the same
19An alternative approach would be to look for all sustainable equilibria, along the lines

of Phelan and Stacchetti (2001) or Reis (2011).
20If governments in different periods are identical, the current government actually plays a

game “against itself”. That is, even though I have the same government making the decisions
in both periods, it must be treated as different players, due to the lack of commitment.
Equivalently, announcements in the current period about how the government will behave
in the following period are not credible.
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tax rate on labor and capital income. This assumption ensures a setting where

both the intertemporal consumption-savings margin and the intratemporal

labor-leisure margin are distorted simultaneously, i.e. where I have positive

tax rates on both labor and capital income. As shown by Martin (2010), in

a setting where the government has ex-ante access to two separate tax rates,

the equilibrium features a zero tax rate on labor income, assuming that labor

taxes are bounded to be non-negative and that the capital income tax is not

bounded from above. This is intuitive: recall that taxes on capital are ex post

non-distortionary and thus, can be considered as de facto lump-sum taxes.

Hence, in the presence of such a tax, assuming that it is unbounded, it cannot

be optimal to have a positive distortionary tax on labor income.21 Empirically,

a setting with a total income tax appears more realistic than an equilibrium

in which the government finances its expenditures only using a tax on capital

or on labor income.22

The analysis is a straightforward extension of Klein et al. (2008) and Azzi-

monti et al. (2009), adding a second public good, environmental quality, which

in contrast to the other good does not only affect utility, but also the produc-

tion process. Hence, there is a second state variable in addition to capital,

here the current state of the climate T . Moreover, by comparing the Markov-

perfect carbon tax to the outcome under commitment, I will show that in the

presence of distortionary taxes, the optimal pollution price is in general not
21In other words, the government is not allowed to subsidize labor. Martin (2010) shows

that subsidizing labor is optimal in a setting with unrestricted separate tax rates on labor
and capital. However, this appears to be empirically less relevant than zero labor taxes.

22There are other ways of modifying the model such that one would get positive tax rates
on both production factors in equilibrium. Martin (2010) considers an exogenous upper
bound on the capital tax, as well as making the utilization rate of capital endogenous. The
former is somewhat unsatisfying since it leaves the origin of the bound unmodeled. The
latter slightly changes the logic of the mechanism in this paper.
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time-consistent.

Also note that the tax schedule set by a government which had access to a

commitment device is different than the one chosen under lack of commitment.

Note that this time inconsistency is due to the interaction between environmen-

tal and non-environmental taxes: as seen above, the optimal pollution price

depends on the optimal tax structure. If other taxes are time-inconsistent -

for example a positive tax on labor income in a scenario where separate tax

rates on labor and capital are feasible - so is the carbon tax.

4.2 Definitions

To save on notation, define let x denote the vector of state variables and z the

vector of all inputs in the production function:

xt = (kt, Tt, t)

zt = (kt, ht, et, Tt).

Moreover, from the resource constraint (17), I define a function C that gives

private consumption as a function of the remaining variables:

C(zt, kt+1, gt) = F̃ (zt) + (1− δ)kt − gt − κ0et − kt+1 exp(gA) exp(gL) (33)

Similarly, from a quasi-stationary version of the government’s budget con-

straint,

gt ≤ τt[(rt − δ)kt + wtht] + θtet,

let function T give the income tax rate that balances the government’s budget:

T(zt, gt) =
gt − (F̃e(zt)− κ0)et

(F̃k(zt)− δ)kt + F̃h(zt)ht
. (34)
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With these auxiliary equations, we can write the household’s first-order

conditions, (21) and (22), from the government’s perspective. The government

takes into account that equilibrium factor prices equal marginal products, and

that the income tax rate τt is given by (34). Thus, the Euler equation can be

written as:

uc(t)− βuc(t+ 1)
[
1 +

(
1− T(zt, gt)

)(
F̃k(zt)− δ

)]
= 0, (35)

where

uc(t) = uc
(
AtC(zt, kt+1, gt), ht, Atgt, Tt

)
. (36)

Similarly, the intratemporal optimality condition can be written as:

uh(t)

uc(t)
+
(
1− T(zt, gt)

)
F̃h(zt) = 0, (37)

with

uh(t) = uh
(
AtC(zt, kt+1, gt), ht, Atgt, Tt

)
. (38)

4.3 Equilibrium Definition

Before giving a formal definition of the stationary Markov-perfect equilibrium

concept used in the remainder of the paper, I provide a verbal exposition. As it

is standard with models of optimal income taxation, both under commitment

and in the absence of commitment, the current government maximizes the rep-

resentative household’s welfare, taking the household’s first-order conditions –

the Euler equation (35) and the intratemporal optimality condition (37) – as

constraints.

A lack of commitment implies that the current government cannot control

the behavior of the subsequent government, even if it remains in power. In
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other words, as outlined above, the current government plays a game against

its successor, possibly itself. Hence, it takes the strategies of the future gov-

ernment as given. Assume these strategies are given by the policy functions

ψ (for public expenditures), φ (for energy use), nk (for savings) and nh (for

hours worked). Then, following the one-stage deviation principle, these policy

functions constitute an equilibrium if they prescribe optimal actions for the

current government, i.e. if

gt = ψ(xt), et = φ(xt), kt+1 = nk(xt), ht = nh(xt)

maximize its objective function for all realizations of the state vector xt, subject

to all relevant constraints and taking the strategies of the future government

as given. In other words, assuming that the future government chooses policies

according to the equilibrium decision rules, it must be optimal for the current

government to follow the same policy functions.

Formally, a stationary Markov-perfect equilibrium is defined as a value

function v and differentiable policy functions ψ, φ, nk and nh such that for all

xt = (kt, Tt, t), ψ(xt), φ(xt), nk(xt) and nh(xt) solve

max
gt,et,kt+1,ht,Tt+1

u(AtC(zt, kt+1, gt), ht, Atgt, Tt) + βv(kt+1, Tt+1, t+ 1), (39)

subject to

βuc

(
At+1C

(
k′, nk(xt+1), n

h(xt+1),
ψ(xt+1), φ(xt+1), Tt+1

)
, nh(xt+1), At+1ψ(xt+1), Tt+1

)
·

·
{

1 +

[
1− T

(
kt+1, n

h(xt+1), ψ(xt+1),
φ(xt+1), Tt+1

)][
F̃k

(
kt+1, n

h(xt+1),
φ(xt+1), Tt+1

)
− δ
]}

− uc
(
AtC(zt, kt+1, gt), ht, Atgt, Tt

)
= 0,

(40)
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uh
(
AtC(zt, kt+1, gt), ht, Atgt, Tt

)
uc
(
AtC(zt, kt+1, gt), ht, Atgt, Tt

) + [1− T(zt, gt)]F̃h(zt) = 0, (41)

and Tt+1 = q(Tt, et, t). Moreover, for all xt = (kt, Tt, t),

v(xt) = u

[
AtC

(
kt, n

k(xt), n
h(xt),

ψ(xt), φ(xt), Tt

)
, nh(xt), Atψ(xt), Tt

]
+ βv

(
nk(xt), q(Tt, φ(xt), t+ 1), t+ 1

)
.

Note that an alternative definition of the equilibrium has kt+1 and ht be

explicitly chosen by the households. Denote the left-hand side of (40) as

η(kt, Tt, gt, et, kt+1, ht, t) and the left-hand side of (41) as ε(kt, Tt, gt, et, kt+1, ht),

respectively. Define the functions K(xt, gt, et) and H(xt, gt, et) implicitly as

η(kt, Tt, gt, et,K(xt, gt, et),H(xt, gt, et), t) = 0 (42)

ε(kt, Tt, gt, et,K(xt, gt, et),H(xt, gt, et)) = 0. (43)

K and H can be interpreted as the households’ response function for savings

(hours worked) to the current government’s policy choice, assuming that future

governments follow the equilibrium policies: it gives the household’s optimal

savings level if the current governments set expenditures g and a carbon tax

that results in emission level e. In equilibrium,

K(xt, ψ(xt), φ(xt)) = nk(xt)

H(xt, ψ(xt), φ(xt)) = nh(xt).

4.4 The Generalized Euler Equation

Using the households’ response function K and H defined above, I can write

the goverment’s problem more compactly as:

max
gt,et

u
[
AtC

(
kt,H(xt, gt, et), et, Tt,K(xt, gt, et), gt

)
,H(xt, gt, et), Atgt, Tt]

+ βv[K(xt, gt, et), q(Tt, et, t), t+ 1
]
,

(44)
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where, as before,

v(xt) = u

[
AtC

(
kt, n

k(xt), n
h(xt),

ψ(xt), φ(xt), Tt

)
, nh(xt), Atψ(xt), Tt

]
+ βv

(
nk(xt), q(Tt, φ(xt), t+ 1)

)
.

Taking first-order conditions with respect to et and gt, rearranging and

using the definitions for ωLL(t) and ωPG(t) yields the following equations char-

acterizing a stationary Markov-perfect equilibrium:

ωPG(t) + ωLL(t)Hg(t) + [β̂vk(t+ 1)− uc(t) exp(gA) exp(gL)]Kg(t) = 0 (45)

F̃e(t)− κ+ β̂
qe(t)

uc(t)
vT (t+ 1) + ωLL(t)

He(t)

uc(t)

+ [β̂vk(t+ 1)− uc(t) exp(gA) exp(gL)]
Ke(t)

uc(t)
= 0.

(46)

Note that the optimality conditions (45) and (46) contain the derivatives of

the policy functions for savings and labor and hence, following Klein et al.

(2008), I refer to them as generalized Euler equations (GEE). In the following,

I show that these equations can be written as a linear combination of present

and future wedges ωj.23

To facilitate the interpretation of the first-order condition (46), in appendix

A.2 I show how to substitute for the derivatives vk and vT of the value function.

This results in a characterization of the difference between the optimal carbon

price and the level of marginal climate change damage, which is summarized

in proposition 1:

Proposition 1. In a Markov-perfect equilibrium, the government’s first-order
23In the interest of brevity, I focus on (46) which relates to the climate change wedge.

An analogous argument can be made for (45) and the public consumption wedge (cp. Klein
et al., 2008).
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with respect to emissions can be written in the following way:

MCD(t)− θ(t) = ωLL(t)
He(t)

uc(t)
+ ωCS(t)

Ke(t)

uc(t)
+

+
Ke(t)

uc(t)

∞∑
j=t+1

β̂j−t

[(
j∏

i=t+1

Kk(i)

)
ωCS(j) +

(
j−1∏
i=t+1

Kk(i)

)
Hk(j)ωLL(j)

]

+
qe(t)

uc(t)

∞∑
j=t+1

(β̂)j−t

(
j−1∏
i=t+1

qT (i)

)
HT (j)ωLL(j)

+
qe(t)

uc(t)

∞∑
j=t+1

(β̂)j−t

(
j−1∏
i=t+1

qT (i)

)
KT (j)

[
β̂vk(j + 1)− uc(j) exp(gA) exp(gL)

]
(47)

with

β̂vk(t+ 1)− uc(t) exp(gA) exp(gL)

= ωCS(t) +
∞∑

j=t+1

β̂j−t

[(
j∏

i=t+1

Kk(i)

)
ωCS(j) +

(
j−1∏
i=t+1

Kk(i)

)
Hk(j)ωLL(j)

]

Proof : cp. Appendix, section A.2.

In the following, I denote the difference between the MCD and the carbon

price as W , which equals the (negative) climate change wedge defined earlier,

in terms of the final good rather than in utils:

W(t) ≡ MCD(t)− θ(t) = −ωCC(t)

uc(t)

The interpretation of (47) is straightforward: in equilibrium, the government

trades off wedges. In first best, as ωCS = ωLL = 0, (47) reduces to W(t) =

MCD(t)−θ(t) = 0. In contrast, if the government has to resort to distortionary

taxation, the household’s optimality conditions (40) and (41) imply that the

consumption-savings and labor-leisure wedges are positive. Assuming that the

derivatives of the best-response functions are non-zero, it follows from (47)
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that W(t) cannot be zero in general: in optimum, climate change mitigation

is not provided at the first-best margin, which is equivalent to the social cost

of carbon not being equal to the marginal climate damage. As the difference

between the MCD and the optimal carbon price is caused by the interaction of

climate change mitigation and income taxation, I will refer toW as a measure

of the “tax-interaction” effect.

What is the intuition behind this result? Proposition 1 illustrates that W

is composed of a number of terms, each of which captures a (sum of) second-

best benefit and cost from carbon emissions. The following paragraphs will

describe these terms in more detail.

The Second-Best Labor Effect I refer to the second-best effect of emitting

carbon on welfare through the channel of current labor supply as the “second-

best labor effect” (SBL). It is formally captured by:

SBL(t) = ωLL(t)
He(t)

uc(t)
(48)

The SBL can be positive or negative and hence represent a second-best benefit

or cost of emitting carbon.

For illustration, assume that the other terms on the right hand side of (47)

are zero, and hence I have:24

W(t) = ωLL(t)
He(t)

uc(t)
(49)

24Note that this assumption and the resulting GEE would hold in a static one-period
version of the model. Specifically, using the definition of the wedges above, the GEE reads:

uc(F̃e − κ) + qe(uT + ucFT ) + He(ucF̃h + uh) = 0.
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This expression illustrates that, in equilibrium, the government trades off

wedges. In first best, since both W and ωLL are zero, (49) holds. In sec-

ond best where τ > 0, I have that ωLL > 0 and hence the environmental

wedge cannot be zero unless He = 0. More precisely, if He > 0 (He < 0), W

must be positive (negative) for (49) to be satisfied. In other words, there is an

interaction between climate policy and income taxation, in the sense that in

the presence of a distortionary tax on labor income, climate change mitigation

is not provided at the first-best margin. Whether or not the climate external-

ity is less than fully internalized, i.e. whether or not W > 0, depends on the

sign of He.

For the sake of the argument, assume that He(t) > 0. That is, a marginal

increase in carbon emissions raises the labor supply. In first best, where ωLL =

0, a marginal change in hours worked does not affect welfare. In contrast, in

second best, it leads to a first-order welfare gain since, in equilibrium, the

benefit from a marginal increase in hours worked, ucfh, is greater than the

marginal disutility of working more (−uh). This is only the case if ωLL > 0, i.e.

as long as the income tax is positive. In this sense, emitting carbon attenuates

the intratemporal distortion caused by the income tax. This positive effect on

current labor supply is an additional benefit of carbon emissions, besides the

usual benefit of increasing output and consumption. Thus, it reduces the social

cost of carbon below the value of the marginal damage - or, in terms of tax

rates, the optimal second-best tax is lower than the corresponding Pigouvian

fee.25 In other words, the margin between private consumption and climate
25The same logic applies if He < 0. In that case, there is an additional second-best

cost of using fuel, since it decreases labor supply and hence exacerbates the intratemporal
distortion.
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change mitigation is distorted compared to the first best.

Finally, note that in the static case where (49) holds, the sign of He and

hence the direction of the tax-interaction effect can be determined analytically.

The Second-Best Savings Effect The “second-best savings effect” (SBS)

is represented by the term

SBS(t) = ωCS(t)
Ke(t)

uc(t)
. (50)

As before, assume that the remaining terms on the right hand side of (47)

are zero. Then,

W(t) = ωCS(t)
Ke(t)

uc(t)
. (51)

This equation shows that again, climate policy interacts with fiscal policy.

This implies that as long as current savings are affected by current fuel use

(Ke 6= 0 ), climate change mitigation is not at its first best level. As before,

the sign of the climate wedge depends on the sign of Ke: if current savings

increase (decrease) in current fuel use, W is positive (negative), i.e., the SCC

is below (above) its Pigouvian level.

The intuition is similar to the static case above. First, note that since

households understand that capital will be taxed in the following period and

thus their return to savings will be lower, they consume more and save less

than in first best. Then, if Ke > 0, by increasing emissions and thus “under-

providing” climate change mitigation, i.e. by not fully internalizing climate

damages, the government can increase current savings. This has a first-order

welfare gain in second best since ωCS > 0 and hence the discounted marginal

increase in utility due to more consumption in the subsequent period is higher
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than the marginal utility loss due to less consumption today. It follows that

emitting carbon has an additional benefit which is not present in first best and

hence the social cost of carbon does not fully internalize the utility damage

caused by the climate externality.

In the case of the SBL effect, emitting carbon affects labor supply through

a change in the return to labor. Here, the mechanism is slightly different. The

return to current savings depends on the amount of carbon emitted in the

next period, which is not directly affected by the current government. Instead,

more energy use and hence emissions today affects the amount of resources

available to the household by increasing today’s capital income, i.e. the return

to past savings. For Ke > 0, this allows the household to move more resources

to the next period, thereby mitigating the intertemporal distortion.

Note that this result is analogous to Klein et al. (2008) who only consider

not-environmental public consumption. In general, underproviding a public

good today dampens underinvestment and thus mitigates the intertemporal

distortion caused by the positive tax on capital income.

The Propagation-through-Capital Effect The “propagation-through-capital

effect” (PPC) is formally captured by the following term:

PPC(t) =
Ke(t)

uc(t)

∞∑
j=t+1

β̂j−t

[(
j∏

i=t+1

Kk(i)

)
ωCS(j) +

(
j−1∏
i=t+1

Kk(i)

)
Hk(j)ωLL(j)

]
(52)

The PPC works through the following channels: a marginal increase in

current emissions has an effect on today’s savings (Ke(t)) and hence on tomor-

row’s capital stock. This, in turn, affects tomorrow’s economic activity and
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hence causes changes in both labor supply and the level of savings, which trig-

gers a second-best labor and savings effect in period t+ 1 (Hk(t+ 1)ωLL(t+ 1)

and Kk(t+ 1)ωCS(t+ 1), respectively). Moreover, a change in tomorrow’s sav-

ings (Kk(t + 1)) impacts the capital stock in period t + 2, which again affects

economic activity, labor supply and savings. This causal chain continues over

time. In other words, the impact from a marginally higher emission level in

the current period is propagated into the future by affecting the capital stocks

and savings choice in all subsequent periods. Assuming that proportional in-

come taxation continues in the future, there are future second-best costs and

benefits which are analogous to the SBL and SBS effects described above.

The Propagation-through-Temperature Effect Finally, the “propagation-

through-temperature effect” (PPT)

PPT(t) =
qe(t)

uc(t)

∞∑
j=t+1

(β̂)j−t

(
j−1∏
i=t+1

qT (i)

)
HT (j)ωLL(j)

− qe(t)

uc(t)

∞∑
j=t+1

(β̂)j−t

(
j−1∏
i=t+1

qT (i)

)
KT (j)

[
uc(j)

Ke(j)
[SBS(j) + PPC(j)]

]
,

(53)

where I have made use of (72) implying that

β̂vk(t+ 1)− uc(t) exp(gA) exp(gL) =
uc(t)

Ke(t)
[SBS(t) + PPC(t)]

The PPT works in a similar fashion to the PPC, but the effect of a

marginally higher emission level in the current period is propagated into the

future via higher temperatures rather than the capital stock. Emitting more

carbon today impacts tomorrow’s level of temperature change, as well as the
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extent to which temperature increases in all future periods, through the per-

sistency of T captured by its law of motion in (10). Through affecting pro-

ductivity, temperature change in turn has an effect on economic activity and

thus on the households’ labor supply and savings choice. Again assuming that

income tax rates are positive in the future, this causes an SBL (HT (j)ωLL(j)),

as well as an SBS and PPC in every future period.

With the definitions provided above, I can characterize the overall tax-

interaction effect, measured by the difference between the MCD and the op-

timal carbon price, as the sum of the individual effects of a marginal increase

in emissions :

W(t) = MCD(t)− θ(t) = SBL(t) + SBS(t) + PPC(t) + PPT(t) (54)

For any of the terms on the right hand side, they represent a benefit (cost)

of emitting carbon when positive (negative), which decreases (increases) the

optimal carbon price.

Figure 1 illustrates the tax-interaction effect graphically. It displays a sce-

nario where these different effect work in opposite directions and hence partly

offset each other. One way to read this graph is the following: start with

the dashed curve that represents the level of marginal climate damage over

time. In a setting without distortionary taxation, the optimal carbon price

would always lie on this curve. Here, under income taxation, the propagation-

through-temperature by itself would imply that the carbon price exceeds its

Pigouvian level and lies on the dotted curve; in other words this channel would

constitute a second-best cost of emitting carbon. At the same time, the other

three channels are assumed to capture second-best benefits of emitting carbon,
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and hence push the optimal carbon price downwards to the solid curve, which

in the example here is located below the Pigouvian curve.

Figure 1: Tax-Interaction Effect - Illustration

Of course, other scenarios where the effects reinforce each other are also pos-

sible. As we will see in the next section, however, figure 1 reflects what seems to

be the most plausible constellation when evaluating the tax-interaction effect

quantitatively.

Equation (54) encapsulates the main takeaway from this section: the in-

teraction between income taxation and climate change mitigation causes a de-

viation of the optimal second-best carbon price from marginal climate change

damage and hence from its Pigouvian level. This deviation can be attributed

to four distinct effects, each of which captures a particular channel through
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which current carbon emissions affect present and future welfare in second

best.

The questions of whether there is a tax-interaction effect and in what di-

rection it goes can therefore be asked in terms of (54): is the combined effect

of the components of W(t) different from zero, and if so, what is the sign? In

other words, to what extent do the terms on the right hand side of (54) move

in the same direction or cancel each other out?

Note that the wedges and derivatives that show up in (54) are endogenous

and solved for simultaneously when computing the equilibrium. Moreover,

in general, it is not possible to determine their sign analytically. Hence, the

questions just asked are ultimately quantitative questions and therefore require

a numerical analysis. This is done in the next section.

5 Quantitative Analysis

In the previous section, I have characterized the tax-interaction effect in a

dynamic infinite-horizon model without commitment. I have identified the

second-best benefits and costs of emissions that affect the optimal carbon

price. However, this section has given no indication of how important the

tax-interaction effect is and in what direction it goes. As argued above, this

is a quantitative question. Therefore, this section computes the OCP in the

Markov-perfect equilibrium of the calibrated climate-economy model and com-

pares it to the Pigouvian rate, as well as the OCP in first best and under

commitment.
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5.1 Calibration

5.1.1 Economic Module

For the baseline calibration, I choose a utility function which is additively

separable in all arguments:

u(Ct/Lt, ht, Gt/Lt, Tt) = log(Ct/Lt)− η
h1+ξt

1 + ξ
+ ζg log(Gt/Lt)−

ζT
2
T 2
t (55)

Moreover, as outlined in (13), I use a Cobb-Douglas specification for the pro-

duction function F . This results in four parameters in both the utility function

(η, ξ, ζg, ζT ) and the production function (α, γ, gA,H , gA,E). In addition, I

need to choose values for the discount rate β and the depreciation rate δ.

To calibrate the economic parameters of the model, I focus on the period

between 1970 and 2010. There are several simplifying assumptions underlying

the calibration strategy:

1. Climate change does not occur until 2010, and hence there was no need

for climate policy in this period.

2. The stationary version of the global economy outlined above is in a steady

state for most of this period.

The first assumption is motivated by the observation that while climate change

has had an effect on human and natural system before 2010 (IPCC, 2014), the

bulk of climate change impacts is expected to occur towards the middle of the

21st century and beyond. Moreover, while meaningful climate policies have yet

to be implemented on a global level, the few quantitatively important regional

initiatives, such as the European Union Emissions Trading System, did not

start until well into the first decade of this century.
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I use the World Bank’s “DataBank”26 to obtain time series for global out-

put, consumption, investment, government expenditures, population and CO2

emissions between 1970 and 2010. The first step of the calibration is to obtain

a time series for the stock of physical capital, which is not included in the

database. Following the literature (for example DeJong and Dave, 2011), I use

the “perpetual inventory method”, which is based on the law of motion for the

capital stock

Kt+1 = (1− δ)Kt + It, (56)

and employs beginning-of-sample averages to find K0. To apply (56), I set the

annual capital depreciation rate to δ = 0.08 throughout all scenarios.

In addition to δ, a second parameter value that I need to choose ex ante

is the discount factor β, which is determined by the time discount rate (also

referred to as the pure rate of time preference). Ever since the publication of

the Stern review (Stern, 2006), there has been much debate in the literature

about the “right” value for the social discount rate, and hence for the pure

rate of time preference (e.g. Weitzman, 2007; Dasgupta, 2008), noting that

the level and growth of the optimal carbon price depends to a large degree on

discounting. Since the focus of this paper is less on the absolute level of the

optimal carbon price, but instead on its deviation from both the Pigouvian and

the first-best level, the choice of a value for β is not of first-order importance. In

the baseline calibration of my second-best model, I follow the more conservative

approach advocated for example by Nordhaus (2011). I set β = 0.9835, which

implies a social discount rate of 4%, as outlined below.

Next, I employ least squares regression to determine the parameters of the
26http://databank.worldbank.org/data/home.aspx
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production function. In a model with a Cobb-Douglas production function, I

can get a linear regression equation by taking logs:

log

(
Yt
Ht

)
= γ log(AE,0) + (1− α− γ) log(AH,0) + [gEγ + gA(1− α− γ)]t

+ α log

(
Kt

Ht

)
+ γ log

(
Et
Ht

)
= TFP0 + dt+ α log

(
Kt

Ht

)
+ γ log

(
Et
Ht

)
,

(57)

with total factor productivity

TFP0 ≡ γ log(AE,0) + (1− α− γ) log(AH,0). (58)

and d ≡ γgE +gA(1−α−γ). To ensure consistency with the household’s first-

order conditions in steady state, as outlined below, I fix a value for the income

share of capital α, and estimate the remaining parameters γ, TFP and d from

(57), using global data. From the latter two, I can compute the initial level

and the growth rate for factor-augmenting productivity A, as defined above.

I set α = 0.338, which is consistent with a social discount rate of 4% in a

second-best setting.

In the next steps, I use the first-order conditions from the model in steady

state to pin down the remaining parameters. With a Cobb-Douglas production

function, the private cost of emissions in the initial period, κ0, is found as:

κ0 = γ
Y0
E0

.

For the remaining parameters, it matters whether I use a model with or

without income taxes for calibration. In the former case, I use the government’s

budget constraint in (11):

τt =
Gt

(rt − δ)Kt +WtHt

, (59)
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where θ̃t = 0 due to the absence of climate policy. Assuming a steady state,

I use sample averages between 1970 and 2010 for government expenditures

and the capital stock. Due to the lack of data, I assume a steady share for

hours worked of 0.2. Finally, I compute the marginal product of capital and

labor with the calibrated Cobb-Douglas production function. This gives a

steady-state income tax rate of τ̄ = 0.245.

For the baseline utility function (55), the Euler equation in steady state

can be written as:

Ȳ

K̄
=
β−1 exp(gA)− 1 + (1− τ̄)δ

(1− τ̄)α
. (60)

This equation demonstrates the connection between the social discount rate,

which is given by β−1 exp(gA)−1, and the income share of capital α: assuming

a social discount rate of 4%, the data is consistent with α = 0.338, which was

used in the least squares regression above.

Similarly, the first-order condition with respect to labor is given by

Lt
Ct

(1− τt)(1− α− γ)Kα
t (AE,tEt)

γ(AtLtht)
−α−γAtLt = Ltηh

ξ
t . (61)

Rearranging and again using sample averages, I can compute η as:

η = (1− τ̄)
1− α− γ
h̄1+ξ

Ȳ

C̄
. (62)

Finally, the parameter ζ can be computed from (55) by:

ζ = γ
Ḡ

C̄
.

The third-column in the following table summarizes the economic param-

eter values for the baseline second-best calibration.
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Parameter Description Second-best First-best Source
Determined Ex Ante

δ depreciation rate .08 .08 -
β time discount rate .9835 .9835 Target SDR 4%

Calibrated
α income share capital .338 .3 First-order condition
γ income share fuel .0411 .068 Least Squares
gA growth rate output p.c. .0181 .0177 Least Squares
η utility weight hours 20.34 27.43 First-order condition
ζg utility weight public good .318 .318 First-order condition
κ fuel cost .0525 .0868 First-order condition

Table 1: Parameter Values in the Baseline Calibration

As outlined in previous sections, in addition to comparing the optimal car-

bon price (after 2010) in second best to its Pigouvian level, I am also interested

in relating it to the optimal price coming out of a first-best model without dis-

tortionary income taxation. The straightforward approach here is to solve a

planner’s problem in the economy calibrated above, under the assumption that

lump-sum taxes are available. This would reflect a “tax reform”, i.e. a setting

in which distortionary income taxes are used until the base year (here 2010)

and then abolished. As a consequence, there is a considerable rise in economic

activity, that is, in labor and savings (due to the abolition of taxes), and hence

in output, consumption and emissions. This, in turn, has impacts on the opti-

mal carbon price, which distorts the comparison with the second-best carbon

price in the absence of a tax reform.

In order to account for such effects, below I also compute the first-best

carbon price in an economy calibrated to a (hypothetical) setting without

distortionary taxes between 1970 and 2010. In other words, I repeat the same

calibration steps as above, assuming that the income tax rate is zero. The

resulting parameter values are summarized in the fourth column in table 1.

40



Most of the differences are driven by a slightly lower capital income share α:

since I continue to target a social discount rate of 4%, this implies a lower gross

return to capital without an income tax. As illustrated by (60), this would

translate into a smaller α. This has an impact on the regression results, leading

a higher emission income share γ and, in turn, to a higher fuel cost parameter

κ. In addition, in order to get a steady state level of 0.2 for hours worked,

abolishing income taxation requires a higher disutility weight on working (η).

5.1.2 Climate Module

With respect to modeling climate change, I use the law of motion for tem-

perature change from Matthews et al. (2009) and the damage function from

the DICE model (Nordhaus, 2008), as outlined in (7) and (10), respectively.

Hence, I need to choose values for the parameters b1 and b2 in the damage

function, capturing climate change impacts to total factor productivity, and

for ζT , the weight on temperature change in the utility function. Following

DICE, I assume that the damage function is quadratic in temperature change

(b2 = 2). With respect to b1 and ζT , I choose a number of different combi-

nations and examine the effects on the model outcome when changing one or

both of these parameters as part of the sensitivity analysis. For the baseline

calibration, I set b1 = 0.0028 as in the 2008 version of the DICE model. I then

find ζT such that mean global temperature does not exceed 2◦C by 2100.

5.1.3 Solution Method

Numerically, the equilibrium with lump-sum income taxation is straightfor-

ward to solve for, by maximizing over all variables for a large number of pe-

riods, possibly given some terminal conditions. With distortionary income
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taxation and under lack of commitment, this method is not feasible. Instead, I

resort to dynamic programming, following, among others, Jensen and Traeger

(2014) and Cai et al. (2015).

More specifically, I use value-function iteration (VFI) to solve the incum-

bent’s problem given by (39)-(41). In each iteration, the optimization in (39) is

executed for a given value function v and given policy functions (ψ, φ, nk, nh),

reflecting that, when choosing its optimal policy, the current government takes

as given its successor’s time-consistent decision rules. When solving the max-

imization problem, I approximate the value and the policy functions using

Chebyshev polynomials. Computations are performed in AMPL, using the

KNITRO optimization solver (Ziena, 2013).

Note that following Jensen and Traeger (2014), the incumbent government’s

problem is set up as an infinite-horizon problem. Since in the presence of

temperature change and damages, the model cannot be transformed into a

stationary framework, a time indicator is included as a state variable.27

5.2 Results

In the following, I present results from different model runs for the optimal

second-best carbon price in the absence of commitment, and relate it to (i) the

Pigouvian level in second best, and (ii) the optimal carbon price in a first-best

setting with lump-sum taxes. The size and direction of the first relationship is

determined by the tax-interaction effect and was the focus of section 4. The

main results will be illustrated in graphs in the spirit of figure 1, displaying
27An alternative approach, used for example by Cai et al. (2015), would be resorting

to finite-horizon dynamic programming, with a continuation value after some period P .
This would result in a smaller number of state variables, while at the same time require
assumptions about the economy after period P , in order to compute the continuation value.
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how these variables of interest evolve over time, for different scenarios with

respect to how damages from climate change are modeled.

5.2.1 Baseline

Figure 2: Optimal Carbon Price - Baseline Scenario

Figure 2 shows the time paths of the optimal carbon price in the second-

best Markov-perfect equilibrium between 2010 and 2060, as well as the corre-

sponding Pigouvian fee, i.e. the level of marginal climate damage (MCD). In

addition, following the stylized illustration of the tax-interaction effect in figure

1, it also displays the time path for the sum of the optimal carbon price and

three of the second-best effects discussed in the previous section, the second-

best labor, second-best savings and propagation-through-capital effects. Recall

that from (54), it follows that

MCD(t)− PPT(t) = θ(t) + SBL(t) + SBS(t) + PPC(t). (63)
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Starting with a (hypothetical) carbon price given by the dashed MCD

curve, the propagation-through-temperature effect by itself would push it up-

wards to the dotted curve; from the definition above, it follows that PPT (t) <

0, indicating a second-best cost of emitting carbon. However, the sum of the

remaining three effects is positive, thus moving the carbon price from the dot-

ted curve all the way to the solid curve. In other words, the SBL, SBS and

PPC effects represent second-best benefits, at least in the aggregate, that out-

weighs the size of the PPT effect, and hence pushes the optimal carbon price

below the MCD, and hence below its Pigouvian level.

In terms of the size of the deviation, the gap between the optimal second-

best carbon price and the Pigouvian fee increases slightly over time, from

about 8% in 2010 to about 11% in 2110 in the baseline calibration. In other

words, the main takeaway from figure 2 is that the optimal global carbon price

under distortionary taxation over the next 100 years is in the ballpark of 10%

lower than the corresponding Pigouvian fee. Note that in absolute terms, the

optimal second-best carbon price amounts to 35.5$/tCO2 in 2010.

Figure 3 shows the optimal carbon price under distortionary taxation com-

pared to the carbon fee in a first-best setting. Recall from above that the

first-best allocation is computed using a different model calibration, to ex-

clude effects stemming from an increase in economic activity when income

taxation is abolished. The graph shows that the second-best carbon price is

constantly below the first-best fee. The relative gap between the optimal car-

bon price with and without distortionary income taxation decreases slightly

over the next 100 years, from about 14% to about 4% in 2110.
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Figure 3: Optimal Carbon Price - Second Best vs. First Best

5.2.2 Sensitivity Analysis: Climate Change Damage

Figure 5 compares the optimal second-best carbon price with the Pigouvian

fee for the DICE damage function (7), but without a direct disutility caused

by temperature change. In other words, compared to the baseline calibration,

I set ζT = 0. Qualitatively, the resulting graph is similar to figure 2. Given

that climate change is assumed to be less damaging, the absolute level of the

optimal carbon price is lower than in the baseline. Moreover, the gap to the

MCD is smaller, going from 2% in 2010 to about 9% in 2110. At the same

time, figure 5 indicates that the PTT effect is relatively more important for

productivity-only damages.

Figure 6 shows the other extreme, a setting with climate change damages

only to utility, and hence b1 = 0. Here, I have set ζT = 0.0185, which,

as the baseline model, corresponds to a temperature change of 2◦C in 2100.
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Figure 4: Optimal Carbon Price - Comparison

Hence, the absolute level of the optimal carbon price is comparable to figure

2. Note that in the absence of productivity impacts from climate change, the

PTT effect is zero, which is reflected by the MCD curve lying on top of the

dotted curve in figure 6.28 Quantitatively, the gap between the OCP and the

Pigouvian fee is between 11% and 15% for the time between 2010 and 2110.

As a final robustness check with respect to the parameterization of climate

change impacts, I calibrate b1 and ζT such that temperature change in first

best reaches 1.5◦C rather than 2◦C by 2100.29 Quantitatively, as illustrated in

figure 7, this implies a considerably higher carbon price in absolute. However,

with respect to the deviation of the OCP to the Pigouvian fee, the result is

qualitatively the same as in the other settings: the gap between the OCP and

the Pigouvian fee is around 10% in the period up to 2110.
28The small deviation between the two is caused by approximation errors.
29For simplicity, I start with the baseline calibration and scale up both b1 and ζT by a

factor of 4.
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Figure 5: Optimal Carbon Price - DICE Damage Function

6 Conclusion

This paper has analyzed optimal carbon pricing in a world where governments

have to resort to distortionary taxation to finance public expenditures and

cannot commit to future policies. I have added these features to an otherwise

standard dynamic climate-economy model and computed optimal carbon price

schedules in Markov-perfect equilibria.

The main findings of this paper are the following. First, I have characterized

optimal policy analytically in a global planner model. I have illustrated that

the optimal second-best carbon price is in general not at the Pigouvian level,

due to the presence of additional costs and benefits of carbon emissions that

only materialize under distortionary income taxation. In contrast to previous

studies, I have shown that it is not only the current labor-leisure margin that is

affected by climate policy, but there are other current and future wedges that
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Figure 6: Optimal Carbon Price - Utility Damages Only

interact with carbon taxes. Second, a quantitative analysis has shown that

the overall effect decreases the optimal carbon price by magnitudes around

10%, both compared to the Pigouvian level and the corresponding first-best

outcome, with variations depending on how impacts from climate change are

modeled.

In order to facilitate the analysis, I have made a number of simplifying as-

sumptions. Relaxing those assumptions could result in potentially interesting

extensions of the above framework. Most notably, in this paper I have consid-

ered a global economy. Since fiscal policy is typically set at the country level,

extending the model to multiple regions would deliver more reliable quantita-

tive results. Moreover, the framework in this paper is deterministic and has

abstracted from uncertainty, both with respect to climate change and long-

and short-run economic growth. Regarding the latter, it is straightforward to
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Figure 7: Optimal Carbon Price - Utility Damages Only

add exogenous productivity or taste shocks to the model, in the tradition of

the real business cycle literature. Previous work by Heutel (2012) has shown

that in a first-best setting, climate policy is procyclical in the sense that a

carbon price optimally increases during expansion, while it must be reduced

in a recession. The framework used in this paper would allow me to analyze

how robust this finding is to the introduction of distortionary income taxes in

the economy.

Given its long-term nature and its complexity, climate change gives rise to

many types of uncertainty, both related to the science and to the economic

damages.30 Integrated assessment models are usually either deterministic, or

consider some form of parametric uncertainty (Nordhaus, 2008; Golosov et al.,

2014). Some recent papers instead focus on uncertainty caused by the random

occurrence of exogenous events. In particular, studies by Lemoine and Traeger
30Compare Stern (2013) for a recent summary.
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(2013) and Cai et al. (2015) incorporate so-called “tipping points”, defined as

irreversible and abrupt shifts in the climate system, in stochastic versions of

the DICE model. Jensen and Traeger (2014) and Cai et al. (2015) analyze

optimal carbon mitigation under long-term growth uncertainty. While such

questions are beyond the scope of this paper, it is important to keep in mind

that these channels have a potentially large quantitative impact on optimal

carbon taxes.

Integrated assessment models such as the one used in this paper have

other limitations. Two important areas of ongoing research are the model-

ing of economic growth and the representation of climate damages. The above

framework has built upon the neoclassical growth model, assuming an exoge-

nously given progress of both labor productivity and energy efficiency. A recent

strand of the literature has instead considered optimal environmental policy

in endogenous-growth models. Using a model of directed technical change,

Acemoglu et al. (2012) and Acemoglu et al. (2016) endogenize productivity

growth for both a clean and a dirty production input. They show that optimal

climate policy in such a setting consists of both a carbon tax and a research

subsidy to the clean type of energy.31 These results suggest that incorporating

endogenous growth along similar lines would affect the results in this paper

qualitatively and quantitatively.

Moreover, Stern (2013) notes that integrated assessment models usually

assume that economic growth is not affected by climate damages. Instead, the

multiplicative damage function that is used in this paper, as well as in many
31Hemous (2013) embeds this framework in a setting with two regions and analyzes

unilateral policy. He also finds that research subsidies are an important component of
optimal policy.
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others studies, relates contemporaneous damages to the current flow of output,

but not to, for example, the stock of capital or other factors determining the

growth potential of the economy.32 This shortcoming is exacerbated by the

fact that the damage function as used in the DICE model yields quantitatively

small damages.33 These issues are summarized by Stern (2013), arguing that

the “exogeneity of a key driver of growth, combined with weak damages” is one

of the key weaknesses of current integrated assessment modeling. While this

paper had a different focus and did not attempt to contribute to advances in

climate-economy modeling in these areas, one should keep these limitations in

mind when interpreting its results.
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A Appendix

A.1 Quasi-Stationary Transformation

Consider the Cobb-Douglas function

Yt = F (Kt, AH,tHt, AE,tEt) = Kα
t (AE,tEt)

γ(AH,tLtht)
1−α−γ. (64)

Let Yt+1 = exp(gY )Yt, AH,t+1 = exp(gA,H)AH,t and so on. Moreover, fol-

lowing the condition for a balanced-growth path in (12), gY = gK . Then,
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Yt+1 = exp(ρY )Yt

= (exp(ρY )Kt)
α(exp(ρA,E)AE,t exp(ρE)Et)

γ(exp(ρA,H)AH,t exp(ρL)Ltht)
1−α−γ

= exp(ρY )α(exp(ρA,E) exp(ρE))γ(exp(ρA,H) exp(ρL))1−α−γYt

It follows that

(1− α)ρY = γρA,E + γρE + (1− α− γ)ρA,H + (1− α− γ)ρL

Next, from (12), gE = gY − gκ. Inserting this above and rearranging gives:

ρY − ρL =
γ(ρA,E − ρκ)

1− α− γ
+ ρA,H

With ρA denoting the growth rate of output per capita, we have

ρA =
γ(ρA,E − ρκ)

1− α− γ
+ ρA,H (65)

As done in the main text, define At as

At = AH,tA
γ

1−α−γ
E,t exp(−gκt)

γ
1−α−γ (66)

We then have:

At+1 = exp(ρA,H) exp(ρA,E)
γ

1−α−γ exp(−gκ)
γ

1−α−γAt (67)

Hence, At grows with the rate ρA found in (65).

A.2 Deriving the GEE

A.2.1 First-order Conditions

The government’s problem is given by (44). Taking f.o.c. yields:

−uc(Kg exp(gA) exp(gL)− F̃hHg + 1) + uhHg + ug + βv′kKg = 0 (68)

−uc[Ke exp(gA) exp(gL)− F̃hHe− (F̃e−κ)]+uhHe+β[v′kKe+v′T qe] = 0. (69)

Rearranging and using the definitions for ωLL and ωPG in (26) and (27), re-

spectively, gives expressions (45) and (46) in the main text.
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A.2.2 Derivative vk

The derivative of the value function v(k, T, t) with respect to k reads:

vk(t) = uc(t)[F̃k(t) + 1− δ − Kk(t) exp(gA) exp(gL) + F̃h(t)Hk(t)]

+uh(t)Hk(t) + βKk(t)vk(t+ 1).
(70)

Using this derivative at t+ 1 in [βvk(t+ 1)− uc(t) exp(gA) exp(gL)] gives:

βvk(t+ 1)− uc(t) exp(gA) exp(gL)

= −uc(t) exp(gA) exp(gL) + βuc(t+ 1)
[
F̃k(t+ 1) + 1− δ

]
+ βHk(t+ 1)

[
uc(t+ 1)F̃h(t+ 1) + uh(t+ 1)

]
+ βKk(t+ 1) [βvk(t+ 2)− uc(t+ 1) exp(gA) exp(gL)]

= ωCS(t) + βHk(t+ 1)ωLL(t+ 1)

+ βKk(t+ 1) [βvk(t+ 2)− uc(t+ 1) exp(gA) exp(gL)]

(71)

Define

x(t) ≡ βvk(t+ 1)− uc(t) exp(gA) exp(gL),

a(t) ≡ ωCS(t) + βHk(t+ 1)ωLL(t+ 1).

Then, (71) can be more compactly written as:

x(t) = a(t) + βKk(t+ 1)x(t+ 1)

= a(t) + βKk(t+ 1) [a(t+ 1) + βKk(t+ 2)x(t+ 2)] = ...

= a(t) +
∞∑

j=t+1

βj−t

(
j∏

i=t+1

Kk(i)

)
a(j)

Hence, we have

βvk(t+ 1)− uc(t) exp(gA) exp(gL)

= ωCS(t) + βHk(t+ 1)ωLL(t+ 1)

+
∞∑

j=t+1

βj−t

(
j∏

i=t+1

Kk(i)

)
[ωCS(j) + βHk(j + 1)ωLL(j + 1)]

= ωCS(t) +
∞∑

j=t+1

βj−t

[(
j∏

i=t+1

Kk(i)

)
ωCS(j) +

(
j−1∏
i=t+1

Kk(i)

)
Hk(j)ωLL(j)

]
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(72)

A.2.3 Derivative vT

(72) can be used to rewrite (46):

uc(t)[F̃e(t)− κ] + βqe(t)vT (t+ 1) + ωLL(t)He(t) + ωCS(t)Ke(t)

+ Ke(t)
∞∑

j=t+1

βj−t

[(
j∏

i=t+1

Kk(i)

)
ωCS(j) +

(
j−1∏
i=t+1

Kk(i)

)
Hk(j)ωLL(j)

]
= 0.

The derivative of the value function v(k, T, t) with respect to T is given by:

vT (t) = uc(t)[F̃T (t)− KT (t) exp(gA) exp(gL) + F̃h(t)HT (t)]

+uh(t)HT (t) + uT (t) + β[KT (t)vk(t+ 1) + qT (t)vT (t+ 1)].

and hence, in t+ 1,

vT (t+ 1) = uc(t+ 1)F̃T (t+ 1) + uT (t+ 1) + HT (t+ 1)ωLL(t+ 1)

+KT (t+ 1) [βvk(t+ 2)− uc(t+ 1) exp(gA) exp(gL)]

+βqT (t+ 1)vT (t+ 2).

With the assumption that qT is constant, vT (t+1) can be written as an infinite

sum:

vT (t+ 1) =
∞∑

j=t+1

(β)j−(t+1)

(
j−1∏
i=t+1

qT (i)

)[
uc(j)F̃T (j) + uT (j)

]
+

∞∑
j=t+1

(β)j−(t+1)

(
j−1∏
i=t+1

qT (i)

)
HT (j)ωLL(j)

+
∞∑

j=t+1

(β)j−(t+1)

(
j−1∏
i=t+1

qT (i)

)
KT (j) [βvk(j + 1)− uc(j) exp(gA) exp(gL)]
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and hence

βqe(t)vT (t+ 1) = qe(t)
∞∑

j=t+1

(β)j−t

(
j−1∏
i=t+1

qT (i)

)[
uc(j)F̃T (j) + uT (j)

]
+ qe(t)

∞∑
j=t+1

(β)j−t

(
j−1∏
i=t+1

qT (i)

)
HT (j)ωLL(j)

+ qe(t)
∞∑

j=t+1

(β)j−t

(
j−1∏
i=t+1

qT (i)

)
KT (j) [βvk(j + 1)− uc(j) exp(gA) exp(gL)]

Dividing both sides of this expression by uc(t), the first-term on the right

hand side equals the present value of the sum of future marginal damages when

increasing current emissions, and hence the negative MCD as defined in (30):

β
qe(t)

uc(t)
vT (t+ 1) = −MCD(t) +

qe(t)

uc(t)

∞∑
j=t+1

(β)j−t

(
j−1∏
i=t+1

qT (i)

)
HT (j)ωLL(j)

+
qe(t)

uc(t)

∞∑
j=t+1

(β)j−t

(
j−1∏
i=t+1

qT (i)

)
KT (j) [βvk(j + 1)− uc(j) exp(gA) exp(gL)]

(73)

I can substitute (72) and (73) in (46) to get a characterization of the difference

between the optimal carbon price and the level of marginal climate change

damage:

F̃ e(t)− κ−MCD(t) +
qe(t)

uc(t)

∞∑
j=t+1

(β)j−t

(
j−1∏
i=t+1

qT (i)

)
HT (j)ωLL(j)

+
qe(t)

uc(t)

∞∑
j=t+1

(β)j−t

(
j−1∏
i=t+1

qT (i)

)
KT (j) [βvk(j + 1)− uc(j) exp(gA) exp(gL)]

+ ωLL(t)
He(t)

uc(t)
+ [βvk(t+ 1)− uc(t) exp(gA) exp(gL)]

Ke(t)

uc(t)
= 0.
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Rearranging and using the definition for θt, as well as (72), gives

MCD(t)− θ(t) = ωLL(t)
He(t)

uc(t)
+ ωCS(t)

Ke(t)

uc(t)

+
Ke(t)

uc(t)

∞∑
j=t+1

βj−t

[(
j∏

i=t+1

Kk(i)

)
ωCS(j) +

(
j−1∏
i=t+1

Kk(i)

)
Hk(j)ωLL(j)

]

+
qe(t)

uc(t)

∞∑
j=t+1

(β)j−t

(
j−1∏
i=t+1

qT (i)

)
HT (j)ωLL(j)

+
qe(t)

uc(t)

∞∑
j=t+1

(β)j−t

(
j−1∏
i=t+1

qT (i)

)
KT (j) [βvk(j + 1)− uc(j) exp(gA) exp(gL)]
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