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1 Introduction

Macroeconomists and in particular macroeconomic forecasters commonly face two major chal-
lenges. First, there are structural changes within an economy. Second, many economic time series
are sampled at different frequencies and released with different publication lags. While several
studies have shown that allowing for either structural changes or mixed-frequencies considerably
improves forecast performance, Carriero, Clark and Marcellino (2013) assess a combination of
both specifications in a univariate model. However, a multivariate assessment is still missing. Ac-
cordingly, the main contribution of this paper is to fill this gap and examine the real-time forecast
performance of a model incorporating drifting coefficients and indicators observed at different
frequencies. Our main finding is that this forecasting approach delivers accurate forecasts for the
variables considered and in most cases significantly improves upon existing approaches, especially
for inflation forecasts.

Our work relates to two strands of the literature. The first strand concerns the importance
of modeling structural change in forecasting. To account for both changes in the comovements
of variables demonstrated by Cogley and Sargent (2001, 2005) and the decline of business cycle
volatility highlighted by Kim and Nelson (1999) and McConnell and Perez-Quiros (2000), time-
varying parameter VARs with stochastic volatility (TVP-SV-VAR) have become a frequently
used tool.1

The second strand deals with the fact that many key macroeconomic variables, for instance
GDP, are unavailable at frequencies higher than quarterly, while most key indicators for these
variables are published at a higher frequency. As an alternative to models that require all
variables to be sampled at the same frequency, in the recent past, mixed-frequency models
have gathered much research interest (see Foroni and Marcellino, 2013, for s survey). This
class of models has two advantages: First, the researcher can refrain from any kind of time
(dis)aggregation to use for example quarterly and monthly variables in one model. Second, by
jointly modelling high and low frequency variables, the researcher is better able to track the
economic development in real time and assess the usefulness and impact of higher frequency
information on the predictions.

This paper combines these two strands of literature by using a mixed-frequency TVP-SV-VAR
(MF-TVP-SV-VAR) based on Cimadomo and D’Agostino (2016) to forecast in real time four
US macroeconomic variables, namely GDP growth, CPI inflation, the unemployment rate and a
short-term interest rate. As a combination of a MF-VAR and a TVP-SV-VAR, it can cope with
indicators sampled at different frequencies and unbalanced datasets. To disentangle the relative
impact of the model’s mixed-frequency part and the time variation in the model’s coefficients
on the forecast accuracy, we compare the forecast performance of the MF-TVP-SV-VAR with
several other specifications. The latter include constant parameter VARs with and without
mixed-frequencies and time-varying VARs without a mixed-frequency part. Furthermore, we
evaluate the intra-quarterly inflow of information with regard to the current-quarter estimates
(nowcasts).

1See Galí and Gambetti (2009), Baumeister and Benati (2013) or Koop and Korobilis (2014) for examples of
structural analysis using TVP-SV-VARs.

1



The estimation of the mixed-frequency part is based on the idea that variables observed
at a lower frequency can be expressed as higher frequency variables with missing observations
(Zadrozny, 1988).2 Adopting this notion, Mariano and Murasawa (2010) derive a state-space
representation for VARs with missing observations, called mixed-frequency VAR (MF-VAR). We
follow Schorfheide and Song (2015) and apply the MF-VAR approach in a Bayesian framework.

The estimation of the TVP part basically follows Primiceri (2005). However, we treat those
hyperparameters, which determine the amount of time variation in the parameters, as an ad-
ditional layer and estimate them using Bayesian methods (Amir-Ahmadi, Matthes and Wang,
2018).3 We generate forecasts up to one year ahead and evaluate the forecasts with respect
to both point and density forecasts. For the point forecast evaluation we resort to root mean
squared forecast errors, while the predictive densities are evaluated in terms of scoring rules.

Overall, our results provide evidence that the combination of mixed-frequencies, stochastic
volatility and time-varying parameters provides very competitive point and density forecasts for
each variable considered. We show that both nowcasts and forecasts significantly benefit from
modeling intra-quarterly dynamics. In particular, the novel MF-TVP-SV-VAR generates, on
average, more precise inflation forecasts than those generated by any other model considered.
Using probability integral transforms, we compare the predictive densities of inflation forecasts
generated by both the MF-TVP-SV-VAR and a quarterly TVP-SV-VAR and demonstrate that
the former delivers an improved description of the data, especially in the short-run. In fact,
the MF-TVP-SV-VAR provides a better estimate of the actual uncertainty surrounding the
point estimate and is able to produce more forecasts corresponding to the upper percentiles of
the empirical distribution. Finally, we examine the mixed-frequency models’ inflation forecasts
during the Great Recession. We show that allowing for time variation in the VAR coefficients and
stochastic volatility leads to more precise predictions for the steep downturn and the subsequent
recovery than considering only on of these specifications. Regarding the remaining variables, the
results are mixed; for unemployment rate forecasts drifting coefficients are sufficient, for interest
rate and GDP growth forecasts stochastic volatility yields precise forecasts.

On the one hand, this paper contributes to the ongoing discussion on how structural change
affects forecast performance. D’Agostino, Gambetti and Giannone (2013) forecast US inflation,
unemployment, and short-term interest rates with TVP-SV-VARs and find that allowing for pa-
rameter instability significantly improves forecast accuracy. A detailed assessment of the forecast
performance of models with time-varying coefficients relative to a variety of other nonlinear and
linear time series approaches is provided by both Barnett, Mumtaz and Theodoridis (2014) and
Clark and Ravazzolo (2015). They underpin the findings of D’Agostino et al. (2013) and show
that models with time-varying parameters increase the forecast performance in particular for
inflation forecasts. Banbura and van Vlodrop (2018) illustrate that accounting for time-varying
means in a Bayesian VAR substantially increases long-term forecast accuracy. Antolin-Diaz,
Drechsel and Petrella (2017) provide evidence in favor of decline in long-run US output growth

2An alternative approach, called mixed data sampling (MIDAS), is provided by Ghysels, Santa-Clara and
Valkanov (2004). For an assesment of this approach with regard to forecasting see Clements and Galvão (2008).

3Amir-Ahmadi et al. (2018) show that the magnitude of the hyperparameters significantly changes when
estimated on monthly data compared to quarterly data, which affects the time-variation in the model’s coefficients.
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and demonstrate that modeling this decline in a DFM increases nowcast accuracy.
On the other hand, this article extends the literature on forecasting with mixed-frequency

models. Since the work of Giannone, Reichlin and Small (2008), investigating the marginal
impact of new information on nowcast accuracy, several studies have underpinned the benefits of
modelling different frequencies with regard to forecasting.4 The studies by Foroni, Guérin and
Marcellino (2015), Barsoum and Stankiewicz (2015), and Bessec and Bouabdallah (2015) extend
this literature by considering mixed-frequency models with discrete regime switches.

The remainder of the paper is as follows. Section 2 provides a description of the dataset and
outlines the forecast setup. Section 3 depicts the competing models and explains the estimation
methodology. Section 4 describes the measures used for the forecast comparison. Section 5
presents the results. Section 6 concludes.

2 Data and forecast setup

2.1 Dataset

We use an updated version of the dataset used by Clark and Ravazzolo (2015) consisting of
four macroeconomic time series, of which three are sampled at monthly frequency and one is
observed quarterly. The quarterly series is US real GDP, whereas the monthly series are CPI,
the unemployment rate, and the 3-month Treasury bill rate. GDP and CPI enter the models
in log first differences to obtain real GDP growth rates and CPI inflation, respectively. The
unemployment and interest rate remain untransformed. For the VARs estimated on quarterly
frequency, the monthly indicators enter the models as quarterly averages, while for the mixed-
frequency, we do not apply any further transformation. We obtain real-time data on inflation,
unemployment and, GDP from the Archival FRED (ALFRED) database of the St. Louis Fed.
Since the Treasury bill rate is not revised, we resort to the last available publication from the
FRED database. The sample runs from January 1960 until September 2016. The first ten years
are used as a training sample to specify priors. Thus, the actual model estimation starts in
January 1970.

Generally, macroeconomic variables are released with a publication lag, which implies that
a certain vintage does not include the figures referring to the date of the vintage. The first
release of quarterly GDP exhibits a publication lag of roughly one month, thus – for example –
the first figure for 2011Q4 is released at the end of 2012M1 and then gets consecutively revised
in the subsequent months 2012M2 and 2012M3. The value for the unemployment rate (CPI)
is published in the first (second) week of the following month. Hence, following our previous
example, at the end of 2012M1 the unemployment rate and CPI are available until 2011M12.
Finally, the 3-month Treasury bill rate is available without any delay. Thus, we have so-called
“ragged-edges” in our real-time dataset.

4For example, Clements and Galvão (2008), Wohlrabe (2009), Kuzin, Marcellino and Schumacher (2011),
Foroni and Marcellino (2014), and Mikosch and Neuwirth (2015).
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2.2 Forecast setup

In assessing the predictions we follow Schorfheide and Song (2015) and establish three different
information sets. We assume that the forecasts are generated at the end of each month, when
all current releases for the indicators are available. The first information set, called I1, relates
to the first month of each quarter such that the forecaster has information up to the end of
January, April, July or October. In these months, the researcher has observations on inflation
and unemployment until the end of the respective previous quarter and a first and preliminary
estimate of GDP referring to the previous quarter. The second information set, called I2 (Febru-
ary, May, August, November), has one additional observation on inflation and unemployment
referring to the current quarter and the first revision of GDP. The last set, I3 (March, June,
September, December), includes one further observation on inflation and unemployment and the
second GDP revision. Each information set is further augmented with the observations of the
T-Bill rate.

To assess the intra-quarterly inflow of information, we evaluate the nowcasts separately per
information set. Since the quarterly VARs, though, cannot cope with “ragged-edges” in the data,
we estimate them in each recursion based on the balanced information set I1. The latter only
accounts for new information in terms of data revisions.

We employ an expanding window to evaluate our forecasts for data vintages from January
1995 until September 2016, providing 261 estimation samples. The last one-year-ahead forecast
refers to the third quarter 2017. The predictions are evaluated based on quarterly averages,
implying that for the mixed-frequency approaches we time-aggregate the predicted monthly time
paths to quarterly frequency. To abstract from benchmark revisions, definitional changes and
other unforeseeable changes, we evaluate the GDP growth forecasts based on the second available
estimate, i.e. the forecast for period t+h is evaluated with the realization taken from the vintage
published in t + h + 2. Since the remaining variables are revised only rarely and slightly, we
evaluate the forecast based on the latest vintage. The maximum forecast horizon hmax is set to
4 quarters, which implies that the mixed-frequency models generate forecasts for hm = 1, . . . , 12

months. Forecasts for horizons larger than one are obtained iteratively. We report results for 1,
2, 3, and 4 quarters ahead forecasts.

3 Models

Our baseline model is a standard VAR with all variables sampled at quarterly frequency. Based
upon this model, we evaluate the forecast performance of three extensions, namely mixed-
frequencies, stochastic volatilities, and time-varying parameters, as well as the forecast per-
formance of combinations of these features. For the models exhibiting stochastic volatility, we
use random walk stochastic volatility, which is a parsimonious and competitive specification
(Clark and Ravazzolo, 2015). Throughout the paper, we use n as the number of variables which
can be further split into nq for quarterly and nm for monthly variables, respectively, such that
n = nq + nm. Finally, p denotes the lag order.
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3.1 Quarterly VAR

Our baseline quarterly VAR (Q-VAR) reads

yt = B0 +

p∑
i=1

Biyt−i + εt, εt ∼ N(0,Ω), (1)

where yt and B0 denote n× 1 vectors of variables and intercepts, respectively. Bi for i, . . . , p are
n× n matrices of coefficients and Ω is the time-invariant n× n variance-covariance matrix.

3.2 Quarterly VAR with stochastic volatility

The quarterly VAR with stochastic volatility (Q-SV-VAR) refrains from the assumption of con-
stant residual variances and includes a law of motion for the (log) volatilities. Following Primiceri
(2005), we decompose the time-varying covariance matrix of the reduced-form residuals into a
lower triangular matrix At and a diagonal matrix Σt according to

AtΩtA
′
t = ΣtΣ

′
t, (2)

where the diagonal elements of Σt are the stochastic volatilities and At has ones on the main
diagonal and nonzero numbers for the remaining lower triangular elements, describing the con-
temporaneous relationships between the volatilities. This enables us to rewrite the VAR in (1)
as

yt = B0 +

p∑
i=1

Biyt−i +A−1
t Σtut, ut ∼ (0, In). (3)

The law of motions are modeled by defining σt as the vector of the diagonal elements of Σt and
at as the vector of nonzero elements stacked by rows of At as follows:

log σt = log σt−1 + et, et = (e1,t, . . . , en,t)
′ ∼ N(0,Ψ), (4)

at = at−1 + υt, υt = (υ′1,t, . . . , υ
′
n,t)
′ ∼ N(0,Φ), (5)

with Ψ being diagonal and Φ being block diagonal where each block is related to each equation
of the VAR in equation (3).

3.3 Quarterly VAR with time-varying parameter

The quarterly VAR with time-varying parameter is estimated in a homoscedastic specification
(Q-TVP-VAR) and with stochastic volatility (Q-TVP-SV-VAR). The Q-TVP-VAR augments the
baseline Q-VAR with random walk processes governing the evolution of the VAR coefficients:

yt = Z ′tβt + εt, εt ∼ N(0,Ω) (6)

βt = βt−1 + χt, χt ∼ N(0, Q), (7)
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where Zt = In ⊗ [1, y′t−1, . . . , y
′
t−p] contains all the right-hand side variables of the VAR and

βt is the vectorized matrix of the VAR coefficients. For the Q-TVP-SV-VAR the stochastic
volatility part from equations (4) and (5) is added to the model. Thus, the heteroscedastic
model specification allows for changes in the magnitude of the shocks and for changes in the
propagation of these shocks, whereas the homoscedastic version only accounts for the latter
changes.

3.4 Mixed-frequency VAR

The estimation of the mixed-frequency VAR (MF-VAR) follows the Bayesian state-space ap-
proach of Schorfheide and Song (2015), which can be combined with the former VAR specifica-
tions in a straightforward way. To this end, we partition our vector of variables yt = [y′q,t, y

′
m,t]
′,

where ym,t collects the monthly variables, which potentially contain missing observations due to
“ragged-edges” in the dataset. yq,t denotes the quarterly variables at monthly frequency. Since
the quarterly variables are only observed in the last month of each quarter, yq,t contains missing
observations for the first and second month of each quarter. To construct the measurement
equation, we adopt the notion of Mariano and Murasawa (2003) and assume that quarterly GDP
in log levels (log Yq,t) can be expressed as the geometric mean of an unobserved monthly GDP
(log Ỹq,t):

log Yq,t =
1

3
(log Ỹq,t + log Ỹq,t−1 + log Ỹq,t−2). (8)

This expression implies that the quarterly series is a first-order approximation to an arithmetic
mean of the unobserved monthly series (see Mitchell et al., 2005). Note that log Yq,t is only
observed every third month, whereas log Ỹq,t is never observed. To get an expression for quarterly
GDP growth based on latent monthly GDP growth denoted by ỹq,t, we subtract log Yq,t−3 from
(8):

∆3 log Yq,t = yq,t =
1

3
ỹq,t +

2

3
ỹq,t−1 + ỹq,t−2 +

2

3
ỹq,t−3 +

1

3
ỹq,t−4, (9)

where lower case variables refer to logs. Combining the unobserved with the observed monthly
variables in ỹt = [ỹ′q,t, y

′
m,t]
′, we define the state vector as zt = [ỹ′t, . . . , ỹ

′
t−p+1] and write the

measurement equation as

yt = Htzt. (10)

Assuming that GDP growth is ordered first in the model, Ht is given by:

Ht =
[
H1,t H2,t

]′
(11)

H1,t =
[
1/3 01×n−1 2/3 01×n−1 1 01×n−1 2/3 01×n−1 1/3 01×n−1 01×(p−4)n

]
(12)

H2,t =
[
0n−1×1 In−1 0n−1×pn

]
, (13)

where H1,t translates the disaggregation constraint in (9) into the state-space framework. To
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replace the missing observations in zt with estimated states, we follow Durbin and Koopman
(2001) and employ a time-depending vector of observables yt and a time-varying matrix Ht.
If an indicator exhibits a missing observation in period t, the corresponding entry in yt and
the corresponding row of Ht are deleted. Finally, the transition equation of the MF-VAR in
state-space form is given by

zt = µ+ Fzt−1 + υt, υt ∼ N(0, S), (14)

where µ and F contain the intercepts and AR-coefficients, respectively. S is the singular variance-
covariance matrix with all entries except for the upper left n× n submatrix being zero.

To introduce stochastic volatility into the mixed-frequency framework, we assume that S is
a time dependent pn× pn matrix where the first n× n elements are equal to Ωt with the same
decomposition as in (2) and following the same law of motions as in (4) and (5). This yields the
MF-SV-VAR. The MF-TVP-VAR is obtained by allowing F to change over time according to
(7). Including both specifications leads to the MF-TVP-SV-VAR.

To summarize, we have a total of eight competing models for our forecast experiment:

1. MF-TVP-SV-VAR: Mixed-frequency VAR with time-varying parameters and stochastic
volatility

2. MF-SV-VAR: Mixed-frequency VAR with stochastic volatility

3. MF-TVP-VAR: Mixed-frequency VAR with time-varying parameters

4. MF-VAR: Mixed-frequency VAR

5. Q-TVP-SV-VAR: Quarterly VAR with time-varying parameters and stochastic volatility

6. Q-SV-VAR: Quarterly VAR with stochastic volatility (Benchmark)

7. Q-TVP-VAR: Quarterly VAR with time-varying parameters

8. Q-VAR: Quarterly linear VAR

3.5 Estimation procedure and prior specification

All models are estimated with Bayesian estimation techniques, since most models depend on a
large number of parameters and thus, make estimation based on frequentist approaches infeasible.
The mixed-frequency models are estimated with 4 lags, while the quarterly models are estimated
with 2 lags.5 In the following, we provide a brief description of the estimation procedure and the
prior specifications. A detailed description is provided in Appendices A and B.

For the baseline Q-VAR we impose a Jeffrey’s prior in order to abstract from shrinkage, since
we use a small-scale VAR with only four variables. For the Q-SV-VAR we apply the algorithm of

5We fix the lag order for the quarterly model at 2 to be consistent with the literature on US data (see, e.g.,
Primiceri, 2005; D’Agostino et al., 2013; Chan and Eisenstat, 2017). The monthly models have 4 lags to keep it
computational feasible since each additional lag increases the number of parameters by n× n× T . Furthermore,
at least four lags are required to disaggregate quarterly GDP into monthly GDP (see equation (9)).
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Carter and Kohn (1994) (hereafter CK) to draw the VAR coefficients and the mixture sampler of
Kim, Shephard and Chib (1998) (hereafter KSC) to draw the (log) volatilities.6 We use normal
priors for the diagonal elements of Σt and the lower-triangular elements of At. Inverse Wishart
priors are applied for the variance covariance matrix Ψ and Φ, respectively. We adopt the CK
algorithm for the Q-TVP-VAR with a normal prior for βt and inverse Wishart prior for the
variance-covariance matrix Q. The Q-TVP-SV-VAR combines both prior specifications of the
Q-SV-VAR and Q-TVP-VAR and is estimated using the Gibbs sampler as in Del Negro and
Primiceri (2015).

The amount of time variation in βt, ait, and log σit depends on the magnitude of the random
walk variances Q, Ψ, and Φ, which are – in part – determined by the corresponding prior
distributions. Hence, assigning sensible priors is crucial for the model estimation. The literature
on TVP-SV-VAR commonly follows Primiceri (2005). However, these priors are calibrated for
quarterly TVP-SV-VARs and it is not clear, whether they are useful considering monthly data
or other model specifications. Thus, we follow Amir-Ahmadi et al. (2018) and abstract from
using partly exogenous values for the scale matrix of the inverse Wishart prior by implementing
another layer of priors for those hyperparameters.

The latent states in the mixed-frequency part of model 1 to 4 are estimated using a CK
algorithm with the modification of Durbin and Koopman (2001), which enables us to cope
with “ragged-edges” in the dataset and yields draws for each missing indicator until the end of
the sample. We initialize the latent states of the CK algorithm with a normal prior based on
monthly constant GDP values throughout the quarter for the mean and an identity matrix for
the variance-covariance matrix. After having drawn the latent states, the implementation of
the remaining specification is straightforward: Instead of conditional on the observed data, the
remaining coefficients are drawn conditional on the drawn states. Each model is estimated using
60000 draws. For posterior inference we use each 5th draw from the last 10000 draws.

To provide an impression of the importance of modeling changes in volatility over time,
Figure 1 plots the posterior means of standard deviations of reduced form residuals from the
MF-TVP-SV-VAR and Q-TVP-SV-VAR using the latest vintage of data.7 We assume that
the volatility estimates from the Q-TVP-SV-VAR are constant within a quarter to make them
comparable across frequencies. The estimates of the Q-TVP-SV-VAR closely match the patterns
of previous analysis and show significant time-variation (see, for instance, Primiceri (2005), Clark
and Ravazzolo (2015)). Until the mid 1980s, the estimated volatilities are quite high and then
fall sharply indicating the beginning of the Great Moderation. Except for the increase during the
burst of the dot-com bubble in 2000 and the rise during the Great Recession, they roughly remain
on the levels of the mid 1980s. At the end of the sample, however, there is again a decline in
volatility indicating a time in which the US is remarkably less exposed to absolute shocks hitting

6Drawing the VAR coefficients using CK is equivalent to a GLS transformation of the model. Another possi-
bility to draw the volatilities is the algorithm of Jacquier, Polson and Rossi (1995) which draws the volatilities one
at a time. This single-move procedure is, however, computationally much less efficient and yields draws, which
are more autocorrelated (see Kim et al., 1998).

7We also examined the volatilites for different data vintages to investigate the impact of data revisions and
different values for the hyperparameters. Analog to Clark (2012), though, we obtain very similar estimates for
the different vintages, which is why we only report the results for the latest vintage.
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the economy. Thus, as already suggested by Clark (2009) and Gadea Rivas, Gómez-Loscos and
Pérez-Quirós (2014), the Great Recession seems to have only interrupted but not ended the Great
Moderation. In fact, the latest volatility estimates for GDP growth and the unemployment rate
are the lowest of the entire sample.

The estimates from the MF-TVP-SV-VAR closely track the evolution of the quarterly es-
timates. Except for CPI inflation they are, however, somewhat smaller indicating that using
monthly information absorbs part of the fluctuations in the volatility. The latter is a con-
firmation of the results from Carriero, Clark and Marcellino (2015), who employ a Bayesian
mixed-frequency model without time variation in the AR-coefficients. The change in the VAR
parameters over time is in turn far less pronounced (see Figure 4 in Appendix D). For both
models, the largest variability is obtained for the coefficients of the interest rate equation. For
instance, the impact of past interest rates on the current interest rate has increased, while the
impact of inflation on interest rates has dropped to almost zero, which reflects the binding zero
lower bound. Overall, the results for both models suggest that modeling variability in volatility
seems to be important for achieving precise forecasts.

Figure 1: Posterior Means of Standard Deviations of Reduced Form Residuals

GDP growth CPI inflation

Unemployment rate T-Bill rate

Note: Figure depicts the posterior means of the residual standard deviations from the last vintage of data at
monthly frequency. Quarterly estimates are assumed to be constant within a quarter. Shaded areas and dashed
lines refer to 68% error bands.

3.6 Now- and forecasting

The quarterly models are estimated on balanced datasets containing all the available information
from the previous quarter. To generate the now- and forecasts, we follow Cogley, Morozov and
Sargent (2005) and compute sequences of hmax normally distributed innovations with covariance
Φ, Ψ, and Q to produce time paths for the elements of At, Σt, and βt, respectively. Based
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on these trajectories, we simulate the vector of endogenous variable, yt, hmax periods into the
future. The first forecast is a nowcasts, since it is generated in and refers to the respective current
quarter.

To describe how we obtain the predictive distributions for now- and forecasts from the mixed-
frequency approaches, additional notation is useful. Let TM denote the last month of the in-
dicator, which has the shortest publication lag. Further, let ZTM = [z1, . . . , zTM ] denote the
trajectory of simulated state vectors. Note that the CK algorithm provides draws for the latent
states until TM , which is why ZTM consists only of CK draws. To obtain ZTm+1:Tm+hmax , we
again generate time paths for the elements of At, Σt, and βt and simulate the state vector zt for-
ward using these time paths. Accordingly, if TM belongs to I3 the CK algorithm provides draws
for the entire last available quarter and by averaging over these draws we obtain the nowcasts.
The forecasts are generated by averaging over the trajectories ZTm+1:Tm+hmax . However, if TM
belongs to I1 or I2, the CK algorithm does not provide draws of the latent states for the entire
quarter since none of the indicators is available for the entire quarter. In this case, we average
over the available CK draws and the simulated trajectories referring to this quarter to get the
nowcast. The forecasts are calculated from the averages of the remaining trajectories.8

4 Forecast metrics

The forecasts from our models are evaluated with respect to point and density forecasts. In the
following, M , i, and h denote the model, variable, and forecast horizon, respectively, for the
forecast sample t = 1, . . . , N .9 The point forecast accuracy is measured in terms of the root
mean squared errors (RMSE):

RMSEhi =

√
1

N

∑(
ŷit+h − yit+h

)2
. (15)

The RMSE is though only a useful tool to assess the accuracy of a model when compared across
different models, hence we report the RMSEs as ratios relative to a benchmark model

relative RMSEhM,i =
RMSEhM,i

RMSEhB,i
, (16)

where RMSEhB,i refers to the RMSE of the benchmark Q-SV-VAR estimated with quarterly
data.10 To provide a formal test of whether the difference in forecast accuracy are significant,
we apply the test provided by Diebold and Mariano (1995).

While the evaluation of economic forecasts focused for a long time solely on evaluating point
8For instance, in February, the T-Bill rate is available until February (TM ), while inflation and unemployment

rate are available until January (TM−1). Hence, the CK algorithm provides draws for each indicators until TM .
The figures for March (TM+1) are generated using the time paths for At, Σt, and βt. The forecast for the first
Quarter is the average over the figures of TM−1 to TM+1.

9To facilitate readability, we drop subscript M indicating the respective model in the following in most cases.
10Since several studies have demonstrated that VARs with stochastic volatility outperform constant volatility

VARs (see, for instance, Clark, 2012; Clark and Ravazzolo, 2015; Chiu, Mumtaz and Pintér, 2017), we abstract
from using the Q-VAR as our benchmark.
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forecasts, in the recent past the uncertainty around the forecasts has become an important issue.
To take into account this uncertainty, i.e. the remaining part of the predictive density, which is
neglected by the measures outlined above, we further evaluate the predictive densities. Since the
true density is, however, not observed, evaluating the predictive density is less straightforward
than evaluating point forecasts. The idea behind the evaluation of density forecasts is to com-
pare the distribution of observed data with the predictive density and assess whether the latter
provides a realistic picture of the reality. To this end, we apply both the log predictive scores
and the continuous ranked probability score (CRPS). The log predictive score is computed by
evaluating the predictive density at the realization.11 In the following, we report average log
scores:

LShi =
1

N

∑
log pt(y

i
t+h), (17)

where pt(·) indicates the predictive density. According to (17), a higher average log score implies
a more exact predictive density.12 Again, we report results relative to the benchmark:

relative LShM,i = LShM,i − LShB,i, (18)

where LShB,i refers to the log score of the benchmark model. Furthermore, we evaluate the
predictive densities in terms of the CRPS introduced by Matheson and Winkler (1976). As
highlighted by for example Gneiting and Raftery (2007), CRPSs are both better able to evaluate
forecasts close but not equal to the realization and less sensitive towards extreme outcomes. To
compute the CRPS, we follow Gneiting and Ranjan (2011) and use the score function:

S(pt, y
i
t+h, ν(α)) =

∫ 1

−0
QSα(Pt(α)−1, yit+h)ν(α)dα, (19)

where QSα(Pt(α)−1, yit+h) = 2(I{yit+h < Pt(α)−1} − α)(Pt(α)−1 − yit+h) is the quantile score for
forecast quantile Pt(α)−1 at level 0 < α < 1. I{yit+h < Pt(α)−1} is an indicator function taking
the value one if yit+h < Pt(α)−1 and zero otherwise. P−1

t denotes the inverse of the cumulative
predictive density function and ν(α) is a weighting function. Applying a uniform weighting
scheme, yields the average CRPS:

CRPShi =
1

N

∑
S(pt, y

i
t+h, 1). (20)

Following (20), a lower value indicates a better score, which is evaluated as a ratio relative to
11The log predictive score goes back to Good (1952) and has become a commonly accepted tool for comparing

the forecast performance of different models (see Geweke and Amisano, 2010; Clark, 2012; Jore, Mitchell and
Vahey, 2010, among other).

12Since the predictive densities are not necessarily normal, the commonly used quadratic approximation of
Adolfson, Lindé and Villani (2007) may not be appropriate, which is why we smooth the empirical forecast
distribution using a kernel estimator to obtain the predictive distribution.
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our benchmark model:

relative CRPShM,i =
CRPShM,i

CRPShB,i
(21)

To obtain an approximate inference on whether the scores are significantly different from the
benchmark, we follow D’Agostino et al. (2013) and regress the differences between the scores of
each model and the benchmark on a constant. A t-test with Newey-West standard errors on the
constant indicates whether these average differences are significantly different from zero.

Finally, we compute probability integral transforms (PITs) as in Diebold, Gunther and Tay
(1998). The PIT is defined as the CDF corresponding to the predictive density evaluated at the
respective realizations

zit+h =

∫ yit+h

−∞
pt(u)du for t = 1, . . . , N. (22)

Thus, with regard to the respective predictive density, the PIT denotes the probability that a
forecast is less or equal to the realization. If the predictive densities equal the true densities, zit+h
is uniformly distributed over the 0-1 interval. To assess the accuracy of the predictive density
according to the PIT, it is convenient to divide the unit interval into k equally sized bins and
count the number of PITs in each bin. If the predictive density equals the actual density, each
bin contains N/k observations.

5 Results

In this Section, we discuss the results from our forecast experiment. Regarding the point fore-
casts, first we assess the nowcast accuracy of the models and resort to the information sets
outlined in Section 2.2. Second, we evaluate the accuracy of the point forecasts and predictive
densities with respect to horizons larger than 1, i.e. the respective subsequent quarters.13 We
provide results for the entire recursive sample (1995Q1–2016Q4) and for a shorter sample period
of 2007Q1 until 2016Q4. The latter enables us to assess whether the anew rise in volatility during
the Great Recession and the subsequent slow down affects the forecast performance.

5.1 Nowcast evaluation

Table 1 presents the results for the nowcasts taking into account the information sets I1 to I3.
The results can be compared along five dimensions: Quarterly- vs. mixed-frequencies, fixed-
coefficients vs. time-varying coefficients, across information sets as well as variables, and across
samples. First, we discuss the results with respect to the full sample depicted in the left panel
of Table 1.

13We abstract from evaluating the nowcasts with respect to predictive densities. The nowcasts of the mixed-
frequency models consist, depending on the information set, of quarterly averages over draws from the CK
algorithm and realizations. Therefore, the nowcast densities of the mixed-frequency models are very narrow
compared to the quarterly models and thus, are hardly comparable.
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Comparing the mixed-frequency models with the quarterly models reveals that the MF-
models generate more accurate nowcasts for each variable and each information set. On average,
over all information sets and variables the best nowcast performance is obtained by the MF-TVP-
SV-VAR, which improves the benchmark (Q-SV-VAR) by roughly 42%. The remaining mixed-
frequency models provide on average gains ranging from 38% (MF-VAR) to 40% (MF-SV-VAR)
indicating that apart from using monthly information parameter variability is beneficial. Except
for the Q-TVP-SV-VAR which provides roughly the same performance as the benchmark, all
quarterly models deliver an inferior nowcast performance and thus provide – in line with the
literature – strong support for mixed-frequency approaches.

Turning to the variables, we first look at GDP growth. In this case, the best performing
model (MF-SV-VAR) provides up to 14% more accurate nowcasts compared to the benchmark.
In contrast, the best performing quarterly model cannot outperform the benchmark. A similar
pattern emerges for inflation; the best performance is again provided by a mixed-frequency
model (MF-TVP-SV-VAR), which improves the benchmark by up to 60%, while the quarterly
models enhance the benchmark by at best by 7%. Moreover, the MF-TVP-SV-VAR provides, on
average, much more precise forecasts then the Q-TVP-SV-VAR, which is already found to deliver
precise inflation forecasts (Faust and Wright, 2013). The largest difference between quarterly-
and mixed-frequency models, is obtained for the unemployment rate. In this case the MF-TVP-
VAR improves the benchmark by roughly 65%, while the quarterly models do not improve at
all.

A comparison of the fixed-coefficients models with the time-varying coefficients models reveals
that stochastic volatility seems to be a major determinant of precise nowcasts, which is consistent
with for instance Carriero et al. (2015). In all but one case (unemployment rate at I1), the best
performing model includes stochastic volatility. Allowing for time-varying parameters without
stochastic volatility, improves accuracy relative to the benchmark but is – in most cases – inferior
to models with stochastic volatility. In particular, inflation nowcasts benefit, however, from
combining both specifications. For instance, the relative RMSE of the MF-TVP-SV-VAR is
about 5 percentage points lower than the one of the MF-TVP.

Finally, we compare the RMSEs across information sets. In most cases using more information
– as expected – significantly reduces the RMSEs. The improvements for the best performing
models in case of inflation forecasts range from 13% at I1 to 61% at I3. With regard to the
unemployment rate, the increases in forecast accuracy are even higher with 18% at I1 and 66%
at I3. Concerning to GDP growth, though, more information seems not to provide a strong
increase in forecast accuracy; the relative RMSEs for the best performing model (MF-TVP-SV-
VAR) go from 0.89 at I1 to 0.86 at I3. The latter provides some evidence that the variables used
are potentially not the best predictors for GDP growth and selecting the variables more carefully
would further improve GDP growth forecasts. Since the goal of this paper is not to find the best
GDP growth forecast, we leave this question for further research.

Overall, the results for the shorter sample are very close to the ones of the full sample.
The right panel of Table 1 shows that the relative nowcast performance of each model remains
almost unchanged for unemployment and interest rate. However, with regard to GDP growth
and inflation, the MF-models’ relative performance improves in the shorter sample, which is
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Table 1: Real-time Nowcast RMSEs

Model 1995-2016 2008-2016
I1 I2 I3 I1 I2 I3

GDP growth

MF-TVP-SV-VAR 0.91 0.90 0.91 0.86 0.84 0.87
MF-SV-VAR 0.89 0.86 0.86 0.81 0.77 0.77
MF-TVP-VAR 0.98 0.96 0.88 0.95 0.94 0.82
MF-VAR 0.99 0.93 0.91 0.98 0.88 0.90
Q-TVP-SV-VAR 1.06 1.09 1.07 1.04 1.08 1.08
Q-TVP-VAR 1.07 1.11 1.03 1.08 1.10 0.99
Q-VAR 1.12∗∗∗ 1.13∗∗∗ 1.13∗∗∗ 1.13 1.14∗∗∗ 1.14∗∗∗
Q-SV-VAR 0.63 0.62 0.63 0.80 0.78 0.78

Inflation

MF-TVP-SV-VAR 0.87∗ 0.64∗∗ 0.39∗∗ 0.85 0.59 0.31
MF-SV-VAR 0.99 0.68∗ 0.39∗∗ 0.93 0.61 0.30
MF-TVP-VAR 0.92∗ 0.69∗∗ 0.40∗∗ 0.92 0.67 0.36
MF-VAR 0.99 0.69∗ 0.39∗∗ 0.95 0.62 0.30
Q-TVP-SV-VAR 0.94 0.93 0.94 0.94 0.92 0.93
Q-TVP-VAR 0.93 0.95 0.98 0.98 0.96 0.99
Q-VAR 1.03 1.02 1.13 1.02 1.01 1.00
Q-SV-VAR 0.26 0.26 0.26 0.34 0.33 0.34

Unemployment rate

MF-TVP-SV-VAR 0.82∗∗∗ 0.61∗∗∗ 0.34∗∗∗ 0.78∗ 0.60∗∗ 0.34∗∗
MF-SV-VAR 0.83∗∗∗ 0.61∗∗∗ 0.34∗∗∗ 0.85∗∗∗ 0.60∗∗ 0.32∗∗
MF-TVP-VAR 0.79∗∗∗ 0.60∗∗∗ 0.34∗∗∗ 0.78∗∗ 0.61∗ 0.34∗
MF-VAR 0.86∗∗∗ 0.61∗∗∗ 0.34∗∗ 0.84∗∗ 0.60∗∗ 0.32∗∗
Q-TVP-SV-VAR 1.02 1.08 1.04 1.05 1.07 1.07
Q-TVP-VAR 1.07 1.04 1.03 1.09 1.10 1.04
Q-VAR 1.05∗∗∗ 1.07∗∗∗ 1.07∗∗∗ 1.06 1.07∗∗ 1.07∗∗
Q-SV-VAR 0.27 0.26 0.26 0.36 0.35 0.35

Interest rate

MF-TVP-SV-VAR 0.43∗∗∗ 0.16∗∗∗ – 0.36∗ 0.15∗ –
MF-SV-VAR 0.44∗∗∗ 0.15∗∗∗ – 0.36∗ 0.15∗ –
MF-TVP-VAR 0.45∗∗∗ 0.17∗∗∗ – 0.41∗ 0.16∗ –
MF-VAR 0.59∗∗∗ 0.19∗∗∗ – 0.57 0.18∗ –
Q-TVP-SV-VAR 0.96 0.94 0.94 0.87∗∗ 0.86∗ 0.86∗
Q-TVP-VAR 1.13∗∗ 1.15∗ 1.14∗ 1.09 1.07 1.10
Q-VAR 1.48∗∗∗ 1.46∗∗∗ 1.47∗ 1.56 1.52∗ 1.51∗
Q-SV-VAR 0.36 0.36 0.36 0.37 0.38 0.39

Notes: The models are detailed in Section 3. RMSEs are reported in absolute terms for the benchmark model
(the bottom row of each panel). For the remaining the RMSEs are expressed as ratios relative to the benchmark
model. A figure below unity indicates that the model outperforms the benchmark. Bold figures indicate the best
performance for the variable and information set. ∗, ∗∗, and ∗ ∗ ∗ denote significance on the 15%, 10%, and 5%
level, respectively, according to the Diebold-Mariano test with Newey-West standard errors. At I3 no interest
rate forecast is computed by the mixed-frequency models, since the entire quarter is available.

characterized by a larger volatility of the series. The strongest gains are obtained for the MF-
SV-VAR. Its GDP growth and inflation forecasts are roughly 8% more precise. Therefore and in
contrast to the entire sample, the best performance in the shorter sample on average is provided
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by the MF-SV-VAR, suggesting that stochastic volatility has become more important for precise
nowcasts.

5.2 Forecast evaluation

Now we turn to investigate the forecast performance. Since the marginal impact of an additional
month of information becomes less important for forecasts at higher horizons, the RMSEs for
higher horizons become more similar across the information sets.14 Therefore, in the following
we compute total RMSEs by averaging over the entire forecast sample.

The results from Table 2 indicate that mixed-frequency VARs provide competitive forecasts
even for higher horizons and for both samples. Indeed, in case of unemployment and interest rate
forecasts, modeling within-quarter dynamics is particularly beneficial, since even the worst per-
forming mixed-frequency VAR outperforms the best performing quarterly VAR on each horizon.
In the following, we focus on the results for the full sample.

Overall, the most accurate forecasts for all indicators and on average is again provided by the
MF-TVP-SV-VAR. It outperforms the baseline Q-VAR over all horizons and variables on average
by roughly 12%. The best performance is obtained for the interest rate with an average gain
of roughly 30% relative to the benchmark. Apart from the latter model, the MF-SV-VAR and
the MF-TVP-VAR also provide very accurate forecasts with average gains of around 10%. The
MF-VAR yields roughly the same performance as the best performing quarterly model, namely
the Q-TVP-SV-VAR. Both improve the forecast on average over all horizons and variables by
about 2%.

Concerning the variables individually shows that the gains in forecast accuracy differ sub-
stantially across the models. However, quarterly models are only able to outperform the mixed-
frequency models for GDP growth. Nevertheless, all of the RMSEs – except for the MF-VAR –
are in this case quite close to each other. For inflation, the best performance over all horizons
is provided by the MF-TVP-SV-VAR. In particular, for one-quarter-ahead forecasts it generates
by far the most accurate predictions. On larger horizons the Q-TVP-SV-VAR delivers virtually
identical RMSEs, which indicates both that using monthly information become less important for
higher horizons and that using time variation in all coefficients is crucial for inflation forecasts.
The latter confirms the results of previous studies based on quarterly models (see D’Agostino
et al., 2013; Barnett et al., 2014; Clark and Ravazzolo, 2015) by use of mixed-frequency mod-
els. As for the nowcasts, the most accurate unemployment rate forecasts are obtained by the
MF-TVP-VAR. The differences to the MF-TVP-SV-VAR and MF-SV-VAR are, though, small.
Using only quarterly data in turn provides significantly inferior RMSEs. The largest differences
between the quarterly and the mixed-frequency models are obtained for the interest rate, where
the RMSE of the best performing mixed-frequency model is roughly one third of the size of the
RMSE of the best performing quarterly model (0.69 vs. 0.96).

Comparing the results across samples reveals that the relative RMSEs are very similar for each
variable and model suggesting that the sample has only minor influence on the results. However,
while the models which incorporating stochastic volatility improve their relative forecast accuracy

14Figure 6 in Appendix E plots the relative RMSE for each information set.
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in the shorter sample, the performance of the models without this feature tends to deteriorate.
The latter indicates that in this more volatile phase, stochastic volatility is more important
for achieving precise forecasts. Moreover and in contrast to the nowcast evaluation, the best
performance on average is provided by the MF-TVP-SV-VAR, which improves the benchmark
by 17% and faintly outperforms the MF-SV-VAR.

Overall, the results are consistent with findings from previous studies, suggesting that the
gains in accuracy due to variations in the VAR-coefficients are smaller than the gains induced by
stochastic volatility. However, using models with both features provides more accurate forecasts
for all variables in most cases.

5.3 Predictive density evaluation

The results for continuous rank probability scores (CRPS) are displayed in Table 3. The bench-
mark is reported in levels, while for the remaining models the scores are reported as ratios relative
to the benchmark. We focus on CRPS in more detail since it is more sensitive to distance and
less sensitive to outliers than the log scores.15

We draw three main conclusions from the results. First, the sample period has only minor
impact on the relative accuracy of the predictive densities. In fact, the CRPS are overall very
similar, which is why we do not discuss the results for both samples separately but cover them
jointly.

Second, using within-quarter information significantly improves predictive densities; the
mixed-frequency models provide better results on average over all variables and horizons. The
best performance is again provided by the MF-TVP-SV-VAR with an average improvement of
roughly 13%. In contrast, the best performing quarterly model (Q-TVP-SV-VAR) improves
the benchmark on average only by 2%. Moreover, with regard to the unemployment rate, the
worst performing mixed-frequency model (MF-VAR) improves the benchmark on average by
7%, and thus is better than each quarterly model, indicating that mixed-frequency is an im-
portant feature for unemployment forecasts. For the interest rate, we obtain a similar picture;
apart from the Q-TVP-SV-VAR none of the quarterly models outperform the mixed-frequency
models. For GDP growth and inflation, the results are less obvious. The most accurate GDP
growth forecasts over all horizons are provided by the Q-TVP-SV-VAR, though the differences to
its mixed-frequency counterpart are very small. Regarding inflation, only the mixed-frequency
models with time-varying parameters outperform their quarterly counterparts. Investigating
the forecast performance across the different horizons shows that the differences between the
quarterly and mixed-frequency become smaller with increasing horizons. Thus, within-quarter
information is more valuable with respect to short-term forecasting.

Third, concerning the variables again individually reveals that models using stochastic volatil-
ity and/or time-varying VAR-coefficients generate in most cases more accurate predictive densi-
ties than models without these features. As for the point forecast performance, the best perfor-
mance for the interest rate forecasts is provided by the MF-SV-VAR indicating that variation in

15In general, the predictive distributions of the MF-models have a lower variance than the ones of the quarterly
benchmark. Therefore, outlier realizations get a very low log score in case of MF-models, which distorts the overall
results. However, as depicted by Table 4 in Appendix C both measures provide qualitatively similar results.
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Table 2: Real-time Forecast RMSEs

Model 1995-2016 2008-2016
h = 2 h = 3 h = 4 h = 2 h = 3 h = 4

GDP growth

MF-TVP-SV-VAR 1.07 1.03 1.00 1.08 1.00 0.99
MF-SV-VAR 1.00 1.00 0.98 0.98 1.00 0.99
MF-TVP-VAR 0.99 0.99 1.01 0.97 0.95 1.00
MF-VAR 1.12∗∗∗ 1.14∗∗∗ 1.12∗∗∗ 1.11∗∗∗ 1.16∗∗∗ 1.15∗∗∗
Q-TVP-SV-VAR 1.03 0.98 0.96 1.00 0.96 0.94
Q-TVP-VAR 1.17∗∗∗ 1.08∗∗ 1.07 1.17∗∗∗ 1.04 1.09
Q-VAR 1.17∗∗∗ 1.16∗∗∗ 1.15∗∗∗ 1.23∗∗∗ 1.19∗∗∗ 1.20∗∗∗
Q-SV-VAR 0.63 0.64 0.66 0.82 0.85 0.85

Inflation

MF-TVP-SV-VAR 0.87∗∗ 0.91∗∗∗ 0.93∗∗∗ 0.85∗∗ 0.92∗∗∗ 0.93∗∗∗
MF-SV-VAR 0.98 0.96 0.94 0.97 0.96 0.93
MF-TVP-VAR 0.93 0.95 0.94 0.93 0.97 0.96
MF-VAR 1.01 1.03 1.05 0.98 0.99 0.97
Q-TVP-SV-VAR 0.93∗∗ 0.93∗∗∗ 0.94∗∗∗ 0.92∗∗ 0.92∗∗∗ 0.94∗∗∗
Q-TVP-VAR 0.93 0.95∗ 0.97 0.91 0.94 0.98
Q-VAR 1.00 1.07∗∗∗ 1.09∗∗∗ 0.99 1.06∗∗ 1.06
Q-SV-VAR 0.26 0.24 0.23 0.34 0.30 0.29

Unemployment rate

MF-TVP-SV-VAR 0.86∗ 0.93 0.98 0.86∗∗∗ 0.94∗∗∗ 0.98∗∗∗
MF-SV-VAR 0.86∗∗ 0.91∗∗∗ 0.95 0.85∗∗∗ 0.91∗∗ 0.94
MF-TVP-VAR 0.83∗∗ 0.87∗∗ 0.91 0.82∗∗ 0.88∗∗ 0.90∗
MF-VAR 0.88∗∗ 0.94 0.94 0.85∗∗ 0.92 0.96
Q-TVP-SV-VAR 1.04 1.04 1.04 1.05 1.04 1.04
Q-TVP-VAR 1.02 1.01 0.98 1.12∗∗ 1.10∗∗∗ 1.05∗∗
Q-VAR 1.07∗∗∗ 1.08∗∗∗ 1.08∗∗∗ 1.07∗∗ 1.07∗∗ 1.08∗∗
Q-SV-VAR 0.48 0.73 0.97 0.68 1.04 1.39

Interest rate

MF-TVP-SV-VAR 0.59∗∗∗ 0.76∗∗∗ 0.84∗∗∗ 0.47∗∗∗ 0.59∗∗∗ 0.62∗∗∗
MF-SV-VAR 0.57∗∗∗ 0.71∗∗∗ 0.78∗∗∗ 0.44∗∗∗ 0.53∗∗∗ 0.57∗∗∗
MF-TVP-VAR 0.62∗∗∗ 0.81∗∗∗ 0.91∗∗∗ 0.56∗∗∗ 0.79∗∗∗ 0.89∗∗
MF-VAR 0.72∗∗∗ 0.87∗∗∗ 0.94∗∗ 0.71∗∗∗ 0.90∗∗∗ 0.97∗∗
Q-TVP-SV-VAR 0.95 0.96 0.97 0.81∗∗ 0.77∗∗∗ 0.81∗∗∗
Q-TVP-VAR 1.14∗∗ 1.19∗∗∗ 1.17∗∗∗ 1.20∗∗ 1.33∗∗∗ 1.29∗∗∗
Q-VAR 1.15∗∗∗ 1.16∗∗∗ 1.17∗∗∗ 1.34∗∗∗ 1.45∗∗∗ 1.48∗∗∗
Q-SV-VAR 0.67 0.96 1.24 0.64 0.85 1.10

Notes: The models are detailed in Section 3. RMSEs are reported in absolute terms for the benchmark model
(the bottom row of each panel). For the remaining the RMSEs are expressed as ratios relative to the benchmark
model. A figure below unity indicates that the model outperforms the benchmark. Bold figures indicate the best
performance for the variable and horizon. ∗, ∗∗, and ∗∗∗ denote significance on the 15%, 10%, and 5% level,
respectively, according to the Diebold-Mariano test with Newey-West standard errors.

the VAR-coefficients is only a minor issue in this case. The results for the unemployment rate
and inflation are similar to the point forecast performance. In case of the unemployment rate,
the MF-SV-VAR and the MF-TVP-VAR provide virtually identical performances indicating that
one can use either SV-models or TVP-models or both features. For inflation, however, it is cru-
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cial to combine stochastic volatility and time-varying VAR-coefficients to get precise predictive
densities.

In summary, the results of the predictive density evaluation support the findings from the
point forecast evaluation. Using mixed-frequency is beneficial irrespective of time-variation in
parameters, stochastic volatility, variables, and forecast horizons. As shown by several studies
using quarterly models, stochastic volatility significantly improves predictive densities (Carriero
et al., 2015; Carriero, Clark and Marcellino, 2016; Chiu et al., 2017; Huber, 2016, among other).
We are able to confirm this finding using mixed-frequency models. Moreover, we underpin
the results of D’Agostino et al. (2013) and Clark and Ravazzolo (2015) by demonstrating that
combining stochastic volatility and time-varying parameters in general improves the accuracy of
predictive densities using both quarterly and mixed-frequency models.

To get a better picture of the predictive densities’ calibration, we compute probability integral
transforms (PITs). For the sake of brevity, Figure 2 only presents the inflation predictions of the
Q-TVP-SV-VAR (upper panel) and MF-TVP-SV-VAR (bottom panel).16 To ensure uniformity,
each bin in Figure 12 should contain 20% of the forecasts. The most apparent difference between
both models’ histograms is that the MF-TVP-SV-VAR is much better in capturing the right
tail of the distribution than the Q-TVP-SV-VAR, in particular at short horizons. Moreover, the
histograms of the Q-TVP-SV-VAR are hump-shaped for h = 1 and h = 2, indicating that the
predictive densities are too wide and the uncertainty around the point estimate is overestimated.
This pattern is less pronounced for the MF-TVP-SV-VAR with histograms closer to uniformity.
In summary, our results indicate that omitting within-quarter dynamics and computing quarterly
averages from monthly variables neglects valuable information , which in most cases significantly
improves forecast accuracy.

Figure 2: Probability Integral Transforms for Inflation Forecasts
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Note: The rows refer to the PITs of the Q-TVP-SV-VAR and MF-TVP-SV-VAR, respectively. The columns refer
to the forecast horizons. The solid line indicates uniformity and the dashed lines 90% confidence bands as in
Rossi and Sekhposyan (2014). Sample: 1995-2016.

16The PITs for the remaining variables, models, and horizons are presented in Appendix G, showing a simil-
iar picture and further supports the good performance of the MF-TVP-SV-VAR in terms of predictive density
calibration.
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Table 3: Real-time Forecast CRPS

Model 1995-2016 2008-2016
h = 2 h = 3 h = 4 h = 2 h = 3 h = 4

GDP growth

MF-TVP-SV-VAR 1.05 1.00 0.97 1.03 0.93 0.93∗
MF-SV-VAR 1.04 1.01 0.98 1.00 1.00 0.98
MF-TVP-VAR 0.99 1.05∗ 1.06∗∗∗ 0.94∗ 0.96 1.03
MF-VAR 1.13∗∗∗ 1.17∗∗∗ 1.13∗∗∗ 1.15∗∗∗ 1.21∗∗∗ 1.19∗∗∗
Q-TVP-SV-VAR 1.02 0.98 0.98 0.99 0.95 0.95
Q-TVP-VAR 1.15∗∗∗ 1.15∗∗∗ 1.14∗∗∗ 1.12∗∗∗ 1.08 1.11∗∗
Q-VAR 1.19∗∗∗ 1.21∗∗∗ 1.18∗∗∗ 1.27∗∗∗ 1.24∗∗∗ 1.25∗∗∗
Q-SV-VAR 0.35 0.34 0.36 0.44 0.46 0.46

Inflation

MF-TVP-SV-VAR 0.90∗∗∗ 0.88∗∗∗ 0.88∗∗∗ 0.88∗∗ 0.88∗∗∗ 0.89∗∗
MF-SV-VAR 1.00 0.95∗ 0.95∗∗ 0.97 0.92∗ 0.9∗∗
MF-TVP-VAR 0.97 0.92∗∗∗ 0.93∗∗∗ 0.98 0.93∗∗∗ 0.94
MF-VAR 1.06 1.02 1.05 1.00 0.93 0.91∗
Q-TVP-SV-VAR 0.94∗∗∗ 0.91∗∗∗ 0.90∗∗∗ 0.93∗∗∗ 0.9∗∗∗ 0.91∗∗∗
Q-TVP-VAR 0.96 0.94∗∗∗ 0.96 0.93 0.90 0.95
Q-VAR 1.03 1.06∗∗∗ 1.08∗∗∗ 1.01 1.02 1.00
Q-SV-VAR 0.12 0.12 0.12 0.15 0.15 0.14

Unemployment rate

MF-TVP-SV-VAR 0.84∗∗∗ 0.90∗∗∗ 0.94 0.89 0.95 0.97
MF-SV-VAR 0.83∗∗∗ 0.87∗∗∗ 0.90∗∗∗ 0.82∗∗∗ 0.86∗∗∗ 0.88∗∗∗
MF-TVP-VAR 0.83∗∗∗ 0.87∗∗∗ 0.92∗∗ 0.85∗∗ 0.89∗ 0.91
MF-VAR 0.89∗∗∗ 0.93∗∗ 0.96 0.86∗∗∗ 0.90∗∗ 0.93∗
Q-TVP-SV-VAR 1.02 1.03 1.02 1.05∗∗ 1.05∗∗ 1.04
Q-TVP-VAR 1.03 1.05 1.04 1.02 1.02 1.01
Q-VAR 1.10∗∗∗ 1.10∗∗∗ 1.11∗∗∗ 1.08∗∗∗ 1.10∗∗∗ 1.11∗∗∗
Q-SV-VAR 0.23 0.35 0.47 0.34 0.53 0.72

Interest rate

MF-TVP-SV-VAR 0.53∗∗∗ 0.70∗∗∗ 0.78∗∗∗ 0.39∗∗∗ 0.52∗∗∗ 0.58∗∗∗
MF-SV-VAR 0.52∗∗∗ 0.68∗∗∗ 0.75∗∗∗ 0.37∗∗∗ 0.49∗∗∗ 0.55∗∗∗
MF-TVP-VAR 0.7∗∗∗ 0.91 1.00 0.72∗∗∗ 0.99 1.09
MF-VAR 0.90∗ 1.03 1.04 0.97 1.14 1.16∗
Q-TVP-SV-VAR 0.97∗ 0.97 0.98 0.85∗∗∗ 0.84∗∗∗ 0.86∗∗∗
Q-TVP-VAR 1.30∗∗∗ 1.31∗∗∗ 1.29∗∗∗ 1.46∗∗∗ 1.54∗∗∗ 1.53∗∗∗
Q-VAR 1.43∗∗∗ 1.35∗∗∗ 1.30∗∗∗ 1.73∗∗∗ 1.75∗∗∗ 1.71∗∗∗
Q-SV-VAR 0.34 0.50 0.66 0.29 0.41 0.55

Notes: The models are detailed in Section 3. The scores are reported in absolute terms for the benchmark model
(the bottom row of each panel) and as ratios to the benchmark for the remaining models. A ratio below unity
indicates that the model outperforms the benchmark. Bold figures indicate the best performance for the variable
and horizon. ∗, ∗∗, and ∗∗∗ denote significance on the 15%, 10%, and 5% level, respectively, according to a t-test
on the average difference in scores relative to the benchmark model with Newey-West standard errors.

5.4 Forecasting during the Great Recession

In the previous Sections we demonstrated that modeling intra-quarterly dynamics significantly
improves forecast accuracy on average, in particular with regard to the novel MF-TVP-SV-VAR.
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Subsequently, we take a closer look on the MF-models’ absolute performance during the Great
Recession. The latter is of great interest, because many structural and nonstructural models
failed in providing accurate forecasts for the steep contraction and the following upswing in
2008/09. Since the MF-models perform especially well for forecasting inflation, Figure 3 de-
picts real-time quarter-on-quarter CPI inflation growth (blue line) along with both the means
(black line) and 60% as well as 90% error bands (shaded areas) from the predictive distribu-
tions, respectively.17 The columns of the figure refer to the data vintages of October 2008 until
December 2008 and demonstrate how the arrival of new data points affects the forecasts. Let
us consider the forecasts computed with the vintage of October 2008 (the first column). Note
that in this month the models do not have any information on the current quarter expect for
the T-Bill rate observation of October. At this data vintage, the models’ posterior means are
rather close to each other for each horizon – for the current quarter all of them lie at roughly
0.25%, which is approximately one percentage point too high compared to the realization. In
contrast, the forecast intervals show noteworthy differences. The MF-VAR and the MF-TVP-
VAR deliver narrow intervals, which assign only a small fraction of probability mass to negative
inflation rates – for the nowcast almost no probability mass. In contrast, the MF-SV-VAR and
the MF-TVP-SV-VAR generate much wider intervals, clearly including negative growth rates.
However, the realization is not included in any interval. In November 2008 the posterior means
are still close to each other, but become a lot of more pessimistic. Now each model correctly
anticipates a negative growth rate for the nowcast – the nowcasts drop to about -0.5%. Thus,
as already indicated in Section 5.1, the forecast errors become remarkably smaller due to the
additional monthly observations. Moreover, there are considerable differences in the posterior
means for higher horizons. The models with fixed VAR-coefficients predict a very slow recovery
with negative inflation rates until 2009Q3. The TVP-models in turn predict – in line with the re-
alizations – positive rates from 2009Q1 onwards; the MF-TVP-SV-VAR almost exactly predicts
the growth rate for 2009Q1. The same pattern holds for the forecasts from December 2008. Now
each model produces a forecast error of almost zero for the nowcast with a very narrow forecast
interval. The subsequent recovery is, however, much better predicted by the TVP-models. In
summary, these results illustrate that the mixed-frequency models can translate intra-quarterly
information into more precise point and density forecasts. Furthermore, this example underpins
the findings from Section 5.1 and 5.2; it demonstrates the importance of stochastic volatility for
accurate nowcasts and the relevancy of time-varying parameters for precise forecasts. To improve
the forecast accuracy on average it is recommended to combine both specifications.

6 Conclusion

Several studies have shown that modeling structural change improves forecast accuracy. We
contribute to this discussion by investigating whether allowing for structural change in a mixed-
frequency setup can further increase this performance. To this end, we use a Bayesian VAR that
incorporates both time-varying parameters and stochastic volatility and is able to cope with

17Figures for the remaining variables are provided in Appendix F.
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Figure 3: Inflation Forecasts during the Great Recession
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Note: The rows refer to mixed-frequency models. The columns refer to the forecast origins, i.e. the information
sets. The blue line indicates quarter-on-quarter real-time inflation growth, the black line is the mean of the
predictive distribution. Shaded areas are 60% and 90% error bands from the predictive distributions.

indicators sampled at different frequencies.
We conduct a rigorous real-time out-of-sample forecast experiment and generate predictions

for GDP growth, CPI inflation, the unemployment rate, and the 3-month Treasury bill rate. Our
findings show that modeling monthly dynamics leads to substantial gains in forecast accuracy.
Especially, nowcasts and short-term forecasts benefit from within-quarter information, while
on longer horizons the advantages vanish. The novel MF-TVP-SV-VAR provides on average
the best point and density forecast performance. In particular, inflation forecasts considerably
benefit from modeling both monthly dynamics and structural change. For the remaining variables
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the picture is less clear-cut. The MF-SV-VAR delivers the best forecasts for the interest rate,
while the MF-TVP-VAR provides superior forecasts for the unemployment rate. We obtain
rather mixed results for the GDP growth rate forecasts with no model dominating over all
horizons, though almost all nonlinear MF-models outperform their linear counterparts as well as
the remaining quarterly models. Finally, we assess the forecast performance during the Great
Recession and demonstrate how the inflow of monthly information alters the inflation forecasts.
We show that SV-models achieve the best performance for the downturn, while TVP-models are
more precise in the subsequent recovery. Using the combined specification (MF-TVP-SV-VAR)
is superior on average.

Our models are small-scale VARs due to the large number of parameters that have to be
estimated and our variables are rather standard in the literature. Thus, future research should
focus on how to process larger dataset in this model framework and on how to select the most
informative indicators.
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Appendix

A Priors

Apart from the VAR with constant volatilities, which uses a Jeffrey’s prior, the priors for the
remaining model specifications are based on a training sample. The latter consists of the first ten
years of the entire sample. In the following, variables denoted with OLS refer to OLS quantities
based on this training sample. The length of the trainings sample is denoted by T0.

AR-coefficients

To keep the models comparable, we draw the AR-coefficients for each nonlinear specification
using the CK algorithm with the following prior:

p(β0) ∼ N(β̂OLS , 4 ∗ V (β̂OLS)) (A.1)

In case of the VAR-SV, we use the first draw of the backward recursion of the CK algorithm, i.e.
βT |T , for each period. For the benchmark VAR we implement a diffuse Jeffrey’s prior:

p(β,Σ) ∝ |Σ|−(n+1)/2. (A.2)

The prior for the covariance of the AR-coefficients Q follows an inverse Wishart distribution:

p(Q) ∼ IW (k2
Q × T0 × V (β̂OLS), T0). (A.3)

Stochastic volatilities

The stochastic volatilities are drawn via the CK algorithm. Thus, additional priors for the
diagonal elements of Σ0 (log σ0), and the lower-triangular elements of A0 (ai,0) are required. We
follow Primiceri (2005) in defining these priors distribution as:

p(log σ0) ∼ N(log σ̂OLS , In) (A.4)

p(A0) ∼ N(ÂOLS , 4 ∗ V (ÂOLS)). (A.5)

The priors for the covariance of log σ0 and A0 are inverse Wishart distributed:

p(Ψ) ∼ IW (k2
Ψ × (1 + n)× In, 4) (A.6)

p(Φi) ∼ IW (k2
Φ × (i+ 1)× V (Âi,OLS), i+ 1) i = 1, . . . , k − 1, (A.7)

where i denotes the respective VAR-equation that has non-zero and non-one elements in the
lower triangular matrix At, i.e. for n=4 it is equation 2, 3, and 4.
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Latent observations

The missing values of the quarterly series expressed at monthly frequency are replaced with
estimated latent state by applying a time-dependent CK algorithm. We initialize the unobserved
state variable zt with z0 as actual observations from the monthly variables and constant values
for the quarterly variables in levels from the last observations of our training sample:

p(z0) ∼ N(zL, Inp). (A.8)

Hence, zL = [ỹ′0, . . . , ỹ
′
0−p+1] where ỹi contains actual values, if observed, and constant values in

levels, thus zero growth rates, for missing observations.

Hyperparameters

The variability of βt, at, and log σt depends on Q, Ψ, and Φ, respectively, and thus on the
hyperparameters kQ, kΨ, and kΦ. Therefore, we follow Amir-Ahmadi et al. (2018) and use priors
for those hyperparameters. Since we do not have any a priori knowledge about the true values
of any of our models, we use uniform priors:

p(ki) ∼ U(1e−10, 1) i = Q,Φ,Ψ. (A.9)

The lower and upper bound of the distribution are chosen to cover a broad range of possible
values, including the default values used by Primiceri (2005).18

B Specification of the Gibbs sampler

To estimate the models we employ a Gibbs sampler, which consecutively draws from the con-
ditional distribution. In the following, the general form of the MCMC algorithm according to
Primiceri (2005) with the correction from Del Negro and Primiceri (2015) is outlined. In order to
include the estimation of the hyperparameters, an additional Metropolis Hastings step is added
to the Gibbs sampler. Denoting any vector of variables x over the sample T by xT = [x′1, . . . , x

′
T ]′,

the Gibbs sampler takes the following form:

1. Initialize βt,ΣT , AT , sT , Q, Ψ, Φ, kQ, kΦ, and kΨ.

2. Draw ỹT from p(ỹT |yT , βT , Q,ΣT , AT ,Ψ,Φ).

3. Draw βT from p(βT |ỹT , Q,ΣT , AT ,Ψ,Φ).

4. Draw Q from p(Q|ỹT , βT ,ΣT , AT ,Ψ,Φ).

5. Draw AT from p(AT |ỹT , βT , Q,ΣT ,Ψ,Φ).

6. Draw Φ from p(Φ|ỹT , βT , Q,ΣT , AT ,Ψ).
18To ensure convergence of the MH-algorithm in case of the MF-TVP-SV-VAR, the lower bound for kQ is

choosen higher as the value in Primiceri (2005).
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7. Draw Ψ from p(Ψ|ỹT , βT , Q,ΣT , AT ,Φ).

8. Draw sT from p̃(sT |ỹT , βT , Q,ΣT , AT ,Ψ,Φ).

9. Draw ΣT from p̃(ΣT |ỹT , βT , Q,AT , sT ,Ψ,Φ).

10. Draw kQ from p(kQ|Q) = p(Q|kQ)p(kQ)

Draw kΨ from p(kΨ|Ψ) = p(Ψ|kΨ)p(kΨ)

Draw kφ from
∏k−1
i=1 p(kΦ|Φi) = p(Φi|kΦ)p(kΦ)

The second step of this Gibbs sampler refers to drawing the latent observations. Since there
are no latent observations in the quaterly models, the Gibbs sampler step 2 for these models.
Steps 3 to 8 belong to the block of drawing the joint posterior of p̃(θ, sT |ỹT ,ΣT ) by drawing θ
from p(θ|ỹT ,ΣT ) where θ = [βT , AT , Q,Φ,Ψ]. Subsequently, we draw sT from p̃(sT |Ỹ T ,ΣT , θ),
and then Σt from p̃(Σt|sT , θ). p̃ denotes the draws based on the approximate likelihood due
to the KSC step, while p refers to draws based on the true likelihood (for further details, see
Del Negro and Primiceri (2015)). In step 10, we include the Metropolis-Hastings within the
Gibbs sampler to draw our Hyperparameters.

For ease of exposition, we use in the following ỹT to indicate the data used in each step of the
algorithm. If one considers quarterly models, however, ỹT has to be replaced by yT . We employ
50000 burn-in iterations of the Gibbs sampler for each model and use every 5th draw of 10000
after burn-in draws for posterior inference.

2. Step: Drawing latent states zt
Let zT = [z1, . . . , zT ] denote the sequence of state vectors consisting of the unobserved
monthly states. Draws for zt are obtained by using the CK algorithm, i.e. we run the
Kalman filter until T to obtain zT |T as well as PT |T and draw zT from N(zT |T , PT |T ).
Subsequently, for t = T − 1, . . . , 1 we draw zt from N(zt|t, Pt|t) by recursively updating zt|t
and Pt|t.

3. Step: Drawing the AR-coefficient βT

Conditional on the drawn states or the actual data, sampling the AR-coefficients proceeds
as in Step 2 using the CK algorithm.

4. Step: Drawing the covariance of the VAR-coefficients Q
The posterior of the covariance of VAR-coefficients is inverse Wishart distributed with
scale matrix Q = Q0 + e′te, et = ∆β′t, and degrees of freedom dfQ = T + T0 where Q0 and
T0 denote the prior scale for Q and prior degrees of freedom, i.e. the size of the training
sample, respectively.

5. Step: Drawing the elements of AT

To draw the elements of AT we follow Primiceri (2005) and rewrite the VAR in (6) as
follows:

At(ỹt − Z ′tβt) = ỹ∗t = Σtut (A.10)
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where, taking into account that βT and ỹt is known, y∗t is observable. Due to the lower
triangular structure of A−1

t , this system can be written as a system of k equations:

ˆ̃y1,t = σ1,tu1,t (A.11)
ˆ̃yi,t = −ŷ[1,i−1]ai,t + σi,tui,t i = 2, . . . , k, (A.12)

where ˆ̃y[1,i−1] = [ˆ̃y1,t, . . . , ˆ̃yi−1,t]. σi,t, and ui,t refer to the i-th elements of σt and ut. Thus,
under the block diagonal assumption of Φ, the RHS of equation i does not include ŷi,t,
implying that one can recursively obtain draws for ai,t by applying an otherwise ordinary
CK algorithm equation-wise.

6. Drawing the covariance Φi of the elements of AT

Φi has an inverse Wishart posterior with scale matrix Φi = Φ0,i + ε′i,tεi,t, εi,t = ∆a′i,t, and
degrees of freedom dfΦi = T +dfΦi,0 for i = 1, . . . , k. Φ0,i, and dfΦi,0 denote prior scale and
prior degree of freedoms, respectively.

7. Step: Drawing the covariance Ψ of log-volatilities
As in step 6, Ψ has an inverse Wishart distributed posterior with scale matrix Ψ = Ψ0+ε′tεt,
εt = ∆ log σ′t

2, and degrees of freedom dfΨ = T + dfΨ0 where Ψ0 and dfΨ0 denote the prior
scale and the prior degree of freedoms, respectively.

8. Step: Drawing the states of the mixture distribution sT

Conditional on the volatilities, we independently draw a new value for the indicator matrix
sT from (see Kim et al., 1998):

PR(si,t = j|ỹ∗∗, hi,t) ∝ qjfN (ỹ∗∗|2hi,t +mj − 1.2704, ν2
j ). (A.13)

9. Step: Drawing the volatilities
The elements of Σt are drawn using the KSC algorithm. To this end, we employ the VAR
rewritten as in (A.10). Taking squares and logarithms, we get

ỹ∗∗t = 2rt + νt (A.14)

and for the volatility process:

ht = ht−1 + εt (A.15)

where ỹ∗∗i,t = log((ỹ∗i,t)
2 + c), νi,t = log u2

i,t, hi,t = log σi,t, and c is set to a small but
positive number to increase the robustness of the estimation process. To transform this
non-Gaussian system (νt is distributed according to a Chi-squared distribution with one
degree of freedom) into a Gaussian system, we resort to Kim et al. (1998) and consider a
mixture of seven normal densities with component probabilities qj , means mj−1.2704 and
variances ν2

j . The values for {qj ,mj , ν
2
j } are chosen to match the moments of the log χ2(1)

distribution and read as follows:
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ω qj mj ν2
j

1 0.0073 -10.1300 5.7960
2 0.1056 -3.9728 2.6137
3 0.0000 -8.5669 5.1795
4 0.0440 2.7779 0.1674
5 0.3400 0.6194 0.6401
6 0.2457 1.7952 0.3402
7 0.2575 -1.0882 1.2626

Kim et al. (1998).

Conditional on sT – the indicator matrix, governing composition of the mixture distribution
for every νt, t = 1, . . . , T – the CK algorithm enables us to recursively get draws for

ht|t+1 = E(ht|ht+1, ỹ
t, AT , BT , Q, sT ,Ψ,Φ) (A.16)

Ht|t+1 = V AR(ht|ht+1, ỹ
t, AT , BT , Q, sT ,Ψ,Φ). (A.17)

10. Step: Drawing the hyperparameters kQ, kΨ, and kΦ

The prior hyperparameters of the scale matrix of the variance covariance matrix Q, Ψ, and
Φ are drawn with a Metropolis within Gibbs step. Amir-Ahmadi et al. (2018) show that
the acceptance probability for each draw i can be simplified to:

αikX = min

(
p(X|k∗X)p(k∗X)q(k∗X |k

i−1
X )

p(X|ki−1
X )p(ki−1

X )q(ki−1
X |k∗X)

, 1

)
, (A.18)

where X = {Q,Ψ,Φ}. p(X|k∗X) denotes prior distribution of X, while p(k∗X) indicates the
prior for the hyperparameter. q(k∗X |k

i−1
X ) labels the proposal distribution. We apply the

random walk chain algorithm:

k∗X = ki−1
X + ξt ξt ∼ N(0, σ2

kX
), (A.19)

and the standard deviation σkX is adjusted in every 500th step of the burn-in period by:

σadjkX
= σkX

αkX
α∗

, (A.20)

where αkX is the average acceptance rate over the 500 draws and α∗ = 0.4 is the target
acceptance rate. We initialize kX with the values used by Primiceri (2005), kQ = 0.01,
kΨ = 0.1, and kΦ = 0.01 and the standard deviation by σkX = 0.01.
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C Log scores

Table 4: Real-time Forecast LSs

Model 1995-2016 2008-2016
h = 2 h = 3 h = 4 h = 2 h = 3 h = 4

GDP growth

MF-TVP-SV-VAR -0.33∗∗∗ 0.04 0.08∗ -0.47 0.18∗∗∗ 0.17∗∗∗
MF-SV-VAR -1.61∗∗∗ -0.16 0.01 -3.03∗∗ -0.37 0
MF-TVP-VAR -0.04 -0.15∗∗∗ -0.15∗∗∗ 0.02 -0.03 -0.11∗∗∗
MF-VAR -0.2∗∗∗ -0.21∗∗∗ -0.17∗∗∗ -0.35∗∗∗ -0.28∗∗∗ -0.26∗∗∗
Q-TVP-SV-VAR 0 0.01 0 0.04 0.08 0.05
Q-TVP-VAR -0.16∗∗∗ -0.24∗∗∗ -0.24∗∗∗ -0.1∗ -0.12 -0.17∗
Q-VAR -0.21∗∗∗ -0.26∗∗∗ -0.24∗∗∗ -0.28∗∗∗ -0.27∗∗∗ -0.3∗∗∗
Q-SV-VAR -0.94 -0.91 -0.97 -1.19 -1.24 -1.25

Inflation

MF-TVP-SV-VAR 0.07 0.12∗∗∗ 0.16∗∗∗ 0.11 0.09 0.15∗∗∗
MF-SV-VAR -0.03 0.03 0.05 0.04 0.09 0.12∗∗
MF-TVP-VAR -0.81 -0.65 -0.17 -2.01 -1.71 -0.5
MF-VAR -2.23∗ -0.62 -0.52 -5.35 -1.38 -1.05
Q-TVP-SV-VAR 0.07∗∗∗ 0.07∗∗∗ 0.1∗∗∗ 0.11∗∗∗ 0.03 0.04
Q-TVP-VAR -0.53 -0.3 -0.33 -1.24 -0.71 -0.76
Q-VAR -1.56 -0.51 -0.63 -3.75 -1.1 -1.34
Q-SV-VAR 0.18 0.09 0.11 -0.06 -0.1 -0.05

Unemployment rate

MF-TVP-SV-VAR -0.02 0.38∗∗ 0.34∗ 0.06 0.66∗ 0.63
MF-SV-VAR 0.21∗∗∗ 0.34∗∗ 0.14 0.3∗∗∗ 0.66 0.27
MF-TVP-VAR 0.21∗∗∗ 0.35∗∗ 0.3 0.2∗∗ 0.75∗∗∗ 0.71
MF-VAR -1.07 -0.67 -0.82 -2.79 -1.68 -2.02
Q-TVP-SV-VAR 0.04 0.24 0.26 0.04 0.56 0.61
Q-TVP-VAR 0.05 0.26 0.31 0.23 0.81 0.93
Q-VAR -0.63∗∗∗ -0.23 -0.31∗∗ -1.37∗∗ -0.4 -0.63∗
Q-SV-VAR -0.55 -1.18 -1.52 -1.02 -2.09 -2.55

Interest rate

MF-TVP-SV-VAR 0.77∗∗∗ 0.43∗∗∗ 0.3∗∗∗ 0.9∗∗∗ 0.59∗∗∗ 0.46∗∗∗
MF-SV-VAR 0.8∗∗∗ 0.47∗∗∗ 0.35∗∗∗ 1.03∗∗∗ 0.7∗∗∗ 0.58∗∗∗
MF-TVP-VAR 0.15 -0.12 -0.18∗∗ -0.18∗ -0.44∗∗∗ -0.49∗∗∗
MF-VAR -0.14 -0.27∗∗∗ -0.23∗∗∗ -0.5∗∗∗ -0.59∗∗∗ -0.53∗∗∗
Q-TVP-SV-VAR 0.01 0 -0.04 0.02 0.02 0.02
Q-TVP-VAR -0.46∗∗∗ -0.48∗∗∗ -0.45∗∗∗ -0.83∗∗∗ -0.83∗∗∗ -0.82∗∗∗
Q-VAR -0.6∗∗∗ -0.52∗∗∗ -0.42∗∗∗ -1.01∗∗∗ -0.93∗∗∗ -0.82∗∗∗
Q-SV-VAR -0.8 -1.18 -1.49 -0.37 -0.78 -1.12

Notes: The models are detailed in Section 3. The scores are reported in absolute terms for the benchmark (the
bottom row of each panel) and in differences to the benchmark for the remaining models. A positive difference
indicates that the model outperforms the benchmark. Bold figures indicate the best performance for the variable
and horizon. ∗, ∗∗, and ∗∗∗ denote significance on the 15%, 10%, and 5% level, respectively, according to a t-test
on the average difference in scores relative to the benchmark model with Newey-West standard errors.

32



D Time-varying parameters

Figure 4: Time-Varying Parameters of the Q-TVP-SV-VAR

GDP growth Inflation Unemployment rate Interest Rate
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Note: Figure depicts the time-varying parameters from the Q-TVP-SV-VAR. Columns refer to the variable and
rows to the constant/lagged variable on which the variable is regressed. The dashed lines indicate 68% error
bands. Results are based on the last data vintage
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Figure 5: Time-Varying Parameters of the MF-TVP-SV-VAR
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Note: Figure depicts the time-varying parameters from the MF-TVP-SV-VAR. Columns refer to the variable and
rows to the constant/lagged variable on which the variable is regressed. The dashed lines indicate 68% error
bands. Results are based on the last data vintage.
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E Relative RMSEs

Figure 6: Relative RMSEs

GDP growth Inflation Unemployment rate Interest rate
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Note: Figure depicts the relative RMSEs in terms of percentage gains compared to the benchmark model. Red,
blue, and black lines refer to the information sets I1, I2, and I3 as outline in Section 2.2, respectively.
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F Forecasting during the Great Recession - GDP, Unemployment
Rate, and Interest Rate

Figure 7: GDP Forecasts during the Great Recession

October 2008 (I1) November 2008 (I2) December 2008 (I3)
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Note: The rows refer to mixed-frequency models. The columns refer to the forecast origins, i.e. the information
sets. The blue line indicates quarter-on-quarter real-time GDP growth, the black line is the mean of the predictive
distribution. Shaded areas are 60% and 90% error bands from the predictive distributions.

37



Figure 8: Unemployment Forecasts during the Great Recession

October 2008 (I1) November 2008 (I2) December 2008 (I3)

M
F
-V
A
R

M
F
-S
V
-V
A
R

M
F
-T

V
P
-V
A
R

M
F
-T

V
P
-S
V
-V
A
R

Note: The rows refer to mixed-frequency models. The columns refer to the forecast origins, i.e. the information
sets. The blue line indicates quarter-on-quarter real-time unemployment rate, the black line is the mean of the
predictive distribution.Shaded areas are 60% and 90% error bands from the predictive distributions.
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G Probability Integral Transforms

Figure 9: Probability Integral Transforms for Inflation Forecasts
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Note: The rows refer to the PITs of each model. The columns refer to the forecast horizons. The solid line
indicates uniformity and the dashed lines 90% confidence bands as in Rossi and Sekhposyan (2014).
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Figure 10: Probability Integral Transforms for GDP Forecasts

h = 1 h = 2 h = 3 h = 4

Q
-V

A
R

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

M
F
-V

A
R

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

Q
-S

V
-V

A
R

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

M
F
-S

V
-V

A
R

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

Q
-T

V
P
-V

A
R

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

M
F
-T

V
P
-V

A
R

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

Q
-T

V
P
-S

V
-V

A
R

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

M
F
-T

V
P
-S

V
-V

A
R

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

Note: The rows refer to the PITs of each model. The columns refer to the forecast horizons. The solid line
indicates uniformity and the dashed lines 90% confidence bands as in Rossi and Sekhposyan (2014).
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Figure 11: Probability Integral Transforms for Unemployment Rate Forecasts
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Note: The rows refer to the PITs of each model. The columns refer to the forecast horizons. The solid line
indicates uniformity and the dashed lines 90% confidence bands as in Rossi and Sekhposyan (2014).
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Figure 12: Probability Integral Transforms for Interest Rate Forecasts
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Note: The rows refer to the PITs of each model. The columns refer to the forecast horizons. The solid line
indicates uniformity and the dashed lines 90% confidence bands as in Rossi and Sekhposyan (2014).
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