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Markov Chain Monte Carlo Estimation of 
Spatial Dynamic Panel Models for Large 
Samples 
 
Abstract
Focus is on efficient estimation of a dynamic space-time panel data model that 
incorporates spatial dependence, temporal dependence, as well as space-time 
covariance and can be implemented in large N and T situations, where N is the number 
of spatial units and T the number of time periods. Quasi-maximum likelihood (QML) 
estimation in cases involving large N and T poses computational challenges because 
optimizing the (log) likelihood requires: 1) evaluating the log-determinant of an NT x NT 
matrix that appears in the likelihood, 2) imposing stability restrictions on parameters 
reflecting space-time dynamics, as well as 3) simulations to produce an empirical 
distribution of the partial derivatives used to interpret model estimates that require 
numerous inversions of large matrices. We set forth a Markov Chain Monte Carlo 
(MCMC) estimation procedure capable of handling large problems, which we illustrate 
using a sample of T = 487 daily fuel prices for N = 12, 435 German gas stations, resulting 
in N x T over 6 million. The procedure produces estimates equivalent to those from 
QML and has the additional advantage of producing a Monte Carlo integrated estimate 
of the log-marginal likelihood, useful for purposes of model comparison. Our MCMC 
estimation procedure uses: 1) a Taylor series approximation to the logdeterminant 
based on traces of matrix products calculated prior to MCMC sampling, 2) block 
sampling of the spatiotemporal parameters, which allows imposition of the stability 
restrictions, and 3) a Metropolis-Hastings guided Monte Carlo integration of the log-
marginal likelihood. We also provide an efficient approach to simulations needed to 
produce the empirical distribution of the partial derivatives for model interpretation. 
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1 Introduction

Dynamic panel data models that accommodate spatial dependence have attracted attention

in the spatial econometrics panel data literature. A variety of models that control for various

types of correlation across locations have been explored. Su and Yang (2015) consider a

dynamic model that models spatial dependence in the error terms, whereas Yu et al. (2008)

introduce a dynamic panel specification that treats spatial dependence in the dependent

variable vector. Yu et al. (2012) implement a specification that allows for spatial and

time dependence as well as component mixing of space and time dependence that we label

space-time covariance. This aspect of the model allows spatial diffusion to take place over

time.

We focus on fast, efficient Markov Chain Monte Carlo (MCMC) estimation of these

models in cases where the sample size is large in both the cross-sectional units N , and

time periods T . The approach taken draws on previous work by Parent and LeSage (2010,

2011, 2012) who introduce a space-time filter view of these models. Since we have a large

number of cross section (N) and time series (T ), we follow Yu et al. (2008) and treat the

data generating process as conditional on the initial period cross-sectional observations.

For models that treat spatial dependence in the disturbances rather than the dependent

variable, treatment of the initial period observations in small T situations has been found

to be important (Su and Yang, 2015). Parent and LeSage (2010, 2011, 2012) provide Monte

Carlo results showing that when the initial cross-sectional observations are endogenous, but

incorrectly treated as exogenous, estimates and inferences can be biased, a finding similar to

that of Su and Yang (2015) for the case where dependence is modeled in the disturbances.

The Monte Carlo study from Parent and LeSage (2012) also show that when the number of

time periods becomes large, treatment of the initial period observations becomes irrelevant,

which is the case we address here.

A matrix version of the model specification on which we focus is in equation (1), with a

more complete motivation and development of this specification taken up in section 2. The

matrixW is an N×N spatial connectivity matrix with zeros on the main diagonal and non-

zero elements in the i, jth position when observations i and j exhibit dependence. The T×T
matrix L is the time lag operator such that (L⊗ IN )y = yt−1, and (L⊗W )y =Wyt−1. The
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disturbance vector ε is assumed to be normally distributed with constant scalar variance

(σ2) over time and space. Exogenous explanatory variables are represented by the matrix

X with associated parameter vector β.

y = ρ(IT ⊗W )y + φ(L⊗ IN )y + θ(L⊗W )y +Xβ + ε (1)

Quasi-maximum likelihood (QML) estimation involves determining parameters ρ, φ, θ, β, σ2

that minimize the negative of the log-likelihood function, subject to stability restrictions

on the spatiotemporal parameters ρ, φ, θ.1 In cases involving large N and T computa-

tional challenges arise because optimizing the (log) likelihood requires: 1) evaluating the

log-determinant of an NT × NT matrix that appears in the likelihood, 2) imposing sta-

bility restrictions on parameters reflecting space-time dynamics which requires use of a

constrained optimization algorithm, as well as 3) simulations to produce an empirical dis-

tribution of the partial derivatives used to interpret model estimates that require numerous

inversions of large matrices.

We set forth a Markov Chain Monte Carlo (MCMC) estimation procedure capable

of handling large problems, which uses: 1) a Taylor series approximation to the log-

determinant based on traces of matrix products calculated prior to MCMC sampling that

allows rapid evaluation of the log-determinant, 2) block sampling of the spatiotemporal

parameters that allows imposition of the stability restrictions via rejection sampling, and

3) a Metropolis-Hastings guided Monte Carlo integration of the joint posterior distribution

resulting in an estimate of the log-marginal likelihood. We also provide an efficient approach

to simulations needed to produce the empirical distribution of the partial derivatives for

model interpretation for a special case where the spatiotemporal parameters obey a restric-

tion that has been labeled space-time separability in the literature (Parent and LeSage,

2011, 2012).

An illustration of the method uses a sample of T = 487 daily gas station prices for

more than N = 12, 000 stations in Germany (described in LeSage et al. (2017)), resulting

1We are assuming a fixed effects transformation has been applied to the model relationship in (1) to
eliminate space and time fixed effects parameters, e.g., Lee and Yu (2010).
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in N × T greater than 6 million. Fixed effects in spatial panel data models have been

extensively analyzed for the case of large T by Yu et al. (2008), and for small T in Su and

Yang (2015). In our application, we introduce fixed effects for the brand configuration of

each station and its nearest neighboring station. Using price markups (over cost) as the

dependent variable, this allows us to explore brand competition/cooperation between six

different brands of stations.

Section 2 sets forth space-time filter expressions for the model and discusses computa-

tional issues that arise, along with our proposed solutions. Section 3 provides results from

a Monte Carlo study that examines the accuracy and speed of our approach. Section 4

applies the estimation method to a price markup model of German gas stations involving

the analysis of large sample.

2 A dynamic space-time panel data model

The model we explore is a space-time dynamic extension of the panel data model in (2),

where αi denote observation-specific and λt time-period specific fixed effects.

yit = xitβ + αi + λt + εit (2)

i = 1, . . . , N, t = 1, . . . , T

We consider the space-time filter of Parent and LeSage (2010, 2011, 2012) which can

be applied to the dependent variable vector in the basic panel data model for t = 1, . . . , T ,

shown in (3).2

yt = xtβ + εt (3)

Where yt = (y1t, . . . , yNt)
′ is the N × 1 vector of observations for the tth time period, xt

denotes the N×k matrix of non-stochastic regressors and the random terms εt are assumed

2For simplicity, we assume that a fixed effects transformation was used to eliminate time and spatial
unit-specific fixed effects from the sample data yt, xt, e.g., Lee and Yu (2010).
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to be independent and identically distributed with zero mean and a variance σ2εIN .

Parent and LeSage (2010, 2011, 2012) suggest use of C = (IT+1 − φL) as a time filter

where φ is the time dependence coefficient and L is the T × T time-lag operator (matrix)

such that

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0

1 0 . . . 0

0
. . . 0

0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
. (4)

This time-dependence filter C is defined as:

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ 0 . . . 0

−φ 1 . . . 0
...

. . .
. . .

...

0 . . . −φ 1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (5)

Specification of ψ, the (1,1) element in C depends on whether the first period is modeled

or assumed to be known. Since our focus is on large T samples, we do not model the first

period.

The spatial dependence filter is defined as a nonsingular matrix B = (IN − ρW ), where

ρ is a scalar spatial dependence parameter and W is a known, row-normalized N × N

spatial weight matrix whose diagonal elements are zero. This matrix defines the dependence

between cross sectional (spatial) observational units.

The space-time filter that Parent and LeSage (2010, 2011, 2012) proposed corresponds

to the Kronecker product of the matrices C and B:

C ⊗B = IN,T − ρIT ⊗W − φL⊗ IN + (ρ× φ)L⊗W, (6)

where L is the T ×T time-lag matrix. Parent and LeSage (2010) note that the filter implies

a restriction on the parameter associated with spatial effects from the previous period

(L ⊗W ), which should equal to −ρ × φ. However, they argue for relaxing this restriction

and introducing an unrestricted parameter θ for the space-time covariance term in the

model. Their argument is that imposing the restriction θ = −ρ × φ produces simplistic
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space-time impacts on the dependent variable yt arising from changes in the explanatory

variables xt. Specifically, Debarsy et al. (2012) note that the restriction implies simplistic

spatial spillovers decay over time according to φsB−1. Following LeSage and Pace (2009),

the mean of diagonal elements of (IN − ρW )−1INβ, represent scalar summary measures of

direct (own-partial derivative) effects, and the average of cumulative row-sums off-diagonal

elements, spillover (cross-partial derivatives). Of course, having estimated the unrestricted

specification involving the parameter θ, one can always test for the possible restriction that

θ = −ρφ using posterior estimates, about which we will have more to say later. We can use

the filter matrices to write our model in the matrix form shown in (1).

2.1 Computational challenges for estimation

The specification in (1) contains multiple dependence parameters to be estimated (ρ, φ, θ),

which means that QML estimation requires a multivariate optimization routine to maximize

the likelihood. Another aspect of the model is that the dependence parameters ρ, φ, θ

associated with stable processes require ρ+φ+θ < 1, and for cases where ρ−θ > 0, stability

requires that φ − ρ + θ > −1 (Parent and LeSage, 2011). This means that constrained

optimization must be used.

Another challenge to maximum likelihood estimation of this model is the log-determinant

term that arises in the (log) likelihood function, specifically (log): |INT −ρ(IT ⊗W )−φ(L⊗
IN ) − θ(L ⊗W )|. In the case of conventional spatial regression models involving a single

weight matrix, there is a great deal of literature on approaches to efficiently calculating or

approximating the log-determinant term that appears in the (log) likelihood (|IN − ρW |),
(see LeSage and Pace (2009), Chapter 4). These approaches are not directly applicable to

the model considered here, since the log-determinant expression needs to be evaluated for

multiple dependence parameter values during each iteration of the optimization algorithm.

In the case of Markov Chain Monte Carlo estimation, the log-determinant term appears in

the conditional distribution for the dependence parameters requiring multiple evaluations,

one for each trip through the MCMC sampler.

Another aspect of the model relates to proper interpretation of the partial derivative

impacts on the dependent variable vector arising from changes in the explanatory vari-
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ables, e.g., ∂E(y)/∂Xr for the rth explanatory variable. For the model in (1) we have:

∂E(y)/∂Xr = [INT − ρ̂(IT ⊗W )− φ̂(L⊗ IN )− θ̂(L⊗W )]−1INT β̂
r, where β̂r is the coeffi-

cient on the rth explanatory variable, (see Debarsy, Ertur and LeSage, 2011). Calculating

the matrix inverse only once to determine point estimates of the partial derivative effects is

not particularly challenging as the matricesW,L are sparse. However, conventional practice

in maximum likelihood or MCMC estimation produces empirical estimates for measures of

dispersion associated with the partial derivative effects estimates based on simulating the

dependence parameters ρ, φ, θ as well as β̂ from the (estimated) variance-covariance ma-

trix involving either the analytical or numerical hessian, or using MCMC draws for these

parameters (LeSage and Pace, 2009). A number of such simulated or MCMC draws of

these parameters (say 1,000) are then evaluated in the partial derivative expressions to pro-

duce an empirical measure of dispersion, which requires numerous matrix inversions (say

1,000). This of course makes calculation of the empirical measures of dispersion for the par-

tial derivative effects estimates on which inference is based a computationally challenging

problem.

2.2 A computationally efficient representation of the model

The model in (1) can be written more compactly as in (7):

ỹω = Xβ + ε (7)

ỹ =
(
y W1y W2y W3y

)

W1 = IT ⊗W, W2 = L⊗ IN , W3 = L⊗W

ω =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

−ρ
−φ
−θ

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝ 1

−Γ

⎞
⎠ , Γ =

⎛
⎜⎜⎜⎝

ρ

φ

θ

⎞
⎟⎟⎟⎠

A key feature of ỹ is that this expression separates dependence parameters to be esti-

mated from sample data describing the spatiotemporal dependence process, with the scalar
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spatiotemporal dependence parameters in the vector ω. MCMC estimation proceeds by

sampling sequentially from the conditional distributions of each parameter (or set of pa-

rameters). The conditional distributions for the parameters β, σ2IN , ω needed to implement

MCMC estimation are set forth in the next section. We will see that a virtue of expressing

the model as in (7) is that numerous quantities arise that involve sample data ỹ, which can

be calculated once prior to MCMC sampling.

2.3 Conditional distributions for parameters of the model

MCMC estimation involves sampling from the complete sequence of conditional distribu-

tions for the model parameters, which are set forth here. Since our focus is on large samples

N,T , we can rely on uninformative priors for the parameters β, as these would not likely

impact posterior estimates. For the same reason, we rely on an uninformative inverse

Gamma(ā, b̄), where we let ā, b̄ → 0 for σ2. Since the dependence parameters in ω are a

focus of inference, we employ uniform priors for these dependence parameters, which must

be constrained to lie in the stable region.

Given the limited prior information, the conditional distributions for the parameters

β and σ2 take the forms described in the following. The conditional distribution for the

parameters β is multivariate normal with mean and variance-covariance shown in (8).

p(β|σ2, ω) = ℵ(β̃, Σ̃β) (8)

β̃ = (X ′X)−1(X ′ỹω)

Σ̃β = σ2(X ′X)−1

We note that (X ′X)−1X ′ỹ consists of only sample data information, so this expression

can be calculated once prior to MCMC sampling, and this is true of (X ′X)−1 as well. This

means that sampling new values of the parameters β (given values for the parameters σ2, ω)

can take place in a rapid, computationally efficient way.

The conditional posterior for σ2 (given β, ω) takes the form in (9), when we set the prior

parameters ā = b̄ = 0.
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p(σ2|β, ω) ∝ (σ2)−(NT
2

)exp

(
− 1

2σ2
(e′e)

)
(9)

e = (ỹω −Xβ)

∼ IG(ã, b̃)

ã = NT/2

b̃ = (e′e)/2

We sample the spatiotemporal parameters (ρ, φ, θ) as a block using Metropolis-Hastings.

Block sampling means that a vector of the spatiotemporal dependence parameters in ω are

proposed and compared to the current vector of spatiotemporal dependence parameters.

The proposed vector is either accepted or rejected. This allows proposals of dependence

parameters that obey the stability restriction, so any vectors that are accepted by the

Metropolis-Hastings (M-H) procedure will always obey the needed restrictions. This re-

quires evaluating the joint conditional distribution for the block of the spatiotemporal pa-

rameters (ρ, φ, θ). The stability constraint on the spatiotemporal parameters ρ, φ, θ requires

that the sum of these parameters must be less than one, and in cases where where ρ−θ > 0,

stability requires that φ− ρ+ θ > −1, Parent and LeSage (2011).

We rely on a reversible jump procedure to produce proposal values for the vector of

parameters ρ, φ, θ. For each scalar parameter we rely on a three-headed coin flip. By this

we mean a uniform random number on the open interval coin flip = U(0, 1), with head #1

equal to a value ≤ 1/3, head #2 a value > 1/3 ≤ 2/3 and head #3 a value > 2/3 < 1.

Given a head #1 result, we set a proposal ρp using a uniform random draw on the open

interval (−1 < ρp < ρc), where ρc is the current value. A head #2 results in setting the

proposal value equal to the current value (ρp = ρc), while a head #3 selects a proposal

value based on a uniform random draw on the open interval (ρc < ρp < 1). Of course, a

similar approach is used to produce proposals for the parameters φ, θ. Proposed vectors

of these parameters inconsistent with the stability restrictions are eliminated via rejection

sampling.

The reversal jump approach to proposing the block of spatiotemporal parameters has
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the virtue that accepted vectors will obey the stability restriction and will also reduce

autocorrelation in the MCMC draws for these parameters. However, proposals from the

reversible jump procedure based on the large intervals between (−1 < ρc) and (ρc < 1) will

not produce candidates likely to be accepted when these parameters are estimated with a

great deal of precision, as would be the case for problems involving large N,T . This can

result in a failure to move the chain adequately over the parameter space. To address this

issue, standard deviations, σρ, σφ, σθ for each parameter are calculated based on the first

1,000 draws (and thereafter using an interval of m = 1, 000 draws). These are used in a

tuned random-walk procedure to produce candidate/proposed values. Specifically, we use

a tuning vector cc for each parameter that is adjusted based on acceptance rates for each

parameter. This is used in conjunction with the standard deviations to produce proposals:

ρp = ρc + ccN(0, 1)σρ, with the same approach used for φp, θp.

The block of proposed dependence parameters is then accepted or rejected using a

Metropolis-Hastings step. We report results from a series of Monte Carlo experiments in

Section 3 that allow us to assess the efficacy of this approach to sampling the parameters

ρ, φ, θ.

2.4 The joint conditional for the spatiotemporal parameters of the model

The joint conditional distribution for the spatiotemporal dependence parameters in ω can

be obtained by analytically integrating out β, σ2 leading to a (log kernel) expression for

the joint posterior of the dependence parameters in ω. For notational purposes, we express

the sample data part of ỹ as:
[
y W1y W2y W3y

]
, where W1 = (IT ⊗ W ),W2 =

(L⊗ IN ),W3 = (L⊗W ).

log p(ω|y,X,W1,W2,W3) ∝ log[D(ω)]− (NT/2)log(ω′Fω) (10)

F = (ỹ −Xβd)
′(ỹ −Xβd)

βd = (X ′X)−1X ′ỹ

log[D(ω)] is a Taylor series approximation to the log-determinant term that arises in the
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model, described in detail in the next section. For now we note that this log-determinant

term depends on the parameters in the vector ω, indicated by D(ω). We note that F

consists of only sample data, so this expression can be calculated prior to MCMC sampling,

leading to a computationally efficient expression reflecting a quadratic form: log(ω′Fω),

that can be easily evaluated for any vector of spatiotemporal dependence parameters ω.

2.5 A Monte Carlo estimate of the log-marginal likelihood

An advantage of analytically integrating out the parameters β, σ2, is that further integration

of the joint conditional posterior over the spatiotemporal dependence parameters in ω,

yields the log-marginal likelihood for this model. We can use Monte Carlo integration to

accomplish this task. Monte Carlo integration evaluates the expression to be integrated

using random draws of the parameter values. A drawback to this approach is inefficiency

because many of the random draws for the parameters are not in areas of high density of

the function being integrated. In our case, the Metropolis-Hastings sampling procedure

used to produce draws of the dependence parameters steers these parameter values to areas

of high density of the joint posterior. This allows us to produce an efficient Monte Carlo

integration of the log-marginal likelihood.

Given an estimate of the log-marginal likelihood for a model Mi (LogMi), we can cal-

culate: prob(Mi) = LogMi/
∑Q

i=1 LogMi (in the case of Q different models). Of course,

there is a great deal of interest in comparing alternative models, for example, models based

on different spatial weight matrices. Given uncertainty regarding the appropriate weight

matrix to use, a Bayesian solution to this problem is to produce estimates that average over

models based on different W specifications, each weighted by their posterior model proba-

bility. This extends the model estimates to incorporate uncertainty regarding the correct

weight matrix to use. Another use for model comparison regards the appropriate model

specification. LeSage (2014) shows how to use LogM in the case of single W−matrix mod-

els (cross-section and panel models) to compare models based on SAR, SDM, SDEM, SLX,

SEM specifications, obtaining a straightforward answer to the question of which specifica-

tion is most consistent with the sample data. The answer is unconditional on the parameter

values because these have been integrated out to produce the log-marginal likelihood and
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associated model probabilities.

2.6 A Taylor’s series approximation to the log-determinant

LeSage and Pace (2009) discuss Taylor’s series as well as Chebyshev polynomial approxi-

mations for the log-determinant term that arises in spatial regression models. In our case,

this takes the form shown in (11).

ln|IN×T − ρW1 − φW2 − θW3| = −
∞∑
j=1

Γj tr W̃ j

j
(11)

� −
q∑

j=1

Γjtr(W̃ j)

j

W̃ =
(
W1 W2 W3

)

From the definitions of W1,W2,W3 we see that the first-order trace of (W̃ 1) for the

matrix W1 = IT ⊗W is zero because diagonal elements of the matrix W are zero. The

same is true for the first-order trace of W2 = L⊗ IN and W3 = L⊗W . Higher-order traces

are shown in (12), where LeSage and Pace (2009) discuss computationally efficient ways to

calculate these.

tr(W̃ 2) =

3∑
i=1

3∑
j=1

tr(WiWj) (12)

tr(W̃ 3) =
3∑

i=1

3∑
j=1

3∑
k=1

tr(WiWjWk)

tr(W̃ 4) =

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

tr(WiWjWkWl)

In conclusion, for a set of pre-calculated traces, during MCMC sampling from the con-

ditional (or joint posterior) distributions, we need only calculate powers of the parameters

Γj and multiply these times the (already calculated) traces. A fourth-order Taylor’s series

approximation seems sufficient to produce accurate estimates. Specifically, for the case of
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our three matrices the second-order traces interacted with the parameter vector Γ takes the

form in (13). Of course, the 3rd order terms increase to 27 and 4th order to 81 terms.

Γ2 tr(W̃ 2) = Γ′Q2Γ (13)

Γ′ =
(
ρ φ θ

)

Q2 =

⎛
⎜⎜⎜⎝

tr(W 2
1 ) tr(W1W2) tr(W1W3)

tr(W2W1) tr(W 2
2 ) tr(W2W3)

tr(W3W1) tr(W3W2) tr(W 2
3 )

⎞
⎟⎟⎟⎠ (14)

LeSage and Pace (2009) point out that accelerated computation of traces can be ac-

complished using sums of matrix Haddamard products. This involves some storage of

previously calculated matrix products that avoids calculating these more than once. For

the case of asymmetric matrices we use matrix products
∑3

i

∑3
j Wi	W ′

j , and we note that

row-normalized weight matrices typically used in spatial econometric models would be an

example of asymmetric matrices.

2.7 Calculating effects estimates for model interpretation

LeSage and Pace (2009) point out that for the case of a cross-sectional SAR model involving

N observations, partial derivatives take the form in (15) for the rth explanatory variable.

They propose scalar summary measures of the own- and cross-partial derivatives that they

label direct and indirect effects, shown in (16) and (18), where ιN is an N × 1 vector of

ones.

A scalar summary measure of the direct effect is constructed using the average of the

main diagonal of the matrix Sr(W ), and a scalar summary indirect effect from the cumu-

lative sum of off-diagonal elements in each row, averaged across rows.
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∂E(y)/∂xr = (IN − ρW )−1βr = Sr(W ) (15)

= INβr + ρWβr + ρ2W 2βr + . . .

M̄(r)direct = N−1 tr(Sr(W )) (16)

M̄(r)total = N−1ι′NSr(W )ιN (17)

M̄(r)indirect = M̄(r)total − M̄(r)direct (18)

Expressions in (16), (17), (18) produce point estimates for the scalar summary measures

of effects (own- and cross-partial derivatives) on dependent variable outcomes, but we also

require a measure of dispersion for the purpose of statistical tests regarding the significance

of these effects. Use of an empirical distribution constructed by simulating the non-linear

expressions in (15) using (say 1,000) draws from the posterior distribution of the underlying

parameters ρ, βr is suggested by LeSage and Pace (2009), Note that a naive approach to

such a simulation-based empirical distribution would require calculation of the n×n matrix

inverse (In − ρW )−1 a large number of times, for varying values of the parameters ρ, which

would be computationally intensive.

The required quantity for constructing the empirical distribution of the effects is tr(Sr(W )),

which can be estimated without a great deal of computational effort. For the purpose of

calculating the effects estimates LeSage and Pace (2009) set forth a procedure that relies

on a (1× (q+1)) vector R in (19) containing average diagonal elements from powers of W ,

and the (1× (q + 1)) vector g in (20) and corresponding diagonal matrix G shown in (21),

and (q + 1)× 1 vector of ones ιq+1.
3

3Computational implementations of this approach in the Spatial Econometrics Toolbox and the R−
language Spdep package set q = 100.
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R =
(

1 0 tr(W 2)/N tr(W 3)/N . . . tr(W q)/N
)

(19)

g =
(

1 ρ ρ2 . . . ρq
)

(20)

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0

0 ρ 0 . . . 0

0 0 ρ2 . . . 0
...

. . .

0 . . . ρq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

M̄(r)direct = βrRGιq+1 (22)

M̄(r)total = βrgιq+1 (23)

M̄(r)indirect = M̄(r)total − M̄(r)direct (24)

Given the (pre-calculated) traces, empirical measures of dispersion for the effects can be

constructed by using MCMC draws for the parameter ρ in g,G and βr in expressions (22),

(23), where we note that the total effects are the sum of the direct plus indirect effects.

In practice, computational implementations do not actually calculate traces but rather

rely on estimates of these which do not require much computational effort. Specifically,

starting with an N ×m matrix v of iid normal deviates, where m is the number of vectors

used in the estimation procedure (Barry and Pace, 1999),4 set initial values v(0) = v, and

produce Monte Carlo estimates of the diagonals using:

v(j) = Wv(j−1)

tr(W j) � (v 	 v(j))
ιm
m

(25)

We can utilize aspects of this approach with some modifications to calculate effects

estimates for our space-time dynamic panel data model. First note that the data generating

process for our model can be expressed for each time period as shown in (26), where yt

4We use m = 150, and j = 100.
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represents an N×1 vector of observations at time period t, xt an N×k matrix of explanatory

variables with associated k × 1 parameter vector β, and εt an N × 1 vector of time t

disturbances.

yt = Ayt−1 + (IN − ρW )−1(xtβ + εt) (26)

A = (IN − ρW )−1(φIN + θW )

This formulation suggests that the current (period t) partial derivative impact of changes

in the rth variable at time t, xrt on yt take the form in (27). Since this is a dynamic model

that includes time dependence as well as space-time covariance, changes in the explanatory

variable at time t will have future impacts as well. The expression in (28) shows the one-

period ahead impact, which depends on the time dependence parameter φ as well as the

space-time covariance parameter θ, given the definition of the N ×N matrix A.

∂E(yt)/∂x
r
t = (IN − ρW )−1βr (27)

∂E(yt+1)/∂x
r
t = A[∂E(yt)/∂x

r
t ] (28)

∂E(yt+T )/∂x
r
t = A[∂E(yt)/∂x

r
t+T−1] = AT [∂E(yt)/∂x

r
t ] (29)

The current period effect in (27) can be calculated using the computationally efficient

approach from LeSage and Pace (2009), which leads to direct (own-partial) impacts on own-

region, and indirect (cross-partial, spatial spillover) impacts on neighboring regions. We can

also produce empirical measures of dispersion using MCMC draws of the parameters βr, ρ

as described in the discussion surrounding equations (22), (23), (24).

One could use expressions like (29) to calculate t + T period dynamic responses to

changes in the rth explanatory variable at time t, using posterior means of the parameters

ρ, φ, θ in the matrix A and (IN − ρW )−1, as well as posterior means of βr. These could

take the form of impulse responses to a one-period change in the value of xrt , or a sustained

change in the magnitude of xrt , x
r
t+1, . . . , x

r
t+T . Impacts cumulated over time as well as
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marginal impacts (changes in each time period) could be considered. Calculating mean

t + T period dynamic responses would not be challenging, as this would involve inverting

the N ×N matrix A only once. Producing measures of dispersion for these responses would

involve calculating the inverse of the N × N matrix A thousands of times for each set of

MCMC draws for the parameters ρ, φ, θ.

In situations where posterior estimates of the parameters produce an indication that the

restriction: −ρφ = θ is consistent with the sample data, dynamic period t + T responses

along with measures of dispersion can be calculated easily. In this restricted version of the

model specification, the period t+ T response takes the form: φT (IN − ρW )−1βr, and the

long-run response is: [1/(1 − φ)](IN − ρW )−1βr. This means that we can avoid the need

to invert the N × N matrix A, and simply evaluate the long-run responses using draws

for the parameters φ, ρ, βr, where the computationally efficient approach to constructing

(IN − ρW )−1βr is used. Surprisingly, this restriction appears to hold for a great many

space-time data samples. As Parent and LeSage (2010) point out, the restriction implies

a type of space-time separability, where spatial effects decay over future time periods T

according to the simple rate φT .

The matrix A needed for future period impacts might be of separate interest since it

describes the one-period ahead impact arising from previous period changes in the depen-

dent variable vector, ∂E(yt+1)/∂yt = (IN −ρW )−1(φIN +θW ). A change in period t values

of yt has both a direct and indirect impact on the period t+ 1 outcomes, embodied in this

N×N matrix. Given the structure of the model, changes in period t values of yt also involve

changes in neighboring region values, Wyt, which gives rise to the term θW in this partial

derivative. The main diagonal elements of the matrix A reflect own-region impacts aris-

ing from changes in previous period values of yt, whereas the off-diagonal elements reflect

other-region space-time diffusion impacts.

We can calculate scalar summary measures of these two types of impact, by extending

the approach from LeSage and Pace (2009). This involves calculation of trace estimates

shown in (30), in conjunction with the following expressions.
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S =

⎛
⎝ 1 0 tr(W 2)/N tr(W 3)/N . . . tr(W q)/N

0 tr(W 2)/n tr(W 3)/N tr(W 4)/N . . . tr(W q+1)/N

⎞
⎠ (30)

g =
(

1 ρ ρ2 . . . ρq
)

(31)

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0

0 ρ 0 . . . 0

0 0 ρ2 . . . 0
...

. . .

0 . . . ρq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(32)

M̄(A)direct =
(
φ θ

)
SGιq+1 (33)

M̄(A)total = (φ+ θ)gιq+1 (34)

M̄(A)indirect = M̄(A)total − M̄(A)direct (35)

Here again, we would use estimated traces produced using the procedure from (25).

Given pre-calculated trace estimates, empirical measures of dispersion for the (scalar sum-

mary) direct and indirect impacts based on MCMC draws of the parameters ρ, φ, θ in g and

G, as well as φ, θ in expressions (33), (34) and (35) could be constructed.

3 Experiments to assess model performance

This section presents results regarding the time required to produce estimates for varying

sample data sizes as well as results from a Monte Carlo experiment to assess the accuracy

of our MCMC approach to estimation.

3.1 Timing results

Prior to reporting results from a Monte Carlo experiment to evaluate the performance of

our sampling method, we report some timing tests for varying sample sizes and numbers

of draws in Table 1. The number of explanatory variables used was fixed at four. The

table reports total times required to produce estimates, including the MH-MC integration
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estimate for the log-marginal. These are for a Dell XPS 15 Laptop, with an Intel i7-

7700HQ CPU 2.80GHz, 32 GB RAM and a 64-bit operating system. Times reported

include that for calculating the traces and calculating effects estimates. The largest sample

of N = 5, 000, T = 100 involves working with a vector y equal to 500,000 and a matrix of

size 500, 000× 4.

Table 2 provides a set of relative times, where the times reported in Table 1 were

normalized by the N = 1, 000, T = 10, number of draws = 10,000 times to facilitate analysis

of how changes in N,T and the number draws impacts calculation times.

From the columns of the Table 2, we see that the time required is slightly less than

linear in the number of draws. For example, tripling the number of draws from 10,000 to

30,000 increases the time in seconds required to produce estimates by 2.71 in the case of

N = 1, 000 and by 66.2266/23.8677 = 2.86 in the worst case of N = 5, 000.

Looking across the rows of Table 2, we see that a ten-fold increase in the number of time

periods T from 10 to 100 results in around a 5.4 increase in time required for N = 1, 000,

but performance declines for N = 2, 000 to around an 18 times increase and for N = 5, 000

to around a 25-fold increase in time required.

Finally, comparing sample sizes of N = 1, 000 to N = 2, 000 and N = 5, 000, (holding T

and the # of draws constant), we see that a five-fold increase in the sample size along this

dimension leads to a smaller than three-fold increase in time required to produce estimates.

Table 1: Times (in seconds) required to produce estimates

N = 1, 000, T = 10 N = 1, 000, T = 20 N = 1, 000, T = 50 N = 1, 000, T = 100
10,000 draws 4.7040 6.1720 11.8610 25.7680
20,000 draws 8.5950 12.3480 22.0030 48.2400
30,000 draws 12.7830 17.4790 32.2610 70.8830

N = 2, 000, T = 10 N = 2, 000, T = 20 N = 2, 000, T = 50 N = 2, 000, T = 100
10,000 draws 6.4560 9.9230 26.4850 110.5290
20,000 draws 11.8430 18.1870 48.7020 213.6800
30,000 draws 17.4240 26.1980 72.2170 318.0660

N = 5, 000, T = 10 N = 5, 000, T = 20 N = 5, 000, T = 50 N = 5, 000, T = 100
10,000 draws 12.4230 26.2530 139.7670 296.5090
20,000 draws 22.6120 49.2050 271.7590 555.8490
30,000 draws 32.0970 72.5950 395.6430 822.7330
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Table 2: Relative times for estimates

N = 1, 000, T = 10 N = 1, 000, T = 20 N = 1, 000, T = 50 N = 1, 000, T = 100
10,000 draws 1.0000 1.3121 2.5215 5.4779
20,000 draws 1.8272 2.6250 4.6775 10.2551
30,000 draws 2.7175 3.7158 6.8582 15.0687

N = 2, 000, T = 10 N = 2, 000, T = 20 N = 2, 000, T = 50 N = 2, 000, T = 100
10,000 draws 1.0000 1.5370 4.1024 17.1204
20,000 draws 1.8344 2.8171 7.5437 33.0979
30,000 draws 2.6989 4.0579 11.1860 49.2667

N = 5, 000, T = 10 N = 5, 000, T = 20 N = 5, 000, T = 50 N = 5, 000, T = 100
10,000 draws 1.0000 2.1133 11.2507 23.8677
20,000 draws 1.8202 3.9608 21.8755 44.7435
30,000 draws 2.5837 5.8436 31.8476 66.2266

3.2 Monte Carlo experiments

For our Monte Carlo experiments we generated the dependent variable using: y = (INT −
ρW1 − φW2 − θW3)

−1(Xβ + ε), using a range of ρ values 0.2, 0.4, 0.6, φ values of 0.5,

0.7 and θ values of -0.3, -0.5. The spatial weight matrix used was a six nearest neighbor

matrix, produced using random normal latitude-longitude coordinates. The N × T × K

matrix X consisted of standard normal deviates, with the values of the parameters β′ =(
1 −1 1 −1

)
, which produced a stationary dependent variable vector centered on

zero. Noise variances of σ2 = 1, 10 were used, and sample sizes of N = 1, 000, 2, 000 with

T = 10, 50 were used. We analyzed results separately for the 24 cases where N = 1, 000, T =

10 and the 24 cases of N = 2, 000 with T = 50. A set of 6,000 MCMC draws were used

with the first 1,000 discarded for burn-in of the sampler.

Of the 24 cases two cases were included that reflect parameter values of ρ+ φ+ θ = 1,

on the boundary of the stability restriction that: ρ+ φ+ θ < 1, specifically, ρ = 0.6 + φ =

0.7 + θ = −0.3 = 1, with σ2 = 1, 10. This was done to explore performance of the MCMC

sampler when we encounter situations where rejections of the proposed draws occurs because

they violate the stability restriction. This would result in the posterior distribution being

truncated at the boundary of the viable parameter space.

Table 3 shows results based on 1,000 Monte Carlo trials, for the various combinations of

space-time dependence parameters and the two noise variance parameters used. The table

shows actual and estimated values for the sum of the space-time parameters ((ρ+φ+θ)) to
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conserve on space.5 The absolute bias, mean-squared error (MSE) and 95% coverage results

reported represent averages over the three dependence parameters. The 95% coverage

results reflect the proportion of times (out of 1,000 trials) that the posterior 2.5% and 97.5%

intervals constructed from the 5,000 retained MCMC draws, covered the true parameter

value. The last column of the table shows an R2 estimate (averaged over the 1,000 trials)

based on ŷ = (In − ρ̂W1 − φ̂W2 − θ̂W3)
−1Xβ̂, where the estimates used were posterior

means calculated from the retained 5,000 MCMC draws.6 This provides an indication of

the relative signal-to-noise for the generated data used in the Monte Carlo experiments.

Table 3: Monte Carlo results (n = 1, 000, T = 10), Space-time parameters

Space-time parameters True Estimated
∑3

i=1 abs(Bias)
∑3

i=1 MSE Mean R2

(ρ+ φ+ θ) (95% coverage)
ρ =0.2, φ =0.5, θ =-0.3, σ2 =1 0.4 0.4000 0.000994 0.000171 0.942333 0.847
ρ =0.2, φ =0.5, θ =-0.5, σ2 =1 0.2 0.1999 0.000343 0.000154 0.960667 0.852
ρ =0.2, φ =0.7, θ =-0.3, σ2 =1 0.6 0.5995 0.000643 0.000173 0.938000 0.888
ρ =0.2, φ =0.7, θ =-0.5, σ2 =1 0.4 0.4006 0.000625 0.000146 0.950667 0.895
ρ =0.4, φ =0.5, θ =-0.3, σ2 =1 0.6 0.6008 0.002300 0.000133 0.945667 0.858
ρ =0.4, φ =0.5, θ =-0.5, σ2 =1 0.4 0.4012 0.001501 0.000131 0.946667 0.857
ρ =0.4, φ =0.7, θ =-0.3, σ2 =1 0.8 0.8004 0.003539 0.000129 0.942333 0.898
ρ =0.4, φ =0.7, θ =-0.5, σ2 =1 0.6 0.6007 0.001830 0.000123 0.939667 0.893
ρ =0.6, φ =0.5, θ =-0.3, σ2 =1 0.8 0.8026 0.008604 0.000135 0.895333 0.892
ρ =0.6, φ =0.5, θ =-0.5, σ2 =1 0.6 0.6044 0.006196 0.000116 0.908667 0.881
ρ =0.6, φ =0.7, θ =-0.5, σ2 =1 0.8 0.8024 0.009286 0.000129 0.893333 0.955
ρ =0.2, φ =0.5, θ =-0.3, σ2 =10 0.4 0.3994 0.001213 0.000529 0.948333 0.912
ρ =0.2, φ =0.5, θ =-0.5, σ2 =10 0.2 0.2004 0.000492 0.000564 0.941667 0.455
ρ =0.2, φ =0.7, θ =-0.3, σ2 =10 0.6 0.6001 0.000127 0.000503 0.949000 0.472
ρ =0.2, φ =0.7, θ =-0.5, σ2 =10 0.4 0.3999 0.000597 0.000507 0.943000 0.602
ρ =0.4, φ =0.5, θ =-0.3, σ2 =10 0.6 0.6018 0.006450 0.000462 0.938667 0.625
ρ =0.4, φ =0.5, θ =-0.5, σ2 =10 0.4 0.4027 0.005652 0.000430 0.942000 0.493
ρ =0.4, φ =0.7, θ =-0.3, σ2 =10 0.8 0.8005 0.006917 0.000401 0.942333 0.491
ρ =0.4, φ =0.7, θ =-0.5, σ2 =10 0.6 0.6015 0.006743 0.000406 0.935667 0.637
ρ =0.6, φ =0.5, θ =-0.3, σ2 =10 0.8 0.8080 0.025760 0.000677 0.800333 0.618
ρ =0.6, φ =0.5, θ =-0.5, σ2 =10 0.6 0.6140 0.021136 0.000589 0.810333 0.613
ρ =0.6, φ =0.7, θ =-0.5, σ2 =10 0.8 0.8076 0.027739 0.000676 0.783333 0.577
ρ =0.6, φ =0.7, θ =-0.3, σ2 =1 † 1.0 0.9971 0.244113 0.028345 0.795000 0.687
ρ =0.6, φ =0.7, θ =-0.3, σ2 =10 † 1.0 0.9951 0.184305 0.020593 0.913667 0.687
† Cases on the boundary of ρ+ φ+ θ < 1

From the table we see good results in terms of bias and MSE, for cases not involving

the two sets of parameters on the boundary of the parameter space (indicated in the table

5Appendix A shows results for all parameters for the larger sample of N = 2, 000, T = 40.
6Specifically, R2 = ŷ′ŷ/ỹ′ỹ, where ỹ = y − ȳ, which is the usual R2 formula from ordinary regression

adjusted to accommodate the predicted value from the space-time dynamic model.

21



with the † symbol. For these two cases, we see a degradation in the 95% coverage as well

as a large increase in MSE. We see a few other cases (the 3rd, 4th and 5th to the last row

in the table), where absolute bias increases and coverage declines. These were associated

with situations where the signal-to-noise was relatively low and the sum of the space-time

parameters equalled 0.6 or 0.8. We might expect to see this type of result arise due to

errors made by the 4th-order Taylor series approximation to the log-determinant term.

This will become more inaccurate for values of the space-time parameters at the boundaries

of the stationary region. Nonetheless, coverage intervals around 80% for the space-time

parameters are relatively decent, since these are not the main focus of inference in these

models.

Table 4 shows bias, MSE and coverage results for the current period direct effects esti-

mates, which are a focus of inference in these models. Recall, these estimates are based on

the average of the diagonal from the matrix: (IN − ρW )−1INβi, i = 1, . . . , 4. For each of

the 1,000 trials a set of 5,000 estimates of these four sets of effects were produced based on

the retained draws. For each trial, posterior means and credible intervals were constructed

for the scalar summary measures using the set of 5,000 estimates. Since the direct effects

estimates are non-linear functions of the underlying model parameters ρ, βi, we should not

produce effects estimates based on posterior mean estimates of ρ, βi, a point made by LeSage

and Pace (2018). This approach to calculating bias, MSE and coverage for the direct effects

estimates should accurately reflect results experienced by practitioners.

Given the four different direct effects estimates that sum to zero, we report the sum of

absolute bias and MSE for these four different effects estimates along with coverage results

averaged over the four sets of estimates. From the table, we see good estimates based on

all three measures, and the 95% coverage results do not appear to be severly impacted for

the two cases at the boundary of the space-time parameter space.

Table 5 shows bias, MSE and coverage results for the current period indirect effects

estimates, which are also focus of inference in these models. These estimates are based

on the average of cumulated row sums of off-diagonal elements from the matrix: (IN −
ρW )−1INβi, i = 1, . . . , 4. As in the case of the direct effects, scalar summary estimates of

the indirect effects were calculated for each of the 1,000 trials based on the set of 5,000
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Table 4: Monte Carlo results (n = 1, 000, T = 10), direct effects parameters

Current period (IN − ρW )−1βi

∑4
i=1 abs(Bias)

∑4
i=1 MSE Mean

Direct effects parameters (95% coverage)
ρ =0.2, φ =0.5, θ =-0.3, σ2 =1 0.001071 0.000407 0.9425
ρ =0.2, φ =0.5, θ =-0.5, σ2 =1 0.001382 0.000405 0.9475
ρ =0.2, φ =0.7, θ =-0.3, σ2 =1 0.000769 0.000406 0.9507
ρ =0.2, φ =0.7, θ =-0.5, σ2 =1 0.001016 0.000405 0.9480
ρ =0.4, φ =0.5, θ =-0.3, σ2 =1 0.001550 0.000426 0.9465
ρ =0.4, φ =0.5, θ =-0.5, σ2 =1 0.001177 0.000442 0.9430
ρ =0.4, φ =0.7, θ =-0.3, σ2 =1 0.001277 0.000431 0.9490
ρ =0.4, φ =0.7, θ =-0.5, σ2 =1 0.002172 0.000421 0.9532
ρ =0.6, φ =0.5, θ =-0.3, σ2 =1 0.007497 0.000504 0.9475
ρ =0.6, φ =0.5, θ =-0.5, σ2 =1 0.006519 0.000472 0.9545
ρ =0.6, φ =0.7, θ =-0.5, σ2 =1 0.008307 0.000499 0.9515
ρ =0.2, φ =0.5, θ =-0.3, σ2 =10 0.004002 0.004035 0.9487
ρ =0.2, φ =0.5, θ =-0.5, σ2 =10 0.001742 0.004091 0.9517
ρ =0.2, φ =0.7, θ =-0.3, σ2 =10 0.004505 0.004019 0.9490
ρ =0.2, φ =0.7, θ =-0.5, σ2 =10 0.003658 0.003971 0.9532
ρ =0.4, φ =0.5, θ =-0.3, σ2 =10 0.004872 0.004251 0.9490
ρ =0.4, φ =0.5, θ =-0.5, σ2 =10 0.003439 0.004321 0.9490
ρ =0.4, φ =0.7, θ =-0.3, σ2 =10 0.004758 0.004329 0.9482
ρ =0.4, φ =0.7, θ =-0.5, σ2 =10 0.002233 0.004208 0.9532
ρ =0.6, φ =0.5, θ =-0.3, σ2 =10 0.021542 0.004968 0.9485
ρ =0.6, φ =0.5, θ =-0.5, σ2 =10 0.024125 0.004953 0.9452
ρ =0.6, φ =0.7, θ =-0.5, σ2 =10 0.022947 0.004839 0.9482
ρ =0.6, φ =0.7, θ =-0.3, σ2 =1 † 0.041975 0.001050 0.9267
ρ =0.6, φ =0.7, θ =-0.3, σ2 =10 † 0.022515 0.004885 0.9607
† Cases on the boundary of ρ+ φ+ θ < 1

estimates of these four sets of effects.

Given the four different indirect effects estimates, we report the sum of absolute bias

and MSE for these four different effects estimates along with coverage results averaged over

the four sets of estimates. From the table, we see that the two cases on the boundary of

the parameter space where the space-time parameters suffered from reduced 95% coverage

accuracy had an impact on coverage of the current period indirect effects. This is also

true for the few other cases (the 3rd, 4th and 5th to the last row in the table) noted in

our discussion of Table 3, where bias increased and coverage declined for the space-time

parameter estimates.

Table 6 shows bias, MSE and coverage results for the direct effects estimates associated

with the long-run (LR) multiplier matrix A = (IN − ρW )−1(φIN + θW ), which might also

be a focus of inference in these models. These estimates are based on the average of the
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Table 5: Monte Carlo results (n = 1, 000, T = 10), indirect effects parameters

Current period (IN − ρW )−1βi

∑4
i=1 abs(Bias)

∑4
i=1 MSE Mean

Indirect effects parameters (95% coverage)
ρ =0.2, φ =0.5, θ =-0.3, σ2 =1 0.003086 0.000649 0.935500
ρ =0.2, φ =0.5, θ =-0.5, σ2 =1 0.000369 0.000598 0.948000
ρ =0.2, φ =0.7, θ =-0.3, σ2 =1 0.001309 0.000669 0.931000
ρ =0.2, φ =0.7, θ =-0.5, σ2 =1 0.001642 0.000578 0.944250
ρ =0.4, φ =0.5, θ =-0.3, σ2 =1 0.015486 0.001398 0.948250
ρ =0.4, φ =0.5, θ =-0.5, σ2 =1 0.015241 0.001450 0.943750
ρ =0.4, φ =0.7, θ =-0.3, σ2 =1 0.018897 0.001490 0.945250
ρ =0.4, φ =0.7, θ =-0.5, σ2 =1 0.013503 0.001445 0.945250
ρ =0.6, φ =0.5, θ =-0.3, σ2 =1 0.130151 0.008779 0.845750
ρ =0.6, φ =0.5, θ =-0.5, σ2 =1 0.119633 0.007982 0.862250
ρ =0.6, φ =0.7, θ =-0.5, σ2 =1 0.136403 0.008989 0.837500
ρ =0.2, φ =0.5, θ =-0.3, σ2 =10 0.003102 0.001824 0.942000
ρ =0.2, φ =0.5, θ =-0.5, σ2 =10 0.002526 0.001857 0.943750
ρ =0.2, φ =0.7, θ =-0.3, σ2 =10 0.003609 0.001878 0.945000
ρ =0.2, φ =0.7, θ =-0.5, σ2 =10 0.002108 0.001820 0.948250
ρ =0.4, φ =0.5, θ =-0.3, σ2 =10 0.045130 0.005709 0.940750
ρ =0.4, φ =0.5, θ =-0.5, σ2 =10 0.042904 0.005476 0.940250
ρ =0.4, φ =0.7, θ =-0.3, σ2 =10 0.042217 0.005436 0.946000
ρ =0.4, φ =0.7, θ =-0.5, σ2 =10 0.046498 0.005852 0.930500
ρ =0.6, φ =0.5, θ =-0.3, σ2 =10 0.401235 0.063220 0.705250
ρ =0.6, φ =0.5, θ =-0.5, σ2 =10 0.395035 0.062077 0.712000
ρ =0.6, φ =0.7, θ =-0.5, σ2 =10 0.405367 0.063024 0.708000
ρ =0.6, φ =0.7, θ =-0.3, σ2 =1 † 0.900585 0.280634 0.820750
ρ =0.6, φ =0.7, θ =-0.3, σ2 =10 † 0.528925 0.155829 0.946000
† Cases on the boundary of ρ+ φ+ θ < 1

diagonal elements from the matrix A. As in the case of the current period direct effects,

scalar summary estimates of these LR direct effects were calculated for each of the 1,000

trials based on the set of 5,000 estimates of the single set of effects.

We report the bias and MSE for these LR direct effects estimates along with coverage

results. From the table, we see that the two cases on the boundary of the parameter

space where the space-time parameters suffered from reduced 95% coverage accuracy had

an impact on coverage of the LR direct effects. These results are consistent with those for

the current period direct effects estimates in Table 4.

Table 7 shows bias, MSE and coverage results for the indirect effects estimates associated

with the long-run (LR) multiplier matrix A = (IN − ρW )−1(φIN + θW ), which might also

be a focus of inference in these models. Recall, these estimates are based on the average

of cumulated row sums of off-diagonal elements from the matrix A. As in the case of the
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Table 6: Monte Carlo results (n = 1, 000, T = 10), A matrix direct effects parameter

A = (IN − ρW )−1(φIN + θW ) True Estimate Bias MSE (95% coverage)
Direct effects parameters
ρ =0.2, φ =0.5, θ =-0.3, σ2 =1 0.493024 0.493187 0.000163 0.000000 0.941000
ρ =0.2, φ =0.5, θ =-0.5, σ2 =1 0.486048 0.486083 0.000035 0.000000 0.961000
ρ =0.2, φ =0.7, θ =-0.3, σ2 =1 0.694419 0.694280 -0.000139 0.000000 0.946000
ρ =0.2, φ =0.7, θ =-0.5, σ2 =1 0.687443 0.687666 0.000223 0.000000 0.944000
ρ =0.4, φ =0.5, θ =-0.3, σ2 =1 0.491747 0.491864 0.000117 0.000000 0.943000
ρ =0.4, φ =0.5, θ =-0.5, σ2 =1 0.475241 0.475041 -0.000200 0.000000 0.964000
ρ =0.4, φ =0.7, θ =-0.3, σ2 =1 0.698349 0.698567 0.000217 0.000000 0.945000
ρ =0.4, φ =0.7, θ =-0.5, σ2 =1 0.681844 0.681919 0.000076 0.000000 0.941000
ρ =0.6, φ =0.5, θ =-0.3, σ2 =1 0.500000 0.499953 -0.000047 0.000000 0.949000
ρ =0.6, φ =0.5, θ =-0.5, σ2 =1 0.468146 0.468014 -0.000132 0.000000 0.950000
ρ =0.6, φ =0.7, θ =-0.5, σ2 =1 0.687258 0.687158 -0.000100 0.000000 0.960000
ρ =0.2, φ =0.5, θ =-0.3, σ2 =10 0.493024 0.493149 0.000125 0.000000 0.949000
ρ =0.2, φ =0.5, θ =-0.5, σ2 =10 0.486048 0.486190 0.000142 0.000000 0.951000
ρ =0.2, φ =0.7, θ =-0.3, σ2 =10 0.694419 0.694421 0.000002 0.000000 0.960000
ρ =0.2, φ =0.7, θ =-0.5, σ2 =10 0.687443 0.687236 -0.000207 0.000000 0.942000
ρ =0.4, φ =0.5, θ =-0.3, σ2 =10 0.491747 0.491805 0.000058 0.000000 0.947000
ρ =0.4, φ =0.5, θ =-0.5, σ2 =10 0.475241 0.475412 0.000170 0.000000 0.955000
ρ =0.4, φ =0.7, θ =-0.3, σ2 =10 0.698349 0.698420 0.000071 0.000000 0.946000
ρ =0.4, φ =0.7, θ =-0.5, σ2 =10 0.681844 0.681389 -0.000455 0.000000 0.950000
ρ =0.6, φ =0.5, θ =-0.3, σ2 =10 0.500000 0.500016 0.000016 0.000000 0.958000
ρ =0.6, φ =0.5, θ =-0.5, σ2 =10 0.468146 0.468487 0.000341 0.000000 0.952000
ρ =0.6, φ =0.7, θ =-0.5, σ2 =10 0.687258 0.687631 0.000373 0.000000 0.954000
ρ =0.6, φ =0.7, θ =-0.3, σ2 =1 † 0.719112 0.654505 -0.064608 0.004734 0.762000
ρ =0.6, φ =0.7, θ =-0.3, σ2 =10 † 0.719112 0.663227 -0.055885 0.004073 0.849000
† Cases on the boundary of ρ+ φ+ θ < 1

current period indirect effects, scalar summary estimates of these LR indirect effects were

calculated for each of the 1,000 trials based on the set of 5,000 estimates of the single set

of effects.

It is not surprising that we see increased bias and MSE for the two cases on the boundary.

More surprising is that coverage of the estimates are very good for the non-boundary cases,

and not bad for the two boundary cases. An explanation for this type of result is that

the matrix A includes all of the space time parameters, making it possible for poor results

(bias) in any single parameter to be offset or compensated by bias in the opposite direct

for the other space-time dependence parameters.

Table 8 shows results for the noise variance parameter σ2, in the same format as the

previous tables. We see results consistent with those from Table 3 where the two cases

on the boundary of the space-time parameter space exhibit increased bias and MSE, and
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Table 7: Monte Carlo results (n = 1, 000, T = 10), A matrix indirect effects parameter

A = (IN − ρW )−1(φIN + θW ) True Estimate Bias MSE (95% coverage)
Indirect effects parameters
ρ =0.2, φ =0.5, θ =-0.3, σ2 =1 -0.243024 -0.243438 -0.000414 0.000000 0.958000
ρ =0.2, φ =0.5, θ =-0.5, σ2 =1 -0.486048 -0.485939 0.000109 0.000000 0.964000
ρ =0.2, φ =0.7, θ =-0.3, σ2 =1 -0.194419 -0.194573 -0.000154 0.000000 0.951000
ρ =0.2, φ =0.7, θ =-0.5, σ2 =1 -0.437443 -0.437071 0.000372 0.000000 0.960000
ρ =0.4, φ =0.5, θ =-0.3, σ2 =1 -0.158414 -0.158757 -0.000343 0.000000 0.951000
ρ =0.4, φ =0.5, θ =-0.5, σ2 =1 -0.475241 -0.475295 -0.000054 0.000000 0.946000
ρ =0.4, φ =0.7, θ =-0.3, σ2 =1 -0.031683 -0.032164 -0.000481 0.000000 0.960000
ρ =0.4, φ =0.7, θ =-0.5, σ2 =1 -0.348510 -0.348694 -0.000184 0.000000 0.951000
ρ =0.6, φ =0.5, θ =-0.3, σ2 =1 0.000000 -0.000444 -0.000444 0.000000 0.953000
ρ =0.6, φ =0.5, θ =-0.5, σ2 =1 -0.468146 -0.470023 -0.001877 0.000004 0.961000
ρ =0.6, φ =0.7, θ =-0.5, σ2 =1 -0.187258 -0.188292 -0.001034 0.000001 0.955000
ρ =0.2, φ =0.5, θ =-0.3, σ2 =10 -0.243024 -0.244030 -0.001006 0.000003 0.952000
ρ =0.2, φ =0.5, θ =-0.5, σ2 =10 -0.486048 -0.485748 0.000300 0.000002 0.925000
ρ =0.2, φ =0.7, θ =-0.3, σ2 =10 -0.194419 -0.194355 0.000064 0.000001 0.944000
ρ =0.2, φ =0.7, θ =-0.5, σ2 =10 -0.437443 -0.437271 0.000172 0.000001 0.940000
ρ =0.4, φ =0.5, θ =-0.3, σ2 =10 -0.158414 -0.159836 -0.001423 0.000004 0.938000
ρ =0.4, φ =0.5, θ =-0.5, σ2 =10 -0.475241 -0.477168 -0.001927 0.000006 0.945000
ρ =0.4, φ =0.7, θ =-0.3, σ2 =10 -0.031683 -0.032879 -0.001196 0.000002 0.944000
ρ =0.4, φ =0.7, θ =-0.5, σ2 =10 -0.348510 -0.350186 -0.001676 0.000004 0.948000
ρ =0.6, φ =0.5, θ =-0.3, σ2 =10 0.000000 -0.000853 -0.000853 0.000002 0.964000
ρ =0.6, φ =0.5, θ =-0.5, σ2 =10 -0.468146 -0.474764 -0.006618 0.000046 0.964000
ρ =0.6, φ =0.7, θ =-0.5, σ2 =10 -0.187258 -0.189893 -0.002635 0.000008 0.956000
ρ =0.6, φ =0.7, θ =-0.3, σ2 =1 † 0.280888 0.339081 0.058193 0.003921 0.877000
ρ =0.6, φ =0.7, θ =-0.3, σ2 =10 † 0.280888 0.325009 0.044121 0.002824 0.947000
† Cases on the boundary of ρ+ φ+ θ < 1

decreased coverage. There are lesser problems for cases shown in the (the 3rd, 4th and 5th

to the last row in the table), where we see an increase in bias and MSE, but only slightly

degraded coverage.

We also carried out Monte Carlo experiments for N = 2, 000, T = 50, which produce

lower bias, MSE and better coverage consistent with our knowledge about asymptotic per-

formance of these estimates (see Yu et al. (2008)). Tables of results from those experiments

are presented in the Appendix, where all parameters are shown instead of the summaries

presented here.
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Table 8: Monte Carlo results (n = 1, 000, T = 10), σ2 parameter

A = (IN − ρW )−1(φIN + θW ) True Estimate Bias MSE (95% coverage)
σ2 parameters
ρ =0.2, φ =0.5, θ =-0.3, σ2 =1 1 1.000489 0.000489 0.000203 0.957000
ρ =0.2, φ =0.5, θ =-0.5, σ2 =1 1 1.000238 0.000238 0.000204 0.956000
ρ =0.2, φ =0.7, θ =-0.3, σ2 =1 1 0.999983 -0.000017 0.000197 0.946000
ρ =0.2, φ =0.7, θ =-0.5, σ2 =1 1 1.000666 0.000666 0.000203 0.940000
ρ =0.4, φ =0.5, θ =-0.3, σ2 =1 1 0.998873 -0.001127 0.000208 0.943000
ρ =0.4, φ =0.5, θ =-0.5, σ2 =1 1 1.000390 0.000390 0.000200 0.956000
ρ =0.4, φ =0.7, θ =-0.3, σ2 =1 1 1.000131 0.000131 0.000202 0.945000
ρ =0.4, φ =0.7, θ =-0.5, σ2 =1 1 0.999255 -0.000745 0.000201 0.956000
ρ =0.6, φ =0.5, θ =-0.3, σ2 =1 1 0.998563 -0.001437 0.000204 0.952000
ρ =0.6, φ =0.5, θ =-0.5, σ2 =1 1 0.997882 -0.002118 0.000196 0.953000
ρ =0.6, φ =0.7, θ =-0.5, σ2 =1 1 0.999161 -0.000839 0.000206 0.943000
ρ =0.2, φ =0.5, θ =-0.3, σ2 =10 10 10.005732 0.005732 0.020375 0.947000
ρ =0.2, φ =0.5, θ =-0.5, σ2 =10 10 10.011446 0.011446 0.018679 0.959000
ρ =0.2, φ =0.7, θ =-0.3, σ2 =10 10 9.998280 -0.001720 0.018571 0.957000
ρ =0.2, φ =0.7, θ =-0.5, σ2 =10 10 10.006694 0.006694 0.020538 0.950000
ρ =0.4, φ =0.5, θ =-0.3, σ2 =10 10 9.995011 -0.004989 0.019573 0.948000
ρ =0.4, φ =0.5, θ =-0.5, σ2 =10 10 9.997400 -0.002600 0.019889 0.961000
ρ =0.4, φ =0.7, θ =-0.3, σ2 =10 10 10.002006 0.002006 0.021833 0.940000
ρ =0.4, φ =0.7, θ =-0.5, σ2 =10 10 9.988898 -0.011102 0.019691 0.958000
ρ =0.6, φ =0.5, θ =-0.3, σ2 =10 10 9.962699 -0.037301 0.022270 0.946000
ρ =0.6, φ =0.5, θ =-0.5, σ2 =10 10 9.952259 -0.047741 0.022429 0.931000
ρ =0.6, φ =0.7, θ =-0.5, σ2 =10 10 9.951466 -0.048534 0.022895 0.933000
ρ =0.6, φ =0.7, θ =-0.3, σ2 =1 † 1 1.168741 0.168741 0.036968 0.877000
ρ =0.6, φ =0.7, θ =-0.3, σ2 =10 † 10 10.483834 0.483834 0.384246 0.938000
† Cases on the boundary of ρ+ φ+ θ < 1

4 Space-time analysis of German gas station pricing

A 2012 report by the International Energy Agency7 describes Germany as having a largely

deregulated and competitive oil market, with a large number of independents in the refining

and retail sectors. The German government does not have an ownership stake in any of the

companies operating in the oil sector. The report also indicates that in 2010 the largest

refining operator in Germany was Shell Deutschland Oil (Shell brand name) with a 25.6%

share of overall German refining capacity. Next largest was BP Europa (Aral brand name)

(14.5%), ConocoPhillips Germany (Jet brand name) (13.9%) and Total Deutschland (Total

brand name) (11.8%). Next in terms of refining capacity share at 9.8% was (Esso brand

name) owned by Rosneft via the joint venture Ruhr Oel (with BP). This leaves a remaining

share of 35% for other brands, which we label Noname.

7Oil & Gas Security Emergency Response of IEA Countries, which we reference as IEA (2012).
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In terms of the retail fuel sector, the IEA (2012) report, (page 9) states that there are

more than 14,300 roadside filling stations in Germany, and another 350 filling stations on

the autobahns. Aral and Shell have the highest market shares (22.5% and 21% of fuel

sales respectively), followed by Jet with 10.5% and Total and Esso with 7.5% each. This

leaves a share of 41% for numerous other refinery companies, and independent and medium-

sized oil companies are active in the retail fuel market, including Avia, Westfalen and Freie

Tankstellen (bft), all of which we simply label Noname.

The IEA (2012, page 9) report also states that: “Company market shares in the German

retail fuel sector have remained relatively steady over the past few years. However, the

number of filling stations in Germany is declining, with 475 fewer filling stations than at

beginning of 2006 and approximately 1600 fewer than at beginning of 2001.” and that:

“Demand for diesel increased by around 16% between 2001 and 2011 while demand for

gasoline dropped by nearly 30% during the same period.” (IEA (2012), page 10).

To investigate competition in Germany’s retail gasoline market, Kihm et al. (2016) use

a panel of daily price data from 2012 to 2013, and find that the effects of price varies by

brands. They show that Total and Shell have the highest deviations from cost-based pricing,

while the non-majors have the lowest. In addition, they identify some factors, such as the

absence of nearby competitors and regional market concentration, that play a significant

role in mediating the influence of the oil price.

In this vein, LeSage et al. (2017) describe a balanced panel of daily station-level prices

created for over 14,000 filling stations in Germany, operating over the period from June 1,

2014 to September 30, 2015, or T = 487 days. Price for both diesel and e5 fuels are in

nominal terms and include excise and value-added taxes. They also provide a cost variable,

constructed from daily refined diesel and gas prices reported in Rotterdam, where one of

the major pipelines into Germany originates. By applying a static heterogeneous coefficient

spatial autoregressive panel model to produce station-level estimates of gas station rivalry,

they show that non-competitive pricing prevails in Germany’s retail gasoline market, which

is in contrast to the IEA (2012) report but is consistent with a report issued by Germany’s

Federal Cartel Office finding evidence for oligopolistic pricing among Germany’s retail gas

stations.
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While both Kihm et al. (2016) and LeSage et al. (2017) consider the degree of com-

petition in the vicinity of the station, they do not further examine the competition/non-

competition behavior across different neighboring brands. Other things equal, proximity

to stations with dominating brand name should lead to brand competition on price, while

proximity to the non-major brand stations might be expected to reduce the tension of

brand competition. For a better understanding of the role played by brand competition in

Germany’s retail gasoline market, we analyze interaction between different brands based

on spatial proximity of each station to those of own- and other-brands. In the case of our

six brands we require a large sample of stations to have an adequate sample needed to

produce a six by six matrix of interaction between stations of each brand with the nearest

neighboring own- or other-brand station. We use a large sample in conjunction with the

dynamic space time model to explore the role played by brand configuration of stations in

close spatial proximity on price markup behavior in the German retail gasoline market.

4.1 German gas station markup pricing model

We model the dependent variable as the daily before-tax markup in price over refining cost

for the sample of 12,050 stations selling e5 (unleaded) fuel and 12,435 stations selling diesel

fuel, that have a nearest neighboring station within 3 miles (radial distance). With 487

days, this produces a vector y of length NT = 5, 868, 350 for e5 and NT = 6, 055, 845 in the

case of diesel fuel. As explanatory variables we include a set of 36 indicator variables for the

brand configuration. This involves an indicator for brand i of the dependent variable station

and brand j of the nearest neighboring station.8 These can be interpreted as fixed effects

that capture the impact on price markup associated with the various brand configurations.

In addition, we include a variable vector for the distance to the nearest neighboring station.

The dependent variable is transformed to deviations from time period means to allow use

of all 36 brand indicators, which of course sum to one.

We can view the brand configuration matrix that we explore as in Table 9, where the

number of stations of type brand i versus brand j are presented. The main diagonal elements

8Relying only on the nearest neighboring station allows us to isolate the brand configuration impact,
whereas use of more than a single neighboring station would be problematical if the brands of the two
nearest stations were different.
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of the matrix reflect cases where the nearest neighboring station is of the same brand type.

Off diagonal elements i, j show cases where the price markup dependent variable represents

that of a station of brand type i and the nearest neighboring station is of type brand j.

Table 9: Brand configuration of e5 and diesel fuel stations

Number of e5 fuel stations
Dependent (market share)/independent Aral Shell Jet Total Esso Noname
Aral (22.5%) 216 199 139 325 149 1014
Shell (21%) 201 43 57 135 61 439
Jet (10.5%) 118 48 15 92 28 272
Total (7.5%) 343 141 113 148 97 799
Esso (7.5%) 162 57 33 102 27 311
Noname (41.0%) 1078 487 314 784 295 3208

Number of diesel fuel stations
Dependent (market share)/independent Aral Shell Jet Total Esso Noname
Aral (22.5%) 212 200 136 322 148 1043
Shell (21%) 201 41 57 137 61 447
Jet (10.5%) 117 49 15 89 28 278
Total (7.5%) 338 145 111 150 96 817
Esso (7.5%) 159 57 33 98 27 320
Noname (41.0%) 1107 502 320 811 299 3464

Table 9 also shows a degree of asymmetry in the brand configuration relationships

between stations. For instance, in the e5 fuels portion of the table, we see that 199 Aral

brand stations have a Shell brand station as the nearest neighboring station. However,

there are 201 Shell brand stations with an Aral station as the nearest neighbor. Given

that our spatial weight matrix W is based on the nearest neighboring station, a symmetric

spatial configuration (spatial weight matrix) arising from situations where stations i and

j and stations j and i were nearest neighbors for all stations would have implications for

the nature of spatial spillovers. A strictly symmetric matrix W implies a block diagonal

weight matrix, and as noted, ∂E(yt)/∂x
r
t = (IN − ρW )−1βr. This expression would also be

block diagonal, implying that indirect effects for all stations would extend only to the single

nearest neighboring stations and have no spillover impact on other stations. From the counts

of cases in Table 9, we see that strict symmetry is not the case. That is, there are asymmetric

situations where station i is the nearest neighbor to station j, while station j is not the

nearest neighbor to station i. Asymmetry in the spatial proximity of stations indicated by

Table 9 means that the pricing decision of a station can affect not only the markups of its
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nearest neighboring station, but also that of higher order neighboring stations. To see this,

note that (IN−ρW )−1 = IN+ρW+ρ2W 2+ρ3W 3 . . ., whereW 2 contains non-zero elements

that identify neighbors to neighbors, and W 3 has non-zero elements reflecting neighbors to

the neighbors of the neighbors, and so on. In the case of an asymmetric matrix W , we

will see diffusion to higher-order neighbors reflected in non-zero off-diagonal elements of the

matrix inverse, with a decline in magnitude of these impacts because ρ < 1, so ρ3 < ρ2 < ρ.

The model estimated is of the form shown in (36), where the only explanatory variables

are the set of N×36 (fixed effects) brand indicators (B) and the N×1 vector D of distances

to the nearest neighboring station.

y = ρ(IT ⊗W )y + φ(L⊗ IN )y + θ(L⊗W )y + ιT ⊗Bβ + ιT ⊗Dψ + ε (36)

We would expect that increasing distance to the nearest neighboring station has a posi-

tive impact on the fuel price markup, as this reflects a spatial monopoly situation. In terms

of the brand configuration impacts, we would expect the own-brand nearest neighbors would

have a positive impact on price markup in cases where prices are coordinated by a company

main office or formal pricing policy. In the case of Noname brand stations, we might expect

to see competition between these independent stations, leading to a negative impact on

price markup. For cases involving brand i versus brand j, we might expect positive impacts

on price markup for the large market share brands if there is a price leadership scheme in

play. Negative impacts for brand i versus brand j of course point to competition that leads

to a decrease in the price markup.

It turns out that for both diesel and e5 fuels, the restriction that −ρφ = θ is consistent

with the sample data. This allows us to easily calculate not only the current period (daily)

impact of the brand configuration on price markups, but also the long-run implications of

the various brand configurations on the price markup. As noted, given an asymmetric weight

matrix, our dynamic space-time panel model implies that current period impacts on price

markups will spillover to neighboring stations in the current period, and will diffuse over

time to have impacts on stations that are neighbors to the neighboring stations, neighbors to
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the neighbors, and so on. The indirect effects estimates cumulate spatial spillover impacts

over not simply the nearest neighbors, but other higher-order neighbors as well.

The period t + T impacts arising from a brand i versus brand j station configuration

in this restricted version of the model takes the form: φT × (IN − ρW )INβ
(i,j), where β(i,j)

is the coefficient associated with a station of brand i having a nearest neighboring station

of brand j. Of course, as in all regression models, the coefficients reflect an average over

all sample observations, in our case NT . The long-run impacts can also be calculated as:

[1/(1−φ)]×(IN−ρW )INβ
(i,j). Empirical measures of dispersion for these long-run impacts

can easily be calculated using the MCMC draws for φ, ρ and β(i,j).

Table 10: Space-time and distance parameter estimates for fuel stations

e5 fuel stations
Parameter Posterior mode mean MC error Geweke
distance (ψ) 0.7596 0.7588 0.00074328 0.995550
ρ 0.3891 0.3891 0.00008079 0.996896
φ 0.8701 0.8701 0.00002530 0.999658
θ -0.3309 -0.3308 0.00010400 0.995410

lower 0.01 lower 0.05 median upper 0.95 upper 0.99
distance (ψ) 0.5899 0.6281 0.7592 0.8891 0.9257
ρ 0.3865 0.3875 0.3891 0.3896 0.3897
φ 0.8692 0.8697 0.8701 0.8705 0.8706
θ -0.3317 -0.3315 -0.3309 -0.3297 -0.3276
−ρφ -0.3385

diesel fuel stations
Parameter Posterior mode mean MC error Geweke
distance (ψ) 0.9763 0.9751 0.00094484 0.993080
ρ 0.3340 0.3338 0.00020675 0.991698
φ 0.8853 0.8853 0.00004910 0.999358
θ -0.2945 -0.2943 0.00025001 0.988810

lower 0.01 lower 0.05 median upper 0.95 upper 0.99
distance (ψ) 0.7950 0.8431 0.9752 1.1092 1.1439
ρ 0.3230 0.3328 0.3340 0.3345 0.3347
φ 0.8820 0.8847 0.8853 0.8857 0.8858
θ -0.2953 -0.2952 -0.2946 -0.2934 -0.2792
−ρφ -0.2956

Table 10 shows posterior mean, median estimates based on MCMC draws for the space-

time and distance parameters, along with an estimate of the mode taken from the joint

posterior. Monte Carlo error estimates and Geweke’s diagnostic for convergence are also

shown.9 As we would expect given the large sample size, these parameters are estimated to

9This statistic compares draws from the first 10 percent of the MCMC sampling (after burn-in) and the
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have very little dispersion, based on our empirical percentiles constructed from the MCMC

draws.

From the table, we can see that the value of −ρφ lies within the lower 0.05 and upper

0.95 percentiles of the empirical distribution measuring dispersion of the unconstrained

parameter estimate for θ in the case of the e5 fuel estimates. The same is not quite true for

the diesel fuel estimates, where we see that −ρφ lies just outside the lower 0.01 percentile of

the empirical distribution for θ. Nonetheless, we will use the restricted model approach to

calculate long-run effects on price markup arising from the various brand configurations.10

Table 10 also shows that distance parameter (ψ) is positive and statistically signifi-

cant. The finding is consistent with Barron et al. (2004); Clemenz and Gugler (2006);

Jaureguiberry (2010); Kihm et al. (2016) such that the presence of spatial isolation reduces

price competition among brands and increases the ability of markups. The analysis suggests

that, after controlling for brand characteristics, consumers will pay an additional 0.76 cents

for an additional 1 mile between two retail gasoline stations. Indeed, when consumers are

less aware of alternative choices because of higher search cost, the station’s local market

power increases.

Table 11 shows posterior means for the brand configuration parameter β estimates, all

of which are significantly different from zero. In the context of our (non-linear) space-time

dynamic model, these are not interpretable as partial derivatives showing the impact of

changes in the brand configuration on the price markup (as in standard linear regression).

As already noted, the partial derivatives showing the impact on price markups from changes

in the brand configuration for our model take the form of own-partial and cross-partial

derivatives that capture own-station impacts as well as feedback and spillover impacts on

other stations.

The long-run estimates of direct impacts arising from the various brand configurations

are shown in Table 12. These include feedback effects that arise in our model. Feedback

effects are from neighboring stations reactions as well as reactions of neighbors to the

neighboring stations, etc. Note that the matricesW 2,W 3 that arise in (IN−ρW )−1 contain

last 50 percent of the draws. The test is whether the batched means are equal, which indicates convergence.
10Given MC error for the empirical distribution of the parameter θ, and the non-linear nature of the

restriction −ρφ, we cannot conclude that we should reject the restriction.
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Table 11: Brand configuration β parameter estimates (posterior means)

β estimates for e5 fuel stations
Dependent/independent Aral Shell Jet Total Esso Noname
Aral 0.1436 0.2909 0.2059 0.2152 0.2116 0.3447
Shell -0.1075 -0.0080 0.0759 -0.0197 -0.0292 0.0701
Jet -0.2691 -0.2068 -0.1366 -0.2857 -0.2624 -0.1303
Total 0.1033 0.1761 0.3109 0.1139 0.1980 0.3227
Esso 0.0181 0.0686 0.1907 0.0558 0.1382 0.2177
Noname -0.2692 -0.1792 -0.1116 -0.2627 -0.2221 -0.0935

β estimates for diesel fuel stations
Dependent/independent Aral Shell Jet Total Esso Noname
Aral 0.1891 0.3022 0.1781 0.2497 0.2290 0.3293
Shell -0.0373 0.0252 0.0884 0.0343 0.0070 0.0807
Jet -0.2154 -0.1645 -0.1260 -0.2275 -0.2183 -0.1121
Total 0.1748 0.2252 0.3289 0.1669 0.2458 0.3358
Esso 0.0690 0.0842 0.1809 0.0981 0.1851 0.2080
Noname -0.1984 -0.1415 -0.0954 -0.1984 -0.1729 -0.0788

non-zero diagonal elements, reflecting the fact that station i is a neighbor to its neighboring

station j, which accounts for feedback. Impacts from brand i station on neighboring brand

j station will feedback to influence the price markup of the brand i station, and this will in

turn have additional spillover impacts on neighboring stations, neighbors to the neighboring

stations, and so on.

The estimates in each column of Table 12 can be interpreted as indicating how the price

markup of station i (in each row) is impacted by having the column branded station as its

nearest neighbor. The diagonal elements show the impact of having a same-branded station

as the nearest neighbor. For example the 1,1 element for the case of e5 fuel in the table shows

that an Aral brand station with an Aral brand nearest neighboring station will enjoy around

1.24 (Euro) cents higher price markup. To put this in context, the average price markup for

e5 was 78 cents and 60 cents for diesel over all stations and time periods. The first row of the

e5 portion of the table shows that Aral stations (the market share leader) enjoy a positive

markup irrespective of what other brand station is the nearest neighbor. Also, the first

row shows Aral station markups are highest (2.97 cents) when the independent/Noname

brand station is the nearest neighbor, (e.g., relative to other elements in row #1). This

observation is consistent across all brands. Specifically, the markups are the highest for all

brands when next to the independent/Nonme brand, with one exception, that Shell station
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markups are the highest when next to Jet (0.65 cents), followed by Noname brand (0.60

cents). In sum, stations next to Noname and Jet stations, the latter of which is marketed

as a discount brand in Germany, exhibit the largest deviations from cost-based pricing.

In addition, in comparison with other brands, the first row of the e5 portion of the

table shows that Aral stations have the highest price markups irrespective of which other

brand stations are the nearest neighbor, while the third and last rows show that Jet and

Noname stations have lowest price markups. The results from Table 12 imply that the brand

effect plays a significant role on not only own-station but also other-station (neighboring)

markups. Since Noname stations are not affiliated with a recognizable brand name, they

appear to be less desirable in the eye of consumers, accounting for the relatively lower

markups.11 It also means that stations in close proximity to Noname stations can exercise

more local market power and price discrimination, since consumers are less willing to switch

to the Noname stations. In contrast, proximity of brand name stations to other brand name

stations (notably Aral and Total), appears to decrease own-station market power, perhaps

because customers view these as close substitutes, leading to a more competitive oil market

as stated in IEA (2012).

Turning to the diesel fuel markup results, we see similar brand configuration results

regarding diesel pricing strategies. Variation in markups are explained by both own- and

nearest neighboring station brand names, with stations located next to Noname able to

maintain higher markups. Notice that market demand for diesel fuel has been expanding,

but the average markup is lower than for e5 at 60 cents. Furthermore, a great deal of

the similarity in long-run effects is explained by the similarity of the space-time parameter

estimates. We should also note that most of the stations in our sample of 12,050 stations

selling e5 (unleaded) fuel and 12,435 stations selling diesel fuel are the same stations that

sell both types of fuel. We might expect similar pricing policies/strategies for both types

of fuel sold.

As motivated in the face of asymmetric proximity of brand configurations for neigh-

boring stations, we can have indirect (spillover) effects on pricing decisions of higher-order

neighboring stations. Indirect effects are shown in Table 13, where we see generally smaller

11Jaureguiberry (2010) argues that the variations of markups depend upon many factors than just gasoline.
Gasoline sold at different station/brandname is heterogeneous product in the eye of consumers.
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Table 12: Brand configuration long-run direct effect estimates (posterior means)

Long-run direct effects for e5 fuel stations
Dependent/independent Aral Shell Jet Total Esso Noname
Aral 1.2382 2.5044 1.7743 1.8535 1.8233 2.9699
Shell -0.9260 -0.0695 0.6538 -0.1705 -0.2544 0.6045
Jet -2.3172 -1.7813 -1.1779 -2.4621 -2.2579 -1.1235
Total 0.8896 1.5177 2.6760 0.9807 1.7060 2.7795
Esso 0.1564 0.5902 1.6427 0.4812 1.1928 1.8753
Noname -2.3193 -1.5434 -0.9616 -2.2631 -1.9141 -0.8057

Long-run direct effects for diesel fuel stations
Dependent/independent Aral Shell Jet Total Esso Noname
Aral 1.7812 2.8466 1.6769 2.3509 2.1560 3.1010
Shell -0.3512 0.2373 0.8328 0.3224 0.0651 0.7607
Jet -2.0280 -1.5484 -1.1862 -2.1422 -2.0546 -1.0559
Total 1.6461 2.1207 3.0975 1.5712 2.3152 3.1613
Esso 0.6493 0.7933 1.7048 0.9249 1.7429 1.9594
Noname -1.8687 -1.3334 -0.8989 -1.8680 -1.6289 -0.7424

indirect effects estimates than direct effects estimates for both e5 and diesel fuel. Recall

that these represent cumulative spillovers over not just immediately neighboring stations

but higher-order neighbors as well. The smaller magnitudes of (cumulative) impact suggests

that the spatial scope of retail fuel pricing competition is limited to lower-order neighbors,

which seems intuitively plausible. Smaller spillovers might also reflect the fact that a great

deal of symmetry exists with regard to stations, where stations i and j are nearest neighbors

and stations j and i are neighbors. The counts of brands in Table 9 imply a great deal of

symmetry in this regard.

The long-run total effects are reported in Table 14, which provide a nice summary of

the overall impacts associated with the various brand configurations. The range of e5 price

markup impacts from different brand configurations is from -3.62 to 4.03 cents, or more

than 7 Euro cents. For diesel fuel the range is -2.97 to 4.38 cents, both of these reflecting

about 10 percent of the average markup.

The impact on e5 price markups of Aral (the market share leader) range from 1.82

to 4.37 cents, with the lowest markup for cases where another Aral station is the nearest

neighbor and the highest being in cases where a Noname/independent station is the nearest

neighbor. One of the lowest markups arises in the case of a Noname station with Aral as its

nearest neighbor (-3.41 cents), and another in cases where a Jet station has an Aral station
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Table 13: Brand configuration long-run indirect (spillover) effect estimates (posterior
means)

Long-run indirect effects for e5 fuel stations
Dependent/independent Aral Shell Jet Total Esso Noname
Aral 0.5839 1.1817 0.8368 0.8745 0.8599 1.4015
Shell -0.4367 -0.0327 0.3081 -0.0802 -0.1197 0.2851
Jet -1.0931 -0.8400 -0.5548 -1.1612 -1.0647 -0.5298
Total 0.4195 0.7158 1.2626 0.4624 0.8047 1.3115
Esso 0.0737 0.2778 0.7745 0.2264 0.5619 0.8849
Noname -1.0943 -0.7283 -0.4534 -1.0679 -0.9030 -0.3801

Long-run indirect effects for diesel fuel stations
Dependent/independent Aral Shell Jet Total Esso Noname
Aral 0.6901 1.1030 0.6500 0.9112 0.8353 1.2020
Shell -0.1361 0.0920 0.3230 0.1250 0.0252 0.2948
Jet -0.7859 -0.5999 -0.4596 -0.8304 -0.7961 -0.4091
Total 0.6381 0.8219 1.2003 0.6088 0.8971 1.2253
Esso 0.2518 0.3075 0.6607 0.3585 0.6755 0.7596
Noname -0.7244 -0.5167 -0.3483 -0.7241 -0.6313 -0.2877

as the nearest neighbor, (also, -3.41 cents). Interestingly, a Jet station with a Total brand

station as it neighbor also produces the lowest markup (-3.62 cents), and these two brands

have lower market shares (10.5 and 7.5 percent respectively).

Table 14: Brand configuration long-run total effect estimates (posterior means)

Long-run total effects for e5 fuel stations
Dependent/independent Aral Shell Jet Total Esso Noname
Aral 1.8216 3.6859 2.6102 2.7277 2.6826 4.3715
Shell -1.3628 -0.1024 0.9619 -0.2507 -0.3742 0.8894
Jet -3.4100 -2.6214 -1.7324 -3.6233 -3.3227 -1.6529
Total 1.3091 2.2332 3.9382 1.4431 2.5099 4.0910
Esso 0.2301 0.8676 2.4172 0.7075 1.7548 2.7600
Noname -3.4135 -2.2717 -1.4149 -3.3309 -2.8169 -1.1856

Long-run total effects for diesel fuel stations
Dependent/independent Aral Shell Jet Total Esso Noname
Aral 2.4713 3.9495 2.3269 3.2621 2.9913 4.3031
Shell -0.4873 0.3292 1.1558 0.4474 0.0903 1.0555
Jet -2.8139 -2.1483 -1.6458 -2.9725 -2.8507 -1.4650
Total 2.2842 2.9425 4.2978 2.1800 3.2123 4.3866
Esso 0.9010 1.1008 2.3655 1.2835 2.4184 2.7190
Noname -2.5931 -1.8501 -1.2472 -2.5921 -2.2602 -1.0302

37



5 Conclusion

A computationally efficient approach to producing MCMC estimates for space-time dynamic

panel models involving large N and T was set forth. In addition to providing the ability to

handle large problems, the method also produces Metropolis-Hastings tuned Monte Carlo

estimates of the log-marginal likelihood, which allow formal Bayesian model comparison

of alternative specifications based on differing weight matrices. Monte Carlo experiments

show the MCMC estimation method produces estimates with good coverage, low bias and

mean-squared error.

An illustration applied the method to 487 daily fuel (both unleaded and diesel) prices

for over 12,000 German gas stations, where N × T is over 6 million. The focus of the

application was on pricing competition/cooperation between six different branded stations.

The results reveal some evidence for market power resulting from the spatial configuration

of branded and unbranded stations.
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Appendix A

We present Monte Carlo results showing bias, mean-squared error, and 95% coverage for all

parameters along with the true and estimated values. The results presented are for cases not

on the boundary of the stationary parameter space. The results and discussion of boundary

cases presented in the text hold true for the larger sample Monte Carlo experiments. That

is, we see relatively poor performance for models where the true parameters lie on the

boundary of the stationary parameter space, suggesting practitioners should pay attention

to this issue in applied practice.

Comparing the results presented here for the larger sample to those from the text, we

see the expected results, smaller bias and mean-squared errors.

Table 15: Monte Carlo results (n = 2, 000, T = 50), all parameters

ρ =0.2, φ =0.5, θ =-0.3, σ2 =1
Parameters truth estimates bias MSE 95% coverage
β1 1.000000 0.999888 -0.000112 0.000010 0.950000
β2 -1.000000 -0.999815 0.000185 0.000009 0.954000
β3 1.000000 1.000039 0.000039 0.000010 0.954000
β4 -1.000000 -1.000048 -0.000048 0.000010 0.948000
ρ 0.200000 0.200185 0.000185 0.000007 0.952000
φ 0.500000 0.499933 -0.000067 0.000002 0.938000
θ -0.300000 -0.300053 -0.000053 0.000008 0.964000
Current period effects
direct 1 1.007136 1.007042 -0.000094 0.000010 0.946000
direct 2 -1.007136 -1.006968 0.000168 0.000010 0.958000
direct 3 1.007136 1.007194 0.000058 0.000010 0.954000
direct 4 -1.007136 -1.007203 -0.000066 0.000010 0.952000
indirect 1 0.242864 0.243134 0.000271 0.000016 0.954000
indirect 2 -0.242864 -0.243116 -0.000253 0.000016 0.946000
indirect 3 0.242864 0.243171 0.000307 0.000016 0.958000
indirect 4 -0.242864 -0.243173 -0.000309 0.000016 0.948000
total 1 1.250000 1.250177 0.000177 0.000032 0.946000
total 2 -1.250000 -1.250084 -0.000084 0.000031 0.958000
total 3 1.250000 1.250365 0.000365 0.000032 0.952000
total 4 -1.250000 -1.250375 -0.000375 0.000032 0.948000
A− matrix effects
A direct 0.492864 0.492790 -0.000073 0.000000 0.938000
A indirect -0.242864 -0.242883 -0.000019 0.000000 0.960000
A total 0.250000 0.249907 -0.000093 0.000000 0.946000
σ2 1.000000 1.000065 0.000065 0.000021 0.952000
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Table 16: Monte Carlo results (n = 2, 000, T = 50), all parameters

ρ =0.2, φ =0.5, θ =-0.5, σ2 =1
Parameters truth estimates bias MSE 95% coverage
β1 1.000000 1.000207 0.000207 0.000011 0.956000
β2 -1.000000 -1.000016 -0.000016 0.000010 0.958000
β3 1.000000 1.000197 0.000197 0.000011 0.936000
β4 -1.000000 -0.999964 0.000036 0.000010 0.960000
ρ 0.200000 0.199981 -0.000019 0.000007 0.950000
φ 0.500000 0.500066 0.000066 0.000001 0.956000
θ -0.500000 -0.499985 0.000015 0.000007 0.950000
Current period effects
direct 1 1.007136 1.007350 0.000213 0.000011 0.956000
direct 2 -1.007136 -1.007157 -0.000021 0.000010 0.956000
direct 3 1.007136 1.007340 0.000203 0.000011 0.934000
direct 4 -1.007136 -1.007104 0.000032 0.000010 0.966000
indirect 1 0.242864 0.242905 0.000041 0.000015 0.958000
indirect 2 -0.242864 -0.242859 0.000005 0.000015 0.946000
indirect 3 0.242864 0.242904 0.000040 0.000016 0.936000
indirect 4 -0.242864 -0.242846 0.000018 0.000015 0.950000
total 1 1.250000 1.250255 0.000255 0.000032 0.946000
total 2 -1.250000 -1.250016 -0.000016 0.000031 0.936000
total 3 1.250000 1.250244 0.000244 0.000035 0.930000
total 4 -1.250000 -1.249950 0.000050 0.000031 0.956000
A− matrix effects
A direct 0.485727 0.485795 0.000068 0.000000 0.954000
A indirect -0.485727 -0.485697 0.000030 0.000000 0.952000
A total 0.000000 0.000098 0.000098 0.000000 0.950000
σ2 1.000000 0.999979 -0.000021 0.000023 0.932000
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Table 17: Monte Carlo results (n = 2, 000, T = 50), all parameters

ρ =0.2, φ =0.7, θ =-0.3, σ2 =1
Parameters truth estimates bias MSE 95% coverage
β1 1.000000 1.000423 0.000423 0.000010 0.956000
β2 -1.000000 -1.000068 -0.000068 0.000009 0.966000
β3 1.000000 0.999895 -0.000105 0.000010 0.936000
β4 -1.000000 -1.000027 -0.000027 0.000010 0.952000
ρ 0.200000 0.200082 0.000082 0.000007 0.946000
φ 0.700000 0.700006 0.000006 0.000001 0.958000
θ -0.300000 -0.300184 -0.000184 0.000008 0.940000
Current period effects
direct 1 1.007136 1.007577 0.000441 0.000010 0.958000
direct 2 -1.007136 -1.007220 -0.000083 0.000010 0.968000
direct 3 1.007136 1.007046 -0.000090 0.000011 0.934000
direct 4 -1.007136 -1.007178 -0.000042 0.000010 0.952000
indirect 1 0.242864 0.243106 0.000243 0.000016 0.952000
indirect 2 -0.242864 -0.243020 -0.000156 0.000016 0.944000
indirect 3 0.242864 0.242978 0.000115 0.000016 0.946000
indirect 4 -0.242864 -0.243010 -0.000146 0.000016 0.946000
total 1 1.250000 1.250684 0.000684 0.000032 0.952000
total 2 -1.250000 -1.250239 -0.000239 0.000030 0.952000
total 3 1.250000 1.250024 0.000024 0.000033 0.936000
total 4 -1.250000 -1.250188 -0.000188 0.000032 0.942000
A− matrix effects
A direct 0.694291 0.694289 -0.000002 0.000000 0.958000
A indirect -0.194291 -0.194461 -0.000170 0.000000 0.950000
A total 0.500000 0.499828 -0.000172 0.000000 0.952000
σ2 1.000000 0.999912 -0.000088 0.000020 0.944000
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Table 18: Monte Carlo results (n = 2, 000, T = 50), all parameters

ρ =0.2, φ =0.7, θ =-0.5, σ2 =1
Parameters truth estimates bias MSE 95% coverage
β1 1.000000 0.999870 -0.000130 0.000010 0.954000
β2 -1.000000 -0.999976 0.000024 0.000010 0.952000
β3 1.000000 0.999821 -0.000179 0.000010 0.950000
β4 -1.000000 -0.999934 0.000066 0.000010 0.950000
ρ 0.200000 0.200125 0.000125 0.000007 0.940000
φ 0.700000 0.700035 0.000035 0.000001 0.946000
θ -0.500000 -0.500052 -0.000052 0.000007 0.944000
Current period effects
direct 1 1.007136 1.007018 -0.000119 0.000010 0.950000
direct 2 -1.007136 -1.007124 0.000012 0.000010 0.948000
direct 3 1.007136 1.006968 -0.000168 0.000010 0.950000
direct 4 -1.007136 -1.007082 0.000055 0.000010 0.950000
indirect 1 0.242864 0.243042 0.000178 0.000016 0.942000
indirect 2 -0.242864 -0.243067 -0.000203 0.000016 0.938000
indirect 3 0.242864 0.243029 0.000165 0.000016 0.952000
indirect 4 -0.242864 -0.243056 -0.000193 0.000016 0.942000
total 1 1.250000 1.250059 0.000059 0.000033 0.940000
total 2 -1.250000 -1.250191 -0.000191 0.000032 0.948000
total 3 1.250000 1.249997 -0.000003 0.000032 0.958000
total 4 -1.250000 -1.250138 -0.000138 0.000031 0.944000
A− matrix effects
A direct 0.687155 0.687182 0.000028 0.000000 0.946000
A indirect -0.437155 -0.437168 -0.000014 0.000000 0.954000
A total 0.250000 0.250014 0.000014 0.000000 0.958000
σ2 1.000000 0.999892 -0.000108 0.000020 0.956000
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Table 19: Monte Carlo results (n = 2, 000, T = 50), all parameters

ρ =0.4, φ =0.5, θ =-0.3, σ2 =1
Parameters truth estimates bias MSE 95% coverage
β1 1.000000 0.999784 -0.000216 0.000011 0.940000
β2 -1.000000 -0.999996 0.000004 0.000010 0.954000
β3 1.000000 0.999866 -0.000134 0.000011 0.936000
β4 -1.000000 -1.000030 -0.000030 0.000009 0.958000
ρ 0.400000 0.401408 0.001408 0.000007 0.904000
φ 0.500000 0.500008 0.000008 0.000001 0.952000
θ -0.300000 -0.300449 -0.000449 0.000006 0.944000
Current period effects
direct 1 1.033726 1.033799 0.000073 0.000011 0.940000
direct 2 -1.033726 -1.034019 -0.000293 0.000011 0.952000
direct 3 1.033726 1.033884 0.000158 0.000012 0.936000
direct 4 -1.033726 -1.034054 -0.000328 0.000010 0.960000
indirect 1 0.632941 0.636471 0.003530 0.000047 0.914000
indirect 2 -0.632941 -0.636606 -0.003666 0.000048 0.904000
indirect 3 0.632941 0.636524 0.003583 0.000048 0.908000
indirect 4 -0.632941 -0.636629 -0.003688 0.000049 0.894000
total 1 1.666667 1.670270 0.003604 0.000076 0.938000
total 2 -1.666667 -1.670625 -0.003958 0.000077 0.930000
total 3 1.666667 1.670408 0.003741 0.000079 0.920000
total 4 -1.666667 -1.670683 -0.004016 0.000080 0.912000
A− matrix effects
A direct 0.491569 0.491556 -0.000012 0.000000 0.956000
A indirect -0.158235 -0.158176 0.000059 0.000000 0.956000
A total 0.333333 0.333381 0.000047 0.000000 0.968000
σ2 1.000000 0.999901 -0.000099 0.000020 0.952000
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Table 20: Monte Carlo results (n = 2, 000, T = 50), all parameters

ρ =0.4, φ =0.5, θ =-0.5, σ2 =1
Parameters truth estimates bias MSE 95% coverage
β1 1.000000 1.000091 0.000091 0.000009 0.960000
β2 -1.000000 -0.999846 0.000154 0.000010 0.960000
β3 1.000000 0.999889 -0.000111 0.000010 0.960000
β4 -1.000000 -1.000029 -0.000029 0.000010 0.954000
ρ 0.400000 0.401406 0.001406 0.000007 0.886000
φ 0.500000 0.500164 0.000164 0.000001 0.954000
θ -0.500000 -0.500390 -0.000390 0.000006 0.950000
Current period effects
direct 1 1.033726 1.034095 0.000370 0.000010 0.958000
direct 2 -1.033726 -1.033841 -0.000116 0.000010 0.962000
direct 3 1.033726 1.033886 0.000160 0.000011 0.954000
direct 4 -1.033726 -1.034031 -0.000305 0.000011 0.958000
indirect 1 0.632941 0.636684 0.003744 0.000052 0.878000
indirect 2 -0.632941 -0.636527 -0.003587 0.000051 0.892000
indirect 3 0.632941 0.636554 0.003614 0.000051 0.882000
indirect 4 -0.632941 -0.636644 -0.003703 0.000051 0.888000
total 1 1.666667 1.670780 0.004113 0.000082 0.914000
total 2 -1.666667 -1.670369 -0.003702 0.000079 0.908000
total 3 1.666667 1.670440 0.003773 0.000079 0.912000
total 4 -1.666667 -1.670674 -0.004008 0.000080 0.912000
A− matrix effects
A direct 0.474706 0.474783 0.000077 0.000000 0.964000
A indirect -0.474706 -0.475163 -0.000458 0.000000 0.954000
A total 0.000000 -0.000381 -0.000381 0.000000 0.960000
σ2 1.000000 1.000021 0.000021 0.000021 0.954000
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Table 21: Monte Carlo results (n = 2, 000, T = 50), all parameters

ρ =0.4, φ =0.7, θ =-0.3, σ2 =1
Parameters truth estimates bias MSE 95% coverage
β1 1.000000 0.999886 -0.000114 0.000010 0.954000
β2 -1.000000 -0.999884 0.000116 0.000010 0.940000
β3 1.000000 0.999922 -0.000078 0.000011 0.952000
β4 -1.000000 -1.000213 -0.000213 0.000009 0.956000
ρ 0.400000 0.401423 0.001423 0.000008 0.886000
φ 0.700000 0.700058 0.000058 0.000001 0.944000
θ -0.300000 -0.300897 -0.000897 0.000007 0.938000
Current period effects
direct 1 1.033726 1.033893 0.000167 0.000011 0.954000
direct 2 -1.033726 -1.033891 -0.000165 0.000011 0.940000
direct 3 1.033726 1.033930 0.000204 0.000011 0.954000
direct 4 -1.033726 -1.034231 -0.000505 0.000010 0.950000
indirect 1 0.632941 0.636592 0.003651 0.000053 0.876000
indirect 2 -0.632941 -0.636591 -0.003650 0.000053 0.890000
indirect 3 0.632941 0.636615 0.003674 0.000053 0.894000
indirect 4 -0.632941 -0.636800 -0.003859 0.000054 0.890000
total 1 1.666667 1.670486 0.003819 0.000081 0.914000
total 2 -1.666667 -1.670481 -0.003815 0.000080 0.922000
total 3 1.666667 1.670545 0.003878 0.000083 0.924000
total 4 -1.666667 -1.671031 -0.004365 0.000083 0.922000
A− matrix effects
A direct 0.698314 0.698373 0.000060 0.000000 0.940000
A indirect -0.031647 -0.031525 0.000122 0.000000 0.970000
A total 0.666667 0.666849 0.000182 0.000000 0.970000
σ2 1.000000 0.999793 -0.000207 0.000021 0.948000
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Table 22: Monte Carlo results (n = 2, 000, T = 50), all parameters

ρ =0.4, φ =0.7, θ =-0.5, σ2 =1
Parameters truth estimates bias MSE 95% coverage
β1 1.000000 0.999834 -0.000166 0.000011 0.946000
β2 -1.000000 -0.999612 0.000388 0.000011 0.928000
β3 1.000000 0.999824 -0.000176 0.000011 0.950000
β4 -1.000000 -0.999809 0.000191 0.000010 0.950000
ρ 0.400000 0.401642 0.001642 0.000008 0.894000
φ 0.700000 0.700080 0.000080 0.000001 0.950000
θ -0.500000 -0.500763 -0.000763 0.000006 0.932000
Current period effects
direct 1 1.033726 1.033881 0.000156 0.000012 0.944000
direct 2 -1.033726 -1.033652 0.000074 0.000012 0.946000
direct 3 1.033726 1.033872 0.000146 0.000011 0.950000
direct 4 -1.033726 -1.033856 -0.000130 0.000011 0.958000
indirect 1 0.632941 0.637122 0.004181 0.000051 0.924000
indirect 2 -0.632941 -0.636981 -0.004040 0.000051 0.924000
indirect 3 0.632941 0.637117 0.004176 0.000053 0.912000
indirect 4 -0.632941 -0.637108 -0.004167 0.000053 0.914000
total 1 1.666667 1.671003 0.004336 0.000078 0.920000
total 2 -1.666667 -1.670633 -0.003966 0.000077 0.934000
total 3 1.666667 1.670988 0.004322 0.000082 0.928000
total 4 -1.666667 -1.670963 -0.004297 0.000080 0.924000
A− matrix effects
A direct 0.681451 0.681461 0.000011 0.000000 0.946000
A indirect -0.348117 -0.348358 -0.000240 0.000000 0.962000
A total 0.333333 0.333104 -0.000230 0.000000 0.962000
σ2 1.000000 0.999674 -0.000326 0.000019 0.950000
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Table 23: Monte Carlo results (n = 2, 000, T = 50), all parameters

ρ =0.2, φ =0.5, θ =-0.3, σ2 =1
Parameters truth estimates bias MSE 95% coverage
β1 1.000000 1.000391 0.000391 0.000086 0.958000
β2 -1.000000 -1.000463 -0.000463 0.000096 0.958000
β3 1.000000 0.999842 -0.000158 0.000092 0.952000
β4 -1.000000 -0.999627 0.000373 0.000090 0.960000
ρ 0.200000 0.200297 0.000297 0.000019 0.946000
φ 0.500000 0.499931 -0.000069 0.000005 0.950000
θ -0.300000 -0.300070 -0.000070 0.000026 0.948000
Current period effects
direct 1 1.007136 1.007561 0.000424 0.000088 0.958000
direct 2 -1.007136 -1.007633 -0.000497 0.000098 0.958000
direct 3 1.007136 1.007007 -0.000129 0.000093 0.954000
direct 4 -1.007136 -1.006791 0.000346 0.000091 0.958000
indirect 1 0.242864 0.243463 0.000600 0.000048 0.950000
indirect 2 -0.242864 -0.243482 -0.000618 0.000049 0.940000
indirect 3 0.242864 0.243330 0.000467 0.000048 0.952000
indirect 4 -0.242864 -0.243274 -0.000410 0.000046 0.954000
total 1 1.250000 1.251024 0.001024 0.000180 0.960000
total 2 -1.250000 -1.251115 -0.001115 0.000198 0.952000
total 3 1.250000 1.250338 0.000338 0.000190 0.934000
total 4 -1.250000 -1.250064 -0.000064 0.000176 0.958000
A− matrix effects
A direct 0.492864 0.492785 -0.000078 0.000000 0.954000
A indirect -0.242864 -0.242869 -0.000005 0.000000 0.954000
A total 0.250000 0.249917 -0.000083 0.000000 0.944000
σ2 10.000000 10.000329 0.000329 0.002103 0.948000
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Table 24: Monte Carlo results (n = 2, 000, T = 50), all parameters

ρ =0.2, φ =0.5, θ =-0.5, σ2 =1
Parameters truth estimates bias MSE 95% coverage
β1 1.000000 1.000110 0.000110 0.000104 0.940000
β2 -1.000000 -1.000337 -0.000337 0.000102 0.944000
β3 1.000000 0.999722 -0.000278 0.000110 0.940000
β4 -1.000000 -1.000467 -0.000467 0.000101 0.952000
ρ 0.200000 0.200385 0.000385 0.000019 0.938000
φ 0.500000 0.500113 0.000113 0.000005 0.956000
θ -0.500000 -0.500364 -0.000364 0.000026 0.956000
Current period effects
direct 1 1.007136 1.007284 0.000148 0.000105 0.944000
direct 2 -1.007136 -1.007513 -0.000377 0.000103 0.944000
direct 3 1.007136 1.006894 -0.000242 0.000112 0.940000
direct 4 -1.007136 -1.007644 -0.000508 0.000103 0.956000
indirect 1 0.242864 0.243523 0.000659 0.000047 0.932000
indirect 2 -0.242864 -0.243574 -0.000710 0.000045 0.948000
indirect 3 0.242864 0.243428 0.000564 0.000047 0.924000
indirect 4 -0.242864 -0.243611 -0.000747 0.000047 0.928000
total 1 1.250000 1.250807 0.000807 0.000206 0.926000
total 2 -1.250000 -1.251087 -0.001087 0.000192 0.956000
total 3 1.250000 1.250322 0.000322 0.000212 0.938000
total 4 -1.250000 -1.251255 -0.001255 0.000204 0.944000
A− matrix effects
A direct 0.485727 0.485804 0.000077 0.000000 0.958000
A indirect -0.485727 -0.486127 -0.000400 0.000000 0.960000
A total 0.000000 -0.000323 -0.000323 0.000000 0.966000
σ2 10.000000 10.001444 0.001444 0.002206 0.944000
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Table 25: Monte Carlo results (n = 2, 000, T = 50), all parameters

ρ =0.2, φ =0.7, θ =-0.3, σ2 =1
Parameters truth estimates bias MSE 95% coverage
β1 1.000000 0.999858 -0.000142 0.000100 0.956000
β2 -1.000000 -0.999687 0.000313 0.000094 0.944000
β3 1.000000 0.999785 -0.000215 0.000092 0.960000
β4 -1.000000 -1.000156 -0.000156 0.000105 0.942000
ρ 0.200000 0.200233 0.000233 0.000017 0.964000
φ 0.700000 0.699882 -0.000118 0.000004 0.960000
θ -0.300000 -0.300158 -0.000158 0.000023 0.964000
Current period effects
direct 1 1.007136 1.007021 -0.000115 0.000101 0.960000
direct 2 -1.007136 -1.006849 0.000288 0.000095 0.946000
direct 3 1.007136 1.006947 -0.000189 0.000094 0.958000
direct 4 -1.007136 -1.007321 -0.000185 0.000107 0.942000
indirect 1 0.242864 0.243235 0.000372 0.000044 0.956000
indirect 2 -0.242864 -0.243190 -0.000327 0.000042 0.962000
indirect 3 0.242864 0.243214 0.000351 0.000042 0.966000
indirect 4 -0.242864 -0.243304 -0.000440 0.000043 0.962000
total 1 1.250000 1.250257 0.000257 0.000206 0.954000
total 2 -1.250000 -1.250039 -0.000039 0.000187 0.958000
total 3 1.250000 1.250162 0.000162 0.000186 0.954000
total 4 -1.250000 -1.250625 -0.000625 0.000204 0.944000
A− matrix effects
A direct 0.694291 0.694164 -0.000127 0.000000 0.962000
A indirect -0.194291 -0.194367 -0.000076 0.000000 0.968000
A total 0.500000 0.499797 -0.000203 0.000000 0.966000
σ2 10.000000 9.999368 -0.000632 0.001928 0.944000
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Table 26: Monte Carlo results (n = 2, 000, T = 50), all parameters

ρ =0.2, φ =0.7, θ =-0.5, σ2 =1
Parameters truth estimates bias MSE 95% coverage
β1 1.000000 1.000080 0.000080 0.000089 0.962000
β2 -1.000000 -0.999721 0.000279 0.000097 0.948000
β3 1.000000 1.000039 0.000039 0.000093 0.966000
β4 -1.000000 -0.999585 0.000415 0.000101 0.950000
ρ 0.200000 0.200131 0.000131 0.000018 0.950000
φ 0.700000 0.699929 -0.000071 0.000003 0.950000
θ -0.500000 -0.499921 0.000079 0.000024 0.964000
Current period effects
direct 1 1.007136 1.007233 0.000097 0.000090 0.966000
direct 2 -1.007136 -1.006872 0.000264 0.000098 0.950000
direct 3 1.007136 1.007192 0.000056 0.000094 0.962000
direct 4 -1.007136 -1.006735 0.000401 0.000103 0.952000
indirect 1 0.242864 0.243137 0.000273 0.000043 0.954000
indirect 2 -0.242864 -0.243052 -0.000188 0.000044 0.946000
indirect 3 0.242864 0.243134 0.000270 0.000046 0.948000
indirect 4 -0.242864 -0.243022 -0.000158 0.000046 0.946000
total 1 1.250000 1.250370 0.000370 0.000173 0.956000
total 2 -1.250000 -1.249924 0.000076 0.000190 0.960000
total 3 1.250000 1.250326 0.000326 0.000197 0.948000
total 4 -1.250000 -1.249757 0.000243 0.000206 0.954000
A− matrix effects
A direct 0.687155 0.687079 -0.000075 0.000000 0.952000
A indirect -0.437155 -0.437039 0.000116 0.000000 0.966000
A total 0.250000 0.250041 0.000041 0.000000 0.958000
σ2 10.000000 10.000961 0.000961 0.001647 0.976000
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Table 27: Monte Carlo results (n = 2, 000, T = 50), all parameters

ρ =0.4, φ =0.5, θ =-0.3, σ2 =1
Parameters truth estimates bias MSE 95% coverage
β1 1.000000 1.000119 0.000119 0.000110 0.930000
β2 -1.000000 -0.999352 0.000648 0.000095 0.946000
β3 1.000000 1.000447 0.000447 0.000096 0.962000
β4 -1.000000 -0.999975 0.000025 0.000094 0.960000
ρ 0.400000 0.403800 0.003800 0.000028 0.814000
φ 0.500000 0.500129 0.000129 0.000006 0.938000
θ -0.300000 -0.301654 -0.001654 0.000024 0.944000
Current period effects
direct 1 1.033726 1.034632 0.000906 0.000118 0.936000
direct 2 -1.033726 -1.033839 -0.000113 0.000102 0.946000
direct 3 1.033726 1.034972 0.001246 0.000104 0.956000
direct 4 -1.033726 -1.034483 -0.000757 0.000101 0.962000
indirect 1 0.632941 0.642973 0.010032 0.000229 0.868000
indirect 2 -0.632941 -0.642486 -0.009545 0.000220 0.856000
indirect 3 0.632941 0.643188 0.010247 0.000232 0.856000
indirect 4 -0.632941 -0.642881 -0.009940 0.000220 0.878000
total 1 1.666667 1.677605 0.010938 0.000514 0.908000
total 2 -1.666667 -1.676325 -0.009658 0.000465 0.928000
total 3 1.666667 1.678160 0.011493 0.000501 0.910000
total 4 -1.666667 -1.677364 -0.010697 0.000465 0.932000
A− matrix effects
A direct 0.491569 0.491611 0.000042 0.000000 0.946000
A indirect -0.158235 -0.158714 -0.000478 0.000000 0.950000
A total 0.333333 0.332897 -0.000436 0.000000 0.948000
σ2 10.000000 9.992946 -0.007054 0.001986 0.958000
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Table 28: Monte Carlo results (n = 2, 000, T = 50), all parameters

ρ =0.4, φ =0.5, θ =-0.5, σ2 =1
Parameters truth estimates bias MSE 95% coverage
β1 1.000000 1.000512 0.000512 0.000111 0.942000
β2 -1.000000 -0.999367 0.000633 0.000110 0.938000
β3 1.000000 1.000358 0.000358 0.000087 0.966000
β4 -1.000000 -0.999759 0.000241 0.000102 0.936000
ρ 0.400000 0.403778 0.003778 0.000028 0.804000
φ 0.500000 0.500445 0.000445 0.000006 0.932000
θ -0.500000 -0.501147 -0.001147 0.000021 0.940000
Current period effects
direct 1 1.033726 1.035032 0.001306 0.000120 0.940000
direct 2 -1.033726 -1.033847 -0.000121 0.000116 0.936000
direct 3 1.033726 1.034873 0.001147 0.000094 0.958000
direct 4 -1.033726 -1.034254 -0.000528 0.000111 0.944000
indirect 1 0.632941 0.643175 0.010234 0.000241 0.842000
indirect 2 -0.632941 -0.642432 -0.009491 0.000218 0.860000
indirect 3 0.632941 0.643076 0.010135 0.000230 0.850000
indirect 4 -0.632941 -0.642697 -0.009757 0.000237 0.834000
total 1 1.666667 1.678207 0.011540 0.000544 0.888000
total 2 -1.666667 -1.676279 -0.009613 0.000479 0.920000
total 3 1.666667 1.677949 0.011283 0.000474 0.914000
total 4 -1.666667 -1.676952 -0.010285 0.000517 0.892000
A− matrix effects
A direct 0.474706 0.474894 0.000188 0.000000 0.942000
A indirect -0.474706 -0.476086 -0.001380 0.000002 0.952000
A total 0.000000 -0.001192 -0.001192 0.000001 0.944000
σ2 10.000000 9.992204 -0.007796 0.002208 0.948000
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Table 29: Monte Carlo results (n = 2, 000, T = 50), all parameters

ρ =0.4, φ =0.7, θ =-0.3, σ2 =1
Parameters truth estimates bias MSE 95% coverage
β1 1.000000 0.999836 -0.000164 0.000091 0.960000
β2 -1.000000 -1.000305 -0.000305 0.000094 0.952000
β3 1.000000 0.999529 -0.000471 0.000102 0.964000
β4 -1.000000 -0.998631 0.001369 0.000102 0.950000
ρ 0.400000 0.403861 0.003861 0.000030 0.808000
φ 0.700000 0.699962 -0.000038 0.000004 0.950000
θ -0.300000 -0.302593 -0.002593 0.000025 0.916000
Current period effects
direct 1 1.033726 1.034350 0.000624 0.000100 0.958000
direct 2 -1.033726 -1.034834 -0.001109 0.000101 0.950000
direct 3 1.033726 1.034032 0.000307 0.000109 0.966000
direct 4 -1.033726 -1.033104 0.000622 0.000109 0.950000
indirect 1 0.632941 0.642968 0.010027 0.000239 0.844000
indirect 2 -0.632941 -0.643260 -0.010319 0.000233 0.848000
indirect 3 0.632941 0.642766 0.009825 0.000233 0.866000
indirect 4 -0.632941 -0.642194 -0.009253 0.000228 0.860000
total 1 1.666667 1.677318 0.010651 0.000490 0.916000
total 2 -1.666667 -1.678094 -0.011427 0.000478 0.930000
total 3 1.666667 1.676799 0.010132 0.000491 0.920000
total 4 -1.666667 -1.675297 -0.008631 0.000476 0.904000
A− matrix effects
A direct 0.698314 0.698262 -0.000052 0.000000 0.956000
A indirect -0.031647 -0.031687 -0.000040 0.000000 0.974000
A total 0.666667 0.666574 -0.000092 0.000000 0.966000
σ2 10.000000 9.987952 -0.012048 0.002281 0.932000
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Table 30: Monte Carlo results (n = 2, 000, T = 50), all parameters

ρ =0.4, φ =0.7, θ =-0.5, σ2 =1
Parameters truth estimates bias MSE 95% coverage
β1 1.000000 0.999661 -0.000339 0.000092 0.964000
β2 -1.000000 -1.000322 -0.000322 0.000098 0.954000
β3 1.000000 1.000629 0.000629 0.000096 0.966000
β4 -1.000000 -0.999557 0.000443 0.000097 0.950000
ρ 0.400000 0.404102 0.004102 0.000030 0.786000
φ 0.700000 0.700151 0.000151 0.000004 0.954000
θ -0.500000 -0.502033 -0.002033 0.000023 0.930000
Current period effects
direct 1 1.033726 1.034221 0.000495 0.000098 0.956000
direct 2 -1.033726 -1.034905 -0.001179 0.000108 0.954000
direct 3 1.033726 1.035223 0.001497 0.000105 0.962000
direct 4 -1.033726 -1.034113 -0.000388 0.000105 0.950000
indirect 1 0.632941 0.643470 0.010529 0.000238 0.858000
indirect 2 -0.632941 -0.643901 -0.010961 0.000258 0.810000
indirect 3 0.632941 0.644097 0.011156 0.000258 0.824000
indirect 4 -0.632941 -0.643409 -0.010468 0.000247 0.842000
total 1 1.666667 1.677691 0.011024 0.000479 0.914000
total 2 -1.666667 -1.678806 -0.012139 0.000544 0.896000
total 3 1.666667 1.679319 0.012653 0.000541 0.890000
total 4 -1.666667 -1.677522 -0.010856 0.000510 0.910000
A− matrix effects
A direct 0.681451 0.681411 -0.000039 0.000000 0.952000
A indirect -0.348117 -0.348950 -0.000832 0.000001 0.956000
A total 0.333333 0.332462 -0.000871 0.000001 0.954000
σ2 10.000000 9.997190 -0.002810 0.002041 0.950000
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