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1. Introduction

Portfolio selection is obtained maximizing expected return and 
minimizing risk. Nowadays researchers and practitioners are 
focused on Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) 
as measures of market risk. VaR of a portfolio is the lowest amount 
such that the loss will not exceed it with probability 1–a. CVaR is the 

a b s t r a c t

Genetic algorithms (GAs) are appropriate when investors have the objective of obtaining mean-variance 
(VaR) efficient frontier as minimising VaR leads to non-convex and non-differential risk-return optimisation 
problems. However GAs are a time-consuming optimisation technique. In this paper, we propose to use a 
naïve approach consisting of using samples split by quartile of risk to obtain complete efficient frontiers in 
a reasonable computation time. Our results show that using reduced problems which only consider a quartile 
of the assets allow us to explore the efficient frontier for a large range of risk values. In particular, the third 
quartile allows us to obtain efficient frontiers from the 1.8% to 2.5% level of VaR quickly, while that of the first 
quartile of assets is from 1% to 1.3% level of VaR. 

© 2011 AEDEM. Publicado por Elsevier España, S.L. Todos los derechos reservados.

Una aproximación ingenua para acelerar el programa de optimización  
de carteras usando un algoritmo genético multiobjetivo

r e s u m e n

Los algoritmos genéticos son apropiados cuando los inversores tienen el propósito de obtener la frontera 
eficiente media-VaR, ya que minimizar el VaR ocasiona que el problema de optimización rentabilidad-riesgo 
no sea ni convexo ni diferencial. Sin embargo, los algoritmos genéticos son una técnica de optimización que 
exige mucho tiempo de computación. En este artículo proponemos usar una aproximación naïve, consistente 
en dividir la muestra por cuartiles de riesgo para obtener la frontera eficiente en un tiempo razonable. 
Nuestros resultados muestran que usando problemas reducidos que sólo consideran un cuartil de los activos 
podemos explorar la frontera eficiente para un mayor número de niveles de riesgo. Concretamente, la muestra 
del tercer cuartil permite obtener rápidamente fronteras eficientes con un VaR entre el 1,8 y el 2,5%, mientras 
que el primer cuartil permite obtener las carteras eficientes con niveles de VaR entre el 1 y el 1,3%.

© 2011 AEDEM. Published by Elsevier España, S.L. All rights reserved.
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conditional expectation of losses above the VaR. VaR and CVaR can 
be used to balance risk and return. While CVaR can be efficiently 
minimized using linear programming and non-smoothing 
techniques (Rockafellar and Uryasev, 2000), minimizing VaR leads 
to a non-convex and non-differential risk-return problem and 
smoothing techniques (Gaivoronski and Pflug, 2005) or heuristic 
optimization techniques need to be applied (Gilli, Këllezi and Hysi, 
2006).

In order to avoid the use of smoothing techniques, genetic 
algorithm (GA) has been used to deal with the problem of minimizing 
VaR or any other measure that leads to non-convex and 
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non-differential risk-return optimization problems. Some examples 
of application of GAs to the portfolio selection problem are the 
following: Yang (2006) introduces a GA into a state dependent 
dynamic portfolio optimization system in order to improve the 
portfolio efficiency over the classical mean-variance method by 
reducing the estimation risk. Lin and Liu (2008), Anagnostopoulos 
and Mamanis (2010) and Ba i xaul i-Soler,  A l faro - Cid and 
Fernandez-Blanco (2011) use GA for introducing several real 
constrains to the portfolio selection problems. Ong, Huang and 
Tzeng (2005) provide an application of multiobjective genetic 
algorithm to obtain efficient frontiers to improve the accuracy of the 
mean-variance approach when a small sample is available. 
Anagnostopoulos and Mamanis (2009) consider integer constrains 
for the mean-var iance model .  Subbu, Bonissone, Ek lund, 
Bollapragadaa and Chalermkraivuth (2005) present an optimization 
approach in which a multiobjective genetic algorithm is combined 
with linear programming to identify efficient frontiers under 
multiple risk measures. Also, Baixauli-Soler, Alfaro-Cid and 
Fernandez-Blanco (2010) report efficient frontiers under multiple 
risk measures. 

One of the benefits of using GAs for multiobjective optimization 
is that GAs work with a population of individuals (portfolios), which 
allows us to find several nondominated solution in a single run. Also, 
GAs are less susceptible than other techniques to the non-convexity 
of the search space. However, GAs are a t ime-consuming 
optimization technique and, when the optimal solution is unknown, 
the algorithm is stopped when the efficient frontier does not 
improve significantly.

In this paper, we carry on an analysis of efficient portfolios using 
VaR and CVaR to quantify the market risk in order to speed up the 
algorithm. The proposal to speed up the algorithm is a naïve 
approach based on solving smaller problems. Concretely, firstly, we 
show differences between efficient portfolios depending on the 
parameter values used in the multiobjective GA, since these values 
affect to the computation time. Secondly, we show the good 
performance of the multiobjective GA comparing its mean-CVaR 
efficient frontier with the true efficient frontier, which is obtained 
using the linear programming technique proposed by Rockafellar 
and Uryasev (2000). We observe that they are overlapped. Thirdly, 
we analyze the composition and characteristics of the true 
mean-CVaR efficient frontier in order to propose a naïve approach to 
obtain mean-VaR efficient portfolios based on a simplification of the 
portfolio problem splitting the sample by levels of risk. Finally, we 
compute the efficient frontiers using this naïve approach and 
we present its advantages and disadvantages.

The remainder of this paper is organized as follows: Section  2 
describes the portfolio optimization problem; section 3 explains the 
implementation of multiobjective GAs; section 4 presents the data 
and the results, and finally, section 5 reports the main conclusions 
and the future lines of work.

2. Portfolio Selection Problems

The mean-VaR model uses VaR as a measure of risk. In this paper, 
we compute VaR using the historical simulation method, which is 
the most widely used method to do it. This method consists of going 
back in time and applying current weights to time-series of 
historical asset returns. By keeping weights at their current values 
the history of a hypothetical portfolio is reconstructed:

R p , j = wi Ri , j
i =1

N

   for j =1,..,T  [1]

where, each historical day is assigned the same probability of 
occurrence, equal to 1/T. By sorting in ascending order Rp,j, VaR is the 
R*p,j located in the aT position.

In the mean-VaR model efficient portfolios are the solution of the 
following problem:

Model 1    [2]

VaR is difficult to optimize for discrete distributions since is 
non-convex and has multiple local extrema. Mostly, approaches rely 
on linear approximation of the portfolio risks and assume a joint 
normal distribution of the underlying parameters (Jorion, 1996, 
Duffie and Pan, 1997). Optimization requires smoothing or heuristic 
techniques as those presented in Gaivoronski and Pflug (2005) or 
Gilli et al (2006). We use a multiobjective genetic algorithm which 
does not rely on specific assumptions about the distribution of the 
portfolio return (Subbu et al, 2005, Anagnostopoulos and Mamanis, 
2010 and Baixauli-Soler et al, 2011).

On the other hand, CVaR can be defined as the conditional 
expected loss in case the VaR is exceeded. For general distributions, 
CVaR is more attractive than VaR since it is sub-additive and convex. 
On consequence, the problem of minimizing CVaR for finding 
efficient portfolios is convex. 

As for VaR, we compute CVaR using the historical simulation 
method, whose main advantages are that it is simple to implement 
and allows for non-normal distribution. Hence, we obtain CVaR from 
the entire distribution of historical returns and it is estimated by the 
sample mean of Rp,j beyond VaR:

 [3]

To obtain the real mean-CVaR efficient portfolios we consider 
that CVaR of a random variable r(w,y), which represents the return of 
the portfolio w under scenarios y, can be calculated by solving a 
convex optimization problem (Rockafellar and Uryasev, 2000, 2002). 
The approach characterises VaRa(w) and CVaRa(w) in terms of the 
function Fa(w, VaR):

 [4]

where [u]+=u for u≥0 and [u]+=0 for u≤0. As a function of VaRa(w), 
Fa(w, VaR) is convex and continuously differentiable and CVaRa(w) 
can be determined minimizing Fa(w, VaR), that is, CVaRa(w)=min Fa(w, 
VaR). The integral in [4] can be approximated by sampling the 
probability distribution of y according to its density p(y). If sampling 
generates T scenarios, yj  j=1,...,T then the approximation is,

 [5]

where πj is the probability of scenarios yj and , 

being r ij the return of asset i under scenario j. Using auxiliaries 
variables zj, j=1,…,T the function Fa(w, VaR) can be replaced by the 

linear function,  and the set of linear 

constraints, . Then investors 
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have to solve the linear problem represented in model 2A. Lim, 
Sherali and Uryasev (2010) propose an approach to reduce the time 
consumed for solving the linear problem under a large number of 
scenarios.

 Model 2A Model 2B

 [6]

Model 2A is a linear problem with an exact solution for each r* 
and Model 2B is the formulation used in the multiobjective 
algorithm problem. In this case we do not need linearization since a 
multiobjective genetic algorithm searches the space of solutions. In 
this case we can compare solutions of Model 2A and 2B in order to 
evaluate the performance of multiobjective genetic algorithm. 
When we consider VaR as measure of risk, model 1, we can not 
evaluate how near is the optimum. 

3. Multiobjective Genetic Algorithm Implementation

The GA implementation used in this work is based on ECJ (http://
cs.gmu.edu/~eclab/projects/ecj/),  a research evolutionar y 
computation system in Java developed at George Mason University’s 
Evolut iona r y C omput at ion L ab orator y (EC L ab) .  For  t he 
multi-objective aspect of the optimization the SPEA2 (Strength 
Pareto Evolutionary Algorithm 2) package of ECJ was used (Zitzler, 
Laumanns and Thiele, 2001). SPEA2 is an improved version of SPEA 
which incorporates a fine-grained fitness assignment strategy, a 
density estimation technique and an enhanced archive truncation 
method. As most of the multi-objective evolutionary methods it 
keeps an archive where the non-dominated solutions are stored. The 
size of the archive is set by the user so that if the number of 
non-dominated solutions is bigger than the archive size the archive 
is truncated. More details about the multiobjective GA applied to the 
mean-VaR model can be found in Alfaro-Cid, Baixauli-Soler and 
Fernandez-Blanco (2011). 

The algorithm works as follows:

In step 1 and 2 the archive, A(g), where the non-dominated 
solutions are stored and the population, P(g), are initialized. A(0) is 
an empty set and P(0) is initialized at random.

In step 3 the generation counter g is set to 1 and then the 
evolution loop starts.

In step 4 and 5 the individuals in the population and the archive 
are evaluated.

According to this evaluation a new archive is created in step 
6 containing all the non-dominated individuals found in the union 
of the previous archive and the population. 

If the size of the resulting archive exceeds the archive size, in step 
7 the archive is truncated. This truncation method removes those 
individuals which are at the minimum distance of another 
individual. This way the characteristics of the non-dominated front 
are preserved and outer solutions are not lost.

The termination criterion in step 8 stops the algorithm when the 
number of generations has been completed.

In step 9 tournament selection with replacement is performed in 
the archive set in order to fill the mating pool, M(g).

The new population, P(g), is created in step 10 by applying 
crossover and mutation to the mating pool.

In step 11 the generation counter is increased.

The following pseudo-code details the algorithm main loop:

 1: A(0) = ∅
 2: P(0) = init_random();
 3: g = 1;
 4: eval(P(g-1));
 5: eval(A(g-1));
 6: A(g) = save(P(g-1), A(g-1));
 7: truncate(A(g));
 8: if g>g_max then stop;
 9: M(g) = select(A(g));
10: P(g) = cross&mut(M(g));
11: g = g+1;
12: go to Step 4;

The control parameters of the GA used are quite standard. The GA 
is generational. It uses tournament selection with tournament size 
of 7. The probabilities of crossover and mutation are 1 and 
0.05 respectively. The population sizes are 1000 and 2000, the 
archive sizes are 100 and 200 and the run finishes after 50 and 
100 generations. Each individual is encoded as a vector of integers 
ranging from 0 to 99. Every element of the vector represents the 
percentage of the budget invested in that particular asset 
(wj

GA ≤ 0 j=1,…, n). Therefore, the length of the vector equals the 
number of assets available in the portfolio. However, the summation 

of these weights will not be 1, violating the constraint

 

. This 

constraint imposes the need of normalizing the vector during the 
decoding process as follows:

 [7]

where wj represents the weight invested in asset j. However, 
these normalized weights are real values. 

4. Data and Empirical Analysis

The data used in this work were extracted from the Bloomberg 
database. It is a set composed of fifty stocks which belonged to the 
Eurostoxx 50 index in January 2008. Three stocks with negative 
expected return in the analysis period were eliminated. We use 
daily data of these stocks from January 2003 to December 2007. This 
gives us 1300 observations per stock. We chose daily data instead of 
monthly data to avoid inaccurate VaR estimates from small samples. 

Table 1 reports the descriptive analysis of the data identifying 
companies by country. It can be observed that the mean daily return 
is close to zero. This is consistent with computing VaR under the 
assumption of expected daily return equal to zero. Table 1 reports 
standard deviation, VaR and CVaR at 95% confidence level for each 
stock. In order to compute the three risk measures we used historical 
simulation.

Additionally, we compute Bera Jarque (BJ) statistic to test 
normality. The BJ statistic has a chi-squared distribution with two 
degrees of freedom under the null hypothesis that returns are 
normally distributed. As can be observed the minimum value of the 
BJ statistic is 59.29 while the critical value is 9.21 for a 1% significance 
level. Hence normality is rejected in all cases and portfolio risk level 
ranking is different depending on the measure selected: standard 
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deviation, VaR or CVaR. Also, Table 1 reports standard deviation, VaR 
and CVaR at 95% confidence level. For example, we can find Siemens 
AG with 1.617% of deviation, 2.535% of VaR and 3.569% of CVaR while 
SAP AG has higher deviation 1.719%, lower VaR 2.43% and higher 
C VaR 3.798%. These are only examples since they are not 
representative of the subset of efficient portfolios.

In Figure 1 we show graphically the differences among efficient 
portfolios depending on the parameter values used in the 
multiobjective GA since these values affect significantly to the 
computation time.

In Model 1, the parameter values of the multiobjective GA have 
been selected by evaluating how changes in parameter values affect 
the efficient frontier. Figure 1 shows the results when Model 1 (the 
mean-VaR problem) and Model 2B (mean-CVaR problem) are solved 
using multiobjective GAs for different parameter values. In both 
models, firstly the population size, the archive size are fixed equal to 
1000 and 100, respectively, and the run finishes after 50 generations. 
Secondly, the parameter values are chosen equal to 2000 for the 
population size and 200 for the archive size, and the run finishes 

after 100 generations. As Figure 1 shows changes in the parameter 
values implied a significant improvement in the efficient frontier. It 
must be highlighted that the biggest improvement is due to the 
increase in the number of generations and not to changes in 
the archive size or the population: the results are not presented to 
preserve simplicity, but similar results have been obtained when we 
fixed a population size of 1000, an archive size of 100 and a number 
of generations of 100. However, a significant improvement in 
mean-CVaR efficient frontier is not obtained if the number of 
generations increases from 100 to 200.

On the other hand, we are also interested in analyzing the 
performance of the multiobjective GA versus linear programming 
by comparing the mean-CVaR efficient frontier from Model 2B with 
that obtained the using linear programming technique proposed by 
Rockafellar and Uryasev (2000), represented by Model 2A.

Figure 2 shows the CVaR-efficient frontiers computed using LP 
and multiobjective GAs (Model 2A and 2B). As it can be observed 
they are overlapped, what reflects an excellent performance of the 
multiobjective GA. This indicates that multiobjective GAs can solve 
mean-CVaR problems without using a linear transformation. The 
parameter values used in the multiobjective GAs were 2000 for the 
population size and 200 for the archive size, and the run finished 
after 100 generations. As we pointed out before an increase in the 
values of these parameters improves the solution insignificantly 
while increases the computation time significantly. 

In order to infer a strategy to speed up the multiobjective GA, we 
analyze the portfolio composition and characteristics of the 
efficient portfolios. Figure 3 and Table 2 contain a description of 
the efficient portfolio composition and characteristics from the 
mean-CVaR optimal frontier.

Table 1
Summary of data statistics.

Country Company Mean SD VaR95% CVaR95% BJ

France Air Liquide 0.048 1.270 1.928 2.800 175.6
France Alcatel-Lucent 0.004 2.333 3.472 5.457 640.5
Germany Allianz SE 0.039 1.853 2.911 4.398 985.6
Italy Assicurazioni Generali 

SpA
0.041 1.243 1.771 2.832 308.1

France AXA SA 0.054 1.861 2.898 4.238 344.2
Spain BBVA SA 0.043 1.349 2.141 3.126 213.9
Spain Banco Santander SA 0.059 1.360 2.188 3.202 300.6
Germany BASF SE 0.074 1.429 2.061 3.087 623.4
Germany Bayer AG 0.087 1.993 2.551 4.161 3557.7
France BNP Paribas 0.047 1.487 2.371 3.260 425.4
France Carrefour SA 0.015 1.432 2.171 3.254 1700.9
France Cie de Saint-Gobain 0.060 1.608 2.580 3.629 2694.3
France Credit Agricole SA 0.036 1.485 2.210 3.322 112.9
Germany Daimler AG 0.056 1.650 2.717 3.630 24340.5
Germany Deutsche Bank AG 0.048 1.559 2.494 3.415 1227.9
Germany Deutsche Boerse AG 0.151 1.669 2.434 3.577 2190.6
Germany Deutsche Telekom AG 0.011 1.465 2.063 3.529 20488.1
Germany E.ON AG 0.099 1.418 2.074 3.163 6325.7
Italy Enel SpA 0.042 0.973 1.449 2.237 355.6
Italy ENI SpA 0.036 1.147 1.855 2.679 918.8
Belgium Fortis 0.016 1.770 2.634 4.339 678.4
France France Telecom SA 0.036 1.641 2.339 3.621 238.27
France Groupe Danone 0.049 1.222 1.705 2.470 1191.2
Spain Iberdrola SA 0.087 1.094 1.523 2.277 3887.1
Netherlands ING Groep NV 0.035 1.851 2.827 4.389 8069.3
Italy Intesa Sanpaolo SpA 0.070 1.535 2.191 3.323 147.1
Netherlands Koninklijke Philips 

Electronics NV
0.037 1.828 2.800 4.075 548.9

France L’Oreal SA 0.021 1.347 2.021 3.032 871.2
France LVMH SA 0.054 1.369 2.166 2.984 1032.8
Germany Muenchener 

Rueckversicherungs AG
0.011 1.845 2.738 4.533 2398.5

Finland Nokia OYJ 0.038 2.019 2.887 4.755 170.7
France Renault SA 0.056 1.721 2.745 3.842 459.7
Spain Repsol YPF SA 0.048 1.230 1.923 2.857 435.1
Germany RWE AG 0.100 1.535 2.273 3.456 944.7
France Sanofi-Aventis SA 0.005 1.471 2.235 3.426 7508.2
Germany SAP AG 0.043 1.719 2.430 3.798 539.9
Germany Schneider Electric SA 0.054 1.442 2.258 3.241 59.29
Germany Siemens AG 0.069 1.617 2.535 3.569 629.3
France Societe Generale 0.042 1.550 2.416 3.537 6005.0
France Suez SA 0.076 1.952 2.657 4.582 668.3
Spain Telefonica SA 0.077 1.198 1.853 2.664 2330.4
France Total SA 0.038 1.240 2.143 2.774 339.6
Italy UniCredit SpA 0.029 1.273 2.007 3.033 3106.8
Netherlands Unilever NV 0.019 1.227 1.776 2.942 399.8
France Vinci SA 0.103 1.404 1.947 2.919 555.3
France Vivendi 0.050 1.639 2.439 3.792 2778.3
Germany Volkswagen AG 0.107 1.773 2.717 3.789 200813.2

Mean: the average daily return; SD: standard deviation; VaR95%: the 95% 1-day VaR, 
and CVaR95%: the 95% 1-day CVaR are expressed in percentage and are computed with 
daily returns from January 2003 to December 2007. BJ is the Bera-Jarque statistic.
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parameter values.
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The 483 efficient portfolios analyzed are plotted in Figure 2. 
As Figure 3 shows there are some assets which are invested 
in the majority of the efficient portfolios. In particular, asset 16 
(Deutsche Roerse), asset 18 (E.ON AG), asset 45 (Vinci) and asset 47 
(Volkswagen) are in the 483 efficient portfolios, asset 24 (Iberdrola) 
is in the 98% of the efficient portfolios and asset 34 (RWE AG) in 
approximately the 90% of them. The mean presence of the rest of 
assets in the efficient portfolios is around the 10%. Table 2 shows 
that theses assets are the assets that have the highest return by 
unit of risk and hence they dominate other assets.
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Figure 2. Mean-CVaR efficient frontier computed with GA and LP. Note: Optimization 
results for the mean-CVaR optimization problem computed with LP (linear program-
ming) and multiobjective GA (multiobjective genetic algorithm).
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Figure 3. Composition of Mean-CVaR optimal portfolios. 
Note: X-axis represents each of the assets considered as available in the market to obtain the mean-CVaR efficient portfolios. Y-axis represents the percentage of efficient portfo-
lios in which the asset has a positive weight.

Table 3 presents the results when the 483 efficient portfolios are 
analyzed depending on the risk quartile they belong. The mean 
value of assets in the efficient portfolios and the associated standard 
deviation decrease from the first quartile to the fourth: in particular, 
from 18 (mean value) and 10.6 (standard deviation) in the first 
quartile to 6 and 1.6 in the fourth. Also the maximum number of 
assets decreases from 43 to 19 and the minimum from 8 to 4.

For the set of assets that belong to each risk quartile, Table 4 
reports the percentage of times that they are invested in the efficient 
portfolios belonging to each quartile of risk. Table 4 shows that 
assets are not distributed uniformly through the efficient portfolios 
of each quartile of risk. For instance, it can be observed that the 
assets that belong to the first quartile of risk are invested in the 
37,5%, 16,9%, 31,61% and 13,9% of the efficient portfolios of the first, 
second, third and fourth quartile of risk, respectively. 

According with this evidence, it could be useful to use the risk 
measure to split the sample and to solve the multiobjective GA for 
each sub-sample in order to speed up and improve the algorithm. 
Probably the first idea to reduce the number of assets could be to use 
low-risk assets to search for low-risk portfolios and to use high-risk 
assets to search for high-risk portfolios.

Figure 4 reports the results for the mean-VaR efficient frontier for 
Model 1, using the whole sample of assets and the sub-samples 
constructed with the assets that belong to each quartile of risk. In 
Figure 4 it can be seen that the efficient frontier obtained with the whole 

Table 2
Characteristics of risk and return of most invested assets.

Asset  
Number

Company Return CVaR95% Ranking 
R

Ranking 
CVaR

Ranking  
R/CVaR

16 Deutsche Boerse AG 0.151 3.577 1 30 1
18 E.ON AG 0.099 3.163 5 17 4
24 Iberdrola SA 0.087 2.277 7  2 2
34 RWE AG 0.100 3.456 4 26 5
45 Vinci SA 0.103 2.919 3 10 3
47 Volkswagen AG 0.107 3.789 2 34 7

Note: Ranking R is the position of the asset when all individual assets are arranged 
in descending order of return; Ranking CVaR is the position of the asset when they are 
arranged in ascending order of CVaR; Ranking R/CVaR is the position of the asset when 
they are arranged in descending order of R/CVaR.

Table 3
Characteristics of efficient portfolios classified by quartile of risk.

Q1 Q2 Q3 Q4

Mean Return  0.080  0.097  0.111  0.126
Mean CVaR  1.728  1.873  2.067  2.485
Number of assets
 Mean 18.082 14.545  8.525  6.157
 SD 10.676  8.279  5.643  1.668
 Max 43 41 39 19
 Min  8  8  5  4

Table 4
Distribution of the investment by asset level of risk and efficient portfolio level of risk.

Q1 Q2 Q3 Q4

Asset Q1-CVaR 37.563 16.925 31.610 13.900
Asset Q2-CVaR 35.215 13.577 34.029 17.178
Asset Q3-CVaR 34.854 16.660 42.327  6.157
Asset Q4-CVaR 33.197 17.332 46.258  3.211

Note: For the set of assets that belong to each risk quartile, the percentage of times 
that they are invested in the efficient portfolios belonging to each quartile are reported.
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sample is restricted to values of VaR over 1% and below 2%. The efficient 
portfolios out of this range are not obtained because the multiobjective 
GA searches in the space of solutions. In order to solve this problem the 
population size, the number of generations and the archive size could be 
increase, what usually implies an increase in the computation time. By 
contrast, the reduced problems which consider a quartile of the assets 
allow us to explore the efficient frontier for a bigger range of risk values. 
Concretely, the third quartile allows us to obtain quickly efficient 
frontiers from 1,8% to 2,5% level of VaR, and the first quartile of assets 
allows us to obtain quickly frontiers from 1% to 1,3% level of VaR. In sum 
up, to use a sample split by risk is a naïve approach that allows us to 
obtain complete efficient frontiers in a reasonable computation time.

5. Conclusions

In this paper, it has been shown that multiobjective GAs are 
appropriated when investors have the purpose of obtaining the 
mean-VaR efficient frontier. GAs are a time-consuming optimization 
technique, and when the optimal solution is unknown, the algorithm 
is stopped when the efficient frontier does not improve significantly. 
In our work we have evaluated the solution improvement which is 
obtained when a naïve approach is used in a multiobjective GA. This 
approach consists on splitting the sample by quartiles of risk due to 
the fact that the number of assets which are in an efficient portfolio 
is not uniformly distributed across the four quartiles. Our results 
show that there is a new space of solutions explored when the naïve 
approach is used without increasing the time of computation.

To develop new approaches to reduce time of computation in 
multiobjective GAs as the presented in this paper is extremely useful to 
obtain optimal portfolios under a measure of risk which leads to a 
non-convex and non-differential risk-return problem, as it happens 
with mean-VaR problem. Also they are useful when real constraints and 
non-linear cost structure are included in the selection portfolio problem 
even though a convex measure of risk is used or when derivatives which 
are no linear instruments are considered, since time of computation of 
heuristic methods increases significantly in all these cases.

Among the possible future directions of research, it is interesting 
identify more characteristics of assets in extreme efficient portfolios, 
such as high risk and return efficient portfolios, and low risk and 
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Figure 4. Mean-VaR efficient frontiers for different sets of assets.

return efficient portfolios, in order to reduce time of computation 
driven the algorithm by the space of solutions.
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