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Non-technical summary

Research Question

Can early warning models deliver timely warnings of financial crises? Are machine learn-

ing methods better at predicting financial crises than conventional models? This paper

provides evidence regarding these two questions. The main emphasis is on the second

question: the comparison of the predictive performance of machine learning methods

with conventional models. Against the backdrop of an increasing use of machine learning

methods in economic analysis, our paper provides an important contribution for assessing

these new methods.

Contribution

Our evaluation of the different models gives new insights on their predictive performance.

This paper is one of the first to be based on the most recent European crises database.

In addition, crises in the US and Japan are included in the analysis. In total, our dataset

comprises financial crises over the past 45 years in 15 advanced countries.

Results

Our results show that machine learning methods are not superior to conventional models

in predicting financial crises. In fact, the predictive performance of conventional models

often exceeds that of machine learning methods considerably. This result is crucial, both

for the academic literature as well as for policy making. We show that there is a risk

of overconfidence in the predictive performance of machine learning methods potentially

leading to flawed decisions. This suggests that further improvements to early warning

models based on machine learning are needed before they can be reliably applied in

policy making. In contrast, conventional models could have successfully predicted many

financial crises. Key early warning indicators identified in our analysis are expansions in

credit and investment, asset price booms, and external imbalances.



Nichttechnische Zusammenfassung

Fragestellung

Können Frühwarnmodelle Finanzkrisen rechtzeitig erkennen? Können Methoden des Ma-

schinellen Lernens dies besser als konventionelle Modelle? Das vorliegende Papier liefert 
Evidenz zu diesen beiden Fragestellungen. Der Schwerpunkt liegt dabei auf der zweiten 
Frage: dem Vergleich der Vorhersagekraft von Methoden des Maschinellen Lernens ge-

genüber konventionellen Modellen. Vor dem Hintergrund des zunehmenden Einsatzes des 
Maschinellen Lernens bei der Analyse ökonomischer Fragestellungen liefert unser Papier 
einen wichtigen Beitrag zur Einschätzung dieser neuen Methoden.

Beitrag

Unsere Evaluation der verschiedenen Methoden liefert neue Erkenntnisse über deren Pro-

gnosegüte. Das Papier ist dabei eines der ersten, welches sich auf die neueste europäische 
Krisendatenbank stützt. Darüber hinaus werden Krisen in den USA und Japan betrach-

tet. Insgesamt umfasst unser Datensatz damit die Finanzkrisen der letzten 45 Jahre in 15 
Industrieländern.

Ergebnisse

Unsere Ergebnisse zeigen, dass Maschinelles Lernen nicht in der Lage ist, Finanzkrisen bes-

ser zu prognostizieren als konventionelle Modelle. Tatsächlich übertrifft die Prognosegüte 
konventioneller Modelle die des Maschinellen Lernens oft erheblich. Dieses Ergebnis ist 
von entscheidender Bedeutung sowohl für den wissenschaftlichen Diskurs als auch für den 
Einsatz von Frühwarnmodellen in der Praxis. Wir zeigen, dass häufig die Gefahr besteht, 
die Vorhersagekraft Maschinellen Lernens zu überschätzen, was zu Fehleinschätzungen 
führen könnte. Dies bedeutet, dass Frühwarnmodelle basierend auf Maschinellem Lernen 
zunächst weiter verbessert werden müssen, bevor sie zuverlässig eingesetzt werden können. 
Im Gegensatz dazu hätten konventionelle Modelle viele Finanzkrisen vorhersagen können. 
Die wichtigsten Frühwarnindikatoren sind dabei ein starkes Wachstum bei Krediten und 
Investitionen, ausgeprägte Vermögenspreisanstiege sowie externe Ungleichgewichte.
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Abstract

This paper compares the out-of-sample predictive performance of different early
warning models for systemic banking crises using a sample of advanced economies
covering the past 45 years. We compare a benchmark logit approach to several
machine learning approaches recently proposed in the literature. We find that while
machine learning methods often attain a very high in-sample fit, they are outper-
formed by the logit approach in recursive out-of-sample evaluations. This result is
robust to the choice of performance measure, crisis definition, preference parameter,
and sample length, as well as to using different sets of variables and data transfor-
mations. Thus, our paper suggests that further enhancements to machine learning
early warning models are needed before they are able to offer a substantial value-
added for predicting systemic banking crises. Conventional logit models appear to
use the available information already fairly efficiently, and would for instance have
been able to predict the 2007/2008 financial crisis out-of-sample for many countries.
In line with economic intuition, these models identify credit expansions, asset price
booms and external imbalances as key predictors of systemic banking crises.
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1 Introduction

The global financial crisis has spurred a new wave of research on the importance of
a stable financial system for macroeconomic stability. New early warning models for
financial crises have been developed and are being employed by central banks to monitor
the stability of the financial system and to guide macroprudential policy (see, for example
European Central Bank, 2010, 2017; Drehmann and Juselius, 2014). Given the high costs
associated with financial crises, it is important to understand the circumstances under
which countries are likely to experience them and to provide accurate early warning
signals of these events. Failing to activate macroprudential policy tools in time might
lead to large costs for taxpayers, policymakers, and society as a whole, while issuing false
alarms might lead to costly over-regulation of the financial system.1

Recently, early warning models that rely on machine learning methods have been pro-
posed as an alternative to the traditionally employed methods in this field, such as the
signaling approach (e.g. Kaminsky and Reinhart, 1999; Knedlik and von Schweinitz, 2012)
and discrete choice (probit or logit) models (e.g. Frankel and Rose, 1996; Lo Duca and
Peltonen, 2013). For instance, Alessi and Detken (2018) as well as Tanaka, Kinkyo, and
Hamori (2016) have argued that random forests may improve early warning predictions in
comparison to the logit model and the signaling approach. Holopainen and Sarlin (2017)
have extended this argument to at least four other machine learning methods, namely ar-
tificial neural networks, support vector machines, k-nearest-neighbors, and decision trees.

Using a comprehensive dataset encompassing systemic banking crises for 15 advanced
economies over the past 45 years, we compare the out-of-sample prediction accuracies of
the logit model to four machine learning methods employed in the existing literature (ran-
dom forest, support vector machines, k-nearest neighbors, and decision trees). We come to
an interesting and perhaps surprising conclusion: simple logit models systematically out-
perform all machine learning methods considered under a large variety of circumstances.
In particular, we show that, while machine learning methods are able to achieve near
perfect in-sample fit, they perform worse than the logit model in recursive out-of-sample
prediction, and often even worse than a näıve benchmark. This result is remarkable,
as it cautions against the use of machine learning methods whose impressive in-sample
performance may backfire in the context of actual out-of-sample forecasting situations.

We subject our key result to a variety of tests. First, we document the superiority of
logit models for different combinations of leading indicator variables as well as for different
measures of prediction accuracy. Second, we perform standard robustness checks, such
as different data transformations, crisis databases, estimation periods, and parameteriza-
tions. Finally, we propose a bootstrap as a uniform approach to account for estimation
uncertainty, allowing us to establish statistically significant differences in performance
between methods. Moreover, we seek to determine ex ante optimal hyperparameters for
machine learning methods using a computationally intensive re-sampling procedure (a
specific variant of cross-validation). Even with this considerable effort, machine learning
methods still generate out-of-sample predictions which are inferior to those of the logit

1The costs of financial crises are documented, for instance, in Jordà, Schularick, and Taylor (2011), and
Laeven and Valencia (2012). An overview of internationally employed macroprudential policy tools can
be found in Lim, Costa, Columba, Kongsamut, Otani, Saiyid, Wezel, and Wu (2011), Cerutti, Claessens,
and Laeven (2017) or Claessens (2015).
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model.
We suggest an explanation for this result and compare our findings to other studies

using machine learning methods for predicting financial crises. Machine learning methods
typically contain a much larger number of parameters than the logit model and are able
to flexibly approximate a large space of functions. This allows them to fit in-sample data
quite closely, but, at the same time, entails the risk of an overfit, and as a consequence
weak out-of-sample performance. We provide empirical and theoretical arguments to show
that this risk appears to materialize in the early warning context.

We complement our horse race with a detailed discussion of the best forecasting model
(a logit model with 10 predictor variables). First, we provide insights into the economic
variables driving the predictions of the best model. This illustrates the interpretability of
logit models, e.g. in terms of coefficient signs and marginal effects, as an additional ad-
vantage relative to machine learning models. Second, we show that estimated coefficients
of the logit model across time and prediction performance across different forecasting
setups are remarkably stable. Finally, we discuss the role of prediction uncertainty for
policymaking and show that error rates can be further reduced if one is willing to focus
exclusively on significant signals.

Our paper is related to the new wave of research on early warning models spurred by
the global financial crisis of 2008, as, for instance, in Alessi and Detken (2011); Rose and
Spiegel (2012); Gourinchas and Obstfeld (2012); Lo Duca and Peltonen (2013); Drehmann
and Juselius (2014). These papers construct different early warning models but do not
consider machine learning methods or horse races between different methods. Going
further, random forests are used by Alessi and Detken (2018) in early warning models
of systemic banking crises at the country level, and by Tanaka et al. (2016) to predict
failures at the level of individual banks. However, neither paper performs a systematic
out-of-sample comparison of the random forest relative to other methods. By contrast,
Holopainen and Sarlin (2017) run out-of-sample comparisons of several methods. Yet,
they do so on a dataset containing a relatively small number of crisis episodes. We build
on their pioneering work, but refine it in several important ways, namely regarding our
careful construction of datasets and robustness checks, as well as our bootstrap and hy-
perparameter selection schemes, taking into account cross-sectional and serial dependence
structures. We show how our out-of-sample results differ with respect to their paper and
provide a potential explanation for this difference.

Overall, we add to this strand of the literature by conducting extensive out-of-sample
model evaluations on a sample of 15 advanced economies covering 22 systemic bank-
ing crises over the period 1970-2016. Using this comprehensive sample and a variety of
techniques enables us to refine the conclusions of earlier studies. We complement recent
assessments of machine learning methods in other fields, for instance, regarding the closely
related task of predicting civil wars in political science (Neunhoeffer and Sternberg, 2018).
We thereby seek to contribute to a realistic assessment of the strengths and limitations
of the various methods, and to stimulate further research in this area.
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2 Methodology

2.1 The Early Warning Setup

In line with the recent early warning literature (see Drehmann and Juselius, 2014; Alessi
and Detken, 2018; Holopainen and Sarlin, 2017) we estimate the probability of a financial
crisis starting between the next 5 to 12 quarters (conditional on not already being in an
acute crisis period)based on a set of potential early warning indicators. Details on this
window forecasting approach and the resulting definition of the dependent variable for
the estimations are given in Appendix A.1.

To inform decision-making, the estimated probabilities may be mapped into binary
signals. Using a threshold τ , the signal is set to one if the probability exceeds τ and to
zero otherwise. These signals or their absence will ex post turn out as right or wrong, and
can be classified into true positives, false positives, true negatives, or false negatives as
indicated in Table 1. False negatives FN (also called type-1 errors) are observations where
no signal is given during an early warning window (missed crises), while false positives FP
(type-2 errors) result from observations where a signal is given outside of an early warning
window (false alarms). A higher classification threshold τ implies fewer signals, reducing
both true and false positives. Converting probabilities into signals via a threshold thus
entails a trade-off between type-1 errors (missed crises) and type-2 errors (false alarms).
Selecting the optimal threshold generally depends on the loss function of the forecast user.
The current standard is to choose the classification threshold τ such that it maximizes the
relative usefulness function of Alessi and Detken (2011), which weighs errors (as a share of
the respective actual class) by a parameter µ representing the forecast user’s preferences.2

Table 1: A contingency matrix.

Actual class C̄
Pre-crisis period Tranquil period

Predicted class S
Signal

Correct call False alarm
True positive (TP) False positive (FP)

No signal
Missed crisis Correct silence

False negative (FN) True negative (TN)

Note: This contingency matrix follows Holopainen and Sarlin (2017).

2.2 Estimation Methods

We employ the following methods for estimating crisis probabilities: Logistic regression, k-
nearest neighbors, decision trees, random forests and support vector machines. Appendix
A.2 provides an overview of these methods as well as details on their implementation. The
selection of methods follows the previous literature (Berg and Pattillo, 1999; Bussière and

2In an out-of-sample experiment, it is important to choose the threshold using in-sample information
only and not by maximizing out-of-sample performance, which is a priori unknown to the forecaster.
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Fratzscher, 2006; Alessi and Detken, 2018; Holopainen and Sarlin, 2017).3

While binary choice models such as the logit are standard tools in the early warning
literature, machine learning methods are sometimes thought to allow for stronger non-
linearities and more flexible distributional assumptions, which might be beneficial when
forecasting extreme events such as systemic banking crises.4 We have a panel dataset with
observations for several countries at different points in time. In order to treat methods
uniformly and keep the setup parsimonious, we estimate each method on the same pooled
sample of observations (pooling observations in the cross-section and time dimension).

The machine learning methods come with hyperparameters that have to be set ex-
ogenously prior to estimation. For example, the k-nearest neighbor method has a single
exogenous hyperparameter, k, determining the number of neighbors to consider. Follow-
ing the standard in the literature (James, Witten, Hastie, and Tibshirani, 2013; Murphy,
2012), hyperparameters for all methods are chosen such that they optimize a performance
criterion (e.g. relative usefulness) in a cross-validation exercise. We have implemented
a fairly sophisticated cross-validation algorithm taking into account the cross-sectional
and serial correlation present in our dataset (see appendix section A.4 for details). As a
consequence, cases where the performance of machine learning methods falls short of the
logit approach cannot be easily attributed to sub-optimal hyperparameters, but appear
to be more deeply rooted in the given model. A list of optimized hyperparameters can be
found in the Appendix (see table A.2).

We deliberately do not use cross-validation to evaluate models. As Neunhoeffer and
Sternberg (2018) show, using cross-validation both for hyperparameter selection and
model evaluation may lead to serious over-estimation of (machine learning) model per-
formance. Thus, we use cross-validation only for hyperparameter selection and perform
a classic out-of-sample prediction experiment to evaluate models. To ensure a strict
separation between in-sample and out-of-sample data, our cross-validation routine uses
information before the start of the out-of-sample window only (i.e. data before 2005Q3).

2.3 Evaluating Predictions

For every observation, the early warning models estimate the probability of a crisis starting
in the following five to twelve quarters. Based on this probability a binary signal can be
derived. The performance of an early warning model can therefore be evaluated either

3We have also experimented with artificial neural networks (ANN), which – set up properly – need
many (random) initial guesses for ANN weights to solve a global optimization problem (Shalev-Shwartz
and Ben-David, 2014, Chap. 20.6). Consequently, when combining ANN with the re-sampling required by
our hyperparameter selection and bootstrap schemes, computation time of ANN becomes extraordinarily
high compared to the other methods. As neither our tentative results, nor the results by Holopainen and
Sarlin (2017) suggest significant gains of (single hidden layer) ANN relative to the other methods, we
do not include them in the analysis presented in this paper. Recent advances in the literature on deep
neural networks point to a potentially interesting avenue for future research (LeCun, Bengio, and Hinton,
2015), although overfitting may pose challenges for these models as well.

4Other commonly mentioned advantages of machine learning methods relate to potential benefits on
large datasets (“big data”), and their ability to deal with a large number of potentially relevant variables.
In the context of early warning models however, datasets typically contain only a limited number of
observations. Moreover, the amount of variables can generally still be challenging for some machine
learning methods (see discussion of methods’ properties in appendix section A.2 and empirical results for
our early warning application 4.2).
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with respect to signals or probabilities. We employ three different performance measures
that are standard in the literature, namely the above-mentioned relative usefulness (Ur),
the area under the curve (AUC) and the Brier probability score (BPS).

The relative usefulness (Ur) as a function of the preference parameter µ sets the loss of
misspecification, L(µ) = µ FN

FN+TP
+(1−µ) FP

FP+TN
, in relation to the loss of a näıve decision

rule, min(µ, 1 − µ), resulting from either always or never signaling a crisis depending on
the preference parameter (Alessi and Detken, 2011):5

Ur(µ) = 1− L(µ)

min(µ, 1− µ)
(1)

This implies a maximum relative usefulness of one, if L(µ) = 0, and a usefulness of zero, if
L(µ) = min(µ, 1− µ). A usefulness above (below) zero therefore means that the model is
more (less) informative than the näıve decision rule. We use a standard choice of µ = 0.5
for our baseline results, thus weighting the two types of errors equally.

In contrast to relative usefulness, the two other performance measures do not rely on an
additional preference parameter. The Brier probability score (Brier, 1950; Diebold and
Rudebusch, 1989; Knedlik and von Schweinitz, 2012) operates directly on probabilities
instead of signals. It is simply given by the mean of the squared differences between
predicted probabilities and actual outcomes (i.e. a special case of mean squared forecast
error for binary dependent variables). By contrast, the area under the (receiver-operator
characteristic) curve (AUC or AUROC) does operate on signals, but aggregates type-1
errors and type-2 errors over all possible classification thresholds τ (Janes, Longton, and
Pepe, 2009; Drehmann and Juselius, 2014). The AUC can take on values between 0 and
1, with 0 being a misleading, 0.5 an uninformative and 1 a perfect set of forecasts.

As usual in forecasting, we are predominantly interested in the out-of-sample per-
formance of different models. Thus, we split the panel dataset into two distinct parts:
estimations are performed on an in-sample part (the training sample), while predictions
and performance evaluations are derived on an out-of-sample part (the test sample). For
comparability with previous findings, we follow Holopainen and Sarlin (2017) in setting
our out-of-sample window to the period between 2005Q3 and 2016Q4. This leads to a
good balance between observations available for estimation and for evaluating predictions,
with approximately half of the pre-crisis observations contained in the in-sample part and
half of the pre-crisis observations contained in the out-of-sample part. In most of the
paper, we focus on recursive out-of-sample estimations where we predict the crisis proba-
bility quarter-by-quarter between 2005Q3 and 2016Q4 based on the information that was
available in each respective quarter.6 The performance measures are then based on the
recursive predictions for the out-of-sample part of the dataset. If, instead, we are inter-
ested in in-sample performance, we use the same dataset for estimation and performance
evaluation, i.e. we set the test and training sample equal to the full sample.

5An alternative usefulness function proposed by Sarlin (2013) was shown to be equivalent under a
constant unconditional crisis probability (Sarlin and von Schweinitz, 2017).

6The definition of the early warning window is forward-looking. In order to account for that, all
observations where C̄ is yet unknown given information at time t have to be excluded from the training
sample. That is, for a forecast made in 2006Q1 we can only estimate the model on observations until
2003Q1 (unless a crisis occurs between 2003Q1 and 2006Q1, in which case the realization of C̄ for some
additional periods is known).
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2.4 Bootstrap

Several of our estimation methods do not readily come with measures of estimation un-
certainty. Moreover, even if such measures can be derived, they are conditional on very
different (distributional) assumptions for different methods, making a comparison diffi-
cult. We solve this problem by bootstrapping, which provides a straightforward approach
for calculating measures of estimation uncertainty under identical assumptions for all esti-
mation methods. This allows us to test whether differences between model performances
are statistically significant.

Bootstrapped measures of estimation uncertainty can be derived from the dispersion
of estimates across random variations of the original dataset. These measures of estima-
tion uncertainty are conditional on the statistical properties of the bootstrap datasets.
Therefore, it is important to construct bootstrap datasets such that they preserve impor-
tant statistical properties of the original dataset that are likely to affect the precision of
estimates. In our case, autocorrelation and cross-sectional correlation are strong features
of the data. Based on El-Shagi, Knedlik, and von Schweinitz (2013) and Holopainen and
Sarlin (2017), we use a panel-block-bootstrap to account for these properties, as described
in Appendix A.3 in more detail.

3 Data

3.1 Crisis Variable

We use the database for systemic banking crises established by the European System
of Central Banks (ESCB) and the European Systemic Risk Board (ESRB) covering Eu-
ropean countries from 1970 to 2016 (Lo Duca, Koban, Basten, Bengtsson, Klaus, Kus-
mierczyk, Lang, Detken, and Peltonen, 2017). This latest database refines previous crisis
databases, both with respect to the identification of events and their timing. Crises
are identified by the following two-step procedure. In a first step, “systemic financial
stress events” are identified using the quantitative methodology of Duprey, Klaus, and
Peltonen (2015). These financial stress events together with additional crises identified
in previous databases (Laeven and Valencia, 2012; Babeckỳ, Havránek, Matějŭ, Rusnák,
Šmı́dková, and Vaš́ıček, 2014; Detken, Weeken, Alessi, Bonfim, Boucinha, Frontczak,
Giordana, Giese, Jahn, Kakes, Klaus, Lang, Puzanova, and Welz, 2014) form a list of
potential crisis events. In the second step, this list of potential crises is checked against a
set of qualitative criteria defining systemic financial crises (see Lo Duca et al. (2017) for
details).

Following Drehmann and Juselius (2014), we focus on systemic banking crises with
at least partially domestic origins.7 Furthermore, we expand the coverage of the crisis
database to include two additional (non-European) advanced countries with important
crisis experience, namely Japan and the United States.8 As a result, our dataset covers

7Focusing on crises with at least partially domestic origins makes sense, as our modeling framework
(where domestic variables determine the crisis probability of each country) does not allow for cross-
country spillover effects. That is, we know a priori that these events are largely unforeseeable given the
present modeling framework.

8For these countries, we use the crisis episodes identified by Laeven and Valencia (2012) adapting start

6



all of the “big five” crises identified by Reinhart and Rogoff (2008). The full list of crisis
episodes used in our analysis after taking into account the availability of the explanatory
variables may be found in Table B.1 in the Appendix. It includes 19 crises for European
countries (of which 11 take place before 2008) as well as three crisis events in the United
States and Japan (of which two take place before 2008). The majority of countries are
included for a time period starting in the early to mid-1970s until the beginning of 2016.

As a robustness check we also run an estimation with crisis dates taken from the well-
known Laeven and Valencia (2012) database. Their database has the advantage of being
somewhat more agnostic in its definition of crisis events. Yet, the most recent European
crisis database, which we use for our core results, provides a more comprehensive and
more precise account of the crises in the European countries of our sample.

3.2 Potential Early Warning Indicators

Our collection of explanatory variables aims at capturing a wide range of sources of
vulnerabilities for the banking sector. The channels we focus on are (i) asset prices,
(ii) credit developments, (iii) the macroeconomic environment, as well as (iv) external
and global imbalances. In the rest of this section, we take a closer look at these four
channels before explaining transformations of the employed early warning indicators and
our ultimate model specifications.

3.2.1 Sources of Vulnerabilities and Corresponding Indicators

Asset prices: Historically, banking crises have often been preceded by asset price
booms. Banking crises associated with house price booms and busts, could, for example,
not only be observed during the global financial crisis of 2008, but also in a number of
industrial countries in the late 1970s to early 1990s, such as in Spain, Sweden, Norway,
Finland, and Japan (Reinhart and Rogoff, 2008, 2009). We therefore include house prices
and equity prices to capture booms and busts in asset prices.

Credit developments: High private sector indebtedness poses risks to the financial
system when asset price booms are debt-financed, asset prices decrease and borrowers
are unable to repay their debt (Kindleberger and Aliber, 2005; Jordà, Schularick, and
Taylor, 2015). As a consequence of decreasing asset values, banks may be forced to
deleverage, in particular when market liquidity is low and banks relying mainly on short-
term funding face a liquidity mismatch (Brunnermeier and Oehmke, 2013; Brunnermeier,
2009). Deleveraging may induce a credit crunch and potentially lead to a recession. The
effects of losses in asset values may be amplified by fire sales and may spill over to other
assets as these are sold to meet regulatory and internal standards, such as capital and
liquidity ratios. Moreover, bank runs may occur when the net worth of banks decreases
and depositors lose confidence in the affected institutions (Allen and Gale, 2007). To
capture risks related to high private sector indebtedness, we use total credit to the private
non-financial sector relative to GDP as an indicator of how far credit developments are
in line with real economic developments.

and end dates such that they are consistent with the definition in our core database.
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Macroeconomic environment: Closely related to credit and asset prices are real eco-
nomic developments. On the one hand, rapid economic growth may increase risk appetite,
asset prices and credit growth (Drehmann, Borio, and Tsatsaronis, 2011; Kindleberger and
Aliber, 2005; Minsky, 1982). On the other hand, real economic downturns may lead to
repayment difficulties on the borrower side inducing asset price declines and financial sec-
tor difficulties (Allen and Gale, 2007). To capture real economic developments we include
GDP, gross fixed capital formation relative to GDP and inflation. Furthermore, we in-
clude three-month interbank interest rates, as banks and investors may take on excessive
risks when interest rates are low and, hence, low-risk assets are less attractive (Maddaloni
and Peydró, 2011; Allen and Gale, 2007; Rajan, 2005). Conversely, an abrupt increase in
interest rates may put pressure on banks as well (Minsky, 1982).

External and global imbalances: The external sector played a prominent role in
the first seminal contributions to the early warning literature (Frankel and Rose, 1996;
Kaminsky and Reinhart, 1999). These papers tended to focus more on balance-of-payment
crises than on systemic banking crises. However, both types of crises may occur jointly and
often reinforce each other as “twin crises” (Kaminsky and Reinhart, 1999). While classic
balance-of-payment crises may be less of a concern for the countries considered in this
paper, external imbalances may still add to vulnerabilities. Similarly to the reasoning on
credit expansion and asset prices, large capital inflows from abroad may support asset price
booms and induce a reversal in asset prices when these inflows decline or stop (Kaminsky
and Reinhart, 1999; Calvo, 1998). Hence, we include the real effective exchange rate and
the current account balance relative to GDP. Furthermore, global shocks may affect the
domestic banking system through various channels of contagion, such as financial sector
interconnectedness and trade links (Kaminsky and Reinhart, 2000). We therefore add oil
prices as an indicator for global developments.

Any list of potential early warning indicators is naturally incomplete. Yet, for the
purpose of comparing predictions across methods, this is not the key point, as long as the
same variables are used across all methods. Furthermore, it turns out that data availability
is a key issue. While several additional variables would have been plausible predictors on
economic grounds, these variables are not available for a long enough time span and/or not
available for all countries in our sample. In addition, lack of comparability across countries
can be an issue for some variables. For instance, while both theoretical and empirical
arguments for the inclusion of a debt service ratio variable can be made (e.g. Drehmann
and Juselius, 2014; Drehmann, Juselius, and Korinek, 2017), the extent to which this
variable would truncate the sample outweighs its potential benefit in our case.9 Another
important class of variables that we cannot include are those based on bank balance sheet
data, where availability in the time series is even much more restricted than for the debt

9Proprietary debt service ratio data from the BIS is available starting at the earliest in 1980 (public
debt service ratio data from 1999). We compared the availability of the debt service ratio by country with
our sample of crises and early warning indicators described in table B.1. Including the debt service ratio
starting from 1980 would exclude five of the 13 crises episodes prior to the financial crisis of 2007/2008
and one crisis episode starting in 2008 (as BIS debt service ratio data is not available for Ireland). In
total, a substantial amount of around 400 out of 1801 total observations would be excluded from our
dataset.
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service ratio. Nevertheless, we will see in the results section that the variables we were able
to include do have substantial explanatory power for predicting banking crises. Thus, for
the purpose of comparing different prediction methods (as opposed, say, to the question
of finding the most important early warning indicator(s) as, for instance, in Drehmann
and Juselius, 2014), having a sufficient number of observations in the sample appears to
outweigh the benefits of using a complete set of all potentially important early warning
indicators. Indeed, a robustness check using a shorter sample length shows that reducing
the amount of observations available for estimation substantially reduces out-of-sample
prediction performance (see section 4.3).

3.2.2 Data Transformations

Several of our potential predictor variables naturally contain a time trend (the exception
being inflation, money market rates and current account to GDP), which needs to be
removed prior to estimation. Different approaches for filtering out the trend could be
considered, and are an active area of research. Yet, our emphasis is on comparing machine
learning and logit models on given identical datasets. We therefore focus on two of
the most frequently employed approaches in the early warning literature: A Hodrick-
Prescott (HP) filtering approach for our benchmark results and a growth rates approach
for robustness.10

In the HP filtering approach, we transform early warning indicators into gaps by
calculating deviations from the trend computed by a one-sided HP filter. Using a one-
sided filter ensures that the information set at every point in time does not contain future
information.11 For variables such as total-credit-to-GDP ratio, real residential real estate
prices and real equity prices we take into account recent evidence on lower frequency
financial cycles, as documented, for instance, in Drehmann, Borio, and Tsatsaronis (2012),
and Schüler, Hiebert, and Peltonen (2015). Thus, for these variables we take the value
of λ = 400′000 often employed for early warning models (Drehmann and Juselius, 2014),
corresponding to financial cycles being roughly four times as long as business cycles, which
is broadly in line with the findings in the aforementioned literature on financial cycles.
Moreover, this ensures that the total credit-to-GDP gap used in our analysis is in line with
the definitions of the Basel Committee on Banking Supervision (BCBS) used for Basel
III and for setting countercyclical capital buffers (Drehmann and Juselius, 2014; Basel
Committee on Banking Supervision, 2010). For typical business cycle variables such as
real GDP, gross fixed capital formation-to-GDP, and the real oil price we use a standard
HP filter smoothing parameter of λ = 1′600. In the case of the real effective exchange rate,
we also use λ = 400′000. The reason for this is that real effective exchange rate imbalances
have been found to be extremely persistent, especially since the introduction of the Euro
made adjustments via nominal exchange rate movements impossible (El-Shagi, Lindner,
and von Schweinitz, 2016).12

10To remove extreme outliers, we furthermore winsorize the data at the 1%- and 99%-quantile.
11For the first k observations in every country, we need to apply a two-sided filter instead of the recursive

one-sided version, given that the filter needs a certain minimum number of observations to compute a
trend. We set k to ten years in the case of λ = 400′000 and to four years in the case of λ = 1′600.

12We also follow Drehmann and Juselius (2014) in calculating relative gaps (i.e. the deviations from
trend normalized by the trend) for certain HP filtered variables, which can be useful to improve the
comparability of gaps across time and countries. Relative gaps are used for real equity prices, real

9



Robustness checks are performed by transforming the variables into growth rates. In
line with the reasoning for applying different HP filter smoothing parameters for capturing
business cycles and financial cycles, we also use two different growth rate horizons. Our
business cycle variables are transformed into four-quarter growth rates, while our financial
cycle variables are transformed into 16-quarter growth rates.

A detailed description of all variables and their transformations may be found in
Table B.2 in the Appendix. A list of non-transformed original data with the corresponding
sources is documented in Table B.3. Summary statistics of the transformed (standardized)
predictor variables are displayed in Table 2 for the HP filter and in Table B.4 for the
growth rate transformation. When comparing the means of the selected indicators in
the pre-crisis and tranquil periods, we note that the difference is particularly pronounced
for the credit-to-GDP gap, the residential real estate price gap, the gross fixed capital
formation-to-GDP gap and the current account balance relative to GDP. The first three
of these indicators are, on average, higher and the current account balance to GDP is, on
average, lower during pre-crisis periods. The volatility of these indicators is similar across
pre-crisis and tranquil periods. Similar findings are obtained when using the growth rates
transformation.

3.2.3 Specifications

For our model specifications, we use four different combinations of the described variables
(also referred to as datasets). Dataset (iv) uses all of the available variables. In addition,
we specify smaller models using subsets of variables in order to illustrate the relative
performance of methods across datasets of varying complexity and information content.
While reduced information content should generally reduce models’ predictive ability, this
may in some cases be offset by the gains from estimating less complex models. Datasets
(i)-(iii) are mutually exclusive selections of indicators based on the different sources of
vulnerabilities: (i) asset prices and credit developments, (ii) macroeconomic environment,
and (iii) external and global imbalances. A list of the variables used in each dataset can
be found in Table B.5. In order to guarantee comparability across the different datasets,
we use the same sample for all datasets.

These a priori specified, economically motivated datasets have been chosen to allow
for an economic interpretation of the information contained in each dataset. Moreover,
by limiting ourselves to a priori specified, economically motivated variables and transfor-
mations, we seek to limit potential problems of data-mining. As Inoue and Kilian (2005)
explain, when trying many variables and specifications, one is likely to find “spurious
rejections of the no-predictability null and thus overfitting relative to the true model”.
Thus, avoiding data-mining is important for a realistic assessment of the true out-of-
sample performance of early warning models. This is especially critical for early-warning
models as policy-relevant analysis tools, as an overestimation of their accuracy might lead
to a wrong sense of security.

In a similar vein, we have refrained from adding formal variable selection procedures to
our analysis as another layer of complexity. Since different variable selection procedures
could be applied, some of which specific to the different methods, we feel that adding
such procedures might obscure the sources of differences in performance across methods.

residential real estate prices, the real oil price, real GDP and the real effective exchange rate.
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Instead, our focus is on comparing the methods on identical sets of explanatory variables,
which are selected a priori on economic grounds. The results we obtain, with logit out-
performing machine learning methods on virtually every given dataset (see next section),
appear to some extent orthogonal to the issue of variable selection. We therefore leave the
issue of formal variable selection in the context of method comparison for future research.
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Table 2: Summary statistics: Gap dataset

Pre-crisis periods Tranquil periods
Variable name mean sd min max obs mean sd min max obs

Total credit-to-GDP gap 0.76 1.03 -1.16 3.19 171 -0.08 0.96 -3.06 3.19 1608
Real residential real estate price gap 0.58 1.06 -1.36 2.48 171 -0.06 0.97 -2.58 2.48 1608
Real equity price gap 0.23 0.74 -1.73 1.68 171 -0.02 1.02 -1.96 3.61 1608
Real GDP gap 0.10 0.94 -3.15 2.20 171 -0.01 1.01 -4.81 3.71 1608
Inflation rate -0.08 0.87 -1.24 3.64 171 0.01 1.01 -1.38 4.83 1608
Gross fixed capital formation-to-GDP gap 0.32 1.02 -2.46 2.97 171 -0.03 0.99 -4.63 3.19 1608
Real 3-month money market rate 0.06 1.10 -3.29 2.32 171 -0.01 0.99 -3.29 2.61 1608
Current account-to-GDP ratio -0.73 1.08 -3.50 2.17 171 0.08 0.96 -3.50 2.75 1608
Real effective exchange rate gap 0.20 0.85 -2.08 2.72 171 -0.02 1.01 -2.61 2.72 1608
Real oil price gap 0.26 1.00 -2.56 2.34 171 -0.03 1.00 -2.56 3.13 1608

Note: Data have been standardized using the unconditional mean and standard deviation across all periods. Since data are winsorized at the 1% and
99% level, minimum (maximum) values may be the same in pre-crisis and tranquil periods.
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4 Results

4.1 In-sample Predictive Performance across Methods

Table 3 reports the in-sample relative usefulness of the five different methods (in rows) for
four different sets of explanatory variables (in columns). The best performance on each
dataset is indicated in bold. Significance stars (obtained from our bootstrap procedure) in-
dicate whether the respective usefulness is significantly below that of the best-performing
method on the same dataset.

In line with the literature (Alessi and Detken, 2018; Holopainen and Sarlin, 2017;
Tanaka et al., 2016), machine learning methods such as knn and random forest always at-
tain substantially higher in-sample relative usefulness than the corresponding logit model.
Random forest achieves the highest in-sample relative usefulness on dataset 1 (credit/asset
prices), dataset 3 (external imbalances) and 4 (all variables), while knn has the best in-
sample performance on dataset 2 (macroeconomic environment).13 The inferiority of the
logit model’s in-sample performance relative to the best model on every dataset is sig-
nificant. As Table C.1 shows, these findings are robust to using alternative measures of
prediction performance. Moreover, the fit of knn and random forest is often close to per-
fect, that is a value close to one for relative usefulness and area under the curve (AUC)
is achieved.14

Table 3: In-sample relative usefulness

(1) (2) (3) (4)
Credit/Asset Prices Macro External All

logit 0.347*** 0.202*** 0.390*** 0.511***
[0.088,0.457] [0.114,0.306] [0.271,0.461] [0.294,0.655]

trees 0.432*** 0.000*** 0.000*** 0.674***
[0.172,0.576] [-0.099,0.135] [-0.207,0.147] [0.406,0.883]

knn 0.693*** 0.965 0.685*** 0.955
[0.419,0.825] [0.693,1.000] [0.470,0.832] [0.660,1.000]

rf 0.959 0.956 1.000 0.990
[0.609,1.000] [0.683,1.000] [0.702,1.000] [0.672,1.000]

svm 0.327*** 0.512*** 0.230*** 0.930
[0.080,0.460] [0.340,0.676] [0.015,0.428] [0.566,1.000]

Note: Highest usefulness on each dataset in bold. Stars indicate whether the respective usefulness
is significantly below the best performance on the same dataset (∗∗∗/∗∗/∗ for the 1%/5%/10% level).
Numbers in brackets indicate 90% confidence bands.

13See Table B.5 for a list of the four sets of explanatory variables (also referred to as datasets).
14Table C.1 also shows what is behind the zero usefulness of trees on dataset 2 and 3, which is due to

a degenerate tree that always predicts a crisis. This happens because the available variables are not very
informative relative to the required tree complexity. The optimal tree (according to the tree’s internal
cost function) then consists of the unconditional forecast. By definition, relative usefulness and AUC will
be zero and 0.5, respectively.
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4.2 Out-of-sample Predictive Performance across Methods

In line with the standard in the empirical literature, the focus of our evaluation is on
recursive out-of-sample performance rather than in-sample performance. For every point
in time from 2005Q3 until the end of our sample in 2016Q4, we estimate the model recur-
sively, strictly using only data until that time.15 We thus obtain predictions for approxi-
mately 300 out-of-sample observations, including 60 pre-crisis periods. These predictions
are then used to calculate out-of-sample performance measures.

Table 4: Out-of-sample relative usefulness

(1) (2) (3) (4)
Credit/Asset Prices Macro External All

logit 0.368 -0.236* 0.438 0.605
[0.237,0.487] [-0.394,-0.074] [0.34,0.532] [0.481,0.727]

trees 0.201** -0.605*** 0.390*** 0.126***
[0.084,0.329] [-0.703,-0.499] [0.27,0.516] [0.007,0.248]

knn 0.247* -0.087 0.293** -0.062***
[0.123,0.374] [-0.147,-0.023] [0.182,0.399] [-0.142,0.024]

rf 0.246* -0.274*** 0.117*** -0.003***
[0.134,0.358] [-0.343,-0.194] [0.036,0.203] [-0.126,0.124]

svm 0.243* -0.082 0.060*** -0.186***
[0.118,0.355] [-0.198,0.039] [-0.11,0.215] [-0.305,-0.063]

Note: Highest usefulness on each dataset in bold. Stars indicate if the respective usefulness is significantly
below the best performance on the same dataset (∗∗∗/∗∗/∗ for the 1%/5%/10% level). Numbers in brackets
indicate 90% confidence bands.

Table 4 shows the out-of-sample relative usefulness of five different methods (in rows)
for four different sets of explanatory variables (in columns). The table shows that the
logit model almost always outperforms the machine learning methods. The only exception
is the dataset based on macroeconomic variables. However, in that case the relative
usefulness is negative for all methods. That is, a näıve forecast would be better than using
any of the considered models. Table C.2 shows that the superiority of the logit model is
confirmed by the other two performance measures, namely the area under the curve (AUC)
and Brier probability score (BPS) - again, with two exceptions on the macroeconomic
dataset for AUC. Performance of all machine learning methods on dataset 1 (credit and
asset prices), dataset 3 (external variables) and dataset 4 (all variables) is significantly
worse than that of the logit model using any of the three performance measures.

4.3 Robustness

In this section, we assess the degree to which our results are robust to four key variations
of the modeling setup. These variations concern the choice of preference parameter, data
transformation, sample length, and the crisis database.

15As explained in the methodology section, we follow (Holopainen and Sarlin, 2017) in choosing 2005Q3
as starting point for the recursive out-of-sample evaluation.
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Preference parameter: First of all, we make sure that our results do not hinge on the
choice of loss function preference parameter (see equation (1)). While AUC and BPS are
preference-independent measures, the preference parameter enters into the computation
of relative usefulness via the loss function, which is used to evaluate forecasts and to
compute optimal thresholds. Our benchmark value for the preference parameter, µ = 0.5,
represents a balanced trade-off between type-1 (missed crises) and type-2 errors (false
alarms). It is easily conceivable that missing a crisis may be more costly than issuing a
false alarm. In this case, more weight should be given to type-1 errors. Therefore, we
conduct a robustness check for a preference parameter of µ = 0.6 which assigns slightly
more weight to type-1 errors. We re-estimate all models including hyperparameters given
this new preference parameter and report results in Table C.3 in the Appendix.16 We
find that relative usefulness drops for all methods. However, while the logit model still
has a substantially positive relative usefulness on all datasets, machine learning methods
seem to deteriorate more strongly, for instance on datasets (4) and (1). As a result, logit
continues to outperform machine learning methods on all datasets except dataset (2), and
the logit with all variables remains the “best” overall model.

Data transformation: As a second robustness test, we check the extent to which our
results hinge on the choice of using HP filter gaps for removing the trend in our explanatory
variables. To this end, we replace the HP filter gaps by simple growth rates, where lags
used to compute growth rates differentiate between business cycle and financial cycle
variables (for details see Section 3.2.2). The results of this robustness check are shown
in Table C.4. Looking at relative usefulness, we see that some of the machine learning
models perform better when using growth rates rather than HP filter gaps. By contrast,
all four logit specifications have somewhat lower relative usefulness and higher BPS than
before. Knn actually outperforms logit in terms of relative usefulness and BPS on dataset
1, but not on datasets 3 and 4. Across all models considered, the logit model with all
variables (logit.4) remains the best model according to relative usefulness and BPS.

Sample length: A third important test concerns the robustness of our results relative to
variations of our sample. Specifically, we consider a robustness check, where we cut off the
first ten years of our dataset, amounting to approximately one-sixth of our observations.
Financial repression during the 1970s may have affected the behavior of our explanatory
variables and their impact on the probability of future financial crises. More generally, the
underlying data-generating process may be time-varying, suggesting a trade-off between
sample length and sample homogeneity.

Table C.5 presents results when restricting our sample to exclude all observations prior
to 1980Q1. For the logit model, we find that out-of-sample prediction performance based
on this smaller set of information is lower than when using the full dataset. Thus, the
trade-off between sample length and sample homogeneity appears to be tilted in favor
of sample length. The relative ordering of machine learning methods compared with the
logit method is unchanged. Thus, we conclude that, while sample length appears to be
important, our main finding regarding relative prediction performance between methods is
strikingly robust to the change in the sample. We also note that this robustness appears

16Optimal hyperparameters change only slightly for some models, such that the effect of the preference
parameter is primarily driven by the change in the loss function.

15



to be driven by the robustness of the logit method, while machine learning methods
sometimes react quite strongly to this moderate change in the sample.

Crisis database: In our fourth robustness check we replace the ESCB/ESRB crisis
database by the well-known database of Laeven and Valencia (2012). Results are shown
in table C.6. It turns out that changing the dependent variable of our models induces
the biggest changes in the results. Looking at relative usefulness (and AUC), there are
winners and losers across all datasets and methods. However, results for logit.4 and logit.3
remain strikingly robust to this change. As a consequence, they continue to outperform
their machine learning competitors and logit.4 remains the best overall model according
to relative usefulness. BPS performances are more mixed. While logit continues to have
the lowest BPS across models on dataset 4 and 3, the overall lowest BPS occur for all
methods on dataset 1. However, when also taking into account relative usefulness and
AUC, the logit.4 model still seems clearly preferable to the models on dataset 1.

As a general pattern, out-of-sample performance is weaker for the majority of models
when using Laeven & Valencia crises. This effect is particularly pronounced for BPS
which is markedly higher than for our benchmark crisis database. The reason for this
lies in two features of the Laeven & Valencia database. First, the share of pre-crisis
periods in the training sample (prior to 2005Q3) is comparably low. This leads to low
predicted crisis probabilities at the beginning of the out-of-sample exercise. Second, the
out-of-sample period ends in 2012 and is dominated by the great financial crisis, leading
to a share of pre-crisis periods of 68%. As a consequence, the estimated unconditional
probability of pre-crisis periods is (too) low until the great financial crisis simultaneously
hits the majority of countries in the sample. This constellation leads to high BPS values
and often weaker performance in terms of relative usefulness and AUC, with logit.4 and
logit.3 being comparably robust.

Overall, our robustness checks confirm the finding that a logit model using all variables
offers the best predictive performance among all models considered. Moreover, we saw
that changes to model specifications, as those considered in this section, can induce sub-
stantial changes to some models’ performance. Given this, we see the robustness of the
logit.4 (and logit.3) model across specifications, as an additional feature of these models.
By contrast, performance of machine learning methods is substantially less robust.

4.4 Interpretation and Discussion

A comparison of the performance of in-sample and recursive out-of-sample estimations
gives an indication as to why machine learning methods do not outperform the logit
approach in this application. Figure 1 displays the relationship between in-sample and
recursive out-of-sample performance across models based on our benchmark results shown
in Tables 3 and 4. A striking result is that many of the machine learning models (including
all random forest models) achieve a near-perfect in-sample fit (relative usefulness close
to its theoretical maximum of 1), but, at the same time, show much lower out-of-sample
performance. This suggests that overfit may be a major issue for at least some of the
models. Moreover, even for those machine learning models where in-sample fit is not
perfect, their out-of-sample performance is in most cases markedly below their in-sample
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performance. By contrast, among logit models this is only the case for logit.2, which we
saw is a special case of negative relative usefulness for all methods on this dataset. Figures
C.1 through C.4 in the appendix show that this pattern holds true more generally across
all robustness checks.

Figure 1: Relative usefulness of in- and out-of-sample estimation by model.
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In addition to the empirical evidence in figure 1, a theoretical argument pointing to
overfit (relative to the true model) can be made. As a thought experiment, suppose we
knew the true data generating process (DGP) and we had a model (and data) at hand
that would give us for each observation the true conditional probability of a crisis. Even
in this case, the prediction error as measured by Ur, AUC or BPS would still be positive
(except in the degenerate case where conditional crisis probabilities could only be either
1 or zero). For that reason, even with a perfect model, we would not expect relative
usefulness to approach its maximum value of 1, but rather to converge (both in-sample
and out-of-sample) to a DGP specific maximum between 0 and 1 as the sample size
increases.17 This can formally be seen in Table 5 of Boissay, Collard, and Smets (2016).
They present a DSGE model generating credit boom driven crises, and run an early
warning exercise on simulated data from their model. It turns out that crisis prediction
using the true model-implied conditional probability still leads to considerable error rates
(around 1/3 missed crises). Their results also show that a logit model estimated on binary
crisis realizations is able to converge to a performance similar to that of the true model.
The remaining error rates under the true model reflect the fact that crises can only be
predicted in probability and not with certainty. In other words, crises are driven by

17As a simple illustration, suppose for example that in 50% of the cases the true crisis probability was
80%, while in 50% of the cases, it was 20%, and that our signaling threshold was 50%. Then, even when
knowing the true model, we would still have a false positive rate of 20% and a false negative rate of 20%,
leading to a relative usefulness of only 60% (assuming µ = 0.5).
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a predictable component, captured by the true model, and a substantial unpredictable
component (given the observables), which cannot be forecasted by any model.

To the extent that a logit model is already able to closely approximate the true model
(as in Boissay et al. (2016)), it will not be possible to substantially outperform this
model. This implies that when machine learning methods fit the data beyond (or below)
the predictable component, this comes at the cost of worse performance in the recursive
out-of-sample estimation. This may be an issue even for those machine learning models
where in-sample fit is not perfect. Theoretically, the hyperparameters of the machine
learning methods should provide some safeguard against overfit. However, despite de-
voting considerable effort to the calibration of these hyperparameters via a sophisticated
cross-validation procedure (see Appendix A.4), the overfit still persists for many of the
considered models. In sum, it appears that logit models naturally limit the amount of
overfit, while being sufficiently flexible in their approximation of the data generating pro-
cess.

The conclusion from our out-of-sample forecast comparison is different than that of
Alessi and Detken (2018) and Tanaka et al. (2016), who argue that a random forest has
a better prediction performance than a logit model in an early warning setting. However,
Alessi and Detken (2018) do not run an out-of-sample comparison of the two methods.
Their argument is rather based on results from k-fold-cross-validation, where they find
some differences between the AUC of one random forest specification (AUC = 0.94) and
two logit specifications (AUC = 0.84, and 0.93 respectively). Setting aside the question of
whether this difference is statistically significant, the high levels of AUC (close to the max-
imum of 1) suggest that the cross-validation procedure may provide an inflated estimate
of the performances of these methods. In fact, cross-validation estimates often appear to
be closer to in-sample performance than to out-of-sample performance. The tendency of
cross-validation to provide inflated estimates of performance, particularly in the presence
of cross-sectional and serial correlation, has also been recognized by Holopainen and Sarlin
(2017). As a consequence, these estimates are likely to be biased towards (more complex)
machine learning methods, given their above-mentioned tendency to overfit in-sample
data. Another important point has been noted by Neunhoeffer and Sternberg (2018)
based on an example of civil war prediction from the political science literature. They
show that performance of machine learning methods has been seriously over-estimated,
in studies using cross-validation for both hyperparameter selection and model evaluation.
Tanaka et al. (2016) find somewhat more pronounced differences between logit and ran-
dom forest performance for a bank-level early warning model. However, they also focus
on cross-validation estimates of performance.

The importance of conducting model comparisons via out-of-sample experiments has
also been advocated by Holopainen and Sarlin (2017). However, in their out-of-sample
forecasting exercise, logit models are outperformed by machine learning methods (except
for trees). We conjecture that differences in the employed training sample are a key
driver of the contrasting results. In their application, more than 95% of the pre-crisis
periods are located in the recursive out-of-sample period and are thus unavailable for
the first recursive estimations. This means that their model estimations are driven by a
few influential pre-crisis observations in their training sample, such that the selection of
these observations is a critical determinant of their out-of-sample results. By contrast,
our broader data basis enables us to use nearly 60% of all pre-crisis periods in the first
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recursive estimation, mimicking more closely actual out-of-sample prediction tasks. The
different sample appears to be the most important explanation for our differing results.

As a final word regarding interpretation, we want to make clear that while we think it
is important to establish a robust and valid out-of-sample prediction exercise, we do not
want to over-interpret its results. After all, our results hold for the given finite dataset
at hand. In particular, our out-of-sample window is naturally dominated by the great
financial crisis of 2007-2008. Moreover, we cannot fully exclude the possibility that some
other (potentially more sophisticated) modeling approach is able to outperform the logit
model, or that machine learning methods may be preferable on other (possibly larger)
datasets. However, we think that we have established that the logit model is surprisingly
hard to beat, in line with findings in the forecasting literature more generally, that simple
forecasting models often outperform more complex models. We have provided theoretical
and empirical arguments, as well as a discussion of the literature, suggesting systematic
issues related to overfit driving this result. Further research is needed, to gain a more
complete understanding of the conditions under which machine learning methods can be
successfully applied, in general, and in particular to early warning models of financial
crises.

4.5 Economic Interpretation of the Logit Model

Besides the statistical results presented up to here, we also want to provide an economic
interpretation of our early warning model. We do this for the example of the logit.4
baseline model. This model had the best performance in our horse race, and encom-
passes all other models in terms of variables used. Table 5 contains coefficients of the
in-sample estimation. The most important variables in our model are the current account
balance, credit-to-GDP, residential real-estate prices and gross fixed capital formation.
This is consistent with existing theoretical and empirical evidence, which documents the
vulnerability of the banking sector to many different channels, as described in Section
3. We find that the vast majority of coefficients have the expected sign. Credit growth
above long-run trend increases the probability of being in an early warning window, as
do high residential real estate prices and high equity prices. Thus, debt-financed asset
price booms are found to be major drivers of crises (Kindleberger and Aliber, 2005; Jordà
et al., 2015). The positive coefficient on the gap of gross fixed capital formation can be
interpreted in a similar way: high levels of investment in fixed capital may be driven by
overly optimistic expectations, leading to problems when future returns are lower than
expected. Economic downturns, indicated by lower growth and lower inflation rates, also
increase the crisis probability (albeit insignificantly). Last but not least, current account
deficits and overvaluation of the real effective exchange rate are signs of an uncompetitive
and (external) debt-financed economy.

Table 5 also allows us to look at the average marginal effects, which are of particular
interest for the significant variables. Their average marginal effects, approximating the
effect of a one standard deviation change in the respective indicator on the predicted
crisis probability, are 1.4 percentage points for equity price gap, 3.0 percentage points for
residential real estate price gap, 3.6 percentage points for gross-fixed capital formation-to-
GDP gap, 3.8 percentage points for credit-to-GDP gap, and -4.5 percentage points for the
current account balance. Compared to the unconditional probability of being in an early
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Table 5: Logit coefficients (full sample)

Coefficient
Std. Marg. Stdev.
Error Effects recursive

Constant -2.771*** 0.113 -0.199 0.151
Total credit-to-GDP gap 0.531*** 0.102 0.038 0.033
Real residential real estate price gap 0.425*** 0.096 0.030 0.073
Real equity price gap 0.200* 0.108 0.014 0.029
Real GDP gap -0.141 0.123 -0.010 0.049
Inflation rate -0.104 0.119 -0.007 0.102
Gross fixed capital formation-to-GDP gap 0.499*** 0.106 0.036 0.018
Real 3-month money market rate 0.007 0.100 0.001 0.091
Current account-to-GDP ratio -0.63*** 0.093 -0.045 0.077
Real effective exchange rate gap 0.015 0.101 0.001 0.031
Real oil price gap 0.002 0.090 0.000 0.031

Note: This table reports coefficients, standard errors and marginal effects for the logit model using all
variables, estimated on all available observations. The model is estimated with standardized data to
make coefficients comparable. The last column shows the standard deviation of coefficient estimates
across recursive estimations.

warning window, which is just above 9.5%, these effects are substantial. In comparison to
that, the marginal effects of the insignificant variables are mostly negligible. Even though
the effects of the significant variables are sizeable, it has to be noted that the model
never implies a probability above 90% of being in an early warning window. For such a
probability, all important variables need to be around two standard deviations away from
their mean at the same time, which is an extremely rare event. This is in line with the
view that, while our observables may signal the buildup of vulnerabilities in probability,
there remains a substantial unpredictable component driving the ultimate realization or
non-realization of crises.

In addition to their economic and statistical significance, coefficients are quite sta-
ble over time. In our recursive out-of-sample forecasting exercise, we can observe how
(re-)estimated coefficients change across time, as more and more information becomes
available. To summarize this, the last column of Table 5 (Stdev. recursive) reports the
standard deviation of coefficients across recursive estimations. As we can see, the mag-
nitude of changes in coefficients during the out-of-sample window is relatively small for
the significant coefficients, which is even more remarkable given the occurrence of the
great financial crisis during this time period. This suggests a degree of robustness of
the estimated model with respect to the addition of new information, which is promising
regarding the potential use of such models for future (true) out-of-sample predictions.

4.6 Probability Predictions with the Logit Model

Given its economic content and strong performance relative to machine learning models,
it is worthwhile to take a closer look at the performance of the logit model in different
scenarios. Table 6 shows the performance of the logit.4 model (using all variables) for
different estimation setups. In the first part of Table 6, we report performance measures
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for four different estimation strategies. In the first row, we estimate and evaluate the
model on the full sample (in-sample estimation is.full). The second row contains results
for the recursive out-of-sample estimation on which the previous model comparisons were
based (oos.full). As an alternative to recursive estimation, we also explore one-off splits,
where an estimation on observations until 2005Q2 is used to predict probabilities after
that (forecast.full) or the other way around (backcast.full) in rows three and four.18

In general, we find that the performance of the model is quite stable independent
of the specification. For the in-sample estimation, recursive forecasting and forecasting
in a one-off split, all three performance measures (relative usefulness, AUC and Brier
probability score) are quite similar. This is another piece of evidence that the logit model
provides a stable approximation of the true data generating process. The one-off split for
the backcasting exercise, where we use only information from the great financial crisis in
an early warning model on all data prior to 2005Q2 seems to go somewhat against that
result. However, we should be clear that we are predicting more than 83% of the dataset
based on the remaining 17% of observations. This is a very hard task, especially since
the pre-crisis probability in the training sample is considerably larger than in the rest of
the sample, as also indicated by the strong increase of the threshold. Yet, even in this
extreme scenario relative usefulness remains positive.

Table 6: Performance of logit model in different setups

Threshold TP FP TN FN FPrate FNrate Ur AUC BPS

is.full 0.109 119 297 1312 52 0.185 0.304 0.511 0.810 0.073
oos.full 0.091 45 35 206 15 0.145 0.250 0.605 0.852 0.125
forecast.full 0.081 47 22 219 13 0.091 0.217 0.692 0.881 0.132
backcast.full 0.392 72 514 854 39 0.376 0.351 0.273 0.681 0.237

is.sig 0.109 72 118 827 26 0.125 0.265 0.610 0.842 0.064
oos.sig 0.090 33 5 95 6 0.050 0.154 0.796 0.893 0.142
forecast.sig 0.081 29 3 111 6 0.026 0.171 0.802 0.925 0.129
backcast.sig 0.392 21 40 134 10 0.230 0.323 0.448 0.752 0.231

Note: The table shows the performance of the logit model using all variables when using different strate-
gies for estimating and evaluating the model. See text for detailed explanation.

Looking at the absolute performance of the model both in-sample and out-of-sample,
where it correctly classifies almost 70% and 75% of pre-crisis periods respectively (1 -
FNrate) while keeping the rate of false alarms below 20%, we think that this model may
add value to a quantitative assessment of financial stability risks. That being said, the
estimation of the logit models is still accompanied by considerable uncertainty. This also
leads at times to large confidence bands around point estimates of crisis probabilities. It
is plausible that policymakers might differentiate between a signal which is based on a
probability that is significantly different from the signaling threshold, and a signal based
on a probability that is insignificantly above or below the threshold. In this case, one could

18That is, backcast.full assumes knowledge of observations from 2005Q3 until 2016Q2 for estimating
the model, and predicts all previous observations based on these estimates. The performance measures
for that model may serve as another check of model stability.
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divide policy recommendations from early warning models into three categories: (a) a
clear recommendation to act based on a crisis probability significantly above the signaling
threshold; (b) a clear recommendation to abstain from acting based on a crisis probability
significantly below the signaling threshold; and (c) a recommendation to start further
analyses and investigations if the crisis probability is insignificantly different from the
threshold. In the second part of the table, we incorporate this line of thought and report
performance measures for the four estimation strategies based on only those observations
where the estimated probability is significantly different from the threshold.19

In the backcasting case, only 14% of signals are significant, while 46%-50% are signif-
icant in the two forecasting cases and nearly 60% in the in-sample estimation. Zooming
into the details, we can see that the share of significant periods differs across the different
classes in the confusion matrix. False negatives and, especially, false positives are much
less often statistically significant than true positives and negatives. This is reassuring
because it implies that a focus on significant signals increases relative usefulness. In fact,
focusing on significant signals would lead to only five false positives and six false negatives
in the recursive out-of-sample forecasting exercise (oos.sig), while still correctly signaling
a substantial share of pre-crisis and tranquil periods. Thus, while such an approach would
not be able to issue signals before every crisis, it would allow signaling before a substantial
number of crisis events with a high degree of confidence. In this sense, taking uncertainty
explicitly into account when making predictions may help to increase the accuracy of the
early warning model.

5 Conclusion

This paper has presented an analysis of early warning models for systemic banking crises,
based on a dataset covering 15 advanced countries over the period 1970-2016. It is one
of the first papers to use the latest version of the ESCB/ESRB crisis database (Lo Duca
et al., 2017). This database is extended using the Laeven & Valencia database in order to
cover not only European countries, but also the U.S. and Japan. Regarding potential pre-
dictor variables, we build on the existing empirical and theoretical literature and include
indicators representing several important channels for the buildup of systemic banking
crises.

Our analysis confirms that indicators representing credit and asset prices, but also
those related to external imbalances carry information which can be used to predict the
likelihood of systemic banking crises. A logit model taking into account all of these
channels would have been able to issue relatively accurate warnings before the financial
crisis of 2007/2008 for many countries. At the same time, we also emphasize that there
always remains an unpredictable component of systemic banking crises, which leads to
classification errors in ex post measures of prediction performance.

We assess how different methods – a benchmark logit approach and several machine
learning methods – perform in a quasi real-time (pseudo) out-of-sample forecasting exper-
iment. It turns out that the logit approach is surprisingly hard to beat, generally leading

19We use 90% bootstrap confidence bands around estimated probabilities. The threshold is always
based on all observations, without taking estimation uncertainty into account. This is of course only one
option for incorporating estimation uncertainty, serving as an illustration. We leave the many potential
variations and refinements for future research.
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to lower out-of-sample prediction errors than the machine learning methods. This result
holds under different performance measures and different selections of variables, and is
robust to alternative choices of crisis variable, variable transformation, sample length or
loss function preference parameter.

Our interpretation of this result is that a strong in-sample fit of machine learning
methods should not necessarily be taken as an indication of strong out-of-sample pre-
diction performance, since it could alternatively be a sign of overfitting. Moreover, the
stability of these methods’ performances to different variations of the setup seems to be
less pronounced than that of the logit model. This suggests that performance of machine
learning methods in real-world out-of-sample prediction situations cannot be taken for
granted. Instead, the circumstances under which these methods offer clear advantages
as well as potential modifications for improving their stability and performance in early
warning applications need further investigation.
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Schüler, Y. S., P. Hiebert, and T. A. Peltonen (2015). Characterising the Financial
Cycle: a Multivariate and Time-Varying Approach. ECB Working Paper Series 1846,
European Central Bank.

Shalev-Shwartz, S. and S. Ben-David (2014). Understanding Machine Learning: from
Theory to Algorithms. Cambridge University Press.

Tanaka, K., T. Kinkyo, and S. Hamori (2016). Random Forests-Based Early Warning
System for Bank Failures. Economics Letters 148, 118–121.

27



6 Appendix A: Methodology

A.1 Definition of Dependent Variable

Early warning models (typically) perform window forecasts of crisis probabilities and use
thresholds to derive binary signals from these probabilities. The rationale behind this
approach has two aspects. First, window forecasts are used since it is hard to predict
the exact quarterly start date of a crisis, which may be driven to a large extent by
unforecastable shocks. However, recurring patterns before crises may still be informative
about their likelihood of occurrence during a given time interval. Thus, window forecasts
of the probability of a systemic banking crisis can be used to reflect potential buildups of
vulnerabilities, which might require for instance the activation of macroprudential policy
measures. Second, converting probabilities into clear signals (taking into account the
policymaker’s preferences) helps to inform policymakers’ ultimate decision on whether and
when to take action. Moreover, it allows for a straightforward evaluation of predictions
in terms of correct or incorrect signals.

To implement these ideas, we follow the literature and define the dependent variable
for our estimations as follows. Starting from a crisis database, where Ct,n is 1 if a crisis
was ongoing in country n at time t and zero otherwise, we define another binary variable
C̄t,n as our dependent variable. This dependent variable C̄t,n is set to one during early
warning windows between h1 and h2 periods before a crisis (pre-crisis periods) and zero
for observations that are not followed by a crisis within the next h2 quarters (tranquil
periods).

The resulting gap of length h1−1 between early warning windows and crises is excluded
from the estimation, as these periods can neither be classified as being in an early warning
window, nor as being tranquil periods. Moreover, it is standard to exclude periods where
a country is already in a crisis (crisis periods). The reason for excluding crisis periods is
that the extreme imbalances during these periods are typically due to being in a crisis
(which is assumed to be known), instead of reflecting the buildup of imbalances prior to
a crisis.20

The timing of the early warning window is chosen to fulfill two criteria. First, the gap
h1 ≥ 0 between the window and the start of the crisis is chosen to allow for policy action.
Second, the window needs to be sufficiently close to the predicted crisis for economic
variables to show informative developments. Following the literature, we set the limits of
early warning windows to h1 = 5 and h2 = 12 quarters (see Drehmann and Juselius, 2014;
Alessi and Detken, 2018; Holopainen and Sarlin, 2017). This allows at least one year for
policy measures to become effective and to issue warnings up to three years before a crisis.

In sum, this leads to the following definition of the dependent variable:

C̄t,n =


0 , if Ct+h,n = 0, for all h ∈ {0, . . . , h2}
1 , if Ct+h,n = 1, for some h ∈ {h1, . . . , h2} and

Ct+h,n = 0, for all h ∈ {0, . . . , h1 − 1}
NA , otherwise.

(2)

20We do not exclude additional periods after a crisis, as crises in our database are defined such that
they already account for the post-crisis bias discussed in Bussière and Fratzscher (2006).
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We thus estimate the probability of a crisis starting between the next h1 = 5 to
h2 = 12 quarters, conditional on not already being in an acute crisis period. To do
this, the binary dependent variable C̄ is linked to a set of early warning indicators X
using different modeling choices. Each model is estimated and then used to predict the
probability of being in an early warning window at time t in country n conditional on
the observables X, P (C̄t,n|Xt,n). For the sake of brevity, we simply refer to this as ’crisis
probability’.

A.2 Description of Estimation Methods

This section provides a brief overview of each method and highlights some key aspects for
each method. Table A.1 summarizes the discussion in this section by highlighting some
key benefits and drawbacks of the employed methods. Of course, this is only a snapshot
of the more complete description of these methods in the mentioned references.21

Table A.1: Comparison of employed methods: benefits and drawbacks

Benefits Drawbacks

logit explicit probabilistic foundations pre-specified functional form
high interpretability

knn simple approach strong curse of dimensionality

trees automatic variable selection instability across time / different samples
intuitive approach

rf more stable than trees risk of overfitting
improves on tree accuracy identifying drivers of predictions complex

svm flexible nonlinear fitting risk of overfitting
computationally efficient ad hoc in probabilistic setups

difficult to communicate

Logistic regression (logit): Logit models are the workhorse models in the early warn-
ing literature (Frankel and Rose, 1996; Bussière and Fratzscher, 2006; Lo Duca and Pel-
tonen, 2013). They are based on two assumptions. First, the dependent binary variable
is assumed to be driven by a latent process y∗, which is in turn linearly related to the
employed explanatory variables: y∗ = Xβ + ε. Second, the latent process is assumed to
be linked to the binary variable by a logistic transformation (or, equivalently, estimation
errors ε follow a logistic distribution). Hence, a key advantage of logit models is that they
are based on a clear and straightforward statistical model, which explicitly takes uncer-
tainty into account. Compared to machine learning methods, they are easy to interpret
(for instance, in terms of coefficients), but, at the same time, restricted to the specific
functional form just described. A key issue in their estimation is to make sure that a
sufficient number of observations in each category is available (McFadden, 1984). In the

21More detailed introductions to these methods may be found, for instance, in Murphy (2012), James
et al. (2013), or Shalev-Shwartz and Ben-David (2014).
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context of early warning models, it is crucial to have a sufficient number of pre-crisis peri-
ods (which are much less frequent than tranquil periods) available for estimation. When
the number of crisis events contained in the sample is reduced, estimation uncertainty in-
creases, and, in the extreme case, perfect discrimination can prevent a proper estimation
of the model’s parameters. To put the logit method on equal footing with the machine
learning methods, we estimate a non-dynamic logit model, pooling observations both in
the cross-section and the time dimension.

K nearest neighbors (knn): The idea of knn22 (Cover and Hart, 1967) is to predict the
probability of an event for a given observation (t, n) by the share of such an event among
its K closest (nearest) neighbors. Closeness of two observations x and x′ is measured by

the Euclidean distance, i.e. ||x − x′|| =
√∑d

i=1(xi − x′i)2. That is, two observations are

close if the realizations of the explanatory variables associated with these observations
are similar. Formally, we define a neighborhood NK(Xt,n) around every observation Xt,n,
containing the K closest observations to Xt,n in the training sample. The probability
of an event is the average occurrence of the event in the neighborhood, i.e. P (C̄t,n =
1) = 1

K

∑
k∈NK(Xt,n)

C̄k. The hyperparameter K is chosen by cross-validation. Moreover,
we use a knn algorithm that refines the method by weighting each of the neighboring
points by their distance to the given point Xt,n. A key problem of knn is that it is
subject to a strong “curse of dimensionality”. Shalev-Shwartz and Ben-David (2014)
show that the sample size required to achieve a given error grows exponentially with the
number of explanatory variables in the dataset. In our empirical application, we use sets
of explanatory variables of different dimension in order to gain insights on the tradeoff
between additional information and additional complexity.

Decision trees (trees): Binary decision trees23 (Breiman, Friedman, Olshen, and
Stone, 1984) consist of a root, interior nodes (branches) and final nodes (leafs). The
root and every branch consist of a decision rule based on a single explanatory variable xi
and a threshold τi. The decision rules assign observations to the left subtree if xi > τi and
to the right subtree otherwise. Starting at the root, observations are thus passed down
the tree until they end up in a final node. For every node, the (predicted) probability
of an event is equal to the average occurrence of said event among observations from the
training sample assigned to the same final node.

The estimation of the tree entails choosing simultaneously the variables x and thresh-
olds τ to split on. Efficient algorithms have been developed for approximating the optimal
solution to this non-trivial task. These proceed by starting at the root and recursively
constructing the tree from there, based on a measure of gain from each considered split
and several potential stopping criteria for limiting the complexity of the tree. In our
case, the number of branches is determined by a “pruning” parameter which balances
increasing complexity against the homogeneity in final leaves.24

22We implement knn using the R-package ’kknn’.
23We implement decision trees using the R package ’rpart’.
24This is, of course, only one way to limit tree complexity. Other approaches, for example, set a

minimum number of observations per final node (used in our implementation of random forest), or,
alternatively, a maximum number of final nodes.
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The selection of the pruning parameter (the hyperparameter of this method) thus
decides on the complexity of the tree. Lower complexity costs imply additional splits
which decrease classification errors on the training sample and thus increase the sharp-
ness of estimated probabilities (pushing them closer to either zero or one). At the same
time, the larger number of final nodes implies fewer training observations per final node,
which increases estimation uncertainty and the potential for overfit. As the sensitivity of
estimated trees to small changes in the underlying dataset can be high, the method of
random forests has been developed to mitigate this undesirable feature.

Random forest (rf): Random forests25 (Breiman, 1996, 2001) generalize decision trees
by averaging over the predictions of a large number of different decision trees. This can
reduce the variance of estimates and, hence, prediction errors. Random forests generate
heterogeneity among its trees by (a) estimating trees on randomly chosen subsets of
observations (also called bootstrap aggregating or bagging), and (b) considering only a
randomly chosen subset of early warning indicators at each split (also called random
subspace method, or attribute bagging). Both components are needed in order to de-
correlate individual trees sufficiently, so as to achieve the desired variance reduction,
while maintaining a high degree of prediction accuracy.

To put the random forest method into practice, we have to select three different
hyperparameters. First, we set the number of trees used in each random forest to 1’000
such that the average prediction of the trees in the forest converges. Cross-validation
is used to set the further two hyperparameters of this method. Heterogeneity between
trees is driven largely by the number of randomly drawn variables to be considered at
each split (the second hyperparameter). Third, complexity of the trees in the forest is
limited by setting a minimum number of observations per terminal node, which is the
third hyperparameter of this method .

Random forests have so far been the most frequently employed machine learning
method in the early warning literature (Alessi and Detken, 2018; Holopainen and Sar-
lin, 2017; Tanaka et al., 2016). However, their success in reducing variance and improving
out-of-sample performance depends on achieving a sufficiently low correlation between
the randomly generated trees (Breiman, 2001). We conjecture that achieving such a low
degree of correlation could be especially challenging in the presence of serial and cross-
sectional correlation of the underlying training data.

Support vector machine (svm): svm26 constructs a hyperplane in order to separate
observations into distinct groups, pre-crisis and tranquil periods in our case. When the
data is linearly separable, the main question is which hyperplane to choose from an infinite
space of possible separating hyperplanes. svm uniquely determines the hyperplane by
maximizing the distance of the two closest observations to the separating hyperplane
(this distance is called margin).

For illustration, let us consider a one-dimensional example. Suppose a dataset is uni-
variate, with observations given as points on the real line, namely x = {−3,−2,−1, 1, 2, 3}
and suppose that observations are linearly separable, namely y(x = {−3,−2}) = 1 and

25We implement random forests using the R package ‘randomForest’.
26We implement support vector machines using the R package ’e1071’.
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y(x = {−1, 1, 2, 3}) = 0. Then, obviously, any rule which assigns y(x < −2) = 1 and
y(x > −1) = 0 perfectly separates the observations. The svm method would choose the
point −1.5 for a separating rule that maximizes the margin. Obviously, we achieve sepa-
ration by a point in this one-dimensional example, by a line in 2-d, and by a hyperplane
in 3-d or higher.

However, in typical applications observations are not linearly separable. Consider a
modification of the above example where y = 1 for all observations where | x |> 2 and zero
otherwise (this example is inspired by Shalev-Shwartz and Ben-David (2014), p. 179).
This is not linearly separable in the original space, but can be made separable by mapping
to a two-dimensional space, for instance by using φ : R→ R2 where φ(x) = (x, x2). Then,
any rule that assigns, y = 1 whenever x2 > 4 separates the observations. This simple
example illustrates the more general idea that is typically used in combination with svm:
By mapping non-linear transformations of the original data into a higher dimensional
space, linear separability of the dataset can be achieved or, at least, enhanced.

Mapping data into higher dimensional feature spaces enhances the expressiveness of
methods (enlarging the space of functions considered for describing the data), but, ob-
viously, higher dimensionality comes at the cost of increased complexity (the number of
parameters can rise exponentially in the multivariate case, for example when polynomials
using cross-products of variables are considered). To deal with this issue, the machine
learning literature has developed what is known as ‘kernel trick’. This allows an effi-
cient computation of svm classifiers when such non-linear mappings into high-dimensional
spaces are used. Broadly speaking, kernel functions describe similarities between observa-
tions and have special properties that allow the svm calculation to be based on these kernel
functions without explicitely handling the high-dimensional representation of the data. A
formal description of the kernel trick may be found, for instance, in Shalev-Shwartz and
Ben-David (2014), pp. 181. The complexity of the high-dimensional function space is
controlled by a hyperparameter gamma inside the kernel function, with higher values of
gamma leading to more complexity (we use the standard choice of a radial basis kernel).

While it is possible to linearly separate observations after mapping them into an
arbitrarily complex space (n observations can always be perfectly fitted using a n-1 degree
polynomial), this is generally not desirable. Instead, a penalty term for misclassified
observations is added to the svm classifier loss function. Allowing for misclassification
makes it possible to use the parameter svmg (see table A.2) to separately control the
complexity of the classifier. Moreover, it induces a tradeoff between large margins and
misclassification, which is controlled by a second hyperparameter svmc (cost of soft margin
constraint violation). The more tolerant we are towards misclassification on the training
sample, the larger the margin can be (ceteris paribus). A larger margin then makes the
classification more robust towards perturbations of the original data, for example when
predicting the label of new data points. Thus, both hyperparameters seek to strike a
balance between perfectly fitting the training data (potentially overfitting relative to the
true model), and correctly classifying new data.

Support vector machines are among the most frequently used machine learning al-
gorithms. Their ability to flexibly fit complex functions to the data at the same time
entails the risk of overfitting. Moreover, the probabilistic foundations for the svm method
are rather ad-hoc (Murphy, 2012). In the early warning context, the presence of a sub-
stantial unpredictable component as well as of cross-sectional and serial correlation may
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dampen the method’s out-of-sample performance (see results section and discussion). As
can be seen from the relatively long explanation in this paragraph, understanding and
communicating this method may present additional challenges.

A.3 Panel-block-bootstrap

The aim of our panel-block-bootstrap is to draw random datasets with similar autocorre-
lation and cross-sectional dependence patterns as in the original dataset. To achieve this,
we construct bootstrap datasets from blocks of observations that are jointly sampled from
the original dataset. Drawing blocks of consecutive observations retains the autocorre-
lation structure of the data, while the panel structure of blocks captures cross-sectional
correlation.

For every estimation, we sample R = 1′000 different bootstrap datasets from the
respective training sample, which covers the time-country specific observations {(t, n)|t ∈
{1, . . . , T}, n ∈ {1, . . . , N}}. A block Bt (with blocklength b = 8) starts at time t and
contains the following observations of both X and C̄:

Bt =

 (t, 1) · · · (t, N)
...

. . .
...

(t+ b− 1, 1) · · · (t+ b− 1, N)

 (3)

Bootstrap samples r ∈ {1, . . . , R} are drawn randomly from the original data such
that every observation has an equal probability of entering the random sample. Thus, we
proceed as follows:

1. Initialize with an empty bootstrap sample r = ∅.

2. Draw a random starting period t∗ ∈ {2− b, . . . , T}. If we would not allow for early
or late starting periods (that effectively generate blocks with missing observations),
observations at the beginning or end of the original sample would have a lower
probability of entering the bootstrap sample.

3. Obtain Bt∗ , corresponding to t∗, from the original training dataset. Some observa-
tions may be missing due to (a) shorter sample length for an individual country, (b)
an early starting period t∗ < 1 or (c) a late starting period t∗ > T − b. In this case,
only include nonempty observations in Bt∗ .

4. Concatenate the bootstrap sample r and Bt∗ .

5. If the bootstrap sample r has fewer observations than the original in-sample dataset,
return to step 2. Otherwise, return the bootstrap sample r.

We estimate every model m on every bootstrap sample r ∈ {1, . . . , R}. Results are
used to predict probability estimates pm,r

t,n for every observation (t, n) in the test sample.
From this, we calculate the different performance measures (relative usefulness, AUC
and BPS) for every bootstrap sample r and model m. The bootstrap distribution of
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performance measures across r yields estimates of confidence bands for each model m.27

Moreover, it allows us to test whether model m1’s performance is statistically significantly
better than model m2’s performance. For example, the probability that the relative
usefulness of model m1 is higher than that of model m2 is given by 1

R

∑R
r=1 1U

m1,r
r >U

m2,r
r

.

A.4 Cross-validation

We use cross-validation to select optimal hyperparameters from a predefined grid. The
idea of cross-validation is to obtain an estimate of how well a model is able to make
predictions on previously unseen data. To this end, the sample is cut repeatedly into an
estimation sample and a test sample. In this sense, cross-validation is similar to out-of-
sample prediction, but without paying as much attention to the time dimension of the
dataset. In particular, we use panel block leave-p-out cross-validation (Arlot, Celisse,
et al., 2010). In this variant, a block of twelve consecutive quarters (corresponding to the
horizon of the early warning window) across all countries is used as test sample, while
all other observations are included in the training sample. This is done repeatedly for all
possible blocks until the sample observations are exhausted.

Using whole blocks of observations in the test sample instead of randomly selected ob-
servations has two advantages. First, it captures the serial and cross-sectional correlation
of the data in a similar way as recursive out-of-sample estimation. Second, the number
of possible splits of the dataset is limited, making an exhaustive cross-validation over
all possible combinations possible. Using all possible splits into blocks of twelve quar-
ters causes each observation (time t, country n) to be contained in twelve different panel
blocks. That is, for each observation (t, n), the panel block leave-p-out cross-validation
results in twelve different predictions for every model (with each model being defined
by a combination of method, hyperparameters, and explanatory variables). In order to
calculate the performance measure for a given model, we average performance over all
cross-validation predictions from that model. We can then perform a grid search to select
for each method the hyperparameters maximizing its cross-validation performance. Table
A.2 displays the resulting optimal hyperparameters.

27A well-known problem of bootstrapping is its potential for bias in small samples (Kilian, 1998). We
need to correct for this in the bootstrap distribution of our performance measures. In case of relative
usefulness and the Brier probability score, we mean-adjust the bootstrap distribution underlying confi-
dence bands and p-values. In the case of the AUC, confidence bands based on this bias correction method
appear implausible, such that we recourse to a non-parametric approach developed specifically for this
measure (DeLong, DeLong, and Clarke-Pearson, 1988).
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Table A.2: Hyperparameters for machine learning methods (for baseline results)

Method Hyperparameter
name

Opt. value Hyperparameter
name

Opt. value

trees.1 cp (tree complexity
parameter controlling
cost of adding another
split to the tree)

0.0212
trees.2 0.0273
trees.3 0.0121
trees.4 0

knn.1
k (number of nearest
neighbours to use for
each prediction)

49
knn.2 7
knn.3 29
knn.4 15

rf.1 nodesize (minimum
number of observations
per terminal node of
each tree in the forest)

16 rfmtry (number of
variables randomly
sampled as
candidates at each
split)

2
rf.2 16 2
rf.3 2 2
rf.4 16 9

svm.1
svmg (parameter in
radial basis function)

0.5
svmc (cost of soft
margin constraint
violation)

0.0156
svm.2 0.5 0.0211
svm.3 0.0005 0.0267
svm.4 0.1250 8

35



7 Appendix B: Data

Table B.1: Country coverage and crisis dates

Data availability Crisis dates

Country Start End
No. of

Start End Start End Start End
quarters

BE 1975 Q1 2016 Q2 166 no crisis
DE 1971 Q1 2016 Q2 182 1974 Q2 1974 Q4 2001 Q1 2003 Q4
DK 1975 Q1 2016 Q1 165 1987 Q1 1995 Q1 2008 Q1 2013 Q4
ES 1975 Q1 2016 Q1 165 1978 Q1 1985 Q3 2009 Q1 2013 Q4
FI 1981 Q4 2016 Q2 139 1991 Q3 1996 Q4
FR 1973 Q1 2016 Q1 173 1991 Q2 1995 Q1 2008 Q2 2009 Q4
GB 1972 Q1 2016 Q1 177 1973 Q4 1975 Q4 1991 Q3 1994 Q2 2007 Q3 2010 Q1
IE 1990 Q4 2016 Q1 102 2008 Q3 2013 Q4
IT 1971 Q1 2016 Q1 181 1991 Q3 1997 Q4 2011 Q3 2013 Q4
JP 1971 Q1 2016 Q2 182 1997 Q4 2001 Q4
NL 1971 Q1 2016 Q1 181 2008 Q1 2013 Q1
NO 1975 Q1 2016 Q2 166 1988 Q3 1992 Q4
PT 1988 Q1 2016 Q2 114 2008 Q4 ongoing
SE 1975 Q1 2016 Q1 165 1991 Q1 1997 Q2
US 1971 Q1 2016 Q2 182 1988 Q1 1995 Q4 2007 Q4 2010 Q4
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Table B.2: Data transformation and sources - variables used

Category Variable
name

Source Transformation / Description (for
non-transformed variables)

Inputs Combinations

Asset
prices

Real equity
price gap

OECD, Eurostat and
own calculations

Relative gap using HP filter with lambda
of 400,000

Equity prices, consumer
price index

Asset
prices

Real residen-
tial real estate
price gap

OECD, Eurostat and
own calculations

Relative gap using HP filter with lambda
of 400,000 of real residential real estate
price

Residential real estate
prices, consumer price
index

Credit Total credit-
to-GDP gap

BIS, OECD, Eurostat
and own calculations

Absolute gap using HP filter with lambda
of 400,000 of total credit-to-GDP ratio

Total credit, nominal GDP

External Current
account-to-
GDP ratio

OECD, Eurostat and
own calculations

OECD data: Current account to GDP
without transformations, Eurostat data:
Current account to GDP calculated as ra-
tio of current account balance to GDP
(both summed up over four quarters)

Current account balance,
Nominal GDP

Take longest time
series available of
OECD data or
Eurostat data

External Real oil price
gap

OECD and own calcula-
tions

Relative gap using HP filter with lambda
of 1,600 of real oil price

Oil price, consumer price
index (US)

External Real effective
exchange rate
gap

OECD, IMF and own
calculations

Relative gap using HP filter with lambda
of 400,000 of real effective exchange rate

Real effective exchange
rate

Macro 3-month real
money market
rate

OECD, ECB, Eurostat
and own calculations

Real interbank lending rate Nominal 3-month money
market rate, consumer
price index

Macro Inflation rate Eurostat, OECD Annual rate of inflation (y-o-y growth rate
of quarterly data)

Consumer price index

Macro Real GDP gap OECD, Eurostat and
own calculations

Relative gap using HP filter with lambda
of 1,600 of real GDP

Nominal GDP, consumer
price index

Macro Gross fixed
capital
formation-
to-GDP gap

OECD, Eurostat, Bun-
desbank and own calcu-
lations

Absolute gap using HP filter with lambda
of 1,600 of gross fixed capital formation-
to-GDP ratio

Gross fixed capital forma-
tion, nominal GDP
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Table B.3: Data transformation and sources - input data

Variable name Source Transformation / Description (for non-
transformed variables)

Combinations

Consumer price index Eurostat, OECD Consumer price index, end of quarter values, re-
based to 2015=100

Take longest time series available of
OECD data or Eurostat data

Total credit BIS Total credit to the private non-financial sector,
domestic currency, billions

Oil price OECD Brent crude oil price, USD per barrel

Real effective exchange
rate

OECD, IMF Real effective exchange rate, CPI based index,
base year: 2010

Take longest time series available of
OECD data or IMF data

Current account bal-
ance

OECD, Eurostat OECD: Current acount balance as percentage of
GDP Eurostat: Current account balance (own
calculations: sum of last four quarters, as per-
centage of GDP)

Take longest time series available of
OECD data or Eurostat data

Nominal GDP (national
currency)

OECD, Eurostat Gross domestic product at market prices, sea-
sonally adjusted, domestic currency, billions,
sum of last four quarters

Take longest time series available of
OECD data or Eurostat data

Nominal GDP (in EUR,
for current account-to-
GDP calculation)

Eurostat Gross domestic product at market prices, sea-
sonally adjusted, euro, millions, sum of last four
quarters

Gross fixed capital for-
mation

OECD, Eurostat, Bun-
desbank

Gross fixed capital formation, domestic cur-
rency, millions. For DE: Bundesbank data
(including calculations) for long time series of
GFCF

Take longest time series available of
OECD data or Eurostat data

3-month nominal
money market rate

OECD, ECB, Datas-
tream

Interbank interest rate, average through quarter Take longest time series available of
OECD, ECB and Datastream data

Equity prices OECD, Bloomberg,
Datastream

Equity price index, 2010=100, average through
quarter

Take longest time series available of
OECD, Bloomberg and Datastream
data

Residential real estate
prices

OECD Index of residential real estate price, based in
2010, seasonally adjusted.
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Table B.4: Summary statistics: Growth rate dataset

Pre-crisis periods Tranquil periods
Variable name mean sd min max obs mean sd min max obs

4-year growth rate of credit-to-GDP ratio 0.62 1.04 -1.19 3.46 176 -0.07 0.97 -2.34 3.46 1525
4-year growth rate of real residential real estate prices 0.52 1.09 -1.27 2.63 176 -0.06 0.97 -2.47 2.63 1525
4-year growth rate of real equity prices 0.55 1.01 -1.12 3.67 176 -0.06 0.98 -1.35 3.67 1525
1-year growth rate of real GDP 0.09 0.88 -3.38 1.78 176 -0.01 1.01 -3.98 4.65 1525
Inflation rate -0.07 0.90 -1.22 3.87 176 0.01 1.01 -1.37 5.11 1525
1-year growth rate of gross fixed capital formation-to-GDP ratio 0.27 1.09 -3.96 3.75 176 -0.03 0.98 -3.96 3.75 1525
3-month real money market rate 0.07 1.10 -3.33 2.38 176 -0.01 0.99 -3.33 2.67 1525
Current account-to-GDP ratio -0.75 1.14 -3.22 2.06 176 0.09 0.95 -3.22 2.60 1525
4-year growth rate of real effective exchange rate 0.24 0.82 -1.45 3.48 176 -0.03 1.02 -2.21 3.48 1525
1-year growth rate of real oil price 0.02 0.88 -1.82 3.10 176 0.00 1.01 -1.82 3.79 1525

Note: Data have been standardized using the unconditional mean and standard deviation across all periods. Since data is winsorized at the 1% and 99%
level, minimum (maximum) values may be the same in pre-crisis and tranquil periods.
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Table B.5: Variables used in specifications (1) - (4)

Credit and Asset
Prices

Macro External All

(1) (2) (3) (4)

Total credit-to-GDP
gap

Real GDP gap
Current

account-to-GDP ratio
Total credit-to-GDP

gap

Real residential real
estate price gap

Inflation rate
Real effective exchange

rate gap
Real residential real

estate price gap

Real equity price gap
3-month real money

market rate
Real oil price gap Real equity price gap

Gross fixed capital
formation-to-GDP gap

Real GDP gap

Inflation rate

3-month real money
market rate

Gross fixed capital
formation-to-GDP gap

Current
account-to-GDP ratio

Real effective exchange
rate gap

Real oil price gap
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8 Appendix C: Results
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Table C.1: In-sample performance using different performance measures

Threshold TP FP TN FN FPrate FNrate U r AUC BPS

logit.1 0.109 102 402 1207 69 0.25 0.40 0.347*** [0.088, 0.457] 0.736*** [0.703, 0.769] 0.077*** [0.069, 0.091]
trees.1 0.097 84 96 1513 87 0.06 0.51 0.432*** [0.172, 0.576] 0.776*** [0.742, 0.810] 0.063*** [0.046, 0.089]
knn.1 0.126 152 315 1294 19 0.20 0.11 0.693*** [0.419, 0.825] 0.928*** [0.915, 0.942] 0.057*** [0.045, 0.074]
rf.1 0.198 170 56 1553 1 0.03 0.01 0.959 [0.609, 1.000] 0.994 [0.992, 0.996] 0.029 [0.011, 0.053]
svm.1 0.087 61 48 1561 110 0.03 0.64 0.327*** [0.080, 0.460] 0.845*** [0.817, 0.874] 0.073*** [0.050, 0.085]

logit.2 0.098 107 682 927 64 0.42 0.37 0.202*** [0.114, 0.306] 0.613*** [0.576, 0.651] 0.086*** [0.079, 0.099]
trees.2 0.096 171 1609 0 0 1.00 0.00 0.000*** [-0.099, 0.135] 0.500*** [0.500, 0.500] 0.087*** [0.074, 0.112]
knn.2 0.315 171 57 1552 0 0.04 0.00 0.965 [0.693, 1.000] 0.988*** [0.984, 0.991] 0.036 [0.014, 0.068]
rf.2 0.167 168 42 1567 3 0.03 0.02 0.956 [0.683, 1.000] 0.993 [0.991, 0.996] 0.041 [0.022, 0.063]
svm.2 0.093 122 324 1285 49 0.20 0.29 0.512*** [0.340, 0.676] 0.852*** [0.827, 0.877] 0.073** [0.050, 0.097]

logit.3 0.097 118 482 1127 53 0.30 0.31 0.390*** [0.271, 0.461] 0.745*** [0.712, 0.778] 0.081*** [0.077, 0.089]
trees.3 0.096 171 1609 0 0 1.00 0.00 0.000*** [-0.207, 0.147] 0.500*** [0.500, 0.500] 0.087*** [0.074, 0.107]
knn.3 0.150 148 291 1318 23 0.18 0.13 0.685*** [0.470, 0.832] 0.919*** [0.905, 0.932] 0.062*** [0.051, 0.075]
rf.3 0.352 171 0 1609 0 0.00 0.00 1.000 [0.702, 1.000] 1.000 [1.000, 1.000] 0.012 [-0.009, 0.035]
svm.3 0.136 64 232 1377 107 0.14 0.63 0.230*** [0.015, 0.428] 0.610*** [0.569, 0.650] 0.085*** [0.062, 0.082]

logit.4 0.109 119 297 1312 52 0.18 0.30 0.511*** [0.294, 0.655] 0.810*** [0.779, 0.840] 0.073** [0.060, 0.094]
trees.4 0.100 138 214 1395 33 0.13 0.19 0.674*** [0.406, 0.883] 0.901*** [0.879, 0.923] 0.041** [0.015, 0.075]
knn.4 0.339 166 26 1583 5 0.02 0.03 0.955 [0.660, 1.000] 0.997** [0.996, 0.999] 0.021** [-0.004, 0.046]
rf.4 0.248 171 16 1593 0 0.01 0.00 0.990 [0.672, 1.000] 0.999 [0.999, 1.000] 0.018* [-0.007, 0.046]
svm.4 0.090 162 28 1581 9 0.02 0.05 0.930 [0.566, 1.000] 0.989*** [0.983, 0.995] 0.013 [-0.028, 0.025]

Note: Best performance on given dataset in bold. Stars indicate if the respective method’s performance is significantly worse than the best model’s
performance on the same dataset (∗∗∗/∗∗/∗ for the 1%/5%/10% significance level). For Ur and AUC higher values indicate better prediction performance,
while for BPS lower values are preferable. Numbers in brackets indicate 90% confidence bands. Model names reported in format “method.dataset”, where
datasets consist of the following sets of variables (1): credit and asset prices, (2) macro variables, (3) external imbalances, and (4) all variables (see also
table B.5).
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Table C.2: Out-of-sample performance using different performance measures

Threshold TP FP TN FN FPrate FNrate U r AUC BPS

logit.1 0.096 46 96 145 14 0.40 0.23 0.368 [0.237,0.487] 0.737 [0.682,0.792] 0.139 [0.119,0.159]
trees.1 0.065 24 48 193 36 0.20 0.60 0.201** [0.084,0.329] 0.591*** [0.51,0.672] 0.148 [0.125,0.171]
knn.1 0.124 30 61 180 30 0.25 0.50 0.247* [0.123,0.374] 0.704 [0.644,0.765] 0.153* [0.134,0.172]
rf.1 0.193 22 29 212 38 0.12 0.63 0.246* [0.134,0.358] 0.73 [0.669,0.79] 0.15 [0.131,0.17]
svm.1 0.079 27 50 191 33 0.21 0.55 0.243* [0.118,0.355] 0.492*** [0.405,0.579] 0.159 [0.125,0.198]

logit.2 0.100 7 85 156 53 0.35 0.88 -0.236* [-0.394,-0.074] 0.739 [0.682,0.797] 0.182 [0.171,0.197]
trees.2 0.076 8 178 63 52 0.74 0.87 -0.605*** [-0.703,-0.499] 0.824 [0.773,0.874] 0.204 [0.18,0.232]
knn.2 0.309 4 37 204 56 0.15 0.93 -0.087 [-0.147,-0.023] 0.385*** [0.339,0.431] 0.231** [0.21,0.253]
rf.2 0.183 0 66 175 60 0.27 1.00 -0.274*** [-0.343,-0.194] 0.771 [0.726,0.815] 0.22* [0.203,0.239]
svm.2 0.087 15 80 161 45 0.33 0.75 -0.082 [-0.198,0.039] 0.687 [0.619,0.756] 0.182 [0.148,0.222]

logit.3 0.087 40 55 186 20 0.23 0.33 0.438 [0.34,0.532] 0.762 [0.699,0.825] 0.153 [0.142,0.164]
trees.3 0.077 56 131 110 4 0.54 0.07 0.39*** [0.27,0.516] 0.618*** [0.567,0.67] 0.181*** [0.163,0.203]
knn.3 0.151 30 50 191 30 0.21 0.50 0.293** [0.182,0.399] 0.663*** [0.594,0.732] 0.159** [0.144,0.175]
rf.3 0.431 9 8 233 51 0.03 0.85 0.117*** [0.036,0.203] 0.602*** [0.527,0.677] 0.164** [0.148,0.18]
svm.3 0.089 31 110 131 29 0.46 0.48 0.06*** [-0.11,0.215] 0.696* [0.639,0.753] 0.176*** [0.148,0.216]

logit.4 0.091 45 35 206 15 0.15 0.25 0.605 [0.481,0.727] 0.852 [0.797,0.906] 0.125 [0.101,0.152]
trees.4 0.065 18 42 199 42 0.17 0.70 0.126*** [0.007,0.248] 0.544*** [0.47,0.617] 0.255*** [0.223,0.284]
knn.4 0.287 4 31 210 56 0.13 0.93 -0.062*** [-0.142,0.024] 0.366*** [0.312,0.419] 0.217*** [0.197,0.237]
rf.4 0.267 10 41 200 50 0.17 0.83 -0.003*** [-0.126,0.124] 0.521*** [0.454,0.588] 0.199*** [0.176,0.221]
svm.4 0.068 9 81 160 51 0.34 0.85 -0.186*** [-0.305,-0.063] 0.629*** [0.566,0.691] 0.24*** [0.21,0.279]

Note: Best performance on given dataset in bold. Stars indicate if the respective method’s performance is significantly worse than the best model’s
performance on the same dataset (∗∗∗/∗∗/∗ for the 1%/5%/10% significance level). For Ur and AUC higher values indicate better prediction performance,
while for BPS lower values are preferable. Numbers in brackets indicate 90% confidence bands. Model names reported in format “method.dataset”, where
datasets consist of the following sets of variables (1): credit and asset prices, (2) macro variables, (3) external imbalances, and (4) all variables (see also
table B.5).
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Table C.3: Robustness: Out-of-sample performance for µ = 0.6 (affects only signals / Ur)

Threshold TP FP TN FN FPrate FNrate Ur

logit.1 0.060 53 132 109 7 0.55 0.12 0.277 [0.080, 0.451]
trees.1 0.045 32 106 135 28 0.44 0.47 -0.140*** [-0.329, 0.063]
knn.1 0.094 39 72 169 21 0.30 0.35 0.176 [-0.017, 0.367]

rf.1 0.185 22 32 209 38 0.13 0.63 -0.083*** [-0.254, 0.096]
svm.1 0.056 39 149 92 21 0.62 0.35 -0.143*** [-0.351, 0.058]

logit.2 0.069 37 175 66 23 0.73 0.38 -0.301 [-0.569, -0.304]
trees.2 0.076 8 178 63 52 0.74 0.87 -1.039*** [-1.215, -0.810]
knn.2 0.145 7 74 167 53 0.31 0.88 -0.632** [-0.732, -0.528]

rf.2 0.178 0 68 173 60 0.28 1.00 -0.782*** [-0.879, -0.679]
svm.2 0.083 43 200 41 17 0.83 0.28 -0.255 [-0.513, 0.021]

logit.3 0.070 47 75 166 13 0.31 0.22 0.364 [0.225, 0.480]
trees.3 0.071 56 148 93 4 0.61 0.07 0.286 [0.085, 0.494]
knn.3 0.102 37 60 181 23 0.25 0.38 0.176** [0.005, 0.326]

rf.3 0.320 13 23 218 47 0.10 0.78 -0.270*** [-0.402, -0.131]
svm.3 0.073 55 178 63 5 0.74 0.08 0.136** [-0.060, 0.311]

logit.4 0.070 51 63 178 9 0.26 0.15 0.514 [0.331, 0.685]
trees.4 0.049 20 61 180 40 0.25 0.67 -0.253*** [-0.427, -0.064]
knn.4 0.274 4 30 211 56 0.12 0.93 -0.524*** [-0.649, -0.394]

rf.4 0.267 10 41 200 50 0.17 0.83 -0.420*** [-0.600, -0.233]
svm.4 0.108 16 74 167 44 0.31 0.73 -0.407*** [-0.580, -0.222]

Note: For Ur and AUC higher values indicate better prediction performance, while for BPS lower values are preferable. Numbers in brackets indicate 90%
confidence bands. For machine learning methods, we report significance levels (∗∗∗/∗∗/∗ for the 1%/5%/10% level) if the respective performance measure
is significantly below (for Ur and AUC) or above (for BPS) the logit model on the same dataset. Model names reported in format “method.dataset”,
where datasets consist of the following sets of variables (1): credit and asset prices, (2) macro variables, (3) external imbalances, and (4) all variables (see
also table B.5).
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Table C.4: Robustness: Out-of-sample performance when using growth rates (instead of gaps) as data transformation

Threshold TP FP TN FN FPrate FNrate Ur AUC BPS

logit.1 0.092 39 74 179 34 0.29 0.47 0.242 [0.133, 0.344] 0.746 [0.696, 0.796] 0.169 [0.156, 0.184]
trees.1 0.076 56 206 47 17 0.81 0.23 -0.047*** [-0.187, 0.090] 0.536*** [0.464, 0.608] 0.163 [0.144, 0.180]
knn.1 0.111 37 54 199 36 0.21 0.49 0.293 [0.194, 0.393] 0.638*** [0.570, 0.707] 0.181** [0.168, 0.193]
rf.1 0.216 25 28 225 48 0.11 0.66 0.232* [0.115, 0.296] 0.703* [0.639, 0.758] 0.167 [0.149, 0.182]
svm.1 0.099 30 85 168 43 0.34 0.59 0.075*** [-0.049, 0.200] 0.537*** [0.496, 0.621] 0.195* [0.161, 0.246]

logit.2 0.095 10 130 123 63 0.51 0.86 -0.377*** [-0.502, -0.252] 0.764 [0.713, 0.815] 0.209 [0.198, 0.223]
trees.2 0.088 13 181 72 60 0.72 0.82 -0.537*** [-0.647, -0.432] 0.807 [0.768, 0.846] 0.225* [0.206, 0.247]
knn.2 0.159 1 55 198 72 0.22 0.99 -0.204 [-0.264, -0.140] 0.784 [0.742, 0.826] 0.230*** [0.222, 0.238]
rf.2 0.230 0 37 216 73 0.15 1.00 -0.146 [-0.205, -0.097] 0.792 [0.749, 0.836] 0.249*** [0.234, 0.265]
svm.2 0.096 3 64 189 70 0.25 0.96 -0.212 [-0.305, -0.125] 0.835 [0.798, 0.874] 0.220 [0.187, 0.265]

logit.3 0.079 47 81 172 26 0.32 0.36 0.324 [0.222, 0.419] 0.693 [0.628, 0.758] 0.172 [0.160, 0.184]
trees.3 0.070 49 194 59 24 0.77 0.33 -0.096*** [-0.218, 0.031] 0.583*** [0.508, 0.658] 0.196** [0.179, 0.215]
knn.3 0.096 48 96 157 25 0.38 0.34 0.278 [0.169, 0.390] 0.679 [0.625, 0.734] 0.180 [0.166, 0.195]
rf.3 0.273 10 25 228 63 0.10 0.86 0.038*** [-0.018, 0.115] 0.674 [0.610, 0.717] 0.193*** [0.180, 0.208]
svm.3 0.089 27 107 146 46 0.42 0.63 -0.053*** [-0.155, 0.083] 0.594** [0.543, 0.653] 0.202* [0.166, 0.246]

logit.4 0.092 51 54 199 22 0.21 0.30 0.485 [0.373, 0.603] 0.712 [0.648, 0.776] 0.163 [0.146, 0.180]
trees.4 0.083 3 7 246 70 0.03 0.96 0.013*** [-0.081, 0.119] 0.661 [0.609, 0.712] 0.224*** [0.199, 0.251]
knn.4 0.309 2 20 233 71 0.08 0.97 -0.052*** [-0.116, 0.023] 0.377*** [0.329, 0.426] 0.230*** [0.214, 0.246]
rf.4 0.264 1 15 238 72 0.06 0.99 -0.046*** [-0.150, 0.055] 0.503*** [0.438, 0.564] 0.205*** [0.188, 0.221]
svm.4 0.066 27 96 157 46 0.38 0.63 -0.010*** [-0.128, 0.105] 0.483*** [0.425, 0.557] 0.190 [0.155, 0.238]

Note: For Ur and AUC higher values indicate better prediction performance, while for BPS lower values are preferable. Numbers in brackets indicate 90%
confidence bands. For machine learning methods, we report significance levels (∗∗∗/∗∗/∗ for the 1%/5%/10% level) if the respective performance measure
is significantly below (for Ur and AUC) or above (for BPS) the logit model on the same dataset. Model names reported in format “method.dataset”,
where datasets consist of the following sets of variables (1): credit and asset prices, (2) macro variables, (3) external imbalances, and (4) all variables (see
also table B.5).
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Table C.5: Robustness: Out-of-sample performance when starting the dataset in 1980Q1 (instead of 1970Q1)

Threshold TP FP TN FN FPrate FNrate Ur AUC BPS

logit.1 0.104 37 81 160 23 0.34 0.38 0.281 [0.133, 0.429] 0.732 [0.676,0.788] 0.139 [0.119, 0.161]
trees.1 0.077 26 52 189 34 0.22 0.57 0.218 [0.097, 0.343] 0.559*** [0.473,0.645] 0.156 [0.132, 0.180]
knn.1 0.129 26 52 189 34 0.22 0.57 0.218 [0.095, 0.336] 0.622 [0.546,0.699] 0.158*** [0.141, 0.174]
rf.1 0.225 19 29 212 41 0.12 0.68 0.196 [0.090, 0.302] 0.689 [0.627,0.751] 0.155* [0.135, 0.174]
svm.1 0.121 21 55 186 39 0.23 0.65 0.122* [0.013, 0.263] 0.604*** [0.532,0.677] 0.152 [0.120, 0.195]

logit.2 0.100 5 83 158 55 0.34 0.92 -0.261** [-0.383, -0.125] 0.765 [0.709,0.821] 0.189 [0.177, 0.204]
trees.2 0.089 0 34 207 60 0.14 1.00 -0.141 [-0.224, -0.054] 0.827 [0.785,0.869] 0.234** [0.203, 0.266]
knn.2 0.130 1 85 156 59 0.35 0.98 -0.336*** [-0.431, -0.232] 0.779 [0.73 ,0.829] 0.205 [0.195, 0.216]
rf.2 0.181 0 50 191 60 0.21 1.00 -0.207* [-0.274, -0.128] 0.778 [0.734,0.821] 0.211* [0.199, 0.226]
svm.2 0.110 16 79 162 44 0.33 0.73 -0.061 [-0.202, -0.011] 0.729 [0.67 ,0.788] 0.184 [0.159, 0.214]

logit.3 0.096 39 59 182 21 0.24 0.35 0.405 [0.304, 0.500] 0.753 [0.691,0.815] 0.153 [0.137, 0.168]
trees.3 0.067 41 107 134 19 0.44 0.32 0.239** [0.097, 0.396] 0.595*** [0.526,0.664] 0.175** [0.153, 0.199]
knn.3 0.147 19 51 190 41 0.21 0.68 0.105*** [0.001, 0.213] 0.555*** [0.486,0.625] 0.175*** [0.158, 0.191]
rf.3 0.377 8 12 229 52 0.05 0.87 0.084*** [-0.012, 0.172] 0.587*** [0.515,0.658] 0.171** [0.156, 0.187]
svm.3 0.104 20 127 114 40 0.53 0.67 -0.194*** [-0.301, -0.072] 0.734 [0.672,0.797] 0.185** [0.156, 0.217]

logit.4 0.090 37 27 214 23 0.11 0.38 0.505 [0.370, 0.619] 0.809 [0.754,0.863] 0.143 [0.119, 0.169]
trees.4 0.070 1 51 190 59 0.21 0.98 -0.195*** [-0.303, -0.066] 0.828 [0.781,0.875] 0.298*** [0.268, 0.330]
knn.4 0.267 2 36 205 58 0.15 0.97 -0.116*** [-0.204, -0.021] 0.645 [0.591,0.698] 0.211*** [0.192, 0.230]
rf.4 0.189 4 26 215 56 0.11 0.93 -0.041*** [-0.175, 0.095] 0.555 [0.491,0.619] 0.179*** [0.168, 0.189]
svm.4 0.103 13 66 175 47 0.27 0.78 -0.057*** [-0.159, 0.071] 0.476*** [0.411,0.541] 0.210*** [0.176, 0.247]

Note: For Ur and AUC higher values indicate better prediction performance, while for BPS lower values are preferable. Numbers in brackets indicate 90%
confidence bands. For machine learning methods, we report significance levels (∗∗∗/∗∗/∗ for the 1%/5%/10% level) if the respective performance measure
is significantly below (for Ur and AUC) or above (for BPS) the logit model on the same dataset. Model names reported in format “method.dataset”,
where datasets consist of the following sets of variables (1): credit and asset prices, (2) macro variables, (3) external imbalances, and (4) all variables (see
also table B.5).
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Table C.6: Robustness: Out-of-sample performance when using Laeven & Valencia crisis database

Threshold TP FP TN FN FPrate FNrate Ur AUC BPS

logit.1 0.029 63 26 16 26 0.62 0.29 0.089*** [-0.052, 0.216] 0.616 [0.527, 0.705] 0.567** [0.524, 0.611]
trees.1 0.027 17 15 27 72 0.36 0.81 -0.166*** [-0.340, 0.004] 0.585 [0.499, 0.672] 0.556 [0.512, 0.596]
knn.1 0.054 42 7 35 47 0.17 0.53 0.305 [0.178, 0.437] 0.613 [0.532, 0.694] 0.588*** [0.546, 0.626]
rf.1 0.217 19 1 41 70 0.02 0.79 0.190** [0.113, 0.294] 0.617 [0.537, 0.696] 0.557** [0.516, 0.596]
svm.1 0.053 29 5 37 60 0.12 0.67 0.207* [0.092, 0.322] 0.464** [0.375, 0.554] 0.518 [0.471, 0.559]

logit.2 0.034 0 6 36 89 0.14 1.00 -0.143 [-0.286, 0.015] 0.606 [0.497, 0.714] 0.649 [0.625, 0.666]
trees.2 0.031 77 40 2 12 0.95 0.13 -0.087 [-0.250, 0.079] 0.668 [0.574, 0.761] 0.647 [0.630, 0.664]
knn.2 0.077 3 12 30 86 0.29 0.97 -0.252 [-0.345, -0.164] 0.693 [0.614, 0.773] 0.667** [0.654, 0.677]
rf.2 0.246 0 5 37 89 0.12 1.00 -0.119 [-0.201, -0.045] 0.690 [0.602, 0.778] 0.678** [0.669, 0.686]
svm.2 0.032 37 21 21 52 0.50 0.58 -0.084 [-0.335, 0.043] 0.723 [0.641, 0.806] 0.640 [0.610, 0.666]

logit.3 0.034 37 0 42 52 0.00 0.58 0.416 [0.292, 0.526] 0.808 [0.742, 0.873] 0.628 [0.610, 0.644]
trees.3 0.030 89 42 0 0 1.00 0.00 0.000*** [-0.158, 0.140] 0.630** [0.531, 0.730] 0.642 [0.617, 0.665]
knn.3 0.046 28 11 31 61 0.26 0.69 0.053*** [-0.065, 0.168] 0.554*** [0.471, 0.636] 0.632 [0.612, 0.650]
rf.3 0.129 7 0 42 82 0.00 0.92 0.079*** [0.014, 0.178] 0.520*** [0.433, 0.606] 0.643 [0.619, 0.663]
svm.3 0.036 26 18 24 63 0.43 0.71 -0.136*** [-0.260, 0.112] 0.558*** [0.459, 0.657] 0.639 [0.617, 0.663]

logit.4 0.035 49 1 41 40 0.02 0.45 0.527 [0.380, 0.663] 0.770 [0.703, 0.836] 0.580 [0.521, 0.632]
trees.4 0.030 6 18 24 83 0.43 0.93 -0.361*** [-0.523, -0.212] 0.711 [0.631, 0.791] 0.640** [0.593, 0.681]
knn.4 0.221 6 9 33 83 0.21 0.93 -0.147*** [-0.238, -0.052] 0.430*** [0.361, 0.499] 0.656*** [0.621, 0.690]
rf.4 0.133 14 4 38 75 0.10 0.84 0.062*** [-0.077, 0.148] 0.629** [0.545, 0.712] 0.624** [0.601, 0.644]
svm.4 0.038 29 13 29 60 0.31 0.67 0.016*** [-0.105, 0.133] 0.526*** [0.435, 0.618] 0.578 [0.536, 0.616]

Note: For Ur and AUC higher values indicate better prediction performance, while for BPS lower values are preferable. Numbers in brackets indicate 90%
confidence bands. For machine learning methods, we report significance levels (∗∗∗/∗∗/∗ for the 1%/5%/10% level) if the respective performance measure
is significantly below (for Ur and AUC) or above (for BPS) the logit model on the same dataset. Model names reported in format “method.dataset”,
where datasets consist of the following sets of variables (1): credit and asset prices, (2) macro variables, (3) external imbalances, and (4) all variables (see
also table B.5).
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Figure C.1: Robustness (preference parameter): Relative usefulness of in- and out-of-
sample estimation by model.
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Figure C.2: Robustness (data transformation): Relative usefulness of in- and out-of-
sample estimation by model.
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Figure C.3: Robustness (sample length): Relative usefulness of in- and out-of-sample
estimation by model.
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Figure C.4: Robustness (crisis database): Relative usefulness of in- and out-of-sample
estimation by model.
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