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A Simulation Study of Simplification Strategies 

in the Development of Optimization Models 

Summary 

A major decision in the development of optimization models 

concerns the degree of accuracy to be used in the model. In 

practica, this simplification decision is widely met in an ad hoc 

fashion. Recently, several ways of Computing (worst-case) bounds 

for simplifying linear programming (LP) models have been 

developed. On the other hand, the need for empirical studies of 

simplification effects has been expressed. 

This paper discusses LP-models for product-mix planning in a 

job-shop in which manufacturing options exist. In this decision 

Situation some simplification (compared to the data used in 

nonsimultaneous planning) is often necessary to obtain a computa-

tionally manageable LP model. Several simplification strategies 

are defined and applied in the Simulation study. 

Properties of the solutions obtained after applying the different 

simplification strategies are compared to those of the "real" 

Optimum. Significant differences of the objective function values 

allow ranking of the simplification strategies and giving recom-

mendations for practical model development. 
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A Simulation Study of Simplification Strategies 

in the Development of Optimization Models 

1. Introduction 

Several decisions in the development of optimization models 

determine benefits and costs of such models /13,p.8;15/. Multiple 

objectives influenae the decision for the construction of a 

certain model /14/. In recent years several recommendations were 

developed to guide the practical modelling effort. These recom­

mendations may be based on deductive or inductive research. A 

typical example of deductive research is complexity theory 

(surveyed e.g. in /23/) which compares e.g. the efficiency of 

different algorithms. Deductive results have been obtained 

primarily for rather simple problems such as searching, sorting 

etc. Hence, most recommendations are derived empirically and have 

to be qualified. as "rules of thumb". 

Recommendations based on practical experience may differ and are 

usually not derived scientifically. Therefore, Simulation studies 

of the typical actions available in the development of optimiza­

tion models have gained some importance: In countless papers the 

computational properties of optimization algorithms giving the 

same Solution have been experimentally compared; a survey on such 
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experiments in mathematical programming is given in /8/. Diffe-

rent possibilities of implementing a given algorithm have been 

collated /27/ and several formulations giving the same Optimum 

have been discussed in mathematical programming /5; 13; 15; 18; 

22; 31; 32; 33,p.183; ?4/. In all these cases a cost-comparison 

is adequate because benefits are implicitly assumed to coincide. 

The cost-comparison is usually approximated by comparing 

CPU-times. 

Sometimes benefits of different heuristic algorithms are im­

plicitly compared to their costs by giving Solution values and 

CPU-times (e.g./35; 36/). However, very few comparisons in 

mathematical programming quantitatively discuss the benefits of 

different problem formulations. In these papers /1; 24/ only one 

data constellation is analysed, only a few optimization runs are 

executed and no Statistical analysis is performed. Hence, further 

results on the consequences of using differently formulated 

LP-models may be of interest. 

Recently, much deductive research has been done on the effects of 

aggregation in optimization models. This research provides 

several methods of Computing a-posteriori and a-priori bounds on 

the differences between the maximum values of the objective 

functions (MVOF) of micro and aggregate models /3; 4; 10; 17; 19; 

20; 30; 37; 38; 39; 40/. In contrast to these remarkable results 

obtained from sophisticated analyses, the practical importance of 

such bounds may be smaller if 
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- atypical model structures are assumed to compute the 

bounds 

- the computed bounds are not tight 

- the computation of the bounds is inconvenient in practical 

applications. 

The need for empirical studies in aggregation theory is empha-

sized by Geoffrion /4/. The present paper gives empirical results 

for the development of linear programming (LP) models for 

product-mix planning. The aim of such models is to determine how 

much of various products should be manufactured within a certain 

planning period. Especially in job-shop technologies, a "micro" 

LP model using all the Information available in the elementary 

form in which it is stored in a data base would need many 

thousands of balance equations and is therefore unsolvable even 

with today's powerful. optimization Software /13,p.l32; 26,p.51/: 

Some kind of aggregation is absolutely necessary even in this 

most frequently cited optimization application. 

In applications usually a non-simplified description and there­

fore a "true" micro model is missing /25/. In the application 

discussed, it is obvious to use a LP-model containing the data 

used for nonsimultaneous planning as the planner's micro model. 
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It has been shown that the number of rows in a raicro job-shop 

product-mix LP can often be reduced to a manageable size by 

coupling activities in such a way that balance equations are 

eliminated /13,p.l35/. Balance equations are rows with 

RHS-elenients equa.1 zero. They coordinate the leveis of processes 

which use an item with the leveis of processes which provide this 

item. Activity coupling results in a "perfect" aggregation 

because the same value of the objective function and the same 

optimal Solution can be derived from the transformed model. Such 

a perfect aggregation has been recommended by Müller-Merbach and 

Wiggert (e.g. in /22; 31/) especially for situations in which no 

manufacturing options exist. Such a technology can be described 

by the well-known gozinto-graphs /28, p.429/. Under this techno-

logical condition, perfect aggregation reduces the number of rows 

and. the number of structurals by an identical number. Using the 

available commercial Software, the resulting models can be 

optimized without computational problems although matrix gene-

ration may be quite expensive. 

However, in industrial decision making, manufacturing options or 

purchase-make options are often available and are one of the main 

reasons for using LP-models. The existence of manufacturing 

options led to the development of special storage techniques in 

data bases for bills of materials and Operations lists /6; 7/ as 

well as to the development of generalized gozinto graphs with 

several node types /29/. If many options are available in several 
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production stages, perfect aggregation needs such an enormous 

number of structural variables that matrix generation and 

optimization may be unsuccessful /13,p.l06; 15/. In this case one 

could decide against perfect aggregation and accept an aggre­

gation loss which results from the use of a simplified model. In 

the practical development of optimization models, simplification 

is usually applied in an ad hoc fashion. This paper determines 

exact effects of using differently simplified product-mix models 

by Simulation. 
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2. The Design of the Simulation Study 

2.1. The Decision Situation 

Object of the study are static product-mix decisions in which 20 

final products, 60 intermediate products, 20 materials and 15 

capacities are involved. The numbers given are small compared to 

practical job-shop situations in which several hundred final 

products and many ten-thousands of intermediates and materials 

may exist. The model size was chosen to allow the optimization of 

the micro model even if several options are available for many 

production processes. The size of the micro model was restricted 

by the comparatively small Computer system and by the non-

commercial optimization program COSIMA /2/ available; both 

together imposed rather tight constraints on the number of rows 

and structurals manageable. Furthermore, the results presented 

are based on more than 1000 optimization runs and the costs of 

the experiments were to be kept reasonable. 

Some aetails of the structure (e.g. purchase and sale of 

intermediate products, bounds for purchasing and selling 

activities) and the numerical coefficients of the micro model are 

randomly generated. An earlier (but only slightly modified) 

Version of the problem generator is described in /13,p.227/. The 

structure as well as the numerical coefficients of the micro 

model are attempted to be realistically determined. Each pro­

duction process requires three different materials or inter-
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mediatos to manufacture exactlv one item. The number of capaci-

ties needed for one production process is controlled by the 

Parameter CAPCOFF whose values in different decision situations 

are given in Fig. 1. "Reasonable" coefficients in the objective 

functions are generated by using rough estimates of the dual 

values of resources and items. The "average" micro model of the 

experiments performed is shown in Table 1. All upper bounds were 

treated as rows because the program used does not include an 

upper bounding technique. 

Rows: 1 objective function 
15 capacity constraints 
20 balance equations for final products 
60 balance equations for intermediate products 
20 balance equations for materials 
12 upper bounds on the sale of final products 

2 upper bounds on the purchase of intermediates 
4 upper bounds on the sale of intermediates 

134 rows 

Structurals: 20 sales variables for final products 
6 sales variables for intermediate products 
6 purchase variables for intermediate products 

20 purchase variables for materials 
20 production variables for 20 final products 
40 production variables for 40 intermediate 

products without manufacturing options 
20.v production variables for 20 intermediate 

products with manufacturing options 
132+20.(v-1) structural variables 

Table 1: Structure of the "Average" Micro Model 
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The 4 major blocks illustrated in Fig. 1 have been examined. The 

arcs connect ncdes which differ in only one parameter value. 

Different major blocks were chosen to consider the influenae of 

parameter variations on several criteria. For cach major block t, 

n~40 micro models were generated, optimized, differently sim­

plified and again optimized. 

Effects of some reformulations for the structure of the "average 

model" of major blocks 1 and 4 are shown in Table 2. 



Model Description of the Model 

9 

Number of 
Rows Columns 

1 Micro Model 134 292 

2 Perfectly aggregated model by 
eliminating all balance equations 
from Model 1 34 

many 
millions 

3 Perfectly aggregated model by 
eliminating balance equations 
from Model 1 for those items for 
which no options exist 58 216 

4 Simplified model of Model 1 with one 
manufacturing variable for each item 134 132 

5 Perfectly aggregated model of the 
simplified Model 4 34 32 

Table 2: Alternative Model Structures for the "Average Model" 

Of the first three formulations described in Table 2, only 

Formulation 3 may be computationally manageable in a pratical 

application with many options available. However, even in 

Formulation 3, too many rows may exist if several thousand items 

can be differently provided. Thus, it depends on technological 

conditions and the EDP-system available whether simplification is 

absolutely necessary in developing a product-mix LP for a 

job-shop. 
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To have better understanding of the model and especxally its dual 

Solution, a unique sign Convention is recommended for all balance 

equations /13,p.94/. Usinfj an item is specified by positive 

coefficients and providing an item by negative coefficients in 

the models generated. Under ti.is sign Convention all dual values 

of the balance equations will be nonnegative because there are no 

joint products. The model does not contain any greater-equal 

constraints: Therefore all dual variables will be nonnegative in 

the optimum and each model has feasible solutions. 

All v options generated for manufacturing one product require an 

equal number of the three items and also use the same capacities. 

However, the coefficients in these capacity constraints and in 

the objective function differ considerably between the manufac­

turing options. The coefficients vary independently in such a way 

that each coefficient of the first process generated is the mean 

value of a slightly curtailed normal distribution. Thus, the 

options generated will probably offer more substitution possibi-

lities than those available in practice and simplification will 

be more incisive than in many real-world applications. 
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Generating the coefficients of the options independently may 

result in inefficient procssses. A process r is called 

inefficient if 

- -CK)-

* 
The optimal dual values uw-0 will result in 

0 ' L aisui * °« - airui " cr ' 
i i 

The use of process r can never give a better result than the use 

of process s: Process r can be dropped from the LP model as 

inefficient. 
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2.2. The Simplification '"trategies 

In this study it is assumed that due to computational 

requirements only one manufacturing variable for each product 

is incorporated into the simplified product-mix model. This 

simplification allows for a perfect aggregation in u second step 

in which the balance equations can be eliminated without 

obtaining additional structurals. The main goal of the simpli-

fication is to reduce the number of rows; this is achieved by 

reducing the number of columns first. This procedure preserves 

feasibility which is usually lost in direct row aggregation 

/37,p.63; 39/. 

To allow for the size reduction obtained with Model 5 of Table 2, 

the options available in manufacturing one item must in some way 

be aggregated. This is a typical case where the Situation 

modelled implies the group of variables to be aggregated as will 

often happen in structured micro models of real-world 

applications. Some of the simplification strategies represent 

"typical" aggregation in assigning positive weights to several 

variables. Others only select a variable from each group and may 

therefore be regarded as a "degenerate" aggregation using only 

one positive weight in each group. For this study the notion 

"simplification" includes the notions "aggregation" and 

"selection". 
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The strategies defined in Table 3 were applied in the experi-

ments. A few comments on the strategies might be appropriate. 

Strategy serves as refeience for the cortioarisons: Are there 

strategies which can significantly improve random selection? 

Strategy Sg is based on the idea that in the absence of further 

Information equal weights for all options may be plausible. It is 

often used in literature (e.g./17,p.126; 20; 37,p.57; 40/). 

However, further Information is available and used in the 

following strategies. S^ and S^ exclude evidently unreasonable 

modelling by first applying the efficiency criterion (1). Stra­

tegy S(- only regards direct costs while neglecting opportunity 

costs. Strategy Sg implicitly assumes high and common opportunity 

costs for all capacities: Direct costs can then be neglected. 

Strategies S? to Sg take the numerical values of the objective 

function coefficient as well as those of the capacity coeffi­

cients into account. The way this is realized differs: Strategy 

Sy combines both influencing factors by multiplication. 

Strategy Sg uses an estimated dual value which is supposed to 

hold for all capacity constraints; a kind of rudimentary simplex 

criterion is computed under this assumption. Strategy Sg uses 

individual estimates of the dual values y^ to build the 

simplex-like selection criterion. In contrast to strategies S^ to 

Sy the strategies Sg and Sg employ subjective elements: The 

results for Sg and Sg depend on the estimates chosen. 
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"Random selection": 

Random.ly select one of the options available. 

Sg "Simple aggregation": 

Select an "aveiaue process which is computed using 

common weights for all options available. 

Sg "Random selection of efficient processes": 

Randomly seleci. one of the efficient options available. 

"Simple aggregaticn for effcient processes": 

Select an "average" process which is computed by 

using common weights for all efficient options 

available. 

S^ "Direct-cost-orlented .selection": 

Select the process of which the objective coefficient is 

best. 

g "Capacity-oriented selection": 

Select the process for which the sum of the capacity 

coefficients is minimal. 

S^ "Multtplicative direct-cost-capacity-oriented selection": 

Select the process which minimizes the product 

C 

T 
i' ieCAP 13 

Sg "Simplex-oriented selection with equal opportunity costs11 

Select the process which minimizes 

c . | + y . ..U 
3 it CAP J 

where y is an opportunity cost equal for all capacities. 

Sg "Simplex-oriented selection with individual opportunity 

costs": 

Select the process which minimizes 

2=Z =-ji + z . ai-i • y± 
J ie CAP 3 

Table 3: Definition of Simplification Strategies 
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In the construction of the micro models uniformly distributed 

rough estimates 0 - - 80 were used for 80 % and y^ = 0 were 

used for 20 % of the capacities. These rouyh estimates y^ were 

employed in strategy Sg. For a fair comparison the mean value 

y = 32 was used in Sg as a common estimate for all dual values of 

the capacity constraints. Strategy Sg will give better results 

than Sg if good estimates y^ exist. However, the analysis of the 

optimal solutions of the micro models showed only a modest 

correlation between the y. and the actual dual values (o=.22). In 

reality better estimates of the dual values may be available from 

an earlier optimization run. 

In the experiments described no recursive optimization procedures 

are employed: The consequences of iterative "column generation" 

by using dual values of the earlier optimization run are not 

discussed here. One reason for this is that in practice the 

"perfect" aggregation necessarv after the simplification may be 

quite expensive compared to the small improvement that will be 

possible after using an appropriate simplification strategy. 
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2.3. The Areas Examined 

The goal of the study is to find an answer to the question "How 

does the application of simplification strategies modify 

properties of the LP solutions ?". Properties discussed are the 

MVOF, capacity utilization and the number of final products 

manufactured. 

It is interesting that by deductive reasoning only the ranking 

cS2 can be derived: Equal weights only for efficient processes 

will never give a worse result than equal weights for all 

processes. Many other rankings like ^are plausible but do 

by no means hold for all individual cases. Therefore it is of 

interest whether significant differences among strategies can be 

experimentally derived, 

If manufacturing options are "lost" by simplification of the 

model, one could assume that generally there will be more idle 

capacity in the optimal Solution of the simplified model than in 

the micro model. Furthermore, one could assume that in simplified 

models the number of final products manufactured rises because 

final products, which are unattractive from the micro models 

view, allow a better use of the available resources. No deductive 

results can be obtained for these effects. 
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2.4. Some Statistical Aspects of the Study 

In the terminology of Statistical literature, the application of 

a certain simplification strategy is regarded as "treatment". 

This terminology goes back to the literature on experimental 

design (surveyed e.g. in Kleiinen /II,p.287/) which emerged from 

agricultural research. 

The results of the experiments will be described by comparing the 

MVOF of the micro model to the MVOFs resulting from the 

application of strategy S^. Often the difference z^t - z^tj is 

used as evaluation criterion for aggregate models /4; 17,p.119; 

37,p.57; 39; 40/. The percentual aggregation result 

=itj 
p. . = • 100 % 

3 Zit 

may be more meaningful if the z ^ differ remarkably with i. We 

denote the average aggregation result as 

n 

i5i ^ 
zj = • 100 % , 

n 
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the average percentual aggregation result as 

?it j 

n 

I P< 
— i=l 
p = . 100 % , 

n 

and the rank derived from ordering z^tj (Vj) as 

As already mentioned, a two-way layout is used in the experi-

ments. Such e design is characterized by blocks with identical 

resp. similar initial conditions. In the experiment described, 

blocking was used in two ways: First, the above mentioned major 

blocks of decision situations were determined by the parameters 

used to generate the micro model. The minor blocks result from a 

certain starting value of the random number generator which 

(together with the parameters describing a major block) deter-

mines a unique micro model. Each case i constitutes a minor 

block. Several simplified models are deduced from one micro model 

by applying the strategies described above. 

The observations for each case i depend on common random numbers 

which are used to compare systems "under the same circumstances" 

/II,p.200/. The advantage of using common random numbers is shown 

in the following example: Suppose that the application of two 

strategies Su and Sw results in 

2lt . 100 z2t = 200 

zltu= 95 z2tü= 180 

zltvT 97 z2tw= 186' 



19 

Using individual observations, one might obtain Pltu = 95 % and 

p2tw = 93 %* This would suggest that Sw is worse than S^. 

However, the ranks =2 and ri = 1 (i=l,2) show that for 

both cases performs better than S^. By the use of common 

random numbers the sample size is reduced but Statistical analysis 

of the results may become more complicated. 

In the experiments described a typical analysis of variance would 

test the null hypothesis 

H0: ztl = Zt2 "" zt9" 

However, it is often evident that at least one significant 

difference exists between treatments: The experimenter is more 

interested in which of these treatments differ significantly or 

whether the different treatments can be classified into subsets 

of similar properties. Therefore, multiple comparison procedures 

have been developed for comparing several treatments simultaneous-

ly, Kleijnen /12/ mentions that these techniques have thus far 

been extremely rarely applied in the analyis of Simulation 

experiments. This study employs a sign test for multiple compari­

son of the simplification strategies. This nonparametric test 

avoids the assumptions of normality and homogeneous variances and 

controls the error rate per experiment (and not, as is often 

done, for the individual comparisons). The analogous signed-rank 

test is not employed because this test is not really distribu-

tion-free /21,p.l40/. We follow the reconunendation that when a 

"sign test... is powerful enough to do the job requested, why 

fool around with the rank test" /21,p.l76/. 
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3. Influences of Simplification on Solution Properties 

3.1. The Maximum Value of the Objective Function 

3.1.1. Description 

In Table 4 the p^j are given for different major blocks t and 

strategies S^. In major blocks 1 and 2 all 9 simplification 

strategies were used. However, some of the ineffective strategies 

were not applied in blocks 3 and 4. Let J(t) be the set of all 

strategies S^ used in major block t. Table 4 shows that the best 

and the worst strategy are identical for all major blocks: 

Pts > Ptj (t) , Vt 

Pt2 ^ Ptj jej(t), t=l,2. 

Thus, the simple aggregation strategy S^ often considered in 

literature performs very poorly. 

t 1 2 3 4 

S1 82.30 87.92 - -

S2 82.24 87.42 - -

S3 87.76 90.81 - -

=4 88.25 91.64 - -

91.39 94.95 - -1 
<£ CO 

91.60 93.55 - -

S7 95.07 96.79 98.72 97.34 

S8 96.93 97.68 98.81 98.18 

S9 95.62 97.17 98.41 97.95 

Table 4: Average Percentual Objective Function Value Obtained 
for Simplification Strategy S^ in Major Block t 
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3.1.2. Test 

A distribution-free multiple comparison procedure based on signs 

and described by Miller /21,p.l38/ is used to test the null 

hypothesis whether the treatment effects 

(H0_1) T1 = x2 = = T9 

are equal for all cases of the major blocks 1 and 2 at an 
/9\ 

approximate experimentwise error rate a. For each of the I j = 36 

pairs of strategies S and S , a statistic S is calculated and c ^ u w uw 

tested against a critical constant c which depends on the error 

rate and the number of treatments compared. If at least one 

statistic Suw - c exists the null hypothesis (HQ-1) is rejected 

and the Performance of the strategies and can be considered 

as significantly different at level a. Table 5 marks the differen-

ces regarded as significant at the usual leveis 

ot = .001, a = .01 resp. a = .05 as <<<, << resp. <. Those pairs 

of strategies which are not significantly different at a = .05 

are signed as ~. 

The individual rankings in the major blocks 1 and 2 correlate 

highly. Howe/er, the smaller samples don't show all differences 

as clearly as the joint analysis does. 
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S2 S3 S4 S5 S6 S7 cn
 

CD
 

S9 

S1 
<<< <<< <<< <<< <<< <<< <<< 

S2 <<< <<< <<< <<< <<< <<< <<< 

S3 
~ <<< <<< <<< <<< <<< 

S4 <<< <<< <<< <<< <<< 

S5 ~ <<< <<< <<< 

56 
57 
58 

<<< <<< 

<< 

<<< 

Table 5: Significance of the Differences between the MVOFs 
for all Pairs of Simplification Strategies in 
Major Blocks 1 and 2 

The results are summarized verbally as follows: 

(HQ — 1) is rejected. 

There are far more significant differences than undecided 

rankings. Therefore the latter are mentioned: 

No significant ranking is possible between S^ and Sg. 

No significant ranking is possible between S^ and S^. 

This shows that the simple aggregation strategies often 

considered do not lead to significantly better results than those 

obtained by random selection! 

No significant ranking is possible between S^ and Sg which both 

use only part of the Information available when selecting the 

variables for the simplified model. 
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The strategies , Sg and Sg, which use all the Information 

available, worked significantly better ( a = .001) than all other 

strategies. Therefore, S^ to Sg were dropped from the comparisons 

in major blocks 3 and 4. A joint comparison of the rankings 

obtained in the three major blocks with sparse capacity con­

straints shows that Sg S-, holds at a = .01 while the ranking 

Sg Sg holds only at a = .05; S? and Sg do not signif icantly 

differ at et = .05. In major block 4 both strategies Sg and Sg 

perform significantly better than S^ at a = .01 but no 

significant difference between Sg and Sg exists. 

These results are illustrated in Fig. 2 in which the simplifi-

cation strategies are grouped into subsets of similar Perfor­

mance. The exaet position of Sg depends on the major block 

regarded: In major blocks 1 to 3, the Performance of Sg more 

closely resembles the Performance of than that of Sg. 

In major block 4 individual dual values of the capacities are 

more important than in other major blocks because of the large 

number of nonzeros and Sg is therefore closer to Sg. 
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Fig.2: Ranking the Simplification Strategies into 

Subsets with Similar resp. Significantly Different 

Performances 
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3.2. Capacity Utilization 

3.2.1. Description 

For ease of presentation the micro model is called in the 

following. Let f^tj denote the amount of idle capacities in the 

optimal Solution resulting from the application of strategy 

S. (j = l,...,10) and F., the sum of capacities available. The 
D 

average capacity utilization obtained by strategy S^ for certain 

major blocks T s {1,2,3,4} is given by 

i i fitj 
£„, , —ili: Ül • IOO % . 

i3 n 

I 2 Fit 
i=l teT 

The values f^,^ obtained for the Single major blocks t are given 

in Table 6. The micro models allow a better capacity utilization 

than the simplified models. In major block 4 the dense capacity 

constraints allow a better capacity utilization than the sparse 

constraints in the other major blocks. 



26 

t 1 2 3 4 

S1 91.55 90.83 - — 

S2 92.09 91.07 - -

90.62 90.72 - — 

91.93 91.22 - — 

S5 91.39 91.06 - -

s« 90.15 91 .02 - -

s, 91.97 91.19 91.69 96.40 

S8 91.12 91.08 91.66 96.15 

S9 91.27 91.29 91.66 96.43 

S10 95.26 93.25 93.14 98.35 

Table 6: Average Capacity Utilization Obta%ned for 
Simplification Strategy S^ in Major Block t 

3.2.2. Test 

The procedura described in section 3.1.2. is used to test 

(HQ-2) fT1 = fT2 = ... = fT^1Q T = {1,21 

at an (approximate) experimentwise error rate a. The results can 

be summarized as follows: 

(HQ-2) is rejected only because significant differences between 

fT and fTj (j= 1,...,9) exist. Although all kinds of simpli­

fied models give a significantly smaller capacity utilization 

than micro models, no pair of simplified models significantly 

differs in capacity utilization at et = .05. 
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3.3. Number of Final Products Manufactured 

3.3.1. Description 

Let h.. denote the number of final products manufactured in the X J "C 

optimal Solution resulting from the application of strategy 

Sj 10). The number of final products manufactured in the 

Solution obtained after application of strategy Sj compared to 

the maximum number of final products possible is given by 

I I ^1%] 
i=l teT 

hT j 
n. 

where |T| is the number of major blocks regarded. The values h^^ 

obtained for the Single major blocks are given in Table 7. 

Contrary to the above assumptions, there seems to be a slight 

tendency to manufacture fewer final products in simplified 

models. The significance of the observed differences is tested in 

the next subsection. It is interesting to note that the dense 

capacity constraints of major block 4 result in many more final 

products manufactured than the sparse constraints of the other 

major blocks. 
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t 1 2 3 4 

S1 10.38 10.23 -

S2 10.58 10.03 - -

S3 10.68 10.20 - -

10.55 10.13 - -

S5 10.53 10.05 - — 

S6 10.98 10.38 - -
= 7 10.63 10.35 10.85 15.53 

S8 10.63 10.40 10.63 15.80 

- S 10.33 10.48 10.58 15.53 

S10 11.00 10.60 10.85 15.75 

Table 7: Average Number of Final Products Manufactured 
after Application of Simplification Strategy S. 
in Major Block t 

3.3.2. Test 

The procedure described in section 3.1.2. is used to test 

(H0~3) hTl = hT2 = ... = hT^1Q T = {1,2} 

at an (approximate) experimentwise error rate ct. The results can 

be summarized as follows: 

(HQ-3) is not rejected at a = .05. There is neither a significant 

difference between the number of final products in any pair of 

simplified models nor between any type of simplified models and 

micro models. 
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4. Conclusion 

This paper describes a Simulation study in which several 

strategies are used to simplify linear programming models. It is 

shown that "clever" selections of variables give significantly 

better results than simple aggregations of variables. A selection 

is clever if all "reliable" Information available is used. The 

use of "aggregate Information" (as the average estimate y in Sg) 

may be more reliable than detailed Information of low quality (as 

the estimates y^ in Sg). The use of the Information available 

should generally be coordinated with the subsequent use of the 

result: The simplex-based selection strategies Sg and Sg perform 

better than S^ which uses the Information available in a 

multiplicative and therefore non-simplex-oriented way. 

If a second optimization run is performed to reduce the danger of 

poor results, the optimal dual values y^ of the first run are 

expected to be of high quality and Sg is expected to operate best 

in a second simplification process. The model developer must 

decide whether he is Willing to meet the cost of further matrix 

generation and optimization runs when the exact Optimum may not 

be far more /aluable than a near-optimal Solution (cf. /9/). 
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Further analysis shows that by applying simplified models the 

solutions may be systematically biased. In the experiments this 

is the case with capacity utilization which is mo.'e sensitive to 

the use of simplified models than objective function values. 

Therefore, switching between similar processes (which is typical 

for the micro model1s Solution) can be avoided at a relatively 

low objective function loss. This is of special interest if the 

LP-assumption of being able to combine different processes at no 

additional cost ("Additivity postulate" /cf. 16,p.36/) 

is not fully justified by the technological conditions. However, 

no significant differences in the number of final products 

manufactured have been found between simplified and micro models. 

Thus, the empirical study shows significant differences between 

two assumptions about properties of the solutions which may have 

a priori been regarded as equally plausible. 
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