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Computational Experiments in the Formulation

of Large-Scale Linear Programs

Abstract:

One of the decisionéVin the construction of & linear
progranm, is upon the formulation which should be used.
This paper explains why there is usually a very
large number of equivalent formulations and reports
on the computational behavior of these formulations.
The usual textbook-hypothesis which claims that
CPU-time increases with the cube of the number of
constraints is falsified; it is shown that the
advantage of reducing the number of rows may be
overcompensated by an increase in the number of

nonzeros.
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COMPUTATIONAL EXPERIMENTS IN THE FORMULATION OF

LARGE-ScALE LINEAR PROGRAMS

1. Decisions 1IN RuiLping A Decision ‘MoDEL

Several (meta-)f&écisions\have to be made in the con-

struction of a decision model:

- Which section of reality should be modelled ?
- How accurate should one model this section of reality ?
- Which algorithm should pgtused ?
-~ Which people, computeq, software s?pulQ be employed *?
- Which formulation should be used.ﬁer a given degree
of accuracy ;} the model ?

The iﬁp&eﬁeﬁéa%éon of different answers:éﬁlthese guestions
will result in different benefits and costs(bf the decision
model. The ultimate benefit of modelling is to gain insight
into reality. In more detail one could distinguish between

Benefit from~medei’accuracy

Benefif of %ﬁe ease of understanding

. the formulation -
the solution-

‘the model.

On the other hand one can partition the costs of decision
models into

Costs of model construction

Costs of collecting data

Costs of manipulating data

Costs of computation.

Many computational experiments have been performed in
mathematical programming (MP). Most research has concen-
trated upon the comparison of algorithms and codes. Recently

joo
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the need for research on a methodology of formulating

MP-models has been éxpressed /18/.

Most computational experiments compare "costs", usually
by giving CPU-time. Sometimes costs and benefits are compared,
e.g. if the "quality" of solutions obtained is compared to
the CPU-time needed for exact and heuristic algorithms. From
this point of view one can distinguish tRe four areas of
computational experimengggéﬁ6ﬁﬁﬁin Fig. 1. These areas have
been investigated to a very different extent. This paper

concentrates on a cost-comparison of eguivalent formulations

by using a production code for linear programming (LP).

Type of

omparison || Cost-Comparison Cost-Benefit-Comparison

of comparison

e ——

Algorithms (Codes)

X

Fig. 1: Types of experiments and topic of the paper ( X )

Formulations

2. THE NEeD TO STUDY EQUIVALENT FORMULATIONS

We define equivalent formulations as models from which
identical optimal activity levels can be derived (by using
a report writer); the optimal values of the objective func-
tions coincide. Several researchers have compared two equi-
valent formulations for linear or mixed-integer problems;

I make references to the well-known studies of H.P.Williams
/17;19/ on (mixed-) integer models and to the confrontation
of linear product-mix-models with a "normal" resp. "aggre-
gated" technological matrix /12;1l4,p.148-157316,p.27-82/.
Such comparisons suffer from the fact that often not only
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two but plemsy¥ of equivalent formulations exist. Especially
;if’MP:ESQEl§ are generated from data bases containing infor-
“hation on é;giy—daﬂ-operationjthe model builder has to decide
which of the equivalent formulations should be generated.

This decision determines the computational effort for matriv

generation and for optimization.

In principle one can define—btagic Pelations ﬂﬁlﬂi the' data
base as activities of the LP model and connect these activities
by balance equations. Bug\often the so emerging model will
be unsolvable by production codes due to an enormous number
of balance equations. A product-mix-model for a manufacturing
firm with 400 final and 10000 intermediate products, with 30000
materials, 300 capacities and an average number of 5 opera-
tions for the manufactured products would need 82301 rows and

82400 structurals! Therefore it is desirable to generate .z

Geraantl nooe Bl wmouve,

compggg models by eliminating balance equations. Fig. 2 shows

a smalt-out of the very large number of equivalent LP-models
that can be generated from a data base. In Fig. 2 the size

of the model is measured by the number of rows. Data manipu-
lation looks highly attractive from the usual textbook hypo-~
thesis ‘that CPU-time grows with the cube of the number of

rows /cf. e.g. 1, p.83;3,p.16;5,Rzi%g£6,p.181;15,p.118;20,p.10/.
Few authors claim that CPU-time is 1n§&ggpsﬁnggwihe density

of the model, =50 /11,p.57;14,p.190/ . QBREIIMINATIDEGOAIATICE 7>
(§§E§€§35§kysa&%%§ithé”number of rows iga%educig>and EE?£Sen_
sity E%fgéﬁkTﬂéféTéfémeIéé"5?'Eﬁﬁﬁbﬂé¥€mﬁgﬁted which' informetovc
abowt préesumable effects of matrix condensation. To support
the decisions in model construction two types of experiments

are necessary: o
- Experiments ef generating MP-models out of (non-specia-
lized) data bases
- Experiments on the optimization behavior of equivalent
formulations.
This paper reports on the second type of experiments.
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LP-models of different size



oy

3. THE ELIMINATION OF BALANCE EQUATIONS

5.1. THEORY
Let
c' X -+max !
AMl X = le > 0
) M2 x =0
x 20

be a feasible LP with slack and surplus, but without artificial .
variables. The indices of the constraints i form the set
M=M1uM2. Rows 1eM2 are called balance equations. Let M2=M21uM22.
We search for a transformed LP with new variables X

<+ max!
M1

"

c' T
AMl

(2) |
aM2

b

it
"

=0

~

x 20
which is equivalent to (1) but computationally more appropriate.
The latter requirement might be achieved if ’

AM22 T =0

In this case IM22| rows can be dropped as redundanti

2K 3 4
]

If the original formulation (1) contains p=|M2| balance

equations there are at least 2P equivalent formulations! To
"wovercome the problems due to this enormous number of equivalent

formulations we restrict the discussion to those formulations

which arise by a sequential elimination of balance equations.

The sequence can be determined heuristically,by—some plausible

criterium, In the se Jal procedure we have

Im22] ]
T = I T. |

ot

e e P et
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where T. is the transformation matrix for the i-th elimination
1———-3-—-4-\./\‘,x SO .
Of a balance equatlon -

(If\gqma{ ifatrices T, Yin such a way that (1)

and (2) are equlvalent After ellmlﬂatlon of f-1<p balance

equations th;pé'ex1sgs a row keM21liso that
-1

n T, .

i=1

3K = 4

k
Let POS(k)= {j 3,; >0} and NEG(k)= {j |2, <O} . These sets
are nonempty if there are no null variables. ?r (rePOS(k)) can
be positive if and only if at least one ij (jeNEG(k))_és posi-
tiveL/This "If-then"-relation allows if>0 and X >0 (seNEG(k))
implicitly by a “coupled activity" iu?O. The coefficients of
the coupled activity are computed as

8iu % ( air']aksI + ais'}akr‘ )

A
so that variable u has a zero in row k. g is an arbitrary

positive factor; in the subsequent text we assume g=1.

All possible activity levels of the prior formulation can
be expressed by |POS(k)|. |NEG(k)| coupled activities. After
the transformation all variables X. (jePOS(k)UNEG(k)) can be
deleted. In the matrix

r - v ~r 3
100 00 -
000 0@, J
e
010 00
T.={000...00@&,
001 00
000 10
P

there are unity column vectors for the untouched activities
and two non-zeros in those columns which represent coupled
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activities. We have Tfa 0 and therefore T ® O.Furthermore

we g&f/modified sets -

=N

21 = M21 - {k}

9 |

22 = M22 + {k} .

The transformation reduces the Q%?ber of rows by one. The
effect on the number of legitim& ariables depends on the
number of positive and negative coefficients in row k:

n=n +lPos(k5[.lﬁEG(k)l -1 POS(k)! =-1REG(k)!

Table 1 shows how the number of legitimatqizznon-artifici£i73,
variables changes'with the sign of the nontgeros in the
eliminated balance equation. The effects of condensation on
model structure are illustrated in Table 2 and Fig. 3 for a
refinery mogfl glven by Meyer-Steinmann /10,p.390-393%/:

wd ¥
The points eﬁ—%hemp&gh%-hend—vr Fig. 3 characterize the

original formulation; the effect of sequential data manipu-
lation on problem structure is shown by going to the left.
®ictivity coupling® reduces the number of rows far more than
e.g. the REDUCE-module of APEX-III.

From an economlc p01nt of view one can describe the con-
'Wdensatlon by the 1soquant given in Flg lJ‘Qt might happen
that bogﬁvT%?mulatlons eomparﬁg:in—&iterature are unsolvable
on the system used while soﬁ%‘gahivalent formulations wmighs
&= computationally well suited. The isoquant must be read

from right to left. ‘ g
Number of |
new legitimate legitimate Net
| Pos(k)| | | NEG (k)] variables variables deleted | gffect
3 1 3 4 -1
2 2 4 4 0
7 4 28 11 17

_ : e
Table 1: Effects of %iiminating a *alance Bquation k



Number of 9
} structural structural
OWs structurals variables nonzeros nonzeros density density
] 76 146 323 393 3.84540 7 6.07143
9 75 inuy 321 399 3.92512 % 6.202S0 %
58 74 142 315 383 3.96645 7 6.259%4 %
7 73 140 313 380 4,05117 % 6.79951 ¥
6 72 138 307 373 4,09530 % 6.46044 Y
5 71 136 301 366 4.94027 % 6.52221 7%
4 70 134 295 359 4,18610 % 6.5848?2 ¥
3 69 132 289 352 4.23280 % b.6LB2D %
2 68 130 283 345 4.28040 % 6.71752 %
i 67 128 281 342 4.38012 7% 6.87546 ¥
g 66 126 279 338 4, 48413 7 7.04L545 ¥
9 65 124 277 336 4.59267 7 7.22285 7
8 64 122 275 333 4.70605 % 7.40841 %
7 63 120 273 330 4.82456 % 7.,6023% %
6 62 118.- 271 327 4.94855 % 7.80530 %
5 61 116 269 324 5.07837 % 8.01788 %
4 60 114 267 . 321 $5.21442 7 8.24074 ¥
3 59 112 2€5 318 Se35714L 7 B.47L58 %
2 58 110 263 315 5.50699 % 8.72010 %
b | 57 108 261 312 5.66449 % 8.9782% %
0 56 106 259 309 5.83019 7% 9,25000 %
9 S5 104 257 306 6.,00u71 % 9,52618 7%
8 54 102 255 303 5.18873 % 9,.837G65 %
7 53 100 253 300 638298 X 10.,15655 %
6 52 98 251 297 6.58829 % 10.,49331 %
5 51 96 . 249 294 6.80556 7 10.84867 %
& 50 94 247 291 7.03578 7% 11.22727 %
3 49 92 245 288 7.28008 % 11.62791 %
2 48 90 243 285 7.53968 % 12.05357 «
1 47 88 241 282 7.81596 % 12.50649 %
D . 46 86 239 279 8.13047 % '12.98913 %
9 _ 45 B4 . 237 276 8.L2491 Y 13,50L27 ¥
8 G4 82 235 273 8.76123 % 14,05502 7
7 43 80 233 270 9,12162 % 14.64488 %
6 42 78 231 267 9.50855 % 15.27778 ~
5 41 76 229 264 | . 9.92L81 % 15.95813 %
4 40 74 227 261 10.37361 % 16,69118 %
3 39 72 224 257 10.81650 Z 17.40482 %
2 - 38 70 222 254 11.339729 % 18.25658 %
1 - 37 63 218 2L9 11481210 % 19,00610 7
0 ki3 66 214 2Ll 12.32323 % 19.8149%1 %
9 35 64 210 239 12.8771¢6 % 20.68966 7
28 34 62 206 234 13.47926 7% 21.63865 7
7 33 60 213 240 14.81u81 % 23.90572 %
6 32 58 220 2Lb6 16.321300 % 2644231 %
4] 32 57 240 265 18,596L9 % 30,00000 %
2k 32 56 261 " 285 21.20536 % 33.98438 %
3 32 55 282 205 24,11067 % 38.31522 %
22 32 54 303 325 27.35690 % 43.03977 %
1 32 53 316 337 30.27853 % 47,02%81 %
20 32 52 329 349 33.55769 % 51.46625 %
19 LE 65 497 516 41.78138 % S6,06L93 %
18 70 88 853 871 54.98737 % 67.69B84%1 %
7 116 133 1375 1392 61. 56568 % . 63.72617 ¥
16 240 258 3091 T5.4E387 ¥ 80.07813 ¥

3075

Table 2: Effects of condensatioﬁ for the refinery model /10, p. 390 - 393/
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+ Number of nonzeros

,_\\ Number of variables

S Number of rows
Fig.3: Effects of condensatlgg for the reflnery model /10, p.390-393/
1f1_mber A
tructu-
als

-

3 Number of rows

. 7/
Fig.lU: Isoquant for equivalent formulations

\
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In economic theory onlﬁlphe part BC of the isoguant would
be regarded as efficient AB is

efficient ;96 because : from A to B.
e g Eorvaguoely. KF%EQ;;) . . .
eliminating

0 A, -
— s -

a balance equation one or more bounds can become regular
rows; this pert of the isoquant is inefficient.

As soon as a formulation (2) is reached which is regarded
computationally well suited the optimal levels of the acti-
vities X® are determined. The optimal values of the original
variables can be computed by |

(3) x® =1 3x® |

3.2, AN ExampLE

Consider a problem in which two final products X4 and X5
are produced by using a part, which can be either purchased
(x3) or produced (xu):

200 x, = 150 Xy

Max. 500 x1 + 1000 x2 3
i ) 2
s.t. e x1 + 1 x2 + 1 xu £ 1000
P4
4 x2 +. 2 Xy = 2000
1 Xy + y Xy = 1 x3 - 1 x) = 0
X >0 all j

The first two constraints represent capacities, the third
is the balance equation for the part. The definitions

il ... quantity of final product 1 produced by
using parts purchased

i2 ... quantity of final product 1 produced by
using parts produced by the firm



§3 ... quantity of final product 2 produced by
using parts purchased

iu ... guantity of final product 2 produced by
using parts produced by the firm

allow the formulation

Max. 300 X, + 350 X, + 200 X4 + 400 Xy
~ . -~ ~ ~ P
s.t. 2 x1 +, 3 X5 + 1 x3 + 5 Xy © 1000
oy oy 5 r's
2 §2H; 4 X+ + 12 x) £ 2000
Xsz 0 all J .

Formally such a reformulation can be obtained by multi-
plying the original coefficient matrix with the transforma-

tion matrix

1100
0011
T={10u40
»» - Otl‘,'\g b ¥

We have M2@2={3}, A%2T=(1 4 =1 -1). T=0,and R=h+2-2-2-2=4.
The optimal solution for the cqndenséd'LP is ¥®=(250 0 5Q0 0)'.
Optimal levels of the original variables can be determined by
x®=Tx®= (250 500 2250 0)'. |

The different paths through the networks in Fig. 5 show
that a general series transformation is employed for elimi-
nating a balance equation.
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Fig. 6: Flow of information in computational experiments
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generator PPPGEN was written in FORTRAN to create LP-
models of product-mix-type. The user specifies the type
of model to be createdéiﬁ—mach‘U§tETi)by setting 16
scalar and 3 vector parameterSJQOne set of EZFZHSEZFS
generates different LP-problems with very similar but

not identical structures by use of random numbers.

Preprocessing

A FORTRAN-program performs the transformations discussed
above. The user controls the order in which the balance
equations are selected for elimination by 7 parameters.
This selection is based on an estimation of the number of
additional non-zeros an elimination might create.

. Optimization

Optimization was done by the in-core-system BASE-APEX-IIT
using the standard parameters (except LOG=1) on a CYBER 74
under NOS/BE. The reported CPU-time was needed for optimi-
zation only. (The maximal deviation of CPU-time due to
multiprogramming is only about 1 % on the system used.)

Postprocessing

APEX-III produces an FORTRAN-accessible file which was
used to determine the optimal levels of the activities in
the original formulation. This postprocessing is based on
(3) although the matrix T was not computed explicitly.

. Recording Information about Optimization

The regular OUTPUT-file of APEX-III contains information

which is necessary to analyse the optimization behavior.

This output~file was read by a program which recorded the
structure of the model and the specifics of the solution

process.

Regression Analysis

The data collected in step 5 were examined by regression
analysis. First the exponents of the variables in various



regression models were determined by SPSS' module for
non-linear regression. The results were used to define
transformed variables for a "linear" regression through
the origin. Several hypotheses on the dependence of opti-
mization time on model structure were compared by the

coefficient of determination, R2.

7. pentroy Experiments %

’ AZEEst developed by Hoel /7/) wes-wseds to compare the best
regression equation against the textbook-hypothesis

-

A more detailed description of the experiments and the program

lists are given in /9/.

5. REsuLTs oF THE COMPUTATIONAL EXPERIMENTS

Four problem classes and four problem sizes for each prcoblem
class have been examined. For each of the 16 cases 5 models
were generated. Three problem classes were used to develop an
appropriate explanation for the CPU-time observed; problem
class 4 was used to control the results. Table 3 shows the
approximate structure of the models in largest size. For
problems of smaller size the figures in Table 3 have to be
reduced by 25%, 50% and 75%.

A1l 80 formulations were condensed in five steps. In these
steps a balance equation was eliminated if not more than a
certain number of additional non-zeros were expected to arise.
For problem class 3 and largest size Table U shows the effects
of these condensations. The optimization was done by the proce-
dures CRASH and PRIMAL of BASE-APEX-III. All formulations were
optimized using constant field length RFL,100000g (=32768
decimal words of 60 bits each). Optimization time was reduced
remarkably in the first phases of the condensation but in
latter phases the condensation did not pay.ﬁ&.



Number of rows/columns
in problem class

1 2 3 4

ROWS
Objective function 1 1 1 1
Capacity constraints _ 25 25 25 25
Balance equations for final products 45 45 45 45
Balance equations for intermediate products 200 430 200 430
Balance equations for materials 250 20 250 20

521 521 521 521
COLUMNS

Sales variables for final products : 4s 45 45 is
Sales variables for intermediate products ~20 ~43 ~20 ~H3
Purchase variables for intermediate products ~20 ~43 ~20 ~U3
Purchase variables for materials 250 20 250 20
Production variables for 45 final products ~135 ~135 ~59 ~5g
Production variables for intermediate products - ~600 ~1290 ~260 ~559

~1070 ~1576 ~654 ~769

Table 3: Structures of product-mix-models generated

Max Aver. . .
orm. | aad. Average number of | CPU- CPU - time estimated by
# nz rows columns nonzeros time textbook "best" regression
1 - 521 651 3009 4o.8 59.4 35.0 .
2 -5 351 481 2040 26.0 18.2 18.8
3 0 185 315 1619 8.4 2.7 7.8
4 30 144 286 1953 7.5 1.3 6.1
5 100 137 294 2288 10.8 1.1 6.0
6 |1000 134 338 3206 10.4 1.0 6.5

Table L: Effects of condensation in problem class 3
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The data obtained from 317 LPs belonging to problem classes

1, 2 and 3 were analysed by regression models. Table 5 com-

pares the quality of fit for several hypotheses and some other

plausible equations.

Explaining variables

Regression equation proposed by R2
(4) .00000042 m’ /le.g. 1333536315320/ .701
0627 m /8/ .867
.000000015 n° /4313/ .532
.0081 mi+2° .889
0147 n?-03 766
.0381 nz* 10 .697
(5) .0010 mt+22 ngz33 .916
.0015 ml'lu n'l45 .913
.0293 n2:53 ppm1-24 .816
.00085 me 22 [nz/(m.n)] .86 .912
(6) .00094 mi+2d =17 -8 .916

Table 5: Comparison of regression models for explaining
CPU~time in prqblem classes 1 to 3

The improvement of (6) over (5) is so small that

(7) PREDCPU = a mP nz®

is regarded as most suitable. For this model the approximate

95% confidence intervals for the exponents are computed in

the non-linear regression by SPSS as

1.15 € b = 1.25
.33

A £
Lot b
Although these intervals tight they

confidence intervals for CPU-time.

Cc =

LN

1.34
.39 .

IN

lead to rather wide

The new assumption (5) was compared with the established

hypothesis (4) via a test developed by Hoel /7/. This test
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leads to a linear regression of type

(€) (NEWHYP - ESTHYP)

for additional data. The usefulness of NEWHYP is confirmed

if w is significantly positive. Regression (8) gives a
coefficient w=1.37 for 111 cases belonging to problem class 4;
the 95% confidence interval is w21.22. The t-value for re-
gression (8) is 15.11. This value can be compared with the
one-sided value for 95% and DF=110 which is 1.66. The scatter-
gramm in Fig. 7 shows that in 93 of 111 cases the signs of

the differences in (8) are identical. Therefore the new for-
mula (5) predicts significantly better than the established

(OBSCPU - ESTHYP) = w .

hypothesis (4).
OBSCPU - ESTHYP .

35.00 45%.0¢0

Fig. 7: Comparison of the predictions from (4) and (5) with observed

CPU~time
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6. SuMMARY

An identical LP-optimum{§§ua1i;§;aglbe obtained by many
equivalent problem formulatidggT#Data condensation is necessary
if large models ar giﬁerated from data bases containing
information aboutx§v ?zfggy—operations. Most textbooks re-
commend ggfreducéﬁfﬂganumgé;%éf rows as much as possible. Our
experiments show that the usual m3—hypothesis is misleading
and should be &Gw' textbooks. The experiments des-
cribed above indicate that the number of non!geros has re-
markable influence on computational effort. The rule given by
Ew#h%{Beale /1,p.83/ that it is normally not worth saving a
row by substituting a variable if this adds more than about
half a dozen noqﬁzerog,remains useful in the light of our
experimental results. The number of noqizePOSMma i if_

the number of structurals is re;;ggg::IQEiEEJEEES~aqgggnpﬁ

the e{{ort for matrix generatiorNone might propose an even

easier rule of thumb:

"Eliminate balance equations only if
- the model 1is so large that the number of rows is a burden
gﬁﬁg the computational environment used’
- the number of structurals is reduced by the elimination

and the number of non*zﬁ}os risesiogz§lslightly."
L "‘\7'_'_ ne
For product-mix-models this rule suggests i< useybalance equa-

tions for products which have more than one way of preparation
(e.g. make or buy; manufacturing variants) and more than one-
way—of utilization (e.g. sell or process). Thus if options

are available a "combined" formulation is recommended which

differs—from.. ] O S e P RPE TGt iodeie oD IRa LR C .
M*uw‘t“ﬂ%ﬁm R‘*W‘Q-"(M‘ﬁhbn

L] {) | ’

¢ dirvadiaty Lofuwasam Q-Qk,.gg

If the resulting model is still toolarge the following
actions could be, taken-into-mind: couwsidaisd :

- Mm%c%em be solved eesfslyby\?gc‘)‘é‘gs with GUB-

facilities ~HE made - amenab Te?




—"ﬂhw:-

optimization runﬁ?*ﬁrnew variablesyior options

R Y
which improve the solutlorT&gf‘er’"E‘ These candidates

ading, Myioug
ean be determined by thepicéh dual solution.

- Is it possible to develom better algorithms for dense
LP-problems ? ,
If all these questions have to be-demted there is an effec-
tive "solution constralnt"‘on the LP orlglnally proposed In

———— ~._,4—/"

Jess
of dtffertn%%y accurate quels and Judge whether s—tess—accu~
L ALA R
rate model.w&&&—allow e h\lns1ght into the real-worldt

problem, tEst=xt—PEyE s T o} SR v o R u =t oy g T S TV G

Main SymeoLs

DF Degrees of freedom

ESTHYP CPU-time predicted by the established hypothesis (4)
m number of rows 2

M1 set of indices i with bl 0

M2 set of indices i with b3=0 (balance equations)

M21<¢ M2 set of indices i for baiance equatlons not eliminated
M22 € M2 set of indices i for balance equations eliminated
n number of structurals
nz number of non-zeros
NEG (k) set of indices J with a, .<0
NEWHYP CPU~-time predicted by tKd new assumption (5) -
OBSCPU Observed CPU-time
POS(k) set of indices J with ay >0
PBEDCPU Predicted CPU-time J
Coefficient of determination
RFL Requested Field Length
|SET | number of elements in a SET
T, Ti Transformation matrices
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