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Computational Experiments in the Formulation 

of Large-Scale Linear Programs 

Abstract: 

One of the decisionsVin the construction o?/£ linear 

prograra^is upon the formulation which should be used. 

This paper explains why there is usually a very 

large number of equivalent formulations and reports 

on the computational behavior of these formulations. 

The usual textbook-hypothesis which Claims that 

CPU-time increases with the cube of the number of 

constraints is falsified; it is shown that the 

advantage of reducing the number of rows may be 

overcompensated by an increase in the number of 

nonzeros. 
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LARGE-SCALE LINEAR PROGRAMS 

1. DECISIONS IN BUILDING A DECISION MODEL 

Several (meta-) decisionsxhave to be made in the con-

struction of a decision model: 

- Which section of reality should be modelled ? 

- How accurate should one model this section of reality ? 

- Which algorithm should be. used ? 

- Which people, Computer^ Software^shoul^ be employed ? 

- Which formulation should be used ~2*BT a given degree 

of accuracy the model ? 

The imp&emeR&atron of different answers these questions 

will result in different benefits and costs^of the decision 

model/ The ultimate benefit of modelling is to gain insight 

into reality. In more detail one could distinguish between 

Benefit from -»e#e3r accuracy 
- -Ä 

Benefit of the ease of underStanding 

the formulation • 

the Solution-

the model. 

On the other hand one can partition the costs of decision 

models into 

Costs of model construction 

Costs of collecting data 

Costs of manipulating data 

Costs of computation. 

Many computational experiments have been performed in 

mathematical programming (MP). Most research has concen-

trated upon the comparison of algorithms and codes. Recently 
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the need for research on a methodology of formulating 

MP-models has been expressed /l8/. 

Most computational experiments compare "costs", usually 

by giving CPU-time. Sometimes costs and benefits are compared, 

e.g. if the "quality" of solutions obtained is compared to 

the CPU-time needed for exact and heuristic algorithms. From 

this point of view one can distinguish tW four areas of 
LOW, (\ 

computational experiments ähöwn in Fig. 1. These areas have 

been investigated to a very different extent. This paper 

concentrates on a cost-comparison of äquivalent formulations 

by using a production code for linear programming (LP). 

Type of 

0bject^^P^i5On Cost-Comparison Cost-Benefit-Comparison 

of comnarison^~^_^ 

Algorithms (Codes) 

Formulations 

Fig. 1: Types of experiments and topic of the paper ( X ) 

2, THE NEED TO STUDY EQUIVALENT FORMULATIONS 

We define equivalent formulations as models from which 

identical optimal activity levels can be derived (by using 

a report writer); the optimal values of the objective func-

tions coincide. Several researchers have compared two equi

valent formulations for linear or mixed-integer problems; 

I make references to the well-known studies of H.P.Williams 

/17J19/ on (mixed-) integer models and to the confrontation 

of linear product-mix-models with a "normal" resp. "aggre-

gated" technclogical matrix /12;lH,p.148-157;16,p.27-82/. 

Such comparisons suffer from the fact that often not only 



two but plpnty of equivalent formulations exist. Especially 

J/F MP-models are generated from data bases containing infor— 

"mation on ^vopy-dayj-operation the model builder has to decide 

which of the equivalent formulations should be generated. 

This decision determines the computational effort for matrix 

generation and fpaf optimization. 

In principle one can def&ne-4^sjlc ^elations t^ef data 

base as activities of the LP model and connect these activities 

by balance equations. But often the so emerging model will 

be unsolvable by production codes due to an enormous number 

of balance equations. A product-mix-model for a manufacturing 

firm with 400 final and 10000 intermediate products, with 30000 

materials, 300 capacities and an average number of 5 Opera

tions for the manufactured products would need 82301 rows and 

82^00 structurals! Therefore it is desirable to generated 

compact'models by eliminating balance equations. Fig. 2 shows 
(otv>-

a of the very large number of equivalent LP-models 

that can be generated from a data base. In Fig. 2 the size 

of the model is measured by the number of rows. Data manipu-

lation looks highly attractive from the usual textbook hypo-

thesis "thät CPU-time grows with the cube pf the number of 

rows /cf. e.g. 1, p.83;3,p.16;5,p.jU6j6,p.181;15,P.118;20,p.10/. 

Few authors claim that CPU-time is^influenced by the density 

of the model^gBB? /ll,p.57;l4,p.l90/.<&y%eliminä%iBg4ßSTäzic^rTO 
^. _____ u ... "TV-"— 

Cequätions\4iS«Ä3r3ry the number of rows i-^reducedland the den-i /"?'4 t "X? V 
sity risea^Therefore rules of thumb are wanted which" mformaho^ 

afecm-t presumable effects of matrix condensation. To support 

the decisions in model construction two types of experiments 

are necessary: ouX 

- Experiments jerf generating MP-models out of (non-specia-

lized) data bases 

- Experiments on the optimization behavior of equivalent 

formulations. 

This paper reports on the second type of experiments. 



RELATIONAL DATA BASE 

o 

w 

1:1 -
mapping 

W 
Some 
data 
Manipu
lation 

Extremly 
large LP 

Much 
data 
manipu 
lation 

Kj 

Very 
large 
LP 

Very 
much 
data 
Manipu
lation 

w 

Large 
LP 

A 

w 
Small 

LP* 

Fig.2: Different ways of matrix generation result. in equivalent 
LP-models of different size 
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3,1, THEORY 

Let 

c' X max ! 

Am X = > 0 

AM2 X 1! O
 

X ä 0 

(1) 

be a feasible LP with slack and surplus, but without artificial 

variables. The mdices of the constraints i form the set 

M=MluM2. Rows ieM2 are called balance equations. Let M2=M21uM22 

We search for a transformed LP with new variables x 

c ' T x max! 

AMI 

(2) 
T x = 

AM2 T x = 0 

T x - 0 

which is equivalent to (1) but computationally more appropriate 

The latter requirement might be achieved if 

ÄM22 T _ o ^ 

In this case 1M22I rows can be dropped as redundanti 

If the original formulation (1) contains p=|M2j balance 

equations there are at least 2^ equivalent formulations! To 

overcome the Problems due to this enormous number of equivalent 

formulations we restrict the discussion to those formulations 

which arise by a sequential elimination of balance equations. 
A -öwi 

The sequence can be determined heuristically.by Berne, plausible 

criterium, In the seqjjeDtiaJLjB.rocedure^ we have 

IM22I ] 
T = n T. | 

i = l 1 



where T. is the transformation matrix for the i-th elimination 

of a balance equation. 

r^%o V^e^^j/^liatrices T^vin such a way that (1) 

and (2) are equivalent. After elimination of f-l<p balance 

equations th^pq^exists a row k«M21iSO that 

f-1 
Ä% = A% n T. 

i = l 1 

Let POS(k)= {j |äfc. >0} and NEG(k)= {j 

are nonempty if there are no null variables, x 
\j<0} . These sets 

(r«P0S(k)) can 

be positive if and only if at least one x. (j«NEG(k)) .is posi-

tive^/This "If-then"-relation allows x^>0 and xg>0 (seNEG(k)) 

implicitly by a "coupled activity" x >0. The coefficients of 

the coupled activity are computed as 

5iu = 8 ( air 
4 

ks1 + ais kr ! ) 

so that variable u has a zero in row k. g is an arbitrary 

positive factor; in the subsequent text we assume g=l. 

All possible activity levels of the prior formulation can 

be expressed by |P0S(k)|. |NEG(k)| coupled activities. After 

the transformation all variables (jePOS(k)uNEG(k)) can be 

deleted. In the matrix 

1 0 0 0 0 

0 0 0 ° %ks' 

0 1 0 0 0 

0 0 o ., ' ' 0 lakr 
0 0 1 0 0 

0 0 0 1 0 

there are unity column vectors for the untouched activities 

and two non-zeros in those columns which represent coupled 
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activities. We have T^,- 0 and therefore T - O.Furthermore 

we gß-tf modified sets 

Ä21 = M21 - j k ) 

M22 = M22 + {k } . 

The transformation reduces the number of rows by one. The 
gTö 

effect on the number of legitim#^ariables depends on the 

number of positive and negative coefficients in row k: 

n = n +1 POS(k)I . I N EG(k)I -iPOS(k)l -lNEG(k)i 

Table 1 shows how the number of legitimat^(=non-artificialT 

variables changes with the sign of the non'zeros"TrTTEe^" 

eliminated balance equation. The effects of condensation on 

model structure are illustrated in Table 2 and Fig. 3 for a 

refinery model given by Meyer-Steinmann /10,p.390-393/: 
^ X vAs , , 

The points on the--right hand-TTT* Fig. 3 characterize the 

original formulation; the effect of sequential data Manipu

lation on problem structure is shown by going to the left. 

^Activity coupling* reduces the number of rows far more than 

e.g. the REDUCE-module of APEX-III. 

From an economic point of view one can describe the con

densation by the isoquant given in Fig. 4 Vit might happen 

that botf^Türmulations eompai'^J^in liLwi'erluie are unsolvable 

on the system used while some^equivalent formulations migM 

computationally well suited. The isoquant must be read 

from right to left. 
Number of 

POS(k)! NEG(k)! 
new legitimate 

variables 
legitimate 

variables deleted 
Net 

Effect 

3 

2 

7 

1 

2 

k 

3 

4 

28 

4 

4 

11 

-1 

0 

17 

Table 1: Effects of &liminating a ialance tquation k i 
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structural structural 
•ows structurals variables nonzeros nonzeros density density 

70 76 146 323 393 3.84540 % 6.07143 7. 

E>9 75 144 321 390 3.9 2512 % 6.70290 % 
E>8 74 142 315 383 3.96645 % 6.25994 % 
>7 73 140 313 380 4.05117 % 6."» 9951 % 
06 72 138 307 373 4.05S30 % 6.4 6044 % 
55 71 136 301 366 4.14027 % 6.52221 % 
64 70 134 295 359 4.18610 % 6.5848? 7. 
E>3 69 132 289 352 4.23280 % 6.64826 % 
62 68 130 283 345 4.2 8040 7. 6.7 1P52 % 
61 67 128 281 342 4.38012 % 6.87546 7. 
SO 66 126 279 339 4.48413 % 7.0 4545 7. 
59 65 124 277 336 4.59267 % 7.22295 7. 
58 64 122 275 333 4.70 605 % 7.40841 % 
57 63 120 273 330 4.82456 % 7.6 0234 % 
56 62 118- 271 327 4.94855 7. 7.805 30 % 
55 61 116 269 324 5. 07 837 7. 8.0178 3 % 
54 60 114 267 . 321 5.21442 % 8.24074 % 
53 59 112 265 318 5.75714 % 8.4 745% % 
52 58 110 263 315 5.50699 % 8.7 2016 % 
51 57 108 261 312 5.66449 % 8.978 23 % 
50 56 106 259 309 5.83019 % 9.250 00 % 

55 104 257 306 6.00471 7. 9.53618 % 
48 54 102 255 303 6.18873 % 9.53795 % 
47 53 100 253 300 6.38298 % 10.15656 % 
,6 52 98 251 297 6.58829 7 ' 10.49331 7. 
45 51 96 249 294 6.80556 % 10.84967 7 
44 50 94 247 291 7.03578 % 11.22727 7. 
43 49 92 245 288 7.28008 % 11.62791 % 
•2 48 90 243 285 7.53968 % 12.05357 % 
41 47 88 241 282 7.81596 % 12.5 06 49 % 
• 0 - 46 86 239 279 8.11047 % •12.98913 7. 
39 _ 45 84 237 276 8.42491 % 13.50427 X 
36 44 82 235 273 8.76123 % 14.0550? 7. 
37 43 80 233 270 9.12162 % 14.64433 % 
36 42 78 231 267 9.50855 % 15.27778 '< 
35 41 76 229 264 . 9.92^81 % 15. 95819 7. 
34 40 74 227 261 10.37361 % 16.69118 % 
33 39 72 224 257 10.81650 % 17.40482 7. 
32 38 70 222 254 11.33929 % 18.25658 7. 
31 37 68 218 249 11&8121t % 19.00610 7. 
30 36 66 214 244 12.32323 % 19.8 14 31 % 
29 35 64 210 239 12.87716 % 2 0.6 8966 7. 
28 34 62 206 234 13.47 926 7. 21.63866 7. 
27 33 60 213 240 14.81481 % 23.9 0572 % 
26 32 58 220 246 16.31300 % 26.44231 % 
25 32 57 240 265 18.59649 % 30. 0 0000 7. 
24 32 56 261 285 21.20536 % 33.9 84 38 % 
23 32 55 282 305 24.11067 % 33.31522 % 
22 32 54 303 325 27.35690 % 43.0 3977 % 

l> t 32 53 316 33 7 30.27853 % 4 7.0 2 "*81 % 
?0 32 52 329 349 33.55769 % 51.4 C*25 7. 
19 46 65 497 516 41.78138 % 56.8 6493 % 
18 70 A8 853 871 54.98737 % 67.698*1 % 
17 116 133 1375 1392 61.56568 % 69.7 2617 % 
16 240 256 3075 3091 75.46367 % 80.07813 7. 

Table 2: Effects of condensation for the refinery model /10, p. 390 - 393/ 
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500-

Number of nonzeros 

"H Number of variables 

Number of rows 
.50 

Fig.3: Effects of condensation for the refinery model /10, p.390-393/ 

tfumber 

itructa-
*als £-

— ^ Number of rows 
Fig.4: Isoquant for equivalent formulations 
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In economic theory only/the part BC of the isoquant would 
/K - -i Co r L- . ^ J 

be regarded as efficient.fIn fehia aauneulluTl'" LlieJ patt AB is 

efficient because from A to B. 

The-paßt CD is #*pla±neü by LIIL l'uasom thoc oy elimmatmg 

a balance equation one or more bounds can become regulär 

rows; this jMwrt of the isoquant is inefficient. 

As soon as a formulation (2) is reached which is regarded 

computationally well suited the optimal levels of the acti

vities x® are determined. The optimal values of the original 

variables can be computed by 

(3) x® = T x® . 

3,2, AN EXAMPLE 

Consider a problem in which two final products x^ and x^ 

are produced by using a part, which can be either purchased 

(Xj) or produced (x^): 

Max. 500 x1 + 1000 Xg - 200 x^ - 150 x^ 

s.t. 2 x1 + 1 Xg + 1 Xjj - 1000 

4 Xg + 2 x^ f 2000 

1 x1 + 4 Xg - 1 x^ - 1 Xjj = 0 

Xj - 0 all j 

The first two constraints represent capacities, the third 

is the balance equation for the part. The definitions 

x^ ... quantity of final product 1 produced by 

using parts purchased 

Xg ••• quantity of final product 1 produced by 

using parts produced by the firm 
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... quantity of final product 2 produced by 

using parts purchased 

... quantity of final product 2 produced by 

using parts produced by the firm 

allow the formulation 

Max. 300 x^ + 350 Xg + 200 + 400 x^ 

s.t. 2 x^ + 3 Xg + 1 Xj + 5 x^ - 1000 

2 x2 + 4 x^ + 12 xk * 2000 

x. = 0 all j . 
J 

Formally such a reformulation can be obtained by multi-

plying the original coefficient matrix with the transforma-

tion matrix 

T = 

ri l o o 

0 0 11 

10 4 0 

.0 1 0 4 J 
t °2 * 

We have M2=%22= {3}, A1'1^ T=(l 4 -1 -1;). T=Ol/and n=4 + 2'2-2-2 = 4. 

The optimal Solution for the Condensed LP is x®=(250 0 5Q0 0)1. 

Optimal levels of the original variables can be determined by 

x®=Tx®=(250 500 2250 0)1. 

The different paths through the networks in Fig. 5 show 

that a general series transformation is employed for elimi-

nating a balance equation. 
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Fig. 6: Flow of Information in computational experiments 
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generator PPPGEN was written in FORTRAN to create LP-

models of product-mix-type. The user specifies the type 

of model to be ereated(in muc.li dfellüll) by setting 16 

scalar and 3 vector Parameters.One set of parameters 

generates different LP-problems with very similar but 

not identical structures by use of random numbers. 

2. Preprocessing 

A FORTRAN-program performs the transformations discussed 

above. The user controls the order in which the balance 

equations are selected for elimination by 7 parameters. 

This selection is based on an estimation of the number of 

additional non-zeros an elimination might create. 

3. Optimization 

Optimization was done by the in-core-system BASE-APEX-III 

using the Standard parameters (except LOG=l) on a CYBER 7% 

under NOS/BE. The reported CPU-time was needed for optimi

zation only. (The maximal deviation of CPU-time due to 

multiprogramming is önly about 1 % on the system used.) 

4. Postprocessing 

APEX-III produces an FORTRAN-accessible file which was 

used to determine the optimal levels of the activities in 

the original formulation. This postprocessing is based on 

(3) although the matrix T was not computed explicitly. 

5. Recording Information about Optimization 

The regulär OUTPUT-file of APEX-III contains Information 

which is necessary to analyse the optimization behavior. 

This output-file was read by a program which recorded the 

structure of the model and the specifics of the Solution 

process. 

6. Regression Analysis 

The data collected in step 5 were examined by regression 

analysis. First the exponents of the variables in various 
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regression rrodels were determined by SPSS' module for 

non-linear regression. The results were used to define 

transformed variables for a "linear" regression through 

the origin. Several hypotheses on the dependence of opti

mization time on model structure were compared by the 
2 coefficient of determination, R . 

7. joiänlvü^ Experiments 

' A/test developeä by Hoel /Jj) wao uoofl. to compare the best 

regression equation against the textbook-hypothesis 

A more detailed description of the experiments and the program 

lists are given in /9/ -

5. RESULTS OF THE COMPUTATIONAL EXPERIMENTS 

Pour problem classes and four problem sizes for each problem 

class have been examined. For each of the 16 cases 5 models 

were generated. Three problem classes were used to develop an 

appropriate explanation for the CPU-time observed; problem 

class 4 was used to control the results. Table 3 shows the 

approximate structure of the models in largest size. For 

Problems of smaller size the figures in Table 3 have to be 

reduced by 25$, 50% and 75%. 

All 80 formulations were Condensed in five steps. In these 

steps a balance equation was eliminated if not more than a 

certain number of additional non-zeros were expected to arise. 

For problem class 3 and largest size Table 4 shows the effects 

of these condensations. The optimization was done by the proce-

dures CRASH and PRIMAL of BASE-APEX-III. All formulations were 

•optimized using constant field length RFL,100000g (=32768 

decimal words of 60 bits each). Optimization time was reduced 

remarkably in the first phases of the condensation but in 

latter phases the condensation did not pay. 
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Number of rows/co3umns 

in problem class 

•1 2 3 4 

ROWS 

Objective function 1 1 1 1 

Capacity constraints 25 25 25 25 

Balance equations for final products 45 45 45 45 

Balance equations for intermediate products 200 430 200 430 

Balance equations for materials 250 20 250 20 

0 L U M N S 
521 521 521 521 

Sales variables for final products 45 45 45 45 

Sales variables for intermediate products -20 -43 -20 -43 

Purchase variables for intermediate products -20 -43 -20 -43 

Purchase variables for materials 250 20 250 20 

Production variables for 45 final products -135 -135 -59 -59 
Production variables for intermediate products -600 -1290 -260 -559 

-1070 -1576 -654 -769 

Table 3: Structures of product-mix-models generated 

Form. 

# 

Max. 

add. 
nz 

Average number of 

rows columns.nonzeros 

Aver. 

CPU-

time 

CPU - ti 

textbook 

me estimated by 

"best" regression 

1 — 521 651 3009 40.8 59.4 35.0 

2 -5 351 481 2040 26.0 18.2 18.8 

3 0 185 315 1619 OO
 

S=
r 

2.7 7.8 

4 30 144 286 1953 7.5 1.3 6.1 

5 100 137 294 2288 10.8 1.1 6.0 

6 1000 134 338 3206 10.4 1.0 6.5 

Table 4: Effects of condensation in problem class 3 
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The data obtained from 317 LPs belonging to problem classes 

1, 2 and 3 were analysed by regression models. Table 5 com-

pares the quality of fit for several hypotheses and some other 

plausible equations. 

Regression equation 

Explaining variables 

proposed by R2 

(4) .00000042 m3 

.0627 m 

.000000015 r? 

/e.g. 1 ;3;5;6;15;20/ 

/8/ 

/4;13/ 

.701 

.867 

.532 

.0081 m1,36 

.0147 n1,05 

.0381 nz*70 

.889 

. 766 

.697 

(5) .0010 m1'25 nz'33 

.0015 m1'11* n'H5 

.0293 n2,53 nz'1,24 

.00085 m2*3'' [nz/(m.n)] "^ 

.916 

.913 

.816 

.912 

(6) .00094 m1,29 n~*17 nz,P< .916 

Table 5: Comparison of regression models for explaining 

CPU-time in problem classes 1 to 3 

The improvement of (6) over (5) is so small that 

(7) PREDCPU = a mb nzc 

is regarded as most suitable. Por this model the approximate 

95? confidence intervals for the exponents are computed in 

the non-linear regression by SPSS as 

1.15 - b = 1.25 * 1.34 

' •" £ "39 " Although these intervalbight they lead to rather wide 

confidence intervals for CPU-time. 

"fr 
The new assumption (5) was compared wärtft the established 

hypothesis (4) via a test developed by Hoel /7/. This test 
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leads to a linear regression of type 

(8) (OBSCPU - ESTHYP) = w . (NEWHYP - ESTHYP) 

for additional data. The usefulness of NEWHYP is confirmed 

if w is significantly positive. Regression (8) gives a 

coefficient w=1.37 for 111 cases belonging to problem class 4; 

the 95% confidence interval is w-1.22. The t-value for re

gression (8) is 15.11. This value can be compared with the 

one-sided value for 95% and DF=110 which is 1.66. The scatter-

gramm in Fig. 7 shows that in 93 of 111 cases the signs of 

the differences in (8) are identical. Therefore the new for-

mula (5) predicts significantly better than the established 

hypothesis (4). 

OBSCPU - ESTHYP . 

I 
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6. SuMMARY 

An identical LP-optimum ^suallj^caiWe obtained by many 

equivalent problem formulations. Data condensation is necessary 

if large models are generated from data bases containing 

Information about every-day-operations. Most textbooks re-

commend J^reducfc^fche number of rows as much as possible. Our 

experiments show that the usual m^-hypothesis is misleading 

and should be canool-loa from textbooks. The experiments des-

cribed above indicate that the number of non*zeros has re-w 
markable influenae on computational effort. The rule given by 

j&r-M-.IrjBeale /l,p.83/ that it is normally not worth saving a 

row by substituting a variable if this adds more than about 

half a dozen nor£&zeros^ remains useful in the light of our 

experimental results. The number of nonj^zeros may rise_if 

the number of structurals is reduced^ Taking (into ac^oynk-* 

the effort for matrix generatiorW'one might propose an even 

easier rule of thumb: 

"Eliminate balance equations only if 

- the model is so large that the number of rows is a bürden 

the computational environment used " 

- the number of structurals is reduced by the elimination 
7\ and the number of non^z^eos rises•only^slightly." 

For product-mix-models this rule suggests Jxf use^balanee equa

tions for products which have more than one way of preparation 

(e.g. make or buy; manufacturing variants) and more than o-ne^ 

wayofi utilization (e.g. seil or process). Thus if options 

are available a "combined" formulation is recommended which 

'rh* f forn frum hnfh fnrmul fltiinns . 

If the resulting model is still toolarge the following 

action^couldb^taken into mind-t : 

- TI^r*^^^T»ro^Tem be solved^ee&i jy byVci^Ss with GUB-

facilities and can 
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mr-
- Sheuld' ono--defän.e in—the fn-st—fi' ~1 \ T ^ nnl,^opTions 

^a&'t AtSfixiA ft r, iii ii iii r % i&et 
which1 are cxpe.eted •&& bo optimal ana """ 

. ,au»ulrf Lg ^vweWw i 
optimization runii-rlj new variables^Tor options 

which improve the solutionofrFunt f These candidates 

e«n be determined by the l th dual Solution. 

- Is it possible to develop*better algorithms for dense 

LP-problems ? 

If all these questions have to be-äoiTtdS- there is an effec-

tive "Solution constraint" on the LP originally proposed. In 

this case one must take x^nto accounfe the Potential benefits 
JjL,S S "— y — 

of d-iffercnfely accurate mqdels%and judge whether a—lese acou» 
VJJHACÄ , 

inerte model -wiü-allow l?r©«gh insight into the real-worldf 

problem^#m4r-4%=ßsyo" to devefup L'Illb lw&& aiiuiato modoi.. 

MAIN SYMBOLS 

DP 
ESTHYP 
m 
Ml 
M2 
M21 £ M2 
M22 £ M2 
n 
nz 
NEG(k) 
NEWHYP 
OBSCPU 
POS(k) 
PgEDCPU 

RFL 
|SET | 

T, T. 

l 
i 

with 
with 

Degrees of freedom 
CPU-time predicted by 
number of rows 
set of indices 
set of indices 
set of indices 
set of indices 
number of structurals 
number of non-zeros 
set of indices j with 
CPU-time predicted by 
Observed CPU-time 

the established hypothesis (4) 

b, 0 
bj"=0 (balance equations) 

l for balance equations not eliminated 
i for balance equations eliminated 

a%.<0 
tne new assumption (5) 

akj>0 set of indices j with 
Predicted CPU-time 
Coefficient of determination 
Requested Pield Length 
number of elements in a SET 
Transformation matrices 
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