ECONSTOR

Knolmayer, Gerhard

Working Paper - Digitized Version
 Computational experiments in the formulation of large-scale linear programs

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 89

Provided in Cooperation with:

Christian-Albrechts-University of Kiel, Institute of Business Administration

Abstract

Suggested Citation: Knolmayer, Gerhard (1980) : Computational experiments in the formulation of large-scale linear programs, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 89, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/190922

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

[^0]
Nr. 89

Computational Experiments in the Formulation of Large-Scale Linear Programs BY
 Gerhard Knolmayer

Paper presented at the Workshop on Large-Scale Linear Programming, organized by the International Institute for Applied System Analysis (IIASA) at Laxenburg, Austria

Kiel, December 1980

Professor Dr. Gerhard Knolmayer Institut für Betriebswirtschaftslehre, Christian-Albrechts-Universität zu Kiel Olshausenstraße 40-60, 2300 Kiel

Computational Experiments in the Formulation of Large-Scale Linear Programs

Abstract:

One of the decisions \backslash in the construction of $\not \mathcal{A}$ linear programs is upon the formulation which should be used. This paper explains why there is usually a very large number of equivalent formulations and reports on the computational behavior of these formulations. The usual textbook-hypothesis which claims that CPU-time increases with the cube of the number of constraints is falsified; it is shown that the advantage of reducing the number of rows may be overcompensated by an increase in the number of nonzeros.

Computational Experiments in the Formulation of

Large-Scale Linear Programs

\author{

1. Decisions in Building a Decision Model
}

Several (meta-) decisions have to be made in the construction of a decision model:

- Which section of reality should be modelled ?
- How accurate should one model this section of reality ?
- Which algorithm should be used ?
- Which people, computer software to should be employed ?
- Which formulation should be used a given degree of accuracy in the model ?

The implemention of different answers these questions will result in different benefits and costs (of the decision model. The ultimate benefit of modelling is to gain insight into reality. In more detail one could distinguish between

Benefit from motet accuracy
Benefit of the ease of understanding
the formulation
the solution-
the model.

On the other hand one can partition the costs of decision models into

Costs of model construction
Costs of collecting data
Costs of manipulating data
Costs of computation.

Many computational experiments have been performed in mathematical programming (MP). Most research has concentrated upon the comparison of algorithms and codes. Recently
the need for research on a methodology of formulating MP-models has been éxpressed /18/.

Most computational experiments compare "costs", usually by giving CPU-time. Sometimes costs and benefits are compared, e.g. if the "quality" of solutions obtained is compared to the CPU-time needed for exact and heuristic algorithms. From this point of view one can distinguish the four areas of computational experiments shown in Fig. 1. These areas have been investigated to a very different extent. This paper concentrates on a cost-comparison of equivalent formulations by using a production code for linear programming (LP).

Type of Object comparison of comparison	Cost-Comparison	Cost-Benefit-Comparison
Algorithms (Codes)		
Formulations		

Fig. 1: Types of experiments and topic of the paper (\mathbf{X})

2. The Need to Study Equivalent Formulations

We define equivalent formulations as models from which identical optimal activity levels can be derived (by using a report writer); the optimal values of the objective functions coincide. Several researchers have compared two equivalent formulations for linear or mixed-integer problems; I make references to the well-known studies of H.P.Williams /17;19/ on (mixed-) integer models and to the confrontation of linear product-mix-models with a "normal" resp. "aggregated" technological matrix /12;14,p.148-157;16,p.27-82/. Such comparisons suffer from the fact that often not only
two but of equivalent formulations exist. Especially jf MP-models are generated from data bases containing information on which of the equivalent formulations should be generated. This decision determines the computational effort for matriv generation and for optimization.

In principle one can define-basic relations form ther data base as activities of the LP model and connect these activities by balance equations. But often the so emerging model will be unsolvable by production codes due to an enormous number of balance equations. A product-mix-model for a manufacturing firm with 400 final and 10000 intermediate products, with 30000 materials, 300 capacities and an average number of 5 operations for the manufactured products would need 82301 rows and 82400 structurals! Therefore it is desirable to generate $\not \approx$ orvanal possibel move
compact models by eliminating balance equations. Fig. 2 shows
a sman of the very large number of equivalent LP-models that can be generated from a data base. In Fig. 2 the size of the model is measured by the number of rows. Data manipulation looks highly attractive from the usual textbook hypothesis that CPU-time grows with the cube of the number of rows /cf.e.g. 1, p.83;3,p.16;5,p.146;6,p.181;15,p.118;20,p.10/. Few authors claim that CPU-time is influenced by the density of the model /11,p.57;14,p.190/. Sikeliminatiappalance equations usuay the number of rows isreduced and the density risestortherefore rules of thumb are wanted which information presumable effects of matrix condensation. To support the decisions in model construction two types of experiments are necessary:

- Experiments of generating MP-models out of (non-specialized) data bases
- Experiments on the optimization behavior of equivalent formulations.
This paper reports on the second type of experiments.
relational data base

Fig. 2: Different ways of matrix generation result in equivalent LP-models of different size

3. The Elimination of Balance Equations

3.1. Theory

Let
(1)

$$
\begin{aligned}
& c^{\prime} x \rightarrow \max ! \\
& A^{\text {M1 }} x=b^{\text {M1 }}>0 \\
& A^{\text {M2 }} x=0 \\
& x \geq 0
\end{aligned}
$$

be a feasible LP with slack and surplus, but without artificial variables. The indices of the constraints i form the set M=M1uM2. Rows íM2 are called balance equations. Let M2=M21uM22. We search for a transformed LP with new variables \tilde{x}

$$
\begin{align*}
c^{\prime} T \tilde{x} & \rightarrow \max ! \\
A^{M 1} T \tilde{x} & =b^{M 1} \\
A^{M 2} T \tilde{x} & =0 \tag{2}\\
T \tilde{x} & \geq 0
\end{align*}
$$

which is equivalent to (1) but computationally more appropriate. The latter requirement might be achieved if

$$
A^{\text {M22 }} T=0 .
$$

In this case $|\mathrm{M} 22|$ rows can be dropped as redundant

If the original formulation (1) contains $p=|M 2|$ balance equations there are at least 2^{p} equivalent formulations! To overcome the problems due to this enormous number of equivalent formulations we restrict the discussion to those formulations which arise by a sequential elimination of balance equations. The sequence can be determined heuristically, A criterium, In the sequential procedure we have

$$
T=\underset{i=1}{|M 22|} T_{i}
$$

where T_{i} is the transformation matrix for the $i-t h$ elimination of a balance equation.

It remains to determindmatrices $T_{i} V_{i n}$ such a way that (1) and (2) are equivalent. After elimination of $f-1<p$ balance equations there exists a row keM21ıso that

$$
\bar{A}^{k}=A^{k}{ }_{i=1}^{f-1} T_{i} .
$$

Let $\overline{\operatorname{POS}}(\mathrm{k})=\left\{j \mid \bar{a}_{\mathrm{kj}}>0\right\}$ and $\overline{\operatorname{NEG}}(\mathrm{k})=\left\{j \mid \bar{a}_{k j}<0\right\}$. These sets are nonempty if there are no null variables. $\bar{x}_{r}(r \in \bar{P} O S(k))$ can be positive if and only if at least one $\bar{x}_{j}(j \in \overline{\mathbb{N} E G(k))}$. is posifive. This "If-then"-relation allows $\overline{\mathrm{x}}_{r}>0$ and $\overline{\mathrm{x}}_{s}>0$ ($s \in \overline{\mathrm{~N} E G(k)}$) implicitly by a "coupled activity" $\overline{\bar{x}}_{u}>0$. The coefficients of the coupled activity are computed as

$$
\overline{\bar{a}}_{i u}=\underset{\substack{\| \\ 11}}{ }\left(\bar{a}_{i r} \cdot\left|\bar{a}_{k s}\right|+\bar{a}_{i s} \cdot\left|\bar{a}_{k r}\right|\right)
$$

so that variable u has a zero in row k. g is an arbitrary positive factor; in the subsequent text we assume $g=1$.

All possible activity levels of the prior formulation can be expressed by $|\bar{P} O S(k)|$. $|\bar{N} E G(k)|$ coupled activities. After the transformation all variables $\overline{\mathrm{x}}_{\mathrm{i}} \quad(j \in \overline{\mathrm{P} O S}(k) \cup \bar{N} E G(k))$ can be deleted. In the matrix

$$
T_{f}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & r_{k s} \\
\mathbf{P}_{f} & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \vec{a}_{k r} \\
0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & 0 \\
\vdots & & & & \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

there are unity column vectors for the untouched activities and two non-zeros in those columns which represent coupled
activities. We have $T_{f} \geq 0$ and therefore $T \geq 0$. Furthermore we get modified sets

$$
\begin{aligned}
& \overline{\mathrm{M}} 21=\overline{\mathrm{M}} 21-\{\mathrm{k}\} \\
& \overline{\mathrm{M}} 22=\overline{\mathrm{M}} 22+\{\mathrm{k}\} .
\end{aligned}
$$

The transformation reduces the number of rows by one. The effect on the number of legitimatyariables depends on the number of positive and negative coefficients in row k :

$$
\overline{\bar{n}}=\bar{n}+|\bar{P} O S(k)| \cdot|\bar{N} E G(k)|-|\bar{P} O S(k)|-|\bar{N} E G(k)|
$$

Table 1 shows how the number of legitimate (=non-artificial) variables changes with the sign of the non zeros in the eliminated balance equation. The effects of condensation on model structure are illustrated in Table 2 and Fig. 3 for a refinery model given by Meyer-Steinmann /10,p.390-393/: The points or Fig. 3 characterize the original formulation; the effect of sequential data manipulation on problem structure is shown by going to the left. - Activity coupling reduces the number of rows far more than e.g. the REDUCE-module of APEX-III.

From an economic point of view one can describe the condensation by the isoquant given in Fig. 4 It might happen that bothroermulations emparet interare are unsolvable on the system used while some equivalent formulations mish computationally well suited. The isoquant must be read from right to left.

fows		umbe variab	$\circ f$ structural nonzeros	nonzeros	density	$\begin{gathered} \underline{9} \\ \text { structural } \\ \text { density } \end{gathered}$
$p 0$	76	146	323	393	3.84540%	6.07143
59	75	144	321	390	3.92512%	6.20290
58	74	142	315	383	3.96645\%	6.2590
67	73	140	313	380	4.05117 \%	$6 . ? 9951$
66	72	138	307	373	4.09530%	6.46044
65	71	136	301	366	4.14027%	6.52221
54	70	134	295	359	4.18610%	6.5848 ?
53	69	132	289	352	4.23280%	6.64826
62	68	130	283	345	4.28040%	6.71752
61	67	128	281	342	4.38012%	6.87546
50	66	126	279	339	4.48413%	7.04545
59	65	124	277	336	4.59267%	7.22295
58	64	122	275	333	4.70605%	7.40841
57	63	120	273	330	4.82456%	7.60734
56	62	118.	271	327	4.94855%	7.80530
55	61	116	269	324	5.07837%	8.01789
54	60	114	267	321	5.21442%	8.24074
53	59	112	265	318	5.35714%	8.47458
52	58	110	263	315	5.50699%	$8.72 n 10$
51	57	108	261	312	5.66449%	8.97833
50	56	106	259	309	5.83019%	9.25700
49	55	104	257	306	6.00471%	9.53618
48	54	102	255	303	5.18873%	9.83795
47	53	100	253	300	6.38298%	10.15655
46	52	98	251	297	6.58829 \%	10.49331
45	51	96	249	294	6.80556%	10.84967
44	50	94	247	291	7.03578%	11.22727
43	49	92	245	288	7.28008%	11.62791
42	48	90	243	285	7.53968 \%	12.05357
41	47	88	241	282	7.81596%	12.50649
40	46	86	239	279	8.11047%	'12.98913
39	45	84	237	276	8.42491%	13.50427
38	44	82	235	273	8.76123 \%	14.05502
37	43	80	233	270	9.12162%	14.64493
36	42	78	231	267	9.50855 \%	15.27778
35	41	76	229	264	9.92481%	15.95819
34	40	74	227	261	10.37361%	16.69118
33	39	72	224	257	10.81650%	17.4048?
32	38	70	222	254	11.33979 \%	18.25658
31	37	68	218	249	11.81214%	19.00610
30	$3 E$	66	214	244	12.32323%	19.81491
29	35	64	210	239	12.87716%	20.68966
88	34	62	206	234	13.47926%	21.63850
27	33	60	213	240	14.81481%	23.90572
26	32	58	220	246	16.31300%	26.44231
25	32	57	240	265	18.59649%	30.00000
84	32	56	261	285	21.20536%	33.98438
23	32	55	282	305	24.11067%	39.31522
22	32	54	303	325	27.35690%	43.03977
0_{1}	32	53	316	337	30.27853%	47.02781
$p 0$	32	52	329	349	33.55769%	51.40625
19	4 E	65	497	516	41.78138%	56.86493
18	70	88	853	871	54.98737%	67.69841
17	116	133	1375	1392	61.56568%	67.72617
16	240	$25{ }^{\circ}$	3075	3091	75.4E387\%	80.07813

Table 2: Effects of condensation for the refinery model /10, p. 390-393/

Fig. 3: Effects of condensation for the refinery model /10, p.390-393/

Fig. 4: Isoquant for equivalent formulations

In economic theory only/the part $B C$ of the isoquant would be regarded as efficient. An man efficient tor because The pant CD is empleftru ty tre reasem thentiy bliminating a balance equation one or more bounds can become regular rows; this of the isoquant is inefficient.

As soon as a formulation (2) is reached which is regarded computationally well suited the optimal levels of the activities $\tilde{\mathbf{x}}^{\otimes}$ are determined. The optimal values of the original variables can be computed by

$$
\begin{equation*}
\mathrm{x}^{\otimes}=\mathrm{T} \tilde{\mathrm{x}}^{\otimes} . \tag{3}
\end{equation*}
$$

3.2. An Example

Consider a problem in which two final products x_{1} and x_{2} are produced by using a part, which can be either purchased $\left(x_{3}\right)$ or produced $\left(x_{4}\right)$:

The first two constraints represent capacities, the third is the balance equation for the part. The definitions
$\tilde{x}_{1} \ldots$ quantity of final product 1 produced by

using parts purchased
$\tilde{x}_{2} \cdots$ quantity of final product 1 produced by
using parts produced by the firm

$$
\begin{aligned}
& \tilde{x}_{3} \ldots \text { quantity of final product } 2 \text { produced by } \\
& \text { using parts purchased } \\
& \tilde{x}_{4} \ldots \text { quantity of final product } 2 \text { produced by } \\
& \text { using parts produced by the firm }
\end{aligned}
$$

allow the formulation

$$
\begin{array}{ll}
\text { Max. } & 300 \tilde{x}_{1}+350 \tilde{x}_{2}+200 \tilde{x}_{3}+400 \tilde{x}_{4} \\
\text { s.t. } & 2 \tilde{x}_{1}+3 \tilde{x}_{2}+1 \tilde{x}_{3}+5 \tilde{x}_{4} \leq 1000 \\
2 \tilde{x}_{2}+4 \tilde{x}_{3}+12 \tilde{x}_{4} \leq 2000 \\
& \tilde{x}_{j} \geqq 0 \text { all j. }
\end{array}
$$

Formally such a reformulation can be obtained by multiplying the original coefficient matrix with the transformation matrix

$$
T=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 4 & 0 \\
0 & 1 & 0 & 4
\end{array}\right]_{\nless}
$$

We have $M 2=\hat{m} 22=\{3\}$, $A^{\hat{M} 22} T=\left(\begin{array}{cc}1 & 4-1-1!\end{array}\right)$. $T=0$ and $\overline{\bar{n}}=4+2 \cdot 2-2-2=4$. The optimal solution for the condensed LP is $\overline{\mathrm{x}}^{\otimes}=\left(\begin{array}{ll}250 & 0.500\end{array}\right)^{\prime}$ '. Optimal levels of the original variables can be determined by $x^{\otimes}=T \tilde{x}^{\otimes}=\left(\begin{array}{ll}250 & 500 \\ 2250 & 0\end{array}\right)$ 。

The different paths through the networks in Fig. 5 show that a general series transformation is employed for eliminating a balance equation.

Fig. 6: Flow of information in computational experiments
generator PPPGEN was written in FORTRAN to create LPmodels of product-mix-type. The user specifies the type of model to be created (inmenctali) by setting 16 scalar and 3 vector parameters. One set of parameters generates different LP-problems with very similar but not identical structures by use of random numbers.
2. Preprocessing

A FORTRAN-program performs the transformations discussed above. The user controls the order in which the balance equations are selected for elimination by 7 parameters. This selection is based on an estimation of the number of additional non-zeros an elimination might create.
3. Optimization

Optimization was done by the in-core-system BASE-APEX-III using the standard parameters (except LOG=1) on a CYBER 74 under NOS/BE. The reported CPU-time was needed for optimization only. (The maximal deviation of CPU-time due to multiprogramming is only about 1% on the system used.)
4. Postprocessing

APEX-III produces an FORTRAN-accessible file which was used to determine the optimal levels of the activities in the original formulation. This postprocessing is based on (3) although the matrix T was not computed explicitly.
5. Recording Information about Optimization The regular OUTPUT-file of APEX-III contains information which is necessary to analyse the optimization behavior. This output-file was read by a program which recorded the structure of the model and the specifics of the solution process.
6. Regression Analysis

The data collected in step 5 were examined by regression analysis. First the exponents of the variables in various
regression models were determined by SPSS' module for non-linear regression. The results were used to define transformed variables for a "linear" regression through the origin. Several hypotheses on the dependence of optimization time on model structure were compared by the coefficient of determination, R^{2}.
7. Fontroif Experiments to
, test developed by Hoel / 7V to compare the best regression equation against the textbook-hypothesis

A more detailed description of the experiments and the program lists are given in /9/.

5. Results of the Computational Experiments

Four problem classes and four problem sizes for each problem class have been examined. For each of the 16 cases 5 models were generated. Three problem classes were used to develop an appropriate explanation for the CPU-time observed; problem class 4 was used to control the results. Table 3 shows the approximate structure of the models in largest size. For problems of smaller size the figures in Table 3 have to be reduced by $25 \%, 50 \%$ and 75%.

All 80 formulations were condensed in five steps. In these steps a balance equation was eliminated if not more than a certain number of additional non-zeros were expected to arise. For problem class 3 and largest size Table 4 shows the effects of these condensations. The optimization was done by the procedures CRASH and PRIMAL of BASE-APEX-III. All formulations were optimized using constant field length RFL, 100000_{8} ($=32768$ decimal words of 60 bits each). Optimization time was reduced remarkably in the first phases of the condensation but in latter phases the condensation did not pay.d.f.

Number of rows/columns in problem class

$\begin{array}{llll}1 & 2 & 3\end{array}$

Table 3: Structures of product-mix-models generated

Form. \#	Max. add. nz	Average number of rows columns nonzeros			Aver. CPU- time	CPU - textbook	me estimated by "best" regression
1	-	521	651	3009	40.8	59.4	35.0
2	-5	351	481	2040	26.0	18.2	18.8
3	0	185	315	1619	8.4	2.7	7.8
4	30	144	286	1953	7.5	1.3	6.1
5	100	137	294	2288	10.8	1.1	6.0
6	1000	134	338	3206	10.4	1.0	6.5

Table 4: Effects of condensation in problem class 3

The data obtained from 317 LPs belonging to problem classes 1, 2 and 3 were analysed by regression models. Table 5 compares the quality of fit for several hypotheses and some other plausible equations.

Regression equation	Explaining variables proposed by	R^{2}
$\begin{aligned} \text { (4) } & .00000042 \mathrm{~m}^{3} \\ & .0627 \mathrm{~m} \\ & .000000015 \mathrm{n}^{3} \end{aligned}$	```/e.g. 1;3;5;6;15;20/ /8/ /4;13/```	$\begin{aligned} & .701 \\ & .867 \\ & .532 \end{aligned}$
$\begin{aligned} & .0081 \mathrm{~m}^{1.36} \\ & .0147 \mathrm{n}^{1.05} \\ & .0381 \mathrm{nz}^{.70} \end{aligned}$		$\begin{aligned} & .889 \\ & .766 \\ & .697 \end{aligned}$
$\begin{aligned} \text { (5) } & .0010 \mathrm{~m}^{1.25} \mathrm{nz} .33 \\ & .0015 \mathrm{~m}^{1.14} \mathrm{n}^{.45} \\ & .0293 \mathrm{n}^{2.53} \mathrm{nz}^{-1.24} \\ & .00085 \mathrm{~m}^{2.35}[\mathrm{nz} /(\mathrm{m} . \mathrm{n})] .86 \end{aligned}$		$\begin{aligned} & .916 \\ & .913 \\ & .816 \\ & .912 \end{aligned}$
(6) $.00094 \mathrm{~m}^{1.29} \mathrm{n}^{-.17} \mathrm{nz}^{.44 *}$. 916

Table 5: Comparison of regression models for explaining CPU-time in problem classes 1 to 3

The improvement of (6) over (5) is so small that (7) PREDCPU $=a \mathrm{~m}^{\mathrm{b}} \mathrm{nz}^{\mathrm{c}}$
is regarded as most suitable. For this model the approximate 95\% confidence intervals for the exponents are computed in the non-linear regression by SPSS as
$1.15 \leq b=1.25 \leq 1.34$
Although these intervals $\begin{aligned} 26 \leq c & =.33 \leq .39 .\end{aligned}$ confidence intervals for CPU-time.

The new assumption (5) was compared fo the established hypothesis (4) via a test developed by Hoel /7/. This test
leads to a linear regression of type
(8) (OBSCPU - ESTHYP) $=\mathrm{w} \cdot($ NEWHYP - ESTHYP)
for additional data. The usefulness of NEWHYP is confirmed if w is significantly positive. Regression (8) gives a coefficient $w=1.37$ for 111 cases belonging to problem class 4 ; the 95% confidence interval is $w \geq 1.22$. The t-value for regression (8) is 15.11. This value can be compared with the one-sided value for 95% and $D F=110$ which is 1.66 . The scattergramm in Fig. 7 shows that in 93 of 111 cases the signs of the differences in (8) are identical. Therefore the new formula (5) predicts significantly better than the established hypothesis (4).

Fig. 7: Comparison of the predictions from (4) and (5) with observed CPU-time

6. SUMMARY

An identical Lp-optimum usually candbe obtained by many equivalent problem formulations. Data condensation is necessary if large models arg generated from data bases containing information about every-day-operations. Most textbooks recommend to reducerythe number of rows as much as possible. Our experiments show that the usual m^{3}-hypothesis is misleading tapen out of textbooks. The experiments desand should be textbooks. The experiments des cribed above indicate that the number of nonderos has remarkable influence on computational effort. The rule given by E.M.W|Beale /1,p.83/ that it is normally not worth saving a row by substituting a variable if this adds more than about half a dozen norezerospemains useful in the light of our experimental results. The number of nontzeros may rise if the number of structurals is reduced Taking into account the effort for matrix generation one might propose an even easier rule of thumb:
"Eliminate balance equations only if

- the model is so large that the number of rows is a burden

Win the computational environment used

- the number of structurals is reduced by the elimination and the number of nontzffos rises only slightly."
For product-mix-models this rule suggests to us anbalance equations for products which have more than one way of preparation (e.g. make or buy; manufacturing variants) and more than one way of utilization (e.g. sell or process). Thus if options are available a "combined" formulation is recommended which diffors from both formulations comper is intermediate boluren.u these wo rucolly puesented i- the lelerature

If the resulting model is still toolarge the following actions could be then into mind cousideled :
 facilities and oucir code be made amenable?

- Shotid ono-nefing in the-finst (í-1) Ip on] y options
 optimization run $(\dot{j}+1)$ new $\frac{\text { would be greqeurated }}{\text { variables }}$ which improve the solution of rrunts these candidates ean be determined by the ruvious dual solution.
- Is it possible to develop better algorithms for dense LP-problems ?
If all these questions have to be there is an effective "solution constraint" on the LP originally proposed. In this case one must take (into account the potential benefits of differently accurate modelsyand judge whether quess aceu pate model will allow enowh insight into the real-worldt problem,

Main Symbols

DF	Degrees of freedom	
ESTHYP	CPU-time predicted by the established hypothesis (4)	
m	number of rows	
M1	set of indices i with $\mathrm{b}_{i} 0$	
M2	set of indices i with $b_{i}=0$ (balance equations)	
M21 ¢ M2	set of indices i for balance equations not eliminated	
M22 5 M2	set of indices i for balance equations eliminated	
n	number of structurals	
nz	number of non-zeros	
NEG (k)	set of indices j with a $\mathrm{m}^{\circ}<0$	
NEWHYP	CPU-time predicted by the new assumption (5)	
OBSCPU	Observed CPU-time	
POS (k)	set of indices j with $a_{k j}>0$	
PREDCPU	Predicted CPU-time	
R^{2}	Coefficient of determination	
RFL	Requested Field Length	
\|SET		number of elements in a SET
T, T_{i}	Transformation matrices	

/1/ Beale, E.M.L., Mathematical Programming in Practice, Pitman
Publishing: London et al. 1968
/2/ Beale, E.M.L., The current algorithmic scope of mathematical progiramming systems, in: Mathematical Programming Study 4, ed. by M.L.Balinski and E. Hellerman, North-Holland: Amsterdam 1975, 1-11
$13 /$ Bradley, S.P., Hay, A.C., Magnanti, T.L., Applied Mathematical Programming, Addison-Wesley: Reading et al. 1977
14/ Bramsemann, R., Controlling, Gabler-Verlap: Wiesbaden $197 \dot{8}$
/5/ Driebeek, N.J., Applied Linear Programming, Addison-Wesley: Reading et al. 1969
$16 /$ Hillier, F.S., Lieberman, G.J., Operations Research, $2^{\text {nd }}$ ed., Holden-Day: San Francisco et al. 1974
/7/ Hoel, P.G., On the choice of forecasting formulas, in: Journal of the American Statistical Association 1947, Vol. 42, 605-611
/8/ Holm, S., Klein, D., Size Reduction of Linear Programs with Special Structure, Skrifter fra Institut for Historie og Samfundsvidenskab, Odense Universitet: Odense 1975
/9/ Knolmayer, G., Programmierungsmodelle für die Produktionsprogrammplanung, Ein Beitrag zur Methodologie der Modelikonstruktion, Birkhäuser-Verlag: Basel-Boston-Stuttgart, to appear.
/10/ Meyer, M., Steinmann, H., Planungsmodelle für die Grundstoffindustrie, Physica-Verlag: Würzburg-Wien 1971
/11/ Mitra, G., Theory and Application of Mathematical Programming, Academic-Press: London-New York-San Francisco1976
/12/ Müler-Merbach, H., Switching Between Bill of Material Processing and the Simplex Method in Certain Linear LargeScale Industrial Optimization Problems, in: Decomposition of Large-Scale Problems, ed.by D.M.Himmelblau, North-Holland/American Elsevier: Amsterdam-London-New York 1973, 189-199
$113 /$ Shah, A.A., Saber, J.C., A Transformation to Improve Computing in Linear Programs, Paper presented at the Joint National ORSA/TIMS Meeting at Las Vegas, November 1975
/14/ Smith, D., Linear Programming in Business, Polytech Publishers: Stockport 1973
/15/ Wagner, H.M., Principles of Operations Research, Prentice-Hall: Englewood Cliffs 1969
/16/ Wiggert, H., Programmoptimierung im Maschinenbau mit Hilfe der linearen Planungsrechnung, Beuth-Vertrieb: Berlin-Köln-Frankfurt am Main 1972
/17/ Williams, H.P., Experiments in the formulation of integer programming problems, in: Mathematical Programming Study 2, ed. by M.L.Balinski, North-Holland: Amsterdam 1974, 180-197

118/ Williams, H.P., The Formulation of Mathematical Programmiry Models, in: Omega 1975, Vol. 3, 551-556
/19/ Williams, H.P., The reformulation of two mixed integer programming problems, in: Mathematical Programmine 1978, Vol. 14, 325-331
/20/ Williams, H.P., Model Building in Mathematical Programming, Wiley-Interscience: Chichester et al. 1978

[^0]: Terms of use:
 Documents in EconStor may be saved and copied for your personal and scholarly purposes.

 You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

 If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

