

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Şurcă, Elena

Conference Paper Evaluation of Romania's potential for producing renewable energy from agriculture and forestry

Provided in Cooperation with:

The Research Institute for Agriculture Economy and Rural Development (ICEADR), Bucharest

Suggested Citation: Şurcă, Elena (2017) : Evaluation of Romania's potential for producing renewable energy from agriculture and forestry, In: Agrarian Economy and Rural Development - Realities and Perspectives for Romania. 8th Edition of the International Symposium, November 2017, Bucharest, The Research Institute for Agricultural Economy and Rural Development (ICEADR), Bucharest, pp. 210-216

This Version is available at: https://hdl.handle.net/10419/190901

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

EVALUATION OF ROMANIA'S POTENTIAL FOR PRODUCING RENEWABLE ENERGY FROM AGRICULTURE AND FORESTRY

ELENA ŞURCĂ¹

Abstract: Renewable energy production is an alternative to traditional energy resources that are being depleted, these new resources will gradually replace the exhausting energies by combining the three main features of the present century, so that sustainable development, energy security and environmental protection become defining elements in terms of renewable energy production.

The energy sector communicates and is closely linked to the economic sector, the defining resource with a major influence on the economy being oil, where its exhaustion and other natural energy resources would lead to economic and political instability, which is why it is necessary to highlight the possibility of substitution exhaustible resources through different sources of renewable energies: solar, wind, microhydro, geothermal and biomass.

In view of the above, we will highlight Romania's potential in the production of renewable energy from biomass, the materials provided by the agricultural sector and the forestry sector, but also the energy consumption in agriculture and forestry, as well as the type of biofuel used (liquid or solid), which draws a parallel between the two categories of biofuels obtained from the same resource.

We will also highlight Romania's position in the European Union in this field, highlighting the national and European objectives on this issue.

Key words: renewable energy, biomass, energy security

JEL classification: Q23, Q42

INTRODUCTION

Renewable energy from different sources comes as a response to all the world's problems with the depletion of natural resources. Over the last three decades, developed countries of the world are looking for solutions to this problem and admit that they face a major challenge that directly affects the lifestyle of man.

The increase in energy consumption has increased with the demographic increase of the population on the globe, which accelerates the pace of increase in the exploitation of natural resources.

The idea of renewable energy has been easily adopted and developed from year to year, so that major changes in the use of the amounts of energy from renewable sources can be observed. According to specialized sites, the amount of renewable energy produced in the European Union increased by 73.1% in 2015 as compared to 2005, representing an average increase of 5.6% per year and 184% over the year 1990 with an average annual growth rate of 4.3%. Total energy production from renewable sources was about 205 million tons of oil equivalent (TOE) in 2015 for the European Union accounting for 26.7% of the total primary energy used from all sources.

According to statistics, the most important source of renewable energy in the EU's 28 Member States is that of solid / liquid biofuels and waste from renewable sources, defined as "direct or indirect biofuels produced from biomass" where biomass represents : "the biodegradable fraction of agricultural and vegetable residues (forest and wood products), residues from related industrial sectors and energy crops", this source of renewable energy represented approximately 63,5% in 2015, of renewable energy production.

At national level, the amount of renewable energy from different sources has evolved, from 2005 to 2015 it increased by 32.5%, from 4,594 (TOE) to 6,090 (TOE), of which the largest source energy is supplied by biofuels and waste from renewable sources, representing 61.9%, followed by hydropower 26.5% being well above the European Union average of 16.5%, wind energy holds a national share of 8.8% in in terms of renewable energy, this is below the European Union average of

¹Asistent Cercetare ICEADR - email: surca.elena@iceadr.ro

11.1%, solar energy accounts for only 2.3% being below the EU average of 6.1% on the last place is geothermal energy with only 0.5% under U.E. of 3.2%.

There are significant differences from one country to another in terms of the supply of renewable energy from different sources, highlighting the country's natural and climatic conditions. For example, countries such as Cyprus and Malta receive renewable energy from solar energy, with this type of energy accounting for a majority share of 66.8% and 83.1% of the total renewable energy produced in the country. In other countries where the mountainous relief prevails (Sweden, Austria, Slovenia, etc.), renewable energy is largely obtained from hydropower, this type of energy represented more than one-third of the renewable energy production in Montenegro, Turkey, Macedonia, Serbia, Norway and Albania, where the share reached almost 90%. Where there are active volcanic processes, renewable energy production is most likely derived from geothermal sources, with the best example being Italy where 23.2% of energy production is obtained from this source. In terms of wind energy, Denmark (34.4%) and Ireland (57.6%) stand out.

Although each type of renewable energy meets certain environmental and climatic conditions, we can state that at European level, agriculture and forestry play an increasingly important role in the supply of organic matter (biomass) in the production of renewable energy, in the year 2015 the production of solid biofuels from agriculture and forestry was 91 million tons of oil equivalent, 5.9% more than the energy produced in 2010 and 4.8% more than in 2014.

According to the current European legislation on the use of energy from renewable sources, adopted by co-decision (Directive 2009/28 / EC, repealing Directives 2001/77 / EC CE and 2003/30 / EC) on 23 April 2009, set the following objectives:

By 2020, the European Union's energy consumption should come from 20% renewable energy sources and all Member States must ensure that by 2020, 10% of transport fuels come from renewable sources.

MATERIALS AND METHODS

One of the methods used in the work is the quantitative and qualitative analysis of statistical data provided by various national, European, or world-wide specialized sites. Analysis of existing legislation on the use of renewable energy at both national and European level, highlighting the current political framework on this subject, in particular reports and regulations of the European Commission's Directorates-General for Renewable Energy, as well as analysis of existing documents Specialty literature.

I will also use the comparative analysis highlighting the main renewable energy producing countries from the two sectors, agriculture and forestry, compared to Romania.

RESULTS AND DISCUSSIONS

Primary energy obtained from biomass and renewable waste in 2015 was 130 million toe in the 28 EU Member States (representing 63.4% of total renewable energy) as can be seen in Table 1, resulting from solid biofuels (Table 2) and liquid biofuels (Table 3) used in transport, agriculture / forestry and related services.

For the year 2015, the largest share of primary energy production from renewable sources in agriculture and forestry as biomass and renewable waste from the total European Union is held by Germany, according to Table 1, it can be seen that this country holds the highest share (20.15%), followed closely by France (10.7%) and Italy (8.25%).

Country/vear	2013	2014	2015	Country/year	2013	2014	2015	Country / year	2013	2014	2015
European Union (28 countries)	125776	125229	130201	European Union (28 countries)	90347	87229	91443	European Union (28 countries)	12743	13982	13661
Belgium	2369	2252	2163	Belgium	1389	1104	1171	Belgium	462	577	392
Bulgaria	1187	1171	1247	Belgaria	1122	1087	1160	Bulgaria	47	68	60
Czech Republic	3651	3793	3863	Czech Republic	2769	2842	2954	Czech Republic	228	261	216
Denmark	2016	1922	2222	Denmark	1426	1308	1590	Denmark	20	19	13
Germany	23860	15493	26229	Germany	10902	11425	12062	Germany	3156	3597	3319
Estonia	1075	1132	1223	Estonia	1067	1122	1209	Estoria	:	:	2
Ireland	303	338	333	Ireland	183	210	202	Ireland	22	24	24
Greece	1073	1098	1178	Greece	847	\$69	952	Greece	138	142	134
Spain	6761	7036	7009	Spain	5205	5161	5260	Spain	877	1318	1235
France	14418	13263	13931	France	10360	9078	9661	France	2419	2541	2519
Creatia	1511	1432	1584	Croatia	1465	1375	1532	Croatia	30	31	15
Italy	10640	9973	10740	Italy	7448	6539	7340	Baly	549	614	682
Cyprus	18	20	19	Cyprus	5	1	7	Cyprus	2		1
Latvia	1876	2188	2158	Latvia	1752	2046	2009	Latvia	60	67	61
Lifectaria	1186	1261	1359	Lithuesia	1041	1117	1205	Lifmania	118	112	114
Luxembourz	73	93	85	Luxenbourz	46	66	55	Luxembourg		1	:
Hungary	3110	2793	3034	Hungary	2683	2363	2511	Hangary	305	306	377
Malta	2	3	3	Malta	1.1	:	:	Malta	1	1	1
Netherlands	3788	3917	3971	Netherlands	1202	1290	1364	Netherlands	1,482	1,520	1,440
Austria	5302	5079	5401	Austria	4718	4227	4474	Austria	231	381	445
Poland	7752	7169	7473	Poland	6837	6180	6268	Poland	700	745	936
Portugal	3099	3136	3104	Portugal	2662	2671	2603	Portugal	274	301	321
Romania	3824	3772	3698	Romania	3657	3646	3521	Romania	147	105	157
Slovenia	652	563	620	Slovenia	616	533	590	Slovenia	2	1.1	
Slovakia	987	1014	1203	Slovakia	769	760	890	Slovakia	148	147	149
Finland	8758	8869	\$750	Finland	8082	\$117	7901	Finland	365	406	473
Sweden	10633	10245	10480	Sweden	9211	8923	9129	Sweden	457	311	276
United Kingdom	5852	6205	7126	United Kingdom	2884	3165	3824	United Kingdom	504	390	301

Table no. 2 Primary energy production from renewable Solid biofuels (excluding coal) from biomass and sources in agriculture and forestry renewable waste

Table no. 1

Table no. 3 Liquid biofuels obtained from biomass and renewable waste

Source: Eurostat: June 2017; European Commission - DG Energy; Sankey diagram dataset - annual data

At the national level, out of the total of 238,397 thousand hectares, the sum of Romania's surface, 61,4% is represented by the agricultural area and 28,3% of the area covered by forests and other lands with forest vegetation, in 2015, about 3.7 million toe from biomass and renewable waste, in this context we can see that Romania held 2.8% of the total biomass and renewable waste obtained at European level, being on the 11th place, with the smallest amount of biomass and renewable waste being Malta with only 3000 tons of oil equivalent.

From biomass and renewable waste obtained from the forestry sector, mainly biofuels are obtained, which are defined according to national and international normative documents as the most easily obtained from biomass with vegetal source, from which can be obtained sawdust (briquettes), straw, etc. by transforming cellulosic waste, they can be used in thermal plants and thus can successfully replace coal which is considered a polluting fuel.

Biomass and renewable waste produced from the agricultural sector mainly produce liquid biofuels, characterized by biodiesel and bioethanol. Obtaining biodiesel is made from oilseeds and can replace all or part of the use of petrodiesel, it can also be mixed with diesel oil. The process of producing bioethanol is a little more complex, it can also be obtained from the agricultural sector in cereal plants, but also from the pulp sector, called second-generation bioethanol.

Thus, considering both table no. 2 and Table no. 3, we can see that from the same biomass and renewable waste source the different amounts of liquid and solid biofuels are obtained, out of a

total of 130 million toe obtained in 2015 at European level, 91 million toe biofuels solids, (2%) and 13 million tons of liquid biofuels (10%), the remaining 19.78% of biomass and renewable waste being lost to biofuel production. At national level of 3698 thousand biomass toe, are produced 3521 thousand toe of solid biofuels and 157 thousand toe of liquid biofuels.

In order to determine Romania's potential for biomass production, we divided the country into eight regions according to table no. 4, where the potential of biomass, regions and total is highlighted.

No.	Areas	Forest biomass 1000 t/year TJ	Wood waste 1000 t/year TJ	Agricultural biomass 1000 t/year TJ	
Ι	Ine Danube Delta	-	-	-	
	Denu	~ ~ ~	10	044	
Π	Dobrogea	54	19	844	
	Doorogou	451	269	13,422	
III	Moldavia	166	58	2,332	
	Woldavia	1,728	802	37,071	
IV	Carpathian	1,873	583	1,101	
11	Carpaunan	19,552	8,049	17,506	
V	Plateau of	835	252	815	
	Transylvania	8,721	3,482	12,956	
VI	Western Plain	347	116	1,557	
	western i fam	3,622	1,603	24,761	
VII	Sub Corpothian	1,248	388	2,569	
	Sub Carpannan	13,034	5,366	40,849	
VIII	Southern Plain	204	62	3,419	
v 111	Soutieni Fian	2,133	861	54,370	
Total		4,727	1,478	12,637	
	TUTAL	49,241	20,432	200,935	
Sources INLICEMENERC, Study on the approximate of the our					

Table no. 4 Potential of areas in biomass production

Table no. 5 Biomass Energy Potential for 2030

	1						
Parameter	M.U	Technical	Economic				
a) Plant biomass							
Thermal /	TJ/year	471000	289500				
electrical	1000	11240	6915				
energy	toe/year	11249					
b) Biogas	b) Biogas						
Thermal /	TJ/year	24600	14800				
electrical	1000	587	353				
energy	toe/year	507					
c) Urban waste							
Thermal /	TJ/year	22800	13700				
electrical	1000	544	327				
energy	toe/year	544					
	TJ/year	518400	318000				
Total	1000	12382	7595				
	toe/year	12302					

Source: INL ICEMENERG; Study on the assessment of the current energy potential of renewable energy sources in Romania (...), Identifying the best locations for developing investments in unconventional energy production (synthesis)

We find that the Sub-Carpathian region has the greatest potential in obtaining woo waste and forest biomass, with regard to the biomass obtained from agriculture, we can see that the South Plain Region is highlighted, recording the largest quantities. The total amount of biomass is of 18,842 thousand tons or 270,608 terajoule representing, by the conversion process, 6463 thousand tons of beer by 74% more than in 2015. Thus, by 2030, according to the National Institute of Research and Development for Energy (ICEMENERG Bucharest), the plant biomass obtained from the forestry and agricultural sector will produce a thermal / electric energy of 11249 thousand TOE/ year equivalent to 471000 terajoule /year.

Analyzing figure no. 1, where the geographical distribution of the vegetal biomass resources is presented, we can see that the richest counties of forest resources for the purpose of energy production are: Suceava (647 thousand cubic meters representing 66.03% of the total biomass resources obtained at county level), Harghita (206.5 thousand m3 / 70.81%), Neamt (175 thousand m3 / 20.59%) and Bacau (132 thousand m3 / 12.64%). At the opposite pole with the poorest counties on this type of resource are the counties located in the south of the country: Constanta (10.4 thousand mc / 0.58%), Teleorman (10.4 thousand mc / 0.84%), Galați 10 thousand cubic meters / 0.67%) to mention is that in these counties the agricultural resource predominates.

The richest counties from the point of view of the agricultural resource used as biomass in energy production are Timis (1432 thousand tons / 98.6%), Călăraşi (934 thousand tons / 98.9%) and Brăila (917 thousand tons, 99.15%). At the opposite pole with the poorest counties on this type of resource are the counties: Harghita (41 thousand tons) Covasna (73 thousand tons), Braşov (89 thousand tons) although at the county level the type of agricultural resource predominates, the obtained quantities are the smallest country-wide.

Figure no. 1 Romanian Energy Potential in Biomass Production

Source: INL ICEMENERG; Study on the assessment of the current energy potential of renewable energy sources in Romania (...), Identifying the best locations for developing investments in unconventional energy production (synthesis)

Biomass is a source of energy for Romania that can be successfully exploited, economically promising and with a very high potential especially due to the possibilities of use, resulting biofuels being used in agriculture and forestry, for the 2013-2015 timeframe about 52 thousand toe of solid biofuels and 4.5 thousand toe of liquid biofuels were used in these sectors. By drawing a parallel between the two types of biofuels (liquid / solid), we note that largely solid biofuels from the forest sector are used at national level.

Developing the use of biomass at national level has certain strengths but also weaknesses, so that through the following SWOT analysis we can identify these points as well as the opportunities and risks in this field.

	STRONG POINTS		WEAK POINTS
√	Existence of large areas of unused agricultural land	×	Excessive use of wood waste for non-energy
	or degraded land for classical crops that can be		industrial applications;
	used for the establishment of energy crops	×	Reduced woodland areas with sustainable
\checkmark	Existence of large quantities of agricultural		management to provide an important amount of
	residues from classical cultures usable for energy		wood biomass;
	production	×	The difficulty of organizing biomass feedstocks for
\checkmark	Growing demand for thermal energy by reducing		medium / long term biomass for high power
	emissions related to energy deployment / use		projects;
\checkmark	Preoccupation of public authorities for the use of	×	Reduced market for biomass products: briquettes,
	building heating solutions using renewable energy,		pellets - necessary for individual heating
,	especially biomass		applications for dwellings;
\checkmark	Existence of certain associations of forest	×	Lack of an implemented system for the collection
,	entrepreneurs		of agricultural waste for biomass.
\checkmark	The emergence of clusters (Green Energy,	×	Lack of studies - potential analysis of
	ProWood, RegioFA, RenErg etc) that promote	×	biomass by type at regional level
	technological and innovative transfer in the field of	×	Hard access to high performance technologies
,	renewable energy / biomass.		(such as high efficiency cogeneration) for biomass
✓	The current existence of Norwegian funds with		use due to high prices
,	application domains - RES use	×	Insufficient funding for biomass use projects;
~	The Structural Funds provide for all the funding	×	Lack of funding lines to support the establishment
	areas provided as eligible actions to increase		of energy crops;
	energy efficiency and renewable energy	x	Stop the "Green House" national programs devoted
/	production.		to the transition to heating systems using RES /
v	Higher education institutions / research with		
	research platforms dedicated to renewable energy	x	Lack of training and certification programs for
	eg: - Transnvania University of Brasov;	~	Instances of renewable energy systems;
		~	Low level of stall training in town nails to identify
			and promote projects for the use of local blomass
			resources.

	OPPORTUNITIES		THREATS
\checkmark	The ever-increasing price especially for natural gas	×	Increased use of wood waste for non-energy
	will lead the consumer towards the use of biomass		industrial applications;
\checkmark	Establishment of energy crops on unused land.	×	Medium-term non-tariffing in Romania of the prices
	which can support this area		of electricity and natural gas at European levels will
\checkmark	Possibility of occurring in the big cities of biomass		not allow the realization of investments in biomass
	thermal energy production systems that can be		not anow the realization of investments in biomass
	thermal energy production systems that can be		projects,
,	occupied by a neighborhood or block of buildings	x	Prevalence of export of raw or processed biomass on
~	The development of the economic environment		domestic use (eg export-oriented pellet market);
	will increase the demand for biomass necessary for	×	Further reducing the number of centralized heat
	industrial processes		distribution systems in cities;
\checkmark	Promotion of public-private partnerships for the	×	The non-allocation by the central authorities of the
	implementation of pilot projects on the use of		necessary funding for programs to promote the use
	biomass		of biomass
\checkmark	Developing technologies in the use of biomass	×	Limiting access to state-of-the-art and state-of-the-
1	National support programs from European funds		art biomass technologies due to the high investment
•	for the actual ishmant of an area areas		welves
	for the establishment of energy crops		
V	increasing the interest of local and foreign	×	Lack of a concrent policy and government strategies
	investors regarding a possible investment in the		to promote the use of local resources for energy
	production and / or use of biomass-biofuels		production.
\checkmark	The emergence of national programs dedicated to		
	supporting the transition to individual or collective		
	heating systems using biomass		
	- · · · · · · · · · · · · · · · · · · ·		

Source: Local Action Plan for Bioenergy / Biomass 2014-2020 - Central Region

With the issuance of European Directive 2009/28 / EC, Romania has set ambitious targets for renewable energy for 2020, and in order to achieve these targets, a number of strategic documents have been issued as follows:

Romania's energy strategy for the period 20007-2020 - approved by GD no. 1069/2007, which has as a general objective the satisfaction of energy both presently and in the medium

and long term with the lowest price. The strategic objectives being given by energy security, sustainable development, environmental protection and competitiveness. The energy strategy highlights the need for large-scale exploitation of biomass yields that cover about 50% of total energy sources at national level.

► Law 220/2008 on the Promotion of the Production of Renewable Energy

This law creates a legal framework for expanding the use of renewable energy sources by setting sustainability criteria for biofuels and bio liquids obtained from biomass, reducing environmental pollution by reducing emissions of greenhouse gases and greenhouse gases, stimulating sustainable local development and regional development and the creation of new jobs for the processes of capitalizing on renewable energy sources.

CONCLUSIONS

Romania is able to develop production systems for all types of renewable energy, depending on the specificity of each geographical area in the country, but the greatest potential in the production of renewable energies is held by: biomass with 65%, wind energy 17%, energy solar 12%, 4% hydrothermal and 2% geothermal and 2% geothermal.

Biomass is the main fuel in the countryside, it has wide uses but it is mainly used in space and water heating, but this renewable energy source covers about 7% of the primary energy and reaches about 50% of Romania's renewable resources potential, this is an important solution for the production of thermal energy through cogeneration technologies, being also the most convenient solution from a financial point of view.

If all the estimated biomass quantity shown in Figure 1 could be used energetically, Romania could meet the Union 2020 target for renewable energy use.

The use of biomass at national level should be promoted and developed, especially in areas that have potential for this type of resource, national legislation on this area should be clearer and the Romanian state should support action on to the use of biomass both thermally and electrically.

This paper cannot explain enough the necessity of using renewable energies at national level, but it may increase your interest in this topic.

BIBLIOGRAPHY

- 1. DG Agriculture and Development / Statistics Eurostat rural energy
- 2. Directive 2009/28 / EC, repealing Directives 2001/77 / EC and 2003/30 / EC
- 3. Ec. Vac Sebastian-Călin, Summary of PhD thesis "Economic and Financial Feasibility of Renewable Energy Resources" Faculty of Agriculture, USAMV Cluj
- 4. Grigore Marin, Solid biofuels production and properties. Manual for the Use of Solid Fuels Manufacturers, Chisinau 2016 ISBN 978-9975-166-2
- 5. National Institute of Wood, www.inl.ro
- 6. National Institute for Research and Development for Energy ICEMENERG Bucharest http://www.icemenerg.ro/;
- 7. Local Action Plan for Bioenergy / Biomass 2014-2020 Centre Region
- 8. Study on the assessment of the current energy potential of renewable energy sources in Romania (...), Identifying the best locations for developing investments in unconventional energy production (synthesis)
- 9. *** http: //ec.europa.eu/eurostat/statisticsexplained/index.php/Renewable_energy_statistics
- 10. *** http://ec.europa.eu/eurostat/web/energy/data/database
- 11. *** http://www.europarl.europa.eu/ftu/pdf/ro/FTU_5.7.4.pdf