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A U T O C O R R E L A T I O N 

- PREVALENCE OF IDENTIFICATION OF COLLINEARITY CAUSE- 

Merce E., C. C. Merce, Cristina B. Pocol* 

*Corresponding author 

Abstract: The paper demonstrates that autocorrelation is an accidental statistical phenomenon, whose origin is the 
incomplete  data  base.  It  also  shows  that  the  attempts  to  redistribute  factors  interactions  have  focused  on  the 

development of methods of solving the effect rather than identifying the cause that generates collinearity. Three possible 

methods for collinearity removal are analysed comparatively. The premise for two of these methods is autocorrelation 

redistribution, and the third reveals the cause of collinearity and, implicitly, its cancellation. The three methods are 

named as follows: 

1. 
2. 

3. 

Classic method [1,7]; 
Method of Merce E., Merce C.C.[6]; 

Method of Merce E., Merce C.C.[5]; 

It is demonstrated that the first two methods are conventional approximations on the distribution of factors’ 
interaction, with possible subjective consequences. 

The ideal solution is the use of a complete data base. If this is not possible, as is often the case with databases 

of economic or sociological research, solving can be the completion of information with theoretical values, obtained by 

adjusting the causal relationship, in the hypothesis of a certain regression model, a procedure that represents, in fact 

and implicitly, a way of redistributing the interaction on the influence factors included in the causal model. 

INTRODUCTION 

Collinearity is an objective reality in the research of complex causal relationships, which 
externalises, as it will be demonstrated, whenever information about the causal complex is 

incomplete. The presence of collinearity alters the accuracy of numerical determinations between 

factors, on the one hand, and the studied effect, on the other. The phenomenon of collinearity 

cannot, however, always be avoided. This is primarily about research in economics, sociology, 

psychology. Therefore, it seems natural to evaluate the collinearity and then correct the 

determination relationship between factors and effect. For this purpose, methods of individualizing 

the influence of each factor have been outlined, respectively by calculating the partial correlation 

coefficients [1,6,7]. It will be emphasized that such attempts, although rigorous from a 

methodological point of view, are working conventions and that neither of these methods leads to 

the actual numerical determination ratios between factors and effects, ratios which can only be 

obtained in the case in which there are complete information on the causal complex. If the 

specificity of the researches necessary requires the use of an incomplete data base, then, in our 

opinion, the way of redistribution of the factors’ interaction must be solved through the integration 

of the data base. 

MATERIAL AND METHOD 

We appreciate that, in the construction of methods of separating factors’ influence, in cases 
of incomplete information, a principle mistake was made by which enthusiasm pushes us to combat 

or adjust the effects and not to explain the causes that produce them. This explains the presence in 

specialty literature of many methods which, with a higher or lower dose of conventionalism, offer 

the possibility of deciphering collinearity and collinearity redistribution by factors. All these 

methods, however, fall under the scope of conventional or, even more severely, of approximation of 

research results in violation of scientific rigor. That is, in the search for causality, according to these 

methods, the cause of collinearity was not identified. What is, therefore, the cause that generates 

collinearity (interdependence) among factors? 

Studies, observations and concrete processing are the grounds that lead us to the 

conclusion that the source of collinearity is the incomplete information on the way of the 

exteriorization of the effect under the influence of the investigated factors. In such a case, the effect 

 



of collinearity, respectively autocorrelation does not occur if all the states of the resultant variable 

(yij) are known for all possible combinations of states comprised of the factorial variables (x1j, x2j). 

Any deviation from this imperative generates collinearity. Compliance with this requirement means 

complete experimental plans, including all possible combinations of predetermined factors variants. 

In the case of socio-economic phenomena, where the experiment is often impossible, the 

only alternative is to fill in the information with data adjusted in the hypothesis of a certain 

regression model, based on incomplete data in the experiment. 

And in the case of agricultural experiments, it happens often to encounter situations that 

only contain some of the possible combinations of influence factors variants. In this regard, it was 

assumed the following experimental plan for corn crops, which is aimed at the evolution of average 

production according to NP doses (Table 1). 

Table 1The evolution of average corn production according to NP doses (conventional data) 

RESULTS AND DISCUSSIONS 

The  picture  of  the  possible  combinations,  respectively  the  corresponding 

production, is shown in Table 2. 

average 

Table 2 The range of possible combinations of the five variants of each factor 

This is a typical example of incomplete information, which generates collinearity and all 
shortcomings related to redistribution. Correspondences between the levels of factors allocated and 

the average production obtained for data processing are presented in Table 3. 

Table 3 

In  the  case  of  the  first  two  methods,  from  those  mentioned,  for  autocorrelation 
redistribution, it is necessary to determine the correlation coefficients in the hypothesis of a certain 

theoretical regression model. To express the causal relation between the two factors and the average 

production, a linear bifactorial model was used. The bifactorial model is, at the same time, the 

starting point for calculating the adjusted values for completing the baseline data for the third 

method.Based on the hypothesis that the link could be expressed by a bifactorial, respectively a 

mono-factorial linear model, by processing the database, the following concrete forms of the 

models mentioned were obtained: 

y(x x ) 4985,111,83x 8,56x  ;  R 0,934; D 
 

; 

87,2 % 1   2 1 2 yx1x2 yx1x2 

y(x ) 5097,117,02x ; r 0,914; 
1 1 yx1 

X1 X2 Y X1 X2 Y X1 X2 Y 

0 0 4600 100 40 6095 150 120 7935 

0 40 4945 100 80 7590 150 160 7920 

50 40 5980 100 120 7725 200 120 8050 

50 80 5865 150 80 7820 200 160 7915 

X1 

X2 

0 
 

50 
 

100 
 

150 
 

200 
 

0 4600 ? ? ? ? 

40 4945 5980 6095 ? ? 

80 ? 5865 7590 7820 ? 

120 ? ? 7725 7935 8050 

160 ? ? ? 7920 7915 

Dose Kg/ha Dose Kg/ha Dose Kg/ha Dose Kg/ha 
N0P0 4600 N50P80 5865 N100P120 7725 N150P160 7920 
N0P40 4945 N100P40 6095 N150P80 7820 N200P120 8050 
N50P40 5980 N100P80 7590 N150P120 7935 N200P160 7915 

 

 

 



y(x ) 4978,9 21,82x  ;  r 0,862; 
2 2 yx2 

x (x ) 7,02 1,12x  ; r 0,824; 1 2 2 x1x2 

Taking into consideration the concrete form of the calculated regression models, it is 

possible to emphasize the methodological content of the three methods. 

Method 1: 

According to this method, the individualization of the influence of the two factors implies 

the redistribution of the interaction between them. For this purpose, it is recommended to calculate 

the coefficients of partial correlation, according to practices established in specialty literature [1,7]. 

Ryx x   ryx 
1   2 1 


0,934 * 0.914    

0,680
 r yx x 1      2 

r 2 r 
2
 0,914

2 
0,862

2
 

yx1 yx2 

(0,680)
2 
100 46,2 % ; d 

yx1 x2 

Ryx x   ryx 
1   2 2 


0,934 * 0,862    

0,641;
 r 

yx  x 

r 2 r 
2
 0,914

2 
0,862

2
 

2      1 

yx1 yx2 

(0,641)
2 
100 41,0 % d 

yx2 x1 

Method 2: 

Another method of distributing collinearity by influence factors recommended in specialty 

literature [6], namely the calculation of partial correlation coefficients and partial determinations is 

based on the illustration of how determinations are calculated in a specific causal complex in all 

successions possible. The illustration of 

shown in Figure 1. 

the judgments underlying this method of calculation is 
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Fig.1 – Determinations in a causal complex of three partially autocorrelated factors 
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The calculation relations, respectively the calculations made according to the judgments 

presented in Figure 1, are as follows: 

a. The general case: 

The coefficient of partial correlation represents the square root of the average of 

determinations average explained step by step (iterative) in the context of a certain causal complex, 

in all possible successions, calculating according to the relationship: 

A 

n 
r 0123...n 

R
2      

R
2  ... R

2      
R

0   
A R

2   
 012 02 01n 0n 01 
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...  

C n 4 n 1 

R
2    

... R
2  

... ... R
2
 R
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b. The three-factors case: 


R012  R01 R013  R 


R 

2
 

2 2 2 2 

R 
2    


R 2 03 

01 0123 023 
2 r0123  

3 


R012  R01 R023  R 


R 

2
 

2 2 2 2 

R 
2    


R 2 03 

02 0123 013 
2 r0213  

3 

R R   R R   2 2 2 2 

 R R 2 013 01 023 02 2 2 
 R 03 0123 012 

2 r0312 
3 

c. The two-factors case and related processing: 

2 2 2 2 2 2 
r01 (R012 r02 ) (0,914)  [(0,934)  (0,862 ] 

2 
r   0,694 

yx1 x2 2 

(0,694)
2 
100 48,2 % d 

yx1 x2 

 

     

 

 

 

 

 

 

    

   

 



2 2 2 2 2 2 
r02 (R012 r01) (0,862)  [(0,934)  (0,914) ] 

2 
r   0,624 

yx2 x1 2 

dyx  x (0,624) 100 39,00 % 
2      1 

Method 3 

As in many other areas, scientists remain stuck in efforts to combat the effects, neglecting 

the decipherment of causes that produce unwanted effects. This is the case with collinearity. As a 

result of many applications and statistical processing by authors, there was a suspicion that 

autocorrelation could be caused by the incomplete data base. Remaining in the field of scientific 

speculation, it has been shown that interaction distribution could be done by filling in the missing 

information with the adjusted values of the regression model used. By generating the adjusted 

values, using the elaborated bifactorial model, the complete database is as shown in Table 4. 

Table 4 

Through data processing, the following concrete forms of the bifactorial model and of the 

mono-factorial models were obtained: 

y(x x ) 4919,3 11,70x 8,59x  ; R 0,955; D 91,20 % 1   2 1 2 yx1 x2 yx1x2 

y(x ) 5606,8 11,70x ;  r 0,823; d 

0,4845; 

67,73 % 1 1 yx1 yx1 

y(x ) 6089,18,59x  ;  r d 23,47 % 2 2 yx2 yx2 

x (x ) 100 0x ;  r 0 ; d 0% 1 2 2 yx2 yx2 

It can be noticed that, for the third method, the interaction does not operate, and the 
coefficients of the simple correlation are at the same time coefficients of the partial correlation, 

respectively reflecting the pure influence of each factor. 

Synthetically, the aggregate influence and the separate influences of the two factors for the 

three methods are presented in Table 5. 

Table 5 The comparative situation of total determination and by factors (%) 

For all three methods, the assignment of the total determination by factors is complete, but 
not unique. Moreover, the total determination is the same for the first two methods, but different for 

the third. 

Method three confirms the truth that autocorrelation is generated by incomplete data bases, 

but, even in this case, it is assumed that total determination and true partial determinations can only 

be obtained in the case of the complete data base, obtained through the experimental plan. 

Factor’s influence 
 

Incomplete data base Complete data base 

Method 1 Method 2 Method 3 

X1 46,2 48,2 67,73 

X2 41,0 39,0 23,47 

X1, X2 87,2 87,2 91,20 

X1 

X2 

0 
 

50 
 

100 
 

150 
 

200 
 

0 4600 5487 6078 6670 7261 

40 4945 5919 6095 7012 7604 

80 5580 6261 7590 7820 7946 

120 5922 6514 7725 7935 8050 

160 6265 6856 7448 7920 7915 
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