Sørensen, Erik Ø.; Hole, Astri D.; Cappelen, Alexander W.; Tungodden, Bertil

Working Paper
The pluralism of fairness ideals: an experimental approach

CESifo Working Paper, No. 1611

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Sørensen, Erik Ø.; Hole, Astri D.; Cappelen, Alexander W.; Tungodden, Bertil (2005): The pluralism of fairness ideals: an experimental approach, CESifo Working Paper, No. 1611

This Version is available at:
http://hdl.handle.net/10419/19075

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.
Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
THE PLURALISM OF FAIRNESS IDEALS:
AN EXPERIMENTAL APPROACH

ALEXANDER W. CAPPELEN
ASTRI D. HOLE
ERIK Ø. SØRENSEN
BERTIL TUNGODDEN

CESifo WORKING PAPER NO. 1611
CATEGORY 1: PUBLIC FINANCE
DECEMBER 2005

An electronic version of the paper may be downloaded
• from the SSRN website: www.SSRN.com
• from the CESifo website: www.CESifo-group.de
Abstract

A core question in the contemporary debate on distributive justice is how the fair distribution of income is affected by differences in talent and effort. Important theories of distributive justice, such as strict egalitarianism, liberal egalitarianism and libertarianism, all give different answers to this question. This paper presents the results from a version of the dictator game where the distribution phase is preceded by a production phase. Each player’s contribution is a result of an exogenously given talent and a chosen effort. We estimate simultaneously the prevalence of three main principles of distributive justice among the players as well as the distribution of weights they attach to fairness considerations.

JEL Code: D63.

We would like to thank Chris Ferrall and Steinar Holden for helpful comments.
1 Introduction

People are motivated by fairness considerations and are willing to sacrifice pecuniary gains in order to avoid large deviations from what they consider a fair solution. This type of behaviour has been extensively documented in laboratory experiments with games such as the ultimatum game and the dictator game (Camerer, 2003). However, while these games show us that a substantial fraction of the players are motivated by fairness considerations, they do not provide much information on the pluralism of fairness ideals present in society. In the standard versions of the ultimatum game and the dictator game, the money to be distributed by the players is essentially “manna from heaven”, and it seems rather uncontroversial to assume that people in general view the fair solution to be to distribute money equally in these cases.

The core question in both the modern political debate on distributive justice and in normative theoretical reasoning, however, is how to understand fairness in more complex situations involving production. In particular, there is substantial disagreement about the extent to which people should be held responsible for various factors affecting their pre-tax income. The controversy between the left wing and the right wing of the political spectrum can be interpreted to a large extent as a disagreement about how differences in effort and talent should be allowed to affect the income distribution. The prevalence of the view that luck determines income in a society seems to play an important role in explaining cross-country variation in choices of re-distributive policies (Alesina and Angeletos, 2005).

Three fairness ideals are prominent in this debate. Proponents of the strict egalitarian doctrine argue that people should not at all be held responsible for their effort and talent, thus considering equal sharing as the fair solution even in cases involving production. Libertarians, on the other hand, claim that people should be held responsible for both their talent and their effort, which implies that the fair solution is to give each person what
she produces. As an intermediate position, *liberal egalitarians* view effort as within and talent beyond individual control, and thus believe that redistributive policies should aim at equalising differences due to differences in talent but should allow for inequalities due to differences in effort.

Which of these fairness ideals is more prevalent in society? This question is not easily answered, because in actual behaviour, fairness considerations are usually balanced against self-interest considerations. Differences in observed behaviour therefore may be due to two different sources. People may differ both in the importance they assign to fairness considerations and with respect to what they consider to be a fair distribution. As a result, the most common ways to elicit data on the prevalence of different fairness ideals have been to use surveys or experiments where the proposer is not a stake-holder, thereby avoiding any self-serving bias (see Konow (2003) for an overview of this literature). However, these approaches have the weakness that the participants do not have to demonstrate any willingness to act on the endorsed fairness ideals, and consequently they can be very sensitive to framing effects.

The aim of this paper is to show how one may estimate simultaneously the prevalence of different fairness ideals and the degree of importance people attach to fairness considerations in an experiment where participants have a stake in the outcome. We study a dictator game in which the distribution phase is preceded by a production phase. The players differ with respect to both effort and talent, and thus different fairness ideals provide different answers to the question of what is a fair distribution of the total production. Given a simple random utility model where people make a trade-off between pecuniary gains and fairness considerations when proposing a distribution of the production, we estimate the share of the population motivated by each of the three fairness ideals (strict egalitarianism, liberal egalitarianism and libertarianism) and the mean value and variance in the parameter measuring the importance people attach to fairness considerations. We also provide a simple test of whether there is “moral wriggling” among the participants,
that is, whether they decide opportunistically on a fairness ideal after the
distributional situation is known (Dana, Weber and Kuang, 2004).

Section 2 describes the basic model in more detail, including the fairness
ideals. Section 3 provides a discussion of the experimental design, and the
results are reported in Section 4. Section 5 contains a discussion of related
literature and some concluding comments.

2 The model

We study a situation in which individuals differ in both effort and talent, and
in which effort is clearly within individual control, whereas talent is clearly
beyond individual control. Effort, q_i, is the amount of money an individual
i chooses to invest in the production phase. Talent, a_i, is the rate of return
on the investment. The income generated by individual i in the production
phase is then $x_i = a_i q_i$. The experiment is designed such that there is no
need to model the choice of effort in the production phase.

The distribution phase will always be in a two-person setting, where we
refer to the individuals as person 1 and person 2. The total income to be
distributed is given by $X(a, q) = x_1(a_1, q_1) + x_2(a_2, q_2)$, where $a = (a_1, a_2)$
and $q = (q_1, q_2)$. Each individual is to propose an amount of income y for
herself and $X - y$ for her opponent.

2.1 Individual motivation: income and fairness

We assume that the individuals are motivated by both a desire for income
and a fairness ideal, where individual i’s fairness ideal is denoted $m^{k(i)}$ and
specifies a unique distribution in any given situation. We also assume that
the marginal disutility of deviating from the fairness ideal is increasing in the
size of the deviation from the fair distribution. More formally, we assume
that person i is maximising the following utility function when proposing a
distribution (this is a generalisation of the utility function studied by Bolton)
where the parameters $\gamma > 0$ and $\beta_i \geq 0$ determine the weight individual i gives to income and to fairness considerations. The optimal proposal, y^*, is (given an interior solution)

$$y^* = m^{k(i)}(a, q) + \gamma/\beta_i.$$

It follows immediately that the optimal proposal depends on both the fairness ideal endorsed by the individual and the importance assigned to fairness considerations. A player with $\beta_i = 0$ would always keep all the money for herself.

2.2 The fairness ideals

We assume that an individual endorses some version of strict egalitarianism, libertarianism or liberal egalitarianism. Each of the fairness ideals satisfies the no-waste condition, and thus we can index the fair distribution such that m^k and $X - m^k$ is what fairness ideal k assigns to person 1 and person 2 respectively.

Strict egalitarians do not hold people responsible for their effort and talent, and therefore they view equal sharing as the fair distribution. This fairness ideal may be interpreted in two different ways in the present context. First, one may defend the simplest and strongest notion of equality (see, for example, Nielsen (1985)), where fairness is to distribute gross total income equally. We call this the strong version of strict egalitarianism (SES).

$$m^{SES}(a, q) = X(a, q)/2.$$

Alternatively, one may interpret strict egalitarianism as equally distributing
the net total income, which implies that the two persons receive the same overall income from the game (see also Iversen, Jackson, Kebede, Munro and Verschoor (2005)). We call this the weak version of strict egalitarianism (SEW).

\[
m^{SEW}(a, q) = q_1 + \frac{X(a, q) - q_1 - q_2}{2}.
\] (4)

The strict egalitarian view is closely related to the inequality-aversion models in the experimental literature, which assume that people dislike inequitable outcomes (see Fehr and Schmidt (1999) and Frohlich, Oppenheimer and Kurki (2004). The weaker version may also be given a welfarist interpretation. If we assume that the fair distribution is what maximises a quasi-concave social welfare function, that individuals derive the same welfare from income and that marginal welfare decreases with income, then it follows that the fair solution is to distribute the net total income equally.

The libertarian fairness ideal is at the opposite extreme of strict egalitarianism. The fair distribution is simply to give each person exactly what she produces,

\[
m^L(a, q) = a_1 q_1.
\] (5)

This view may be defended by arguing that people should be held responsible for both their effort and their talent, and hence that a low talent does not justify any redistribution among individuals (Nozick, 1974). The fair solution may thus involve an unequal distribution of income due to differences in both effort and talent.

Liberal egalitarianism, on the other hand, defends the view that people should only be held responsible for their choices (Roemer, 1998). A reasonable interpretation of this fairness ideal in the present context is to view the fair distribution as giving each person a share of the total income equal to her share of the total effort.

\[
m^{LE}(a, q) = \frac{q_1}{q_1 + q_2} X(a, q).
\] (6)
This principle is equivalent to what has been described as the accountability principle (Konow, 1996, 2000). It implies that if two persons make the same choice, then the fair solution is to give them the same income. If they make different choices, the liberal egalitarian fairness ideal justifies an unequal distribution of income between them.

Even though these fairness ideals provide different solutions to the distributional problem, it is important to note that on average they instruct individuals to offer the same amount to the other person. In any particular game and for any fairness ideal \(k\), the fair solution would be for person 1 to offer \(X - m^k\) to person 2 and for person 2 to offer \(m^k\) to person 1, which implies that the average fair offer in the game is \(X/2\). Hence, it is not possible to extract any information about the prevalence of the various fairness ideals from the size of the average offer. In order to establish such information, we need to study how each individual’s offer depends on the distribution of effort and talent in the situation.

3 Experimental design

Our experiment is a version of the dictator game with production, where production is dependent on both factors within and factors beyond individual control. At the beginning of the experiment, each participant was given money credits equal to 300 Norwegian Krone (NOK), approximately 50 USD, and informed about the rules of the game. Each participant was then randomly assigned a low or a high rate of return. Participants with a low rate of return would double the value of any investment they made, while those who were assigned a high rate of return would quadruple their investment.

In the production phase the participants were asked to determine how much they wanted to invest in two different games. Their choice alternatives

1 The complete instructions are available on request from the authors.
were limited to 0, 100 and 200 NOK, and the total amount invested in the two games could not exceed the initial money credit they received. Any money they chose not to invest they could keep after the experiment ended, and thus they faced a genuine choice of investment.

In the distribution phase, the participants were paired with a player who had the same rate of return in one game and with a player who had a different rate of return in another game. In each game, they were given information about the other participant’s rate of return, investment level and total contribution and were then asked to propose a distribution of the total income. The participants were not informed about the outcome of the first game before the second game was completed. For each participant, one of the two games and one of the two proposals in that game (the participant’s own that of the opponent) were randomly selected to determine the final outcome. The total earnings from the experiment for a participant were then the sum of the final outcome and the amount of money not invested.

At the end of the experiment, the participants were assigned a code and instructed to mail the code and the bank account numbers to the accounting division of the Institute for Research in Economics and Business Administration (SNF). Independently, the research team mailed a list with the codes and total payment to the accounting division, who then disbursed the earnings directly to the participants’ bank accounts. This procedure ensured that neither the participants nor the research team was in a position to identify how much each participant earned in the experiment.

The participants in the experiment were all recruited among the first-year students at the Norwegian School of Economics and Business Administration. They were not informed about the purpose of the experiment but were only invited to take part in a research project. In the invitation, they were told that they would initially receive 300 NOK for use in an experiment that would last for about 40 minutes and that their total earnings from the experiment would depend on their choices. The hourly opportunity cost for most of
these students would be about 100 NOK, while the average payout was 447 NOK. Each student was only permitted to participate once. We had one session with 20 participants, one session with 12, and four sessions with 16, comprising a total of 96 participants. The participants were in the same computer lab during a session, but all communication was anonymous and was conducted through a web-based interface.

In Table 1, we see the distribution of investments in the first and the second game. No one kept the full endowment, one participant (with a low rate of return) invested only 100 NOK and 10 participants (four with a high rate of return and six with a low rate of return) invested 200 NOK. The remaining 85 participants invested the full endowment of 300 NOK, evenly distributed between investing (200, 100) and (100, 200). The fact that some participants did not invest the full endowment indicates that they perceived the choice of investment as a genuine choice. However, since most did invest the full amount, we doubt that the variation in choices in the production phase introduces any important bias in our analysis of the distribution phase.

In the distribution phase, the paired players could differ with respect both to their rate of return and their investment, which implies that there were four different classes of distributional situations in the experiment. First, there were situations where the players were identical with respect to both their rate of return and their investment. All the four fairness ideals imply the same fair distribution in this case, namely that both players get an equal

<table>
<thead>
<tr>
<th>first game</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>9</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
<td>46</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>1</td>
<td>56</td>
<td>39</td>
<td>96</td>
</tr>
</tbody>
</table>

Table 1: Investments in the first and the second game.
share of the total income. Second, there were situations where the players had the same rate of return but differed in their investment level. This would make the liberal egalitarian and the libertarian fairness ideal coincide, whereas the two versions of strict egalitarianism would imply different views of the fair distribution. Third, there were situations where the players had made the same investment but differed in their rate of return. All the fairness ideals except for libertarianism consider an equal distribution fair in such a case. Finally, there were situations where the players differed along both dimensions. In these situations, the strong version of strict egalitarianism and libertarianism imply the same fair offer if the player with the high talent is the player with the low effort. Otherwise, all the fairness ideals differ in this case. Table 2 reports the empirical distribution of the four classes of distributional situations in the experiment.

<table>
<thead>
<tr>
<th></th>
<th>investment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>talent</td>
</tr>
<tr>
<td>same</td>
<td>44</td>
</tr>
<tr>
<td>different</td>
<td>54</td>
</tr>
<tr>
<td>total</td>
<td>98</td>
</tr>
</tbody>
</table>

Table 2: Number of observations in each of the four classes of distributional situations.

As we can see from Table 2, there was almost a balanced design with respect to the four distributional situations. We have 44 situations where the prevalence of different fairness ideals cannot influence the distribution of offers made. In the remaining observations, the differences in observed behaviour may be due to the fact that people endorse different fairness ideals. In order to get a clearer view of the potential variation caused by the prevalence of different fairness ideals, we have 190, not 192, distributional situations in total, since a single incidence of a software problem caused a pair of participants to enter invalid data in one distributional situation. This pair was dropped from all further analysis.
Figure 1: Scatter plots of fairness ideals. Pair-wise plots of $m^k(a, q)$ against $m^j(a, q)$ for all the distributional situations in our data. The weight of dots indicates the number of observations at that point.

of different fairness ideals, we present in Figure 1 pair-wise scatter plots of how the various fairness ideals correlate to each other in all the distributional situations in the experiment. If two fairness ideals coincide for all the distributional situations, then all the points should be at the diagonal in the respective comparison. Figure 2 shows that the fairness ideals imply considerable variation for the distributional situations in the experiment, possibly with the exception of the two versions of strict egalitarianism. These overlap to a great extent, and thus we should not expect to gain much by including both in the empirical analysis of this experiment.
4 Results

We begin by presenting some descriptive statistics before we formulating and estimating a random utility model. Finally, we consider the possibility of “moral wriggling” by the participants.

4.1 Descriptive statistics

Table 3 summarises some main features of the offers made. The average offer to the opponent is 27.1% (which amounts to 229 NOK), while the median is 29.2%. This is slightly higher than what is commonly observed in the standard dictator games without production (Andreoni and Miller, 2002; Camerer, 2003), and may indicate that the presence of a production phase causes people to care more about fairness considerations. The maximum offer is of 75% of the total income.

Table 4 contains the full distribution of offers made. We see that there are marked steps in the distribution. In fact, out of 190 proposed distributions, 184 are of even 100 NOK amounts. The remaining six proposals are of even 50 NOK amounts. While 31% of the offers leave the opponent with nothing, some offer substantial amounts; 20 out of 190 offers are NOK 600 (about USD 100) or above. 27% of the offers are exactly fifty-fifty (not reported in

<table>
<thead>
<tr>
<th>offer share</th>
<th>offer amount (in NOK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>0.271</td>
</tr>
<tr>
<td>median</td>
<td>0.292</td>
</tr>
<tr>
<td>standard deviation</td>
<td>0.219</td>
</tr>
<tr>
<td>minimum</td>
<td>0</td>
</tr>
<tr>
<td>maximum</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Table 3: Descriptive statistics of offers made to opponent.
In Table 5 we present some descriptive regressions. We see from the first regression that the participants demand almost all of their own production (a_1q_1) but only two-thirds of the opponent’s production (a_2q_2). This difference is statistically significant. Hence, in the distribution phase, it seems to matter who contributes to the production of the total income. The second and third regressions show that it also matters how the contribution came about. The participants seem to take more of the opponent’s production if this is due to a high rate of return than if it is due to a high investment. This is consistent with the hypothesis that there are individuals who care about the distinction between effort and talent, but in itself these regressions are not very informative about individual preferences.

The model outlined in Section 2 implies that there might be identification from the fact that no one should ever offer more than what is implied by their fairness ideal. If one observes an offer of more than what is implied

<table>
<thead>
<tr>
<th>offer (in NOK)</th>
<th>frequency</th>
<th>share</th>
<th>cumulative share</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>58</td>
<td>30.53</td>
<td>30.53</td>
</tr>
<tr>
<td>100</td>
<td>15</td>
<td>7.89</td>
<td>38.42</td>
</tr>
<tr>
<td>150</td>
<td>3</td>
<td>1.58</td>
<td>40.00</td>
</tr>
<tr>
<td>200</td>
<td>39</td>
<td>20.53</td>
<td>60.53</td>
</tr>
<tr>
<td>250</td>
<td>1</td>
<td>0.53</td>
<td>61.05</td>
</tr>
<tr>
<td>300</td>
<td>25</td>
<td>13.16</td>
<td>74.21</td>
</tr>
<tr>
<td>400</td>
<td>23</td>
<td>12.11</td>
<td>86.32</td>
</tr>
<tr>
<td>500</td>
<td>6</td>
<td>3.16</td>
<td>89.47</td>
</tr>
<tr>
<td>600</td>
<td>8</td>
<td>4.21</td>
<td>93.68</td>
</tr>
<tr>
<td>650</td>
<td>1</td>
<td>0.53</td>
<td>94.21</td>
</tr>
<tr>
<td>700</td>
<td>3</td>
<td>1.58</td>
<td>95.79</td>
</tr>
<tr>
<td>750</td>
<td>1</td>
<td>0.53</td>
<td>96.32</td>
</tr>
<tr>
<td>800</td>
<td>7</td>
<td>3.68</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Table 4: Full distribution of offers made to opponent.
<table>
<thead>
<tr>
<th>y_1 on specification</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>-56.48</td>
<td>-260</td>
<td>-289</td>
<td>-798</td>
</tr>
<tr>
<td></td>
<td>(39.60)</td>
<td>(90.3)</td>
<td>(78.3)</td>
<td>(81.7)</td>
</tr>
<tr>
<td>a_1q_1</td>
<td>0.936</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_2q_2</td>
<td>0.667</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_1</td>
<td>157</td>
<td></td>
<td></td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>(21)</td>
<td></td>
<td></td>
<td>(16)</td>
</tr>
<tr>
<td>a_2</td>
<td>143</td>
<td></td>
<td></td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>(21)</td>
<td></td>
<td></td>
<td>(16)</td>
</tr>
<tr>
<td>q_1</td>
<td>3.62</td>
<td>3.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.37)</td>
<td>(0.31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_2</td>
<td>2.84</td>
<td>2.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.37)</td>
<td>(0.31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.66</td>
<td>0.36</td>
<td>0.45</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Table 5: Descriptive regressions.
by a fairness ideal, then the model rules out the possibility that this person
is motivated by this particular fairness ideal. 75 out of the 96 participants,
however, demand more than what is implied by all the fairness ideals, and
hence our experimental data are not well suited to a revealed-preference
approach to the identification of the prevalence of different fairness ideals.
Moreover, it turns out that two out of the 96 participants demand less than
what is implied by all the fairness ideals. Estimation of any model that does
not allow for some smoothing of choices will therefore fail.

4.2 Empirical model

We adapt the model to bring it into line with two features in the experi-
mental data. First, given that the participants have a very strong tendency
to choose round numbers, we restrict the choice of \(y \) to the set
\(Y(a, q) = \{0, 50, 100, \ldots, X(a, q)\} \). Second, we introduce random variation that is idio-
syncratic to each choice. Given the utility function \(V \) defined in (1), we
introduce the random utility model

\[
U_i(y; \cdot) = V_i(y; \cdot) + \varepsilon_y.
\]

We assume that the \(\varepsilon_y \)'s are i.i.d. extreme value distributed, and that in-
dividuals choose a \(y \), call it \(y^* \), such that \(U_i(y^*; \cdot) \geq U_i(y; \cdot) \) for all \(y \) in
\(Y \).

The model we propose has a mixed logit structure where each person is
characterised by their fairness ideal, \(k(i) \), as well as the parameter \(\beta_i \) de-
termining the importance a person assigns to fairness considerations. We
cannot classify individuals by \((k(i), \beta_i) \), but we estimate the distribution of
these characteristics. The distribution of moral types is discrete in nature,
and we approximate the distribution of \(\beta \) by a log-normal distribution, such

\footnote{The random utility structure of discrete offers made in our empirical model is similar
to that of [Andreonì, Castillo and Petrič (2004)], but our model is estimated on the full
population, and we do not estimate individual-specific utility functions.}
that \(\log \beta \sim N(\zeta, \sigma^2) \). Since the fairness ideal and the importance a person assigns to fairness considerations are unobserved by us, these must be integrated out for the unconditional choice probabilities as functions of the observed variables. We provide the likelihood function in an appendix.

Formal proofs of identification are difficult to provide in this situation where there is a large (but discrete) set of outcomes. However, consider what can be learned from the situations where \(a_1 = a_2 \) and \(q_1 = q_2 \). In these situations all fairness ideals coincide at \(X/2 \). The mean offer in these situations reflect the mean weight given to fairness considerations. The variance of offers in these situations reflect both the distribution of \(\beta \) and the smoothing introduced by the extreme value distributed \(\varepsilon \)'s. There is, however, also a discontinuity in the design, in that all offers above \(X/2 \) must result from the smoothing alone. With the parametric assumption of log-normality of \(f(\beta) \), these situations provide information about \((\gamma, \zeta, \sigma)\). Repeated observations, and the fact that we expose individuals to very different distributional situations, provide information about the distribution of moral ideals and further precision about the distribution of \(\beta \).

4.3 Structural estimates

In Table 6, we present the estimates of the structural model. Column 1 presents the structural estimates with all the fairness ideals, including both the weak and the strong version of strict egalitarianism. Columns 2–5 drop one of the fairness ideals in turn. In all columns, the estimate for each of the fairness ideals is the share of the participants who are motivated by this particular fairness ideal.

From the different specifications 1–5, and as we could expect from Figure 1, we see that the strong and the weak version of strict egalitarianism are not well separated in our data. Neither the log-likelihood nor the other parameters are much affected in specification 3 where the weak version of strict egalitarianism is excluded. There are, however, large effects of dropping any
<table>
<thead>
<tr>
<th>parameter</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_1, strict egalitarian, strong</td>
<td>0.3342</td>
<td>0.3971</td>
<td>0.3249</td>
<td>0.3719</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0969)</td>
<td>(0.0900)</td>
<td>(0.1362)</td>
<td>(0.1130)</td>
<td></td>
</tr>
<tr>
<td>λ_2, strict egalitarian, weak</td>
<td>0.0877</td>
<td>0.4032</td>
<td>0.3958</td>
<td>0.0963</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0759)</td>
<td>(0.1086)</td>
<td>(0.1449)</td>
<td>(0.0965)</td>
<td></td>
</tr>
<tr>
<td>λ_3, liberal egalitarian</td>
<td>0.4078</td>
<td>0.3967</td>
<td>0.4338</td>
<td></td>
<td>0.5318</td>
</tr>
<tr>
<td></td>
<td>(0.0924)</td>
<td>(0.1054)</td>
<td>(0.0923)</td>
<td></td>
<td>(0.1017)</td>
</tr>
<tr>
<td>λ_4, libertarian</td>
<td>0.1703</td>
<td>0.2001</td>
<td>0.1681</td>
<td>0.2792</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0641)</td>
<td>(0.0707)</td>
<td>(0.0641)</td>
<td>(0.0813)</td>
<td></td>
</tr>
<tr>
<td>ζ</td>
<td>5.235</td>
<td>4.794</td>
<td>5.167</td>
<td>4.474</td>
<td>4.611</td>
</tr>
<tr>
<td></td>
<td>(0.487)</td>
<td>(0.447)</td>
<td>(0.475)</td>
<td>(0.549)</td>
<td>(0.455)</td>
</tr>
<tr>
<td>σ</td>
<td>3.710</td>
<td>3.017</td>
<td>3.703</td>
<td>3.468</td>
<td>3.129</td>
</tr>
<tr>
<td></td>
<td>(0.728)</td>
<td>(0.524)</td>
<td>(0.690)</td>
<td>(0.702)</td>
<td>(0.576)</td>
</tr>
<tr>
<td>γ</td>
<td>23.68</td>
<td>21.56</td>
<td>22.48</td>
<td>16.48</td>
<td>19.86</td>
</tr>
<tr>
<td></td>
<td>(4.10)</td>
<td>(3.35)</td>
<td>(3.54)</td>
<td>(2.44)</td>
<td>(3.09)</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-346.07</td>
<td>-357.22</td>
<td>-347.25</td>
<td>-369.92</td>
<td>-358.33</td>
</tr>
</tbody>
</table>

of the other fairness ideals. Specification 3, in which we have 39.7% strict egalitarians, 43.4% liberal egalitarians and 16.8% libertarians, is therefore our preferred specification.

Based on these estimates, we make three observations. First, there is considerable pluralism in the fairness ideals that motivate people, even in rather simple distributional situations involving a homogeneous group of students. Second, the majority of the participants (the liberal egalitarians and the libertarians) care about the investments made by the opponent when they decide how much to offer. This implies that fairness considerations cannot be reduced to income inequality aversion in these distributional situations. Third, the estimated share of strict egalitarians is larger than the share of offers that are fifty-fifty. This is due to the fact that the fairness ideals overlap in some distributional situations and that people make active trade-offs.

The distribution of the parameter β, which determines the importance that people attach to fairness considerations, is assumed to be log-normal and characterised by parameters (ζ, σ), while the parameter γ determines the weight given to deterministic utility relative to the smoothing implied from the extreme value distributed ε’s.\footnote{The model is normalised by the constant variance of ε_i, which is $\pi^2/6$.} To get a handle on the effect of our estimated parameters, we provide Figure 2. This figure takes as the point of departure a situation where the total production is 1000 and the fairness ideal endorsed by a hypothetical individual specifies an equal split. We then provide, for every inner decile of the distribution of β, the deterministic utility and, plotted as solid bars, the implied choice probabilities for all even 50 NOK amounts for this hypothetical individual. By way of illustration, consider the case where $CDF(\beta) = 0.5$. The deterministic part of the utility function reaches its maximum when the individual offers 350 NOK, and thus the individual makes an active trade-off between fairness and self-interest considerations. The smoothing, however, implies that there is a positive but small probability of observing such a person offering more than what is
considered just by the fairness ideal she endorses (as seen by the small mass to the left of the fairness ideal).

$$V(y) = \gamma y - \beta (y - m)^2 / 2,$$

for an individual with \(m = 0.5 \) (marked by a vertical line). Calculated at the deciles of the estimated \(\beta \) distribution using the estimates in the preferred specification (3) in Table 6. Money, \(y \), is measured in units of thousands of NOK.

Our general impression from Figure 2 is that the population can be divided into three main groups. About 30% of the participants assign so little importance to fairness considerations that they have no inner maximum in their choice problem. Thus the most common choice among them is to offer the opponent nothing. 40% of the participants make active trade-offs between fairness and self-interest considerations, whereas 30% of the participants care mainly about fairness considerations.

To see how well our estimates predict the actual distribution of offers,
we simulate a distribution of offers for the distributional situations in the experiment. As we can see from Figure 3, there is a close fit. In particular, we note that we fit the large mass at the two most distinct points in the distribution (offers of 0% and of 50%). At the ends of the support, the smoothing can only operate one way, and hence we slightly underpredict the number of proposals that offer nothing, and we slightly overpredict the number of very high offers. This is to be expected given the random utility structure of the model.

![Figure 3: Empirical distribution function of offers made (as share of total production) and predictions from the estimated model. The solid line is our experimental data while the dashed line is predictions made from the estimates in specification (3). Predictions are made at the distributional situations in our dataset.](image-url)
4.4 True pluralism or moral wriggling?

We have assumed that individuals have a fairness ideal that is independent of the distributional situation in which they find themselves. Alternative approaches emphasise self-deception (Konow, 2000) or “moral wriggling” (Dana et al., 2004), where the idea is that individuals may use ambiguity in the distributional situation to further their own pecuniary self-interest at the expense of fairness. In a setting such as the one we are examining in this paper, a natural application of this train of thought is to allow for the possibility that people have no firm view about the fairness ideal to which they should adhere, and that they choose opportunistically the fairness ideal that benefits them most in any particular distributional situation.

In distributional situations where the rate of return and the investment level is the same for the two participants, all the fairness ideals defend an equal sharing of the outcome. Hence, moral wriggling is only applicable in situations where there is some inequality in either the rate of return or the investment. Even in these situations, every fairness ideal has an average offer of 50%. In Table 7, however, we see in the second column that in the ambiguous situations, choosing a fairness ideal self-interestedly would on average justify increasing one’s own share of the total income with 9.3 percentage points. A simple test of the idea of moral wriggling is therefore to see whether the participants consistently ask for a larger share in distributional situations where there is scope for such moral wriggling. In the third column, we see that there is indeed a difference of 2.2 percentage points between the actual amount demanded in the non-ambiguous and ambiguous situations, but this difference is small and not statistically significant. We conclude from this that while we cannot rule out that some individuals exploit such scope for moral wriggling, there is little reason to suspect that this is pervasive to a degree that would invalidate our analysis.
Table 7: Scope for moral wriggling. Non-ambiguous situations are distributional situations where all the principles that we consider agree on what is fair. Ambiguous situations are situations where the principles disagree. On average, every fairness ideal is to offer 50%.

5 Concluding remarks

Our analysis relates to the interesting studies of Konow (2000) and of Frohlich et al. (2004), which also apply versions of the dictator game with production in order to analyse the role of fairness considerations in individual choices. In line with our findings, both studies find that the distinction between effort and talent matters for many people. At the same time, there are important differences between these studies and ours.

The focus of Konow (2000) is to examine the extent to which fairness considerations can be explained by a single fairness ideal, namely the liberal egalitarian principle. In contrast, our aim has been to examine the prevalence of different fairness ideals among the participants, including liberal egalitarianism as one possibility. Moreover, even though liberal egalitarianism turns out to be the most prevalent fairness ideal among our participants, the majority of them hold other fairness ideals.

Frohlich et al. (2004) share our focus on the pluralism of fairness ideals, and they also find that there is substantial heterogeneity in their group of participants. They study this issue in an environment where it is not possible to distinguish libertarians from liberal egalitarians. More importantly, their
choice model does not allow for any active trade-off between a fairness ideal and pecuniary self-interest, and thus they are unable to distinguish clearly between a fairness ideal and the weight people attach to fairness considerations. This implies that they are unable to study possible heterogeneity in the weight people attach to fairness considerations (while such heterogeneity would bias their classification procedure).

The main aim of our study has been to show how we can estimate simultaneously the degree of heterogeneity in fairness ideals and in the weight people attach to fairness considerations. It turns out that both of these kinds of heterogeneity matter in explaining individual behaviour in our experiment, but we believe that this is also true more generally. Value pluralism is a characteristic feature of modern societies, and thus it could also potentially constitute an important ingredient in the explanation of economic phenomena.

Appendix: The likelihood function

In order to take into account the fact that individuals make repeated choices, it is necessary to introduce the notation J_i for the number of choices individual i makes. The likelihood of an individual i of type k making a proposal y_{ij} from the set of feasible proposals Y_{ij} given a parameter vector $\theta = (\lambda_1, \lambda_2, \lambda_3, \lambda_4, \gamma, \zeta, \sigma)$ is

$$L_{ik}(\theta) = \int_{0}^{\infty} \left(\prod_{j=1}^{J_i} \frac{e^{V_k(y_{ij}; a_{ij}, q_{ij}, \beta, \gamma)}}{\sum_{s \in Y_{ij}} e^{V_k(s; a_{ij}, q_{ij}, \beta, \gamma)}} \right) f(\beta; \zeta, \sigma) d\beta.$$

(8)

Revelt and Train (1998) calls this a “mixed logit with repeated choices”. We assume that $f(\beta; \cdot)$ is log-normal, parameterised such that $\log(\beta) \sim N(\zeta, \sigma^2)$. The total likelihood, integrating over the distribution of unobserved moral type, is a finite mixture over the type distribution determined by the discrete
distribution induced by λ,

$$L_i(\theta) = \sum_{k=1}^{4} \lambda_k L_{ik}(\theta).$$

(9)

The estimation is with simulated maximum likelihood, with 250 random draws with antithetics for the numerical integration over the $f(\beta)$ distribution. The estimation is performed with FmOpt, Christopher Ferrall’s efficient routines for finite mixture models (Ferrall 2005).

References

1549 Ruediger Pethig, Nonlinear Production, Abatement, Pollution and Materials Balance Reconsidered, September 2005

1550 Antonis Adam and Thomas Moutos, Turkish Delight for Some, Cold Turkey for Others?: The Effects of the EU-Turkey Customs Union, September 2005

1551 Peter Birch Sørensen, Dual Income Taxation: Why and how?, September 2005

1552 Kurt R. Brekke, Robert Nuscheler and Odd Rune Straume, Gatekeeping in Health Care, September 2005

1553 Maarten Bosker, Steven Brakman, Harry Garretsen and Marc Schramm, Looking for Multiple Equilibria when Geography Matters: German City Growth and the WWII Shock, September 2005

1554 Paul W. J. de Bijl, Structural Separation and Access in Telecommunications Markets, September 2005

1555 Ueli Grob and Stefan C. Wolter, Demographic Change and Public Education Spending: A Conflict between Young and Old?, October 2005

1556 Alberto Alesina and Guido Tabellini, Why is Fiscal Policy often Procyclical?, October 2005

1557 Piotr Wdowinski, Financial Markets and Economic Growth in Poland: Simulations with an Econometric Model, October 2005

1558 Peter Egger, Mario Larch, Michael Pfaffermayr and Janette Walde, Small Sample Properties of Maximum Likelihood Versus Generalized Method of Moments Based Tests for Spatially Autocorrelated Errors, October 2005

1559 Marie-Laure Breuillé and Robert J. Gary-Bobo, Sharing Budgetary Austerity under Free Mobility and Asymmetric Information: An Optimal Regulation Approach to Fiscal Federalism, October 2005

1560 Robert Dur and Amihai Glazer, Subsidizing Enjoyable Education, October 2005

1561 Carlo Altavilla and Paul De Grauwe, Non-Linearities in the Relation between the Exchange Rate and its Fundamentals, October 2005

1562 Josef Falkinger and Volker Grossmann, Distribution of Natural Resources, Entrepreneurship, and Economic Development: Growth Dynamics with Two Elites, October 2005
Yu-Fu Chen and Michael Funke, Product Market Competition, Investment and Employment-Abundant versus Job-Poor Growth: A Real Options Perspective, October 2005

Kai A. Konrad and Dan Kovenock, Equilibrium and Efficiency in the Tug-of-War, October 2005

Joerg Breitung and M. Hashem Pesaran, Unit Roots and Cointegration in Panels, October 2005

Steven Brakman, Harry Garretsen and Marc Schramm, Putting New Economic Geography to the Test: Free-ness of Trade and Agglomeration in the EU Regions, October 2005

Robert Haveman, Karen Holden, Barbara Wolfe and Andrei Romanov, Assessing the Maintenance of Savings Sufficiency Over the First Decade of Retirement, October 2005

Hans Fehr and Christian Habermann, Risk Sharing and Efficiency Implications of Progressive Pension Arrangements, October 2005

Jovan Žamac, Pension Design when Fertility Fluctuates: The Role of Capital Mobility and Education Financing, October 2005

Piotr Wdowinski and Aneta Zglinska-Pietrzak, The Warsaw Stock Exchange Index WIG: Modelling and Forecasting, October 2005

J. Ignacio Conde-Ruiz, Vincenzo Galasso and Paola Profeta, Early Retirement and Social Security: A Long Term Perspective, October 2005

Johannes Binswanger, Risk Management of Pension Systems from the Perspective of Loss Aversion, October 2005

Christian Hagist, Norbert Klusen, Andreas Plate and Bernd Raffelhueschen, Social Health Insurance – the Major Driver of Unsustainable Fiscal Policy?, October 2005

Roland Hodler and Kurt Schmidheiny, How Fiscal Decentralization Flattens Progressive Taxes, October 2005

George W. Evans, Seppo Honkapohja and Noah Williams, Generalized Stochastic Gradient Learning, October 2005

Torben M. Andersen, Social Security and Longevity, October 2005

Kai A. Konrad and Stergios Skaperdas, The Market for Protection and the Origin of the State, October 2005

1580 Elke J. Jahn and Wolfgang Ochel, Contracting Out Temporary Help Services in Germany, November 2005

1581 Astri Muren and Sten Nyberg, Young Liberals and Old Conservatives – Inequality, Mobility and Redistribution, November 2005

1582 Volker Nitsch, State Visits and International Trade, November 2005

1583 Alessandra Casella, Thomas Palfrey and Raymond Riezman, Minorities and Storable Votes, November 2005

1584 Sascha O. Becker, Introducing Time-to-Educate in a Job Search Model, November 2005

1585 Christos Kotsogiannis and Robert Schwager, On the Incentives to Experiment in Federations, November 2005

1586 Søren Bo Nielsen, Pascalis Raimondos-Møller and Guttorm Schjelderup, Centralized vs. De-centralized Multinationals and Taxes, November 2005

1587 Jan-Egbert Sturm and Barry Williams, What Determines Differences in Foreign Bank Efficiency? Australian Evidence, November 2005

1588 Steven Brakman and Charles van Marrewijk, Transfers, Non-Traded Goods, and Unemployment: An Analysis of the Keynes – Ohlin Debate, November 2005

1589 Kazuo Ogawa, Elmer Sterken and Ichiro Tokutsu, Bank Control and the Number of Bank Relations of Japanese Firms, November 2005

1590 Bruno Parigi and Loriana Pelizzon, Diversification and Ownership Concentration, November 2005

1591 Claude Crampes, Carole Haritchabalet and Bruno Jullien, Advertising, Competition and Entry in Media Industries, November 2005

1592 Johannes Becker and Clemens Fuest, Optimal Tax Policy when Firms are Internationally Mobile, November 2005

1593 Jim Malley, Apostolis Philippopoulos and Ulrich Woitek, Electoral Uncertainty, Fiscal Policy and Macroeconomic Fluctuations, November 2005

1594 Assar Lindbeck, Sustainable Social Spending, November 2005

1595 Hartmut Egger and Udo Kreickemeier, International Fragmentation: Boon or Bane for Domestic Employment?, November 2005

1596 Martin Werding, Survivor Benefits and the Gender Tax Gap in Public Pension Schemes: Observations from Germany, November 2005
1597 Petra Geraats, Transparency of Monetary Policy: Theory and Practice, November 2005

1598 Christian Dustman and Francesca Fabbri, Gender and Ethnicity – Married Immigrants in Britain, November 2005

1599 M. Hashem Pesaran and Martin Weale, Survey Expectations, November 2005

1600 Ansgar Belke, Frank Baumgaertner, Friedrich Schneider and Ralph Setzer, The Different Extent of Privatisation Proceeds in EU Countries: A Preliminary Explanation Using a Public Choice Approach, November 2005

1601 Jan K. Brueckner, Fiscal Federalism and Economic Growth, November 2005

1602 Steven Brakman, Harry Garretsen and Charles van Marrewijk, Cross-Border Mergers and Acquisitions: On Revealed Comparative Advantage and Merger Waves, November 2005

1603 Erkki Koskela and Rune Stenbacka, Product Market Competition, Profit Sharing and Equilibrium Unemployment, November 2005

1604 Lutz Hendricks, How Important is Discount Rate Heterogeneity for Wealth Inequality?, November 2005

1605 Kathleen M. Day and Stanley L. Winer, Policy-induced Internal Migration: An Empirical Investigation of the Canadian Case, November 2005

1606 Paul De Grauwe and Cláudia Costa Storti, Is Monetary Policy in the Eurozone less Effective than in the US?, November 2005

1607 Per Engström and Bertil Holmlund, Worker Absenteeism in Search Equilibrium, November 2005

1608 Daniele Checchi and Cecilia García-Peñalosa, Labour Market Institutions and the Personal Distribution of Income in the OECD, November 2005

1609 Kai A. Konrad and Wolfgang Leininger, The Generalized Stackelberg Equilibrium of the All-Pay Auction with Complete Information, November 2005

1610 Monika Buettler and Federica Teppa, Should you Take a Lump-Sum or Annuitize? Results from Swiss Pension Funds, November 2005