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CONTRACT DESIGN WITH LIMITED COMMITMENT

VITALI GRETSCHKO AND ACHIM WAMBACH

ZEW MANNHEIM AND UNIVERSITY OF MANNHEIM

Abstract. We consider the problem of a principal who wishes to contract with a pri-
vately informed agent and is not able to commit to not renegotiating any mechanism.
That is, we allow the principal, after observing the outcome of a mechanism to rene-
gotiate the resulting contract without cost by proposing a new mechanism any number
of times. We provide a general characterization of renegotiation-proof states of such a
renegotiation. The proposed solution concept provides an effective and easy-to-use tool
to analyze contracting problems with limited commitment. We apply the solution concept
to a setting with a continuous type space, private values and non-linear contracts. We
find that the optimal contracts for the principal are pooling and satisfy a “no-distortion-
at-the-bottom” property.

JEL classification: C72, C73, C78, D82

Keywords: Principal-Agent models, renegotiation, commitment, Coase-conjecture

1. Introduction

Motivation and results. Consider the problem of a principal (she) who is endowed

with all the bargaining power and wishes to contract with a privately informed agent

(he). As a consequence of the revelation principle, we can usually dispense with the

details of the particular procedure that the principal may use to close the contract and

focus on direct revelation mechanisms (Myerson, 1979). This approach is valid only

if the principal honors the rules of the proposed mechanism and the agent trusts that

this is the case. By playing the mechanism, however, the agent reveals information and

the contracts resulting from optimal mechanisms are typically inefficient. Both parties

therefore can benefit if the resulting contract is renegotiated, that is, if the principal

proposes a new mechanism after observing the outcome of the original mechanism. In

this case, the agent may decide whether to participate in the new mechanism or whether

We would like to thank Geir Asheim, Roman Inderst, Georg Nöldeke, Alexei Parakhonyak, Ray Rees,
Klaus Schmidt, Ina Taneva, Thomas Tröger and seminar participants at the Cologne University (2017),
EEA conference (Lissabon 2017), EARIE conference (Maastricht 2017), Edinburgh University (2016),
IIOC conference (Boston 2017), SED conference (York 2017) and VfS conference (Vienna 2017) for their
helpful comments and suggestions. We would also like the gratefully acknowledge the financial support
from the German Science Foundation (DFG) through the research unit “Design and Behavior”.
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to stick to the original contract. If he decides to participate in the new mechanism, the

contract resulting of this new mechanism can still also be subject to renegotiation. If

the principal cannot commit to not renegotiating any contract and there is no deadline

that puts an end to the renegotiation, backward induction cannot be applied and the

revelation principle is hard to restore.1

We follow Gretschko and Wambach (2016) and characterize the set of renegotiation-

proof states of such a (re-)negotiation.2 A state of the negotiation is a tuple consisting of

the current signed contract of the agent and the belief of the principal that was formed

by observing the previous choices of the agent.3 A state is said to be renegotiation-proof

if the principal will not propose a new mechanism once such a state has been reached.

Renegotiation-proof states are not identified one-by-one but simultaneously as a set. The

key insight is that whether a state is renegotiation-proof or not will depend on whether

it can be improved by other renegotiation-proof states. A state is said to be improved

by another set of states if there is a mechanism which leads from the initial state to the

other states and which makes (all types of) the agent and the principal (for the given

belief) better off. In essence, renegotiation-proof states cannot be improved by other

renegotiation-proof states while states that are not renegotiation proof can be improved

by renegotiation-proof states.

The characterization of the set of renegotiation-proof states therefore is based on

two simple properties. First, for every renegotiation-proof state there are no other

renegotiation-proof states that can be reached by proposing a new mechanism and would

make the principal strictly better off (internal consistency). Second, in any state of the

negotiation it is feasible to reach renegotiation-proof states by proposing a new mech-

anism (external consistency).4 Both properties reflect the sequential rationality of the

1Thus, Bester and Strausz (2001) cannot be directly applied.
2We extend the definitions in Gretschko and Wambach (2016) by considering arbitrary type spaces and
not merely discrete ones.
3We focus on states rather than contracts as whether the principal would like to renegotiate the currently
signed contract crucially depends on her belief.
4Without frictions, every history of the negotiation can be represented as a single-stage mechanism.
Thus, for the definition of renegotiation-proofness it is sufficient to consider only a single-stage mech-
anism. Put differently, every equilibrium of a subgame starting at some history can be represented by
a single-stage mechanism that is incentive compatible for the agent. That is, if after some history an
equilibrium eventually induces a type conditioned lottery over contracts and posterior beliefs, then there
is an incentive compatible single-stage mechanism that induces the same type dependent lotteries and
generates at least as high payoff to the principal.
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principal. Suppose the negotiation reaches a renegotiation-proof state and the princi-

pal proposes a new mechanism. External consistency ensures that by proposing a new

mechanism she will renegotiate to reach renegotiation-proof states. Internal consistency

implies that the resulting states do not make the principal better off than the original

state would have. 5

One of the main advantages of a general characterization of renegotiation-proof states

is that it provides an effective and easy-to-use tool to analyze specific instances of the

general problem. We apply the solution concept to a setting with a continuous type space,

private values and non-linear contracts.6 This setting encompasses many applications in

which it is natural for the principal to suffer from the inability to rule out renegotiation

like selling when price and quality matter, procurement, or franchising. As the principal

example of the setting we use that of a seller selling a good to a privately informed buyer.

The contracts consist of two dimensions: price and quality.

With full commitment, it is optimal for the principal to offer a continuum of contracts,

the types fully separate with only the highest type receiving an efficient contract. This

is the well-known “no-distortion-at-the-top” result. Clearly this is not sustainable if the

principal is not able to commit. If there is full separation of types with inefficient con-

tracts, the principal must know the type of the agent and could propose a new, strictly

better, mechanism offering efficient quality to each type.

We show that without commitment the set of optimal renegotiation-proof contracts for

the principal has the following features.7 Firstly, the principal offers a countably infinite

number of contracts. Secondly, each contract is signed by a pool of types of the agent

that is of positive measure. Thirdly, the lowest type in each pool receives an efficient

contract, every other type in each pool receives an inefficient contract. Thus, the result

differs markedly from the full-commitment benchmark.

To prove the result, we start by showing that renegotiation-proof states must be either

efficient and separating or pooling so that one of the types in the pool receives his efficient

5The proposed solution concept is closely related to the approach introduced by Vartiainen (2013) to
analyze auctions without commitment. We comment on the relationship below and in in Section 6.
6A setting similar to Mussa and Rosen (1978).
7To improve readability, we will sometimes speak of renegotiation-proof contracts rather then
renegotiation-proof states. A renegotiation-proof contract is then a contract that with an appropriate
belief of the principal can constitute a renegotiation-proof state in the sense described above.

3



quality.8 Pooling states where one of the agent types receives his efficient quality can

be renegotiation-proof if the only other renegotiation-proof states that can be reached,

starting from the pooling state, are efficient and separating. This is due to the fact that

such states do not make the principal strictly better off in comparison to the pooling

states. Having defined the general structure of renegotiation-proof states, we show that,

optimally, the principal offers a mechanism that leads to pooling contracts only. In each

pool, the lowest type will receive his efficient quality. That is, there is “no distortion at

the bottom”. This is due to the fact that efficient and separating contracts would imply

a high information rent to the agent which can be reduced by offering pooling contracts

instead. Thus, efficient and separating contracts cannot be optimal. Moreover, if the

principal needs to provide efficient quality to one type in each pool, it is optimal to do

so for the lowest type. This allows the principal to reduce the information rent of the

higher types in the other pools.

Our solution concept is closely related to the solution concept that Vartiainen (2013)

introduced to analyze auctions without commitment. Vartiainen specifies conditions that

are imposed on the mechanism selection strategy of the principal by sequential rationality.

He thereby identifies the selection strategies that the principal will not be tempted to

change.9 In particular, he requires that a mechanism selection strategy is consistent

and optimal. The former condition implies that employing the mechanism selection

strategy ex-ante should not contradict employing it ex-post. That is, if a mechanism

is chosen after some history, it should make the principal weakly better off than any of

the subsequent mechanisms prescribed by her mechanism selection strategy. The later

condition implies that the principal should choose a mechanism that maximizes her pay-

off among the mechanisms which are consistent with the selection strategy. Observe that

if the principal will not change her selection strategy after observing the play of the agent,

given that the agent plays truthfully, it is optimal for the agent to play the mechanism

8A state is efficient and separating if the the principal has a singleton belief about the type of agent and
the contract for this type is efficient. A state is pooling if the belief of the principal admits a positive
measure of types. To improve readability, we sometimes speak of pooling contracts and efficient and
separating contracts instead of states.
9As Vartiainen (2013) considers a situation with a total lack of commitment, his approach needs to be
adapted to our setting in which we focus on renegotiation. With a total lack of commitment the agent
does not have the option to retain the contract which was generated by a previous mechanism instead
of playing the new mechanism.
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truthfully.10 We demonstrate the equivalence between the solution concept introduced by

Vartiainen (2013) and our solution concept. On one hand, every consistent, optimal and

history independent selection strategy of the principal results in a renegotiation-proof set

of states. On the other hand, for any given set of renegotiation-proof states there exists

an consistent, optimal and history independent selection strategy that generates this set

of states.

The main advantage of abstracting from selection strategies and focus on renegotiation-

proof states only is that optimal and consistent selection strategies may be rather complex.

Thus, to demonstrate the cutting power of our solution concept, we analyze the famous

Coase (1972) conjecture and rederive the “gap - no gap” result in a simple way. That

is, we analyze the problem of a seller selling a durable good to a buyer who has private

information about his valuation where price is the only relevant dimension. We show

that if there is a gap between the cost of the seller and the lowest value of the buyer –

the “gap” case – the seller can at most charge a price equal to the lowest valuation of the

buyer. If the cost of the seller, however, is above the lowest valuation – the “no-gap” case

– the seller can charge the monopoly price (Ausubel and Deneckere, 1989).11

Vartiainen (2013) also analyzes the Coase conjecture and writes that in principle it

is possible to construct mechanism selection strategies that are consistent and optimal

for the no-gap case. However, those selection strategies would be complex. Thus, he

refrains from construction and makes the additional assumption that mechanism selection

strategies need to be stationary. In this case, even in the no-gap case, the seller sells at a

price equal to his costs. As we are able to rederive the “gap – no gap” result in a simple

way, we demonstrate that shifting the focus from mechanism selection strategies to states

simplifies the application of the solution concept.

Related literature. Gretschko andWambach (2016) show how renegotiation-proof states

arise as a perfect Bayesian equilibrium of the mechanism design game. Furthermore, they

apply the solution concept to different models with a discrete type space. They find that
10Playing the mechanism truthfully means choosing the message that gives the agent the best possible
payoff given her type (possibly mixing when indifferent).
11Liu et al. (2017) provide an interesting extension of (Ausubel and Deneckere, 1989) to auctions. They
show that without commitment the monopoly solution is not achievable. This result is corroborated by
Vartiainen (2013) who demonstrates that an English auction without reserve price is the only mechanism
that is implementable without commitment.

5



with private values only efficient contracts are renegotiation-proof. With common values,

however, inefficient contracts can be renegotiation-proof. This finding is corroborated

by Strulovici (2017) who shows that if in a specific infinite-horizon bargaining protocol

friction disappears, efficient and fully separating contracts arise in any Perfect Bayesian

Equilibrium if values are private and the type space is discrete.12 This is different to the

results provided in this manuscript, given that with a continuous type space, inefficient

contracts can be renegotiation-proof even in the case of private values. In the private

value case, for any pooling contract renegotiation towards efficient separating contracts

is feasible. It is also strictly profitable to the principal if types are discrete, thus pooling

cannot not be a renegotiation proof state. With continuous types, however, such a rene-

gotiation does not lead to an additional profit for the principal. More precisely, after any

history the principal can use Vickrey-Clarke-Groves mechanisms where the agent’s pay-

ment is the cost of provision to implement the efficient solution. With continuous types,

this payment schedule is unique up to an additive constant. Hence, the principal makes

a zero profit along the efficient path if the current contract is efficient for one of the types

of agent. Thus, the principal can commit to some inefficient contracts, as renegotiating

to efficient contracts would generate no additional profit for her. For discrete types, the

maximal profit from implementing efficient contracts starting from an inefficient one is

always positive. Thus, renegotiating to efficient contracts makes the principal always

better off. We do not take a stance on whether the discrete or the continuous type model

is the more relevant one. However, we like to point out that without commitment one

has to be careful about which model to use.

Asheim and Nilssen (1997) consider a monopolistic insurance market with a finite type-

space. They use assumptions regarding the characterization of renegotiation-proof states

which resemble our characterization. That is, they rely on properties similar to internal

and external consistency to characterize renegotiation-proof states. As in our case, this

approach proves to be very useful in deriving clear results for an otherwise very complex

problem.

12In a similar set-up, Maestri (2017) uses a refinement that in any subgame the principal induces the
continuation equilibrium that maximizes her payoffs. As in Strulovici (2017), when frictions disappear,
only efficient contracts arise in equilibrium.
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Neeman and Pavlov (2013) argue that for outcomes of a mechanism to be renegotiation-

proof under any renegotiation procedure there must be no Pareto improvements after the

mechanism has been played. That is, they take the view that if the mechanism designer

is agnostic about the specific renegotiation game that is played after the mechanism, the

outcome of the mechanism must be ex-post efficient to survive renegotiation under any

renegotiation procedure. The conceptual problem with this approach is that it permits all

Pareto-improving outcomes to be blocking, even if those outcomes are themselves subject

to renegotiation. In our approach, we require states to be renegotiation-proof only with

respect to states that are themselves renegotiation-proof. In contrast to Neeman and

Pavlov (2013), our approach allows for inefficient results.

Bester and Strausz (2001), Hörner and Samuelson (2011), Skreta (2006), and Skreta

(2015) limit renegotiation to finite procedures. This approach allows for interesting equi-

librium analysis but still leaves the principal with a considerable amount of commitment

power. In our frictionless setting, limiting the renegotiation to n opportunities would

allow the principal to implement the full commitment outcome. She could simply pass

on n− 1 opportunities and then propose the optimal contracts.

Evans and Reiche (2015) assume that after an initial mechanism is played, the principal

can offer a new mechanism and the agent may choose whether to retain the outcome of

the original mechanism or to participate in the new mechanism. They assume that there

is no friction in-between the mechanism proposals, as do we. After the new mechanism is

played, the renegotiation is over and there is no scope for further offers from the principal.

In this setting, the optimal mechanism from the point of view of the principal is easy

to implement if she proposes the null mechanism in the first round and the optimal

mechanism in the second round. What makes the analysis of Evans and Reiche (2015)

interesting is the fact that they allow a third party whose goals are not aligned with the

principal to propose the initial mechanism. This third party must then take into account

that the outcome of the mechanism may be subject to renegotiation.

Organization of the manuscript. The manuscript proceeds as follows. In Section

2, we introduce the general model and the commitment problem of the principal. In

Section 3, we derive the solution concept and the optimization problem of the principal.
7



In Section 4, we apply the solution concept to a setting with a continuous type space,

private values and non-linear contracts. In Section 5, we demonstrate how our solution

concept can be used to retrieve the Coase conjecture and the “gap – no gap” result. In

Section 6, we compare our solution concept to the solution concept used by Vartiainen

(2013). Section 7 concludes.

2. The Setup

Preferences. A principal (she) and an agent (he) want to implement a contract w from

a metric space of contractsW . If a contract w is implemented, the utility of the principal

amounts to v(w) where v : W → R is a von Neumann-Morgenstern utility function.

The utility of the agent is given by u(w, θ) where u : W × Θ → R is a von Neumann-

Morgenstern utility function and depends on the agent’s type θ. The agent’s type is

private information to the agent and is drawn from a metric space Θ. Endow Θ with

the Borel σ-algebra and denote by ∆(Θ) the set of all probability measures on the Borel

σ-algebra. Let d(·, ·) be a metric on Θ. We will denote by θε the ε-neighborhood of θ.

That is, the set of all θ′ ∈ Θ such that d(θ, θ′) < ε. The principal’s prior about the type

of the agent is characterized by µ0(·) ∈ ∆(Θ). The prior is common knowledge between

the agent and the principal. For µ ∈ ∆(Θ), we will denote by supp(µ) the support of µ.

That is, θ is in supp(µ) whenever µ(θε) > 0 for all ε > 0. If no contract is implemented,

both parties receive the outside option contract denoted by w0 ∈ W .

Mechanisms. To elicit information from the agent and implement a contract the prin-

cipal uses a mechanism. A mechanism is a tuple M = (Z, w(·)) consisting of a metric

space of messages Z and a function w : Z → W . A mechanism works as follows. The

agent chooses a message z ∈ Z. When the message z is sent, w(z) generates a contract.13

Denote byM the set of all mechanisms. Denote by 1w the mechanism that generates w

for sure. That is, w(z) ≡ w for all z ∈ Z.

Example 1. To fix ideas, consider the following specification of the model that we will

analyze in Section 4. The principal is a seller that sells a good to the agent, the buyer. A

contract (q, p) ∈ W = R2
+ specifies the quality q and the price p of the good. The seller

13Here it is assumed that communication is direct. For an analysis of contracting with renegotiation and
mediated communication, see for example Pollrich (2017) or Strausz (2012).
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incurs a cost of c(q) when producing a good of quality q . Her pay-off from a contract

(q, p) is p−c(q). A buyer of type θ ∈ Θ = [θ, θ̄] enjoys a utility of u(q, θ) when consuming

a good of quality q. His utility from a contract (p, q) is u(q, θ) − p. Higher types of

buyer enjoy a higher utility and a higher marginal utility from consuming the good. One

class of mechanism for this problem are direct mechanisms with Z = Θ, in which the

buyer directly reports his type and receives a contract according to his type. That is,

M = (Θ, (q(θ), p(θ))).

The problem. The problem for the principal is that she cannot commit to not renego-

tiating w(z) after the mechanism has been played. That is, after M is played and the

principal observes z, she will update her belief about the type of the agent to µ(· : z).

After observing z the principal may propose a new mechanism M ′ = (Z ′, w′(·)). The

agent can then decide whether he wants to play the new mechanism or whether he wants

to hold on to the initially generated contract w(z). In other words, w(z) is the new

outside-option contract of the agent. If the agent decides to play M ′, the principal again

observes the message, updates her belief, and may again renegotiate the new contract by

proposing a new mechanism. Overall, the principal is not able to commit to not rene-

gotiating any contract produced by any mechanism. Whenever a mechanism is played,

the principal may propose a new mechanism and the agent may decide to either hold on

to his current contract or to participate in the new mechanism. Thus, we are concerned

with the question of what mechanisms will not be renegotiated at the ex-post stage.

To be more precise, consider the following negotiation. At each stage t = 1, 2, .. the

principal proposes a mechanism Mt = (Zt, wt(·)) ∈ M. The agent chooses a message

zt ∈ Zt or decides to hold on to the contract wt−1 that was generated by the mechanism

Mt−1 in stage t − 1. The contract wt−1 is implemented if in stage t the principal offers

Mt = 1wt−1 . Denote a history before the principal moves in round t by

hpt = {(M1, z1, w1), (M2, z2, w2), . . . , (Mt−1, zt−1, wt−1)} .

A history realized before the agent moves is

hat = {(M1), (M2, z1, w1), . . . , (Mt, zt−1, wt−1)} .
9



In round 1 there is no relevant history for the principal, so hp1 = ∅. Let Ha
t be the

set of all histories for the agent at round t and let Hp
t be the set of all histories for the

principal.14

Strategies and beliefs. Before we discuss the solution concept it is useful to define

strategies and beliefs of the principal and the agent.

A mechanism selection strategy σp of the principal prescribes in each round t the

mechanism Mt that the principal will choose conditional on the history hpt . That is, σp

is a sequence of maps

σpt : Hp
t →M.

Endow Zt with the Borel σ-algebra and denote by ∆(Zt) the set of all probability

measures on the Borel σ−algebra. A behavior strategy σat of an agent of type θ prescribes

in each round t a probability distribution over messages in Zt conditional of the history

hat . That is, σa is a sequence of maps

σat : Ha
t ×Θ→ ∆ (Zt ∪ {wt−1}) .

The belief system of the principal is a sequence {µ0, µ1, . . .} where µt−1 ∈ ∆(Θ) are the

beliefs held after a history hpt .15

States and outcome function. There are two additional concepts that are useful to

define before we turn to the solution concept. We define the state of the negotiation as the

chosen contract of the agent and the resulting belief of the principal. That is, we call Ct =

(wt−1(z), µt−1(· : z)) the state of the negotiation after mechanism Mt−1 = (Zt−1, wt−1(·))

and define Γ = W ×∆(Θ) as the set of all possible states. In particular, every history ht

leads to a state that was generated by the sequence of mechanisms and choices of the agent

that lead to this history. That is, for a given ht, Cht = (wt−1, µt−1). For a given mechanism

Mt = (Zt, wt(·)) and a given history ht we will denote by f(Mt, σ
a(hat )) ⊂ Γ the set of

states generated by this mechanism. That is, a state C = (w, µ) is in f(Mt, σ
a
t (h

a
t )) if –

given the strategy σa of the agent – there exists a message z ∈ Z that is chosen by some

14We will drop the superscript from hp and ha whenever we refer to both or whenever it is unambiguous
whose history is used.
15We slightly abuse notation as we suppress that different histories in period t might lead to a different
posterior.
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type of the agent with positive probability such that wt(z) = w and µt(· : z) = µ. Each

mechanism selection strategy of the principal together with the strategy of the agent

induces a set of possible states Ω =
⋃
ht∈H f(σpt (ht), σ

a
t (h

a
t )) ⊂ Γ.

3. Solution Concept: Renegotiation Proof States

In this section we closely follow Gretschko andWambach (2016) and identify renegotiation-

proof states. That is, states Ct = (wt−1, µt−1), such that the principal will not renegotiate

wt−1. We extend the definitions in Gretschko and Wambach (2016) by considering ar-

bitrary type spaces and not merely discrete ones. In Section 6, we demonstrate that

renegotiation-proof states arise from mechanism selection strategies that are consistent

and optimal in the sense of Vartiainen (2013). We focus on renegotiation-proof states

Ct = (wt−1, µt−1) rather then renegotiation-proof contracts wt−1, as whether the principal

will want to renegotiate will crucially depend on her belief.

We start by observing that every subgame after some history ht can be represented

by a single stage mechanism that the principal will not renegotiate. That is, if after

history ht the subsequent play of the agent and the principal eventually induce a type

conditioned lottery over states and posterior beliefs, then there is a mechanism and

a strategy of the agent that induces the same type dependent lotteries over states and

posterior beliefs. In any subgame after ht the strategy of the principal and the strategy of

the agent induces a distribution over potential states in
⋃
{hs∈H:s≥t,ht⊂hs} f(σp(hs), σ

a(hs)).

Instead of playing out the game according to those histories, the principal can offer a

mechanism M = (Z, w(·)) such that w[Z] includes all contracts that are part of the

states in
⋃
{hs∈H:s≥t,ht⊂hs} f(σp(hs), σ

a(hs)) and the agent mixes between messages z ∈ Z

in a way that induces the same probability distribution over states and posterior beliefs as

playing out the histories would. Thus, we will focus on single-stage mechanisms after each

history. The problem then boils down to identify states after a single-stage mechanism

that the principal would not like to renegotiate given the strategy of the agent. We will

call such states renegotiation-proof states, denote the set of renegotiation-proof states by

Ω and derive its properties in the following.
11



Agent’s incentives. Suppose a history ht that the current state of negotiation is Ct =

(wt−1, µt−1) and the principal offers a mechanism Mt = (Zt, (wt(·)) such that if the agent

chooses z∈ Z t optimally every choice leads to a renegotiation-proof state. That is, the

negotiation will be over after the agent chooses a message z and the contract wt(z) is

generated. Then the agent indeed should choose optimally in the single-stage mechanism.

The optimal choice of the agent can be characterized as follows.

Lemma 1 (Agent’s strategy). In a single-stage mechanism an agent with type θ will

choose z ∈ Zt (possibly mixing between messages) such that u(wt(z), θ) ≥ u(wt(z
′), θ)

for all z′ ∈ Zt. In particular, u(wt(z), θ) > u(wt(z
′), θ) for all z′ ∈ Zt/ {z} implies that

σa(ht, θ) [A] = 1 for all σa(ht, θ)-measurable A ⊂ Zt such that z ∈ A.

Denote by νMt ∈ ∆(Zt) the measure on Zt that is induced by the strategy σa(ht, θ) of

the agent and the belief of the principal µt−1 after history ht. That is, for all A in the

Borel σ-algebra on Zt it must hold νMt(A) =
∫

Θ
σa(ht, θ) [A] dµt−1.

Optimal play of the agent is then understood in the following sense. The agent will

choose the message z from the message space that gives him the highest payoff. Whenever

more than one message gives the agent the highest possible payoffs, the agent may mix

between those messages. Note that the same message may be optimal for more than one

type of the agent. Thus, optimal play of the agent does not need to be fully revealing.

In fact, we will show below that the optimal mechanism from the point of view of the

principal is not fully revealing the type of the agent.

Next, we define which states can be induced by a mechanism in which the agent chooses

optimally. That is, we define conditions on a set of states {C(z) = (w(z), µ(·, z)) : z ∈ Z}

such that there exists a mechanismM = (Z, w(·)) that, if played optimally starting at ht,

generates this set of states. This set of states will then be called feasible. Those conditions

encompass all possibilities of optimal play of the agent. Thus, they are independent from

ht other than through the induced state Cht . This implies that the definition of feasibility

is with respect to Ct rather then ht. Those conditions are necessary for states to be

renegotiation-proof.
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Definition 1 (Feasibility). Let Z be a metric space. We call a set of states

{C(z) = (w(z), µ(·, z)) : z ∈ Z}

feasible for the agent starting from Cht = (wt−1, µt−1) if the following conditions are

satisfied.

(i) (Individual rationality) For all θ ∈ supp(µ) there exists a z ∈ Z such that

u(w(z), θ) ≥ u(wt−1, θ).

(ii) (Incentive compatibility) For any θ ∈ supp(µ), if there exists a z and a z′ in Z

such that u(w(z), θ) > u(w(z′), θ) then θ /∈ supp(µt−1(· : z′)).

(iii) (Bayesian consistency) For the probability measure ν ∈ ∆(Z) generated from a

optimal strategy of the agent and the initial belief µt−1 it holds that∫
Z
µ(θε : z)dν = µt−1(θε).

We define by IC(C) : Γ→ 2Γ the mapping from some C to all feasible states starting from

C. That is, {C(z) : z ∈ Z} is an element of IC(C) if {C(z) : z ∈ Z} satisfies conditions

(i) to (iii).

For {C(z) : z ∈ Z} to be states that can be generated by a mechanism starting from

Cht it is necessary that the agent is weakly better off compared to the initial situation in

state Cht (requirement (i)). The principal takes the optimal behavior into account when

updating her belief (requirement (ii)). From the ex-ante point of view of the principal

optimal play of the agent and the initial belief µt−1 induce a probability distribution ν over

the set of messages Z. This should be consistent with Bayesian updating (requirement

(iii)).

The conditions follow endogenously from the fact that the agent will choose an improve-

ment if he beliefs that the contract is terminal. That is, feasible states were derived under

the assumption that the agent does not expect further negotiations and thus chooses (pos-

sibly mixing) the optimal contract from his point of view. Optimal play by the agent,

however, will only be induced if the principal will not renegotiate the proposed mecha-

nism for any feasible state. Thus, we turn our attention to states in which the principal

would not renegotiate.
13



Principal’s strategy. As argued above, for our solution concept, it is sufficient to focus

on strategies of the principal that prescribe her to offer a single-stage mechanism that

results only in renegotiation-proof states if played optimally by the agent, and end the

negotiation afterwards. Let Ω define the set of renegotiation-proof states that we yet

have to define. Thus, we focus on strategies of the principal such that if Cht /∈ Ω,

then σp(ht) = (Z,w(·)) such that {C(z) = (w(z), µt−1(· : z)) : z ∈ Z} ∈ IC(Cht) and

{C(z) = (w(z), µt−1(· : z)) : z ∈ Z} ⊂ Ω. If Cht ∈ Ω, then σp(ht) = 1wt−1 .

We now turn our attention to the definition of Ω, the set of renegotiation-proof states.

To characterize renegotiation-proof states, it is convenient to introduce some notation

on which feasible states make the principal weakly better off when proposing a new

mechanism in history ht with state Cht . That is, we define conditions on a given set of

feasible states

{C(z) = (w(z), µt−1(·, z)) : z ∈ Z} ∈ IC(Cht)

such that there exists a mechanism M = (Z, w(·)) that, if played optimally by the agent,

generates this set of states and makes the principal weakly better off.

Definition 2. Let Z be a metric space. A feasible set of states

{C(z) = (w(z), µ(·, z)) : z ∈ Z} ∈ IC(Cht)

makes the principal weakly better off starting from Cht = (wt−1, µt−1) if the following

condition is satisfied.

(1) v(wt−1) ≤
∫
Z
v(w(z))dν.

With ν ∈ ∆(Z) denoting the probability measure generated from a optimal strategy of

the agent and the initial belief µt−1 (Lemma 1).

We define by X(C) : Γ→ 2Γ the mapping from some C to all feasible states that make

the principal better of starting from C. That is, {C(z) : z ∈ Z} is an element of X(C) if

{C(z) : z ∈ Z} ∈ IC(C) and satisfies inequality (1).
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We are now in the position to define renegotiation-proof states. Renegotiation-proof

states are not identified one-by-one but simultaneously as a set. The key insight is

that whether a state is renegotiation-proof or not will crucially depend on whether it

can be improved by other feasible renegotiation-proof states. That is, renegotiation-

proof states cannot be improved by other renegotiation-proof states. States that are

not renegotiation-proof, can be improved by feasible renegotiation-proof states. Thus,

the set of renegotiation-proof states should have two properties. First, independent of

the current state of the negotiation it should be feasible to reach renegotiation-proof

states. This is to ensure that our solution concept is well defined. Second, whenever the

negotiation has reached a renegotiation-proof state, the principal should not be better off

by renegotiating to another renegotiation-proof state. This is to ensure that the principal

will end the negotiation after reaching a renegotiation proof state. The following definition

formalizes these conditions.

Definition 3 (Renegotiation proofness). Ω ⊂ Γ is a set of renegotiation-proof states if

the following holds true.

(i) (External consistency) If C is not in Ω, there exists {C(z) : z ∈ Z} ∈ X(C) such

that {C(z) : z ∈ Z} ⊂ Ω. That is, there is {C(z) : z ∈ Z} ∈ IC(C) that makes

the principal better off and is renegotiation proof.

(ii) (Internal consistency) For all C = (w, µ) in Ω and for all {C(z) : z ∈ Z} ∈ IC(C)

such that {C(z) : z ∈ Z} ⊂ Ω it holds that v(w) ≥
∫
Z v(w(z))dν. That is, for

all {C(z) : z ∈ Z} ∈ X(C) such that {C(z) : z ∈ Z} ⊂ Ω it holds that v(w) =∫
Z v(w(z))dν.

It is crucial to understand that the restrictions we place on the set of renegotiation-

proof states reflect sequential rationality. Thus, the solution concept is consistent with

standard solution concepts. Indeed, in a slightly simpler setting, Gretschko and Wambach

(2016) show that for every set of renegotiation-proof states there exists a perfect Bayesian

equilibrium of the mechanism design game that implements the optimal state in the set.

Thus, renegotiation-proofness can be seen as a refinement of perfect Bayesian equilibrium.

To see how renegotiation-proofness implies sequential rationality, suppose the principal

– instead of implementing the contract in a renegotiation-proof state – deviates and
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proposes a new mechanismM . By external consistency, the states resulting from the new

mechanism can be further improved by renegotiation-proof states. Thus, the principal

benefits from proposing a new mechanism M ′ that leads to renegotiation-proof states. It

follows from internal consistency that proposing M could not have been profitable in the

first place.

The same argument applies to any finite deviation by the principal. This is due to the

fact that starting from some state C, any finite sequence of proposed mechanisms can

be interpreted as just one feasible mechanism. Following the same argument as above,

deviation to this mechanism cannot be profitable. In terms of infinite long deviations,

Gretschko and Wambach (2016) show that, with the appropriate assumptions regarding

the payoffs of infinite terminal histories, every infinite deviation can be improved by

a finite one. In particular, this implies incentive compatibility of the mechanisms for

the agent as if the principal follows the proposed selection strategy after any history

the mechanisms will not be redesigned ex-post and the agent can play the mechanism

optimally. Four remarks are in order.

Remark 1. Our solution concept is equivalent to the solution concept introduced by

Vartiainen (2013). We demonstrate this equivalence in Section 6. The main advantage of

the introduced concept is that it allows us to dispense with the details of the particular

mechanism selection strategy of the principal and directly characterize renegotiation-

proof states. Much like the revelation principle, this provides a tool to analyze contracting

problems with limited commitment which is both effective and easy to use. We contrast

the cutting power of our concept as compared with Vartiainen (2013) in Section 5 where

we analyze the Coase conjecture and rederive the “gap-no-gap” result.

Remark 2. The key idea is that states that are not renegotiation proof but can be im-

proved by renegotiation-proof states shall not block the principal’s mechanism choice.

That is, the principal might not renegotiate a contract even if there is an other mech-

anism that would make the principal strictly better off. This implies that negotiation

can stop even if there is room for Pareto improvement. In particular, our solution con-

cept does not ad-hoc rule out inefficiencies. In fact, as we will show below, the optimal

mechanism from the point of view of the principal will be inefficient.
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Remark 3. Our concept is related to the concept of von Neumann-Morgenstern stability

(von Neumann and Morgenstern (1944)). There are two main differences. The first one

is technical: von Neumann and Morgenstern (1944) define their concept as a dominance

relation between elements of a set. In our context, the dominance relation is defined

between elements of a set (the states) and sets of elements of a set (sets of states).

The second is that in our concept internal consistency implies that if one of the players

(the principal) is not made strictly better off by proposing a new mechanism that leads

to renegotiation-proof states, she can decide not to propose a new mechanism. Von

Neumann and Morgenstern’s concept in our context would require that as long as one

of the parties (i.e. principal and agent) can be made better off without making the

other party strictly worse off the principal should propose a new mechanism. However,

we consider the case where the principal has all the bargaining power. Thus, if she is

indifferent between proposing a new mechanism and sticking to the current contract,

there is no explicit need for the principal to propose a new mechanism. She might be

better off by not proposing a new mechanism. Indeed, as we will show below, the optimal

renegotiation-proof mechanism will result in inefficiencies. Thus, the mechanism could

be improved further from the point of view of the agent, but not the principal.

Remark 4. The definition of the set of renegotiation-proof states is related to the concept

of weakly renegotiation proof equilibrium as proposed by Farrell and Maskin (1989) An

equilibrium of an infinitely repeated game is called weakly renegotiation proof if equilib-

rium payoffs of different subgames cannot be strictly Pareto ranked. Following a similar

logic, internal consistency ensures that payoffs of different feasible states that are in Ω

cannot make the principal strictly better off without leaving the agent strictly worse off.

We are now in the position to state the principal’s optimization problem.

Lemma 2 (Principal’s problem). Denote by C0 = (w0, µ0) the initial contract-belief pair

and by Ω sets of renegotiation-proof states. The principal’s optimization problem can be
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written as
max

Ω,{C(z)}

∫
Z
v(w(z))dν

s.t. {C(z) = (w(z), µ0(· : z)) : z ∈ Z} ∈ X(C0)

{C(z) = (w(z), µ0(· : z)) : z ∈ Z} ⊂ Ω.

Some useful results. One of the main advantages of our solution concept is that we can

abstract from the mechanism selection strategy of the principal and simply construct sets

Ω of renegotiation-proof states. That is, we need to construct sets Ω that are internally

and externally consistent. Before we turn our attention to specific applications of the

solution concept, we will state the following two results that facilitate the construction

of renegotiation-proof Ω.

Lemma 3. If X(C) = {C} , then C is in any renegotiation-proof Ω which satisfies the

conditions of Definition 3.

Proof. Follows directly from external consistency. If {C} is the only element of X(C),

then C must be in any Ω. �

In particular, Lemma 3 implies that any Pareto-efficient allocation must be in Ω.

Lemma 4. Let Ω satisfy the conditions of Definition 3. For any C = (w, µ) if there

exists {C ′ = (w′, µ)} in X(C) such that v(w′) > v(w), then C is not in Ω.

Proof. Suppose to the contrary there exist C ∈ Ω and a C ′ = (w′, µ) such that {C ′} ∈

X(C) and v(w′) > v(w). In this case, internal consistency implies that C ′ is not

in Ω. External consistency implies that there exists {C(z) : z ∈ Z} ∈ X(C ′) with

{C(z) : z ∈ Z} ⊂ Ω. This implies that
∫
Z v(w(z))dν ≥ v(w′). As {C(z) : z ∈ Z} is

feasible starting from C ′, {C(z) : z ∈ Z} is also feasible starting from C. Together with∫
Z v(w(z))dν ≥ v(w′) > v(w) this violates internal consistency and it follows that neither

C /∈ Ω nor Ω is a set of renegotiation-proof states. �

Lemma 4 has an intuitive interpretation. For any potential state, if there exists a

single contract that would be accepted by the agent independent of his type and makes

the principal strictly better off, then the initial state cannot be renegotiation-proof. If this

were the case, the principal could simply offer a mechanism in which this contract could
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be implemented for any message from the agent. Such a mechanism would be played

truthfully by the agent since it does not reveal any additional information and would

make the principal strictly better off. Thus, the contract resulting from the original state

would be renegotiated.

4. Design of non-linear contracts with limited commitment

We now turn to the main application of our solution concept. We will proceed as

follows. Firstly, we will set up the model. Secondly, we will introduce applications of

the model. Thirdly, we will state the main result, briefly describe the main intuition and

give an outline of the proof. Fourthly, we will introduce a simple example to illustrate

the main result. Finally, we will provide a proof of the main result.

Set up. Consider a principal who wants to implement a two-dimensional contract w =

(p, q) with q ∈ R+ and p ∈ R. If a contract (p, q) is implemented, the utility of the

principal is given by

v(w) = p− c(q).

Denote by cq(·) the derivative of c(·) with respect to q and by cqq(·) the second derivative

of c(·) with respect to q. Assume that cq(·) > 0 and cqq(·) > 0.

The utility of the agent is given by

ū(w, θ) = u(q, θ)− p.

The type θ of the agent is taken from Θ =
[
θ, θ̄
]
. Denote by uq the derivative of u with

respect to q and by uqq the second derivative of u with respect to q. Similarly, denote by

uθ the derivative of u with respect to θ and by uqθ the cross-derivative of u with respect

to q and θ. Assume that uq > 0 and uqq ≤ 0 and that u satisfies single crossing. That is,

uθ > 0 and uqθ > 0, a larger type receives larger utility and larger marginal utility from

a given q. The principal’s prior about the agent’s type is given by µ0 ∈ ∆(Θ). Assume

that supp(µ0) = Θ.16 The initial contract w0 is (0, 0).

Applications. The initial model can be interpreted to fit, but is not limited to, the

following applications.
16In particular, full support of µ0 on Θ =

[
θ, θ̄
]
rules out discrete distributions.
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(1) Selling when price and quality matter. The principal is a seller that sells a good

to the agent, the buyer. The contract (q, p) specifies the quality q and the price

p of the good. The seller incurs a cost of c(q) when producing a good of quality

q. A buyer of type θ enjoys a utility of u(q, θ) when consuming a good of quality

q. Higher types of buyer enjoy a higher utility and a higher marginal utility from

consuming the good.

(2) Procurement. The principal is a buyer who procures a good from the agent, the

seller. The contract (p, q) specifies the quantity q and the price −p of the good.

The buyer derives a utility of −c(q) when procuring a quantity q of the good. A

seller of type θ incurs a cost of −u(q, θ) when producing a quantity q of the good.

Higher types of seller enjoy a lower cost of production and a lower marginal cost

of production.

(3) Franchising. The principal is a manufacturer who produces a quantity q of a good

at cost c(q) and sells the good to a retailer, the agent, at price p. The retailer

faces a demand of D(t, θ) for the good with t denoting the resale price and θ the

demand shock that is private knowledge to the retailer. Higher θ imply a higher

demand and a higher marginal demand. The profit for the retailer from selling

the good is u(q, θ) = tD(t, θ).

(4) Labor contracts. The principal is a potential employer and the agent is a worker.

The contract (p, q) specifies the effort q of the agent and his wage −p. The

principal derives a utility of −c(q) from the effort of the agent. An agent with

productivity θ incurs a cost of effort of −u(q, θ). Higher types of agent enjoy a

lower cost of effort and a lower marginal cost of effort.

In what follows we will adopt the “selling when price and quality matter ” interpretation

of the model and call q the quality of the good and p the price.

Useful properties of the model. Before we turn our attention to the main result, we

first state some useful definitions for and properties of the considered model. Denote by

q∗(θ) the efficient quality for a given type θ. The efficient quality is implicitly given by

(2) −vq(q∗(θ)) = uq(q
∗(θ), θ).
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Given the assumptions we made about v and u, q∗(θ) is unique and satisfies

q∗θ(θ) =
uqθ(q

∗(θ), θ)

vqq(q∗(θ))− uqq(q∗(θ), θ)
> 0.

Definition 4. Define µθ as the probability measure that puts probability 1 on type θ.

That is, for all measurable sets A, µθ(A) = 1 whenever θ ∈ A and µθ(A) = 0 otherwise.

We will call an state

(1) C = ((p, q), µθ) a separating state. Efficient and separating states are denoted by

C = ((p, q∗(θ), µθ),

(2) C = ((p, q), µ) a pooling state if it holds µ0(supp(µ)) > 0. With µ0 being the

initial belief of the principal.

Lemma 5. If the principal can commit to any mechanism, there exists a direct, individ-

ually rational and incentive compatible mechanism that implements the efficient quality.

That is, there exists a price function p(θ) such that for all types θ,

u(q∗(θ), θ)− p(θ) ≥ u(q∗(θ̂), θ)− p(θ̂)

for all θ̂ ∈ Θ. This holds true for all p(θ) such that

(3) pθ(θ) = uq(q
∗(θ), θ)q∗(θ) > 0.

Proof. See Fudenberg and Tirole (1990) Theorem 7.3 for a proof. �

Lemma 6. If every type obtains his efficient quality and the prices satisfy (3), then the

principal is indifferent between all contracts; she obtains the same profit from all types.

That is, v(q∗(θ))− p(θ) = k for some constant k.

Proof. This is a consequence of pθ(θ)−vq(q∗(θ))q∗θ(θ) = (uqq
∗(θ), θ)−vq(q∗(θ)))q∗θ(θ) = 0.

Due to equation (2) and equation (3). �

The main result. Our main result is that the optimal set of states {C(z)}z∈N that will

not be renegotiated by the seller has the following properties. Firstly, all states that are

achieved with positive probability are pooling states. Secondly, for each of these pooling

states the lowest type choosing this contract obtains his efficient quality; all other types

receive an inefficient quality.
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Theorem 1. The profit maximizing set of renegotiation-proof states {C(z)}z∈ N is count-

ably infinite and has the following properties

(1) (Pooling) All C(z) = ((p, q), µ) are pooling states.

(2) (No distortion at the bottom) C(z) = ((pz, q
∗(θz)), µ) with θz = min(supp(µ)).

The maximization problem of the principal becomes:17

(4)

max
{θz}z∈N

∑
z∈N

(pz − v(q∗(θz))µ0([θz, θz+1])

s.t. θz+1 > θz, θ0 = θ, and θz < θ̄

u(q∗(θz+1), θz+1)− pz+1 = u(q∗(θz), θz+1)− pz.

One remark is in order with respect to the solution of the maximization problem of the

principal.

Remark 5. To solve the maximization problem of the principal we can use the incen-

tive constraints (q∗(θz+1), θz+1) − pz+1 = u(q∗(θz), θz+1) − pz to back out the optimal

prices. That is, setting p0 = θ and solving recursively yields pk =
∑k

t=1 u(q∗(θt), θt) −

u(q∗(θt−1), θt) + θ. The optimization problem of the principal can be rewritten to give

(5)
max
{θz}z∈N

∑
z∈N

[(
z∑
t=1

u(q∗(θt), θt)− u(q∗(θt−1), θt) + θ

)
− v(q∗(θz))µ0([θz, θz+1])

]

s.t. θz+1 > θz, θ0 = θ, and θz < θ̄

This problem can then be approximated numerically for finite z. We demonstrate this

approach in the example below.

We will now provide an intuition for the result and an outline of the proof. Moreover,

we will provide a simple example that illustrates the results and contrasts them with

models with full commitment.

Intuition and outline for the proof of the main result. To gain some intuition for

our main result, observe that by Lemma 3 efficient and separating states must be in any

set of renegotiation-proof states. Thus, only states that cannot be strictly improved by a

set of efficient and separating states can be in any set of renegotiation-proof states. The

17A solution to this problem exists, as a solution to the auxiliary problem with θz+1 ≥ θz and θz ≤ θ̄
exists and Lemma 11 shows that it necessarily is on the interior.
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only states that cannot be improved by a set of efficient and separating states are pooling

states with a connected support in which one of the types in the pool receives his efficient

quality. This is due to the fact that the type that received his efficient quality in the

pooling state, also receives his efficient quality in a feasible set of efficient and separating

states. Thus, by Lemma 6, if the principal were to propose a new mechanism that led to

efficient and separating states, she would make the same profit as with the pooling state.

The profit maximizing states among such pooling states is then a countably infinite set of

pooling states with the lowest type in the pool receiving his efficient quality. This stems

from the fact that separation of types is only possible with efficient states. However,

efficient and separating states imply a higher information rent than, say, two pooling

states would. Moreover, if the principal offers the efficient quality to the lowest type in

the pool, she reduces the information rent of the higher types that are not in the pool. The

proof of Theorem 1 proceeds by a series of lemmata that reflect the intuition given above.

The outline is instructive for the understanding of the structure of renegotiation-proof

sets.

Firstly, we show that for any state C there exists a set of efficient and separating states

that are feasible and make the principal weakly better off (Lemma 7). Secondly, we

demonstrate that the following states cannot be part of any renegotiation-proof Ω:

(1) Inefficient and separating states, that is, C = ((p, q), µθ) such that q 6= q∗(θ)

(Lemma 8).

(2) States with a belief of the principal whose support has a gap, that is, C =

((p, q), µ) such that supp(µ) is not connected (Lemma 9).

(3) States with a quality that is efficient for a type that is not in the support of the

belief of the principal, that is, C = ((p, q), µ) such that q = q∗(θ) but θ /∈ supp(µ)

(Lemma 10).

Thus, every set of renegotiation-proof states must consist of a combination of efficient

and separating states and pooling states with a connected support such that one of the

types in the pool receives his efficient quality.

Thirdly, we prove that the profit maximizing set of states {C(z)} among the states

with a connected support of µ(z) and an efficient quality for one type in supp(µ(z))
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takes the form described in Theorem 1. That is, the set is countably infinite, µ(z) is not

degenerate for every C(z), and the lowest type in support of µ(z) receives his efficient

quality (Lemma 11). The proof of Lemma 11 proceeds along five steps.

(1) We show that in the set of optimal states higher types receive higher quality.

(2) We demonstrate that the principal optimally makes a higher profit from the higher

agent types.

(3) We argue that efficient and separating states are not optimal for the principal.

This is due to the fact that if the principal offers the efficient quality to a connected

subset of types while satisfying the incentive compatibility constraints, she will not

obtain additional rent from higher types. Those types receive a high information

rent. In this case, the principal can reduce the information rent by offering pooling

contracts.

(4) We show that the lowest type in a pooling and connected state will receive his

optimal quality in the profit-maximizing set of states. If in the pooling state

the quality is optimal for some intermediate type, the quality for the lower types

is distorted in the wrong direction. That is, they receive too much quality. In

this case, the seller prefers to give some types a lower quality which reduces the

information rent to higher types. The best way to achieve this is to give the

lowest type in the pool the efficient quality, such that the quality for all the types

is distorted in the right direction.

(5) We demonstrate that the set of profit-maximizing states must be countably infi-

nite. To see this, let us suppose to the contrary that the number of states is finite.

In this case, there exists an state that contains all types above some θ. It follows

that the principal is better off if she splits this pool into two pools: one where she

obtains the same profit as before and that contains the lower types of agent and

a second one where she obtains a higher profit and that is chosen by the higher

types of agent.

Fourthly, we demonstrate that the resulting set is internally and externally consistent

and thus renegotiation-proof (Lemma 12).
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Overall, we construct the optimal set of renegotiation-proof contracts from the point

of view of the principal starting from (w0, µ0). Of course, there exist other sets of

renegotiation-proof contracts that are internally and externally consistent and could be

implemented by a principal with a consistent mechanism selection strategy. For example,

if the initial contract w0 is efficient for some type θ ∈ [θ, θ̄] the set including all efficient

and separating states and the initial state (w0, µ0) can be supported as renegotiation

proof. Even though it would not be the optimal set of contracts. Moreover, Lemma 12

implies any set of pooling states such that one of types in the support of µz receives his

efficient quality can be sustained as renegotiation proof. Even the set that divides the

optimal pools from Theorem 1 even further. Again, such a set of renegotiation-proof

states would not be optimal from the point of view of the principal at (w0, µ0).

The construction also illustrates how internal and external consistency work together

to achieve recursively renegotiation-proof states. Suppose the principal decides to split

one of the pools [θz, θz+1) further by renegotiating and offering for example one additional

contract that splits the pool in [θz, θ) and (θ, θz+1]. Such a split can be profitable given

our construction. However, from each of the new pools the only feasible renegotiation-

proof states are efficient and separating states for all of the types in the pools. Those

states would have been also feasible in the first place. However, they make the principal

exactly indifferent between pooling the types in [θz, θz+1) or offering efficient contracts.

Before we turn our attention to the proof of Theorem 1, we shall illustrate our results

by means of an example.

Illustration of the results by means of an example. Let v(p, q) = p − 1/2q2 and

u(p, q, θ) = θq − p. Let Θ = [1, 2] and µ0 the uniform measure on [1, 2]. In this case the

efficient quality for each type is given by q∗(θ) = θ. We compare four different scenarios.

(i) First best. If the principal is able to observe the agent’s type, the principal can extract

all the surplus from the agent. She will offer contract (p, q) = (θ2, θ) to an agent of type

θ and thereby achieve the first-best allocation from her point of view. The overall profit

of the principal is then given by ∫ 2

1

1

2
θ2 dθ =

7

6
.
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(ii) Efficient contracting. If the principal cannot observe the agent’s type, she is still able

to implement the efficient quality levels. Efficient quality levels are achieved by offering

a menu of contracts (p, q) = (0.5(1 + q2), q) for q ∈ [1, 2]. In this case, for each type θ of

the agent it is optimal to choose (0.5(1 + θ2), θ) so that every type of agent obtains his

efficient quality. Moreover, the agent with the type θ = 1 obtains a rent of 0, every other

type of agent receives a positive rent. The principal obtains the same profit from every

type of agent which amounts to

1

2

(
1 + θ2

)
− 1

2
θ2 =

1

2
.

(iii) Second best – with commitment. If the principal cannot observe the agent’s type and

can fully commit, she can implement distorting contracts to maximize her own profit. The

optimal contract for each type θ is then given by (p, q) = (θ2 − 1, 2(θ − 1)). In this case,

the agent of type θ = 2 obtains a contract with his efficient quality. Every other type of

agent θ ∈ [1, 2) obtains a contract with a quality that is lower than his efficient one. The

result is often called “no distortion at the top”. The second-best state can be achieved by

offering a menu of contracts (p(q), q) = (q2/4 + q, q). The profit of the principal is given

by

∫ 2

1

θ2 − 1− 2(θ − 1)2 dθ =
2

3
.

(iv) Third best – without commitment. Theorem 1 provides us with a structure of the set

of renegotiation-proof states. Any increasing sequence θz with contracts (pz, q
∗(θz)) such

that u(q∗(θz+1), θz+1)−pz+1 = u(q∗(θz), θz+1)−pz constitutes a set of renegotiation-proof

states. Thus, we merely have to solve for the optimal such sequence. Using the incentive

compatibility constraints in equation (4), that is, θ2
z+1 − pz+1 = θz+1θz − pz, and setting

p0 = 1, the program in Theorem 1 can be rewritten to give

max 1 +
∑
z∈N

(
(2− θz+1) θz+1 −

1

2
θ2
z

)
(θz+1 − θz)

s.t. θz+1 > θz, θ0 = 1, and θz < 2

.
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Figure 1. The comparison of the efficient quality levels (blue line) with
the quality levels with the second-best solution with commitment (green
line) and the third-best solution without commitment (red line).

We approximated this program for z ∈ {0, . . . , 6} numerically.18 With six contracts

the optimal pooling of types is given by

[θ0, θ1] = [1, 1.63], (p0, q0) = (1, 1), u(p0, q0, θ0) = 0

[θ1, θ2] = [1.63, 1.87], (p1, q1) = (2.03, 1.63), u(p1, q1, θ1) = 0.63

[θ2, θ3] = [1.87, 1.95], (p2, q2) = (2.48, 1.87), u(p2, q2, θ2) = 1.012

[θ3, θ4] = [1.95, 1.98], (p3, q3) = (2.63, 1.98), u(p3, q3, θ3) = 1.17

[θ4, θ5] = [1.98, 1.99], (p4, q4) = (2.69, 1.98), u(p4, q4, θ4) = 1.23

[θ5, θ6] = [1.99, 2], (p5, q5) = (2.71, 1.99), u(p5, q5, θ6) = 1.25.

The profit of the principal is given by

0.5773.

The overview of the results is depicted in Figure 1.

To get an idea for how the optimization changes we additionally summarized the re-

sults of the simulations for z ∈ {0, 1}, . . . , z ∈ {0, 1, 2, 3, 4, 5} in Table 1. As will be
18Adding z=7 and thereby a seventh contract increased the profit of the principal only in the order of
10−5.
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max z θ1 θ1 θ3 θ4 Profit
2 1.67 0.5740
3 1.64 1.88 0.5771
4 1.63 1.87 1.96 0.5773
5 1.63 1.87 1.95 1.98 0.5773

Table 1. Development of pooling of types for numerical solutions with
maximum number of pools from 2 to 5.

corroborated by Lemma 11 the principal ideally splits pools at the top of the type space

if she gains an additional degree of freedom. This is consequence of the fact that splitting

pools at the bottom of the type space would distort incentives for higher types in an

unfavorable way.

Proof of the main result. We will now turn our attention to the proof of Theorem 1.

Lemma 7. For any state C = ((p, q), µ) there exists a set of efficient and separating states

{C(z)} which is feasible and makes the principal weakly better off. That is, {C(z)} ∈

X(C).

Proof. The proof is relegated to the appendix. �

Lemma 8. If θ 6= θ′, a separating C = ((p, q∗(θ), µθ
′
) cannot be an element of any set of

renegotiation-proof states Ω.

Proof. Starting from C = ((p, q∗(θ), µθ′), there exists a feasible state C̄ = ((p̄, q∗(θ′)), µθ′)

that makes the principal strictly better off. Lemma 4 implies the result. �

In what follows, we will call states such that supp(µ) is non-degenerated, pooling states.

Lemma 9. If supp(µ) is not connected, C = ((p, q), µ) cannot be an element of any set

of renegotiation-proof states Ω.

Proof. That supp(µ) is not connected implies that there exist θ′ and θ′′ in supp(µ) with

θ′′ > θ′ such that µ((θ′, θ′′)) = 0. Suppose that q = q∗(θ̂) for some θ̂ ≤ θ′.19 We will show

that there exists a feasible set of efficient and separating states that make the principal

strictly better off. Consider the following menu of contracts {(p(θ), q∗(θ)) : θ ∈ supp(µ)}

with pθ = uqq
∗
θ . For θ ≤ θ′ set p(θ̂) = p. For θ ≥ θ′′ set p(θ′′) = p(θ′) + u(q∗(θ′′), θ′′) −

19The case θ̂ > θ′ works analogously.
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u(q∗(θ′), θ′′). From Lemma 5 it follows that each type of agent is better off with the con-

tract with his efficient quality. That is, an agent of type θ is better off with (p(θ), q∗(θ)).

The seller is strictly better off, since she makes the same profit from all types θ ≤ θ′ and

strictly more profit from types θ ≥ θ′′. This is a consequence of the efficiency of q∗(θ′′)

and

[p(θ′′)− v(q∗(θ′′))]− [p(θ′)− v(q∗(θ′))] =

[u(q∗(θ′′), θ′′)− v(q∗(θ′′))]− [u(q∗(θ′), θ′′)− v(q∗(θ′))] > 0.

Thus, we constructed a feasible set of efficient and separating states that make the prin-

cipal strictly better off. As, due to Lemma 7, all efficient and separating states are in

every set of renegotiation-proof states, the initial state C could not have been part of any

set of renegotiation-proof states. �

Lemma 7, Lemma 8 and Lemma 9 taken together illustrate why similar models with

discrete type spaces lead to efficient states: with discrete type spaces the support of µ

cannot be connected. Thus, renegotiation-proof states need to be separating and this is

only possible with efficient states. In the following we will call states such that supp(µ)

is connected, connected states.

Lemma 10. If θ̃ /∈ supp(µ), C = ((p, q∗(θ̃)), µ) cannot be an element of any set of

renegotiation-proof states.

Proof. From Lemma 9 it follows that we need only to consider connected states C =

((p, q∗(θ)), µ). Suppose θ̃ < min supp(µ) = θ′.20 We show that there exists a set of feasible

and efficient states that make the principal strictly better off. Consider the following set

of contracts: (p(θ), q∗(θ)) with pθ = uqq
∗
θ and p(θ′) = p+

[
u(q∗(θ′), θ′)− u(q∗(θ̃), θ′)

]
> p.

It follows from Lemma 5 that each type of agent is better off with the contract with his

efficient quality. That is, an agent of type θ is better off with (p(θ), q∗(θ)). The seller is

strictly better off because she can offer to every agent type the efficient quality at a higher

price. Thus, we constructed a set of efficient and separating states that are feasible and

leave the principal better off. As, due to Lemma 7, all efficient and separating states are
20The case θ̃ > max supp(µ) works analogously.
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in every set of renegotiation-proof states, the initial state C could not have been part of

any set of renegotiation-proof states. �

At this point we have shown that renegotiation-proof states must be either efficient

and separating or pooling and connected such that one of the agent types in the support

obtains his efficient quality. We now show that the profit-maximizing set of states among

those states takes the form as described in Theorem 1.

Lemma 11. The profit-maximizing set of states {C(z)}z∈ N among efficient and separat-

ing or pooling and connected states such that one of the agent types in the support obtains

his efficient quality is countably infinite and has the following properties:

(1) (Pooling) For all C(z) = ((p, q), µ) it holds µ0(supp(µ)) > 0

(2) (No distortion at the bottom) C(z) = ((p, q∗(θz), µ) with θz = min(supp(µ)).

Proof. The proof is relegated to the appendix. �

It remains to be shown that a set of states as described in Lemma 11 is indeed

renegotiation-proof.

Lemma 12. Let {C(θz) = (pi, q
∗(θz), µz)}z∈N ∈ X(C0) be a set of feasible states starting

from C0 such that µz([θz, θz+1)) = 1. There exists a set of renegotiation-proof states Ω

such that {C(θz)}z∈N ⊂ Ω.

Proof. Let Ω = {C : C is efficient and separating} ∪ {C(θz)}z∈N. Firstly, we consider

external consistency. By Lemma 7, for any state C there exists a set of efficient and

separating states which is feasible and makes the principal weakly better off. Thus, Ω is

externally consistent.

Secondly, we consider internal consistency. Take any C ∈ Ω. If C is efficient and

separating, X(C) = {C}. If C = C(θz) for some z then the only feasible set of states in Ω

that makes the principal weakly better off is a set of efficient and separating states such

that θz obtains the same contract as before. From Lemma 6, it follows that the principal

makes the same profit as before. Thus, internal consistency is not violated. �
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5. The Coase conjecture

In this section we consider the Coase conjecture, which is a special instance of our

set-up. The Coase conjecture argues that if a seller is not able to commit to not selling

a durable good, she can at most charge a price equal to the lowest valuation of the

buyer as long as the cost of the seller is strictly below the buyer’s lowest valuation (gap

case). Whenever the cost of the seller is equal or above the lowest valuation of the buyer

(no-gap case), the seller is able to charge the monopoly price even without commitment

(Ausubel and Deneckere (1989)). Our approach, using renegotiation-proof states, allows

us to rederive this result in a simple manner.

Set up. Consider a monopolistic seller who is selling one object to a buyer. A contract

is a tuple w = (p, q) with p ∈ R specifying the price and q ∈ {0, 1} specifying whether

the good is exchanged (q = 1) or not (q = 0). The seller incurs a cost of c of producing

the good and this cost is common knowledge between the seller and the buyer. Thus, the

utility function of the seller is given by

v(w) = p− cq.

The buyer has a valuation of θ ∈ Θ =
[
θ, θ̄
]
for consuming the good, which is private

information to the buyer. Thus, the utility of the buyer is given by

u(w, θ) = θq − p.

The seller’s prior about the valuation of the buyer is given by µ0 ∈ ∆(Θ). To simplify

notation, assume that supp(µ0) = Θ. The initial contract w0 is (0, 0). In the following

we will study two cases; the gap case with c < θ and the no-gap case with c ≥ θ. In the

first case, there is a gap between the cost of the seller and the lowest valuation of the

buyer so it is common knowledge that there are gains from trade. In the second case, the

buyer can have a valuation that makes trading the good inefficient.

The gap case. In what follows we will show that if c < θ, the unique set of renegotiation-

proof states contains only states in which the good is traded. This implies that the
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seller will optimally charge a price equal to the lowest valuation and not propose a new

mechanism after the buyer has accepted.

Proposition 1. Let c < θ , the unique set of renegotiation-proof states Ω that satisfies

the conditions of Definition 3 is Ω = {C = ((p, q) , µ) : q = 1}.

Proof. We show that for a given Ω that is internally and externally consistent, ((p, q), µ)

is in Ω if and only if q = 1.

“if ”: For any state C = ((p, 1), µ) there exists no set of states that would make both

parties weakly better off. Thus, X(C) = {C} . It follows from Lemma 3 that C must be

in Ω.

“only if ”: Let C = ((p, 0) , µ). Consider the contract (p + c + 1/2(θ − c), 1). The buyer

strictly prefers this contract to (p, 0) independent of his type. Moreover the seller is

strictly better off than with contract (p, 0). Thus, {((p+ c+ 1/2(θ − c), 1) , µ)} is feasible

and in X(C). Lemma 4 gives the desired result. �

Proposition 1 implies that starting from a status quo in which the good is not traded,

any final state cannot imply a price charged for the good that is above the lowest valuation

that is in the support of the current belief of the principal. If this is not the case, some

of the types of buyer would optimally choose not to buy the good, which would lead

to q = 0 in some of the states. Such states, however, are not in the unique set of

renegotiation-proof states.

That the set of renegotiation proof states Ω = {C = ((p, q) , µ) : q = 1} is unique im-

plies the following optimization problem of the seller.

max
p

p− c

s.t. p ≤ θ

.

The solution of this problem is the state ((θ, 1) , µ0).

Corollary 1. If c < θ and the seller cannot commit to a mechanism, she can only charge

a price of p = θ.
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This result is in agreement with the literature on the Coase conjecture: the monopolist

competes herself down to the lowest valuation.21

The no-gap case. We now consider c ≥ θ, the no-gap case. In this case, we construct

an internally and externally consistent Ω such that in the optimal set of states within

this Ω, the seller can charge the monopoly price. As the problem of the seller without

commitment is a more constrained version of the problem of a seller with full commitment,

charging the monopoly price must also be the optimal solution without commitment.

Proposition 2. Let pM denote the monopoly price. That is, pM = arg maxp(1−µ0(p))(p−

c) > c. An Ω as defined below is internally and externally consistent.

C = ((p, q) , µ) is in Ω if one of the following holds true

(1) q = 1 and for all θ in supp(µ) it holds θ ≥ c.

(2) q = 0 and for all θ in supp(µ) it holds θ ≤ c.

(3) q = 0, max(supp(µ)) = pM , and there exists an ε > 0 such that for all δ ≤ ε it

holds µ [(c− δ, c+ δ) ∩ supp(µ)] > 0.

Proof. The proof is relegated to the appendix �

The set of renegotiation-proof states Ω consists of three types of sets. The first two

are the efficient states. States in which the good is traded, and the valuations are above

costs (1). States in which the good is not traded and valuations are below costs (2). The

third consists of inefficient states in which the good is not traded, the highest valuation

in the support of the belief of the principal is weakly below the monopoly price, and the

belief puts positive mass on types of agents with valuations arbitrarily close to the cost

(3). Observe that this defines a renegotiation proof set. Firstly, all efficient outcomes

are in Ω. Secondly, with regard to states in (3), the only way to negotiate to other

renegotiation-proof states would imply to offer a price equal to the cost. Thus, the set

of renegotiation-proof states in Proposition 2 is constructed in such a way that the seller

proposes a mechanism that leads to two states: either the object is traded at a price

pM and the seller believes that all buyers have a valuation above pM , or the object is

not traded and the seller beliefs that all buyers have a valuation below pM . Whenever
21See for example Fudenberg et al. (1985), or more recently Strulovici (2017).
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the object is not traded, the only other feasible renegotiation-proof states that make the

principal weakly better off are that the good is traded at a price equal to c or not traded

at all. Thus, the seller cannot profit from proposing a new mechanism whenever the

object is not traded. As charging the monopoly price is the optimal mechanism under

full commitment it must also be the optimal mechanism without commitment.

Corollary 2. If c ≥ θ, the principal can charge the monopoly price pM even without

commitment.

This result is in agreement with the non-cooperative bargaining literature. Ausubel

and Deneckere (1989) show that in the no-gap case, in an infinite-horizon bargaining

game, the seller can sustain the monopoly price in equilibrium if the frictions go to zero.

For a discrete type space, Vartiainen (2013) demonstrated how his solution concept can

recreate the Coase conjecture in the gap case.22 For the no-gap case he writes that, in

principle, it is possible to construct mechanism selection strategies that the principal can

commit to. However, those selection strategies would be complex. Thus, he refrains from

constructing any such strategies and makes the additional assumption that mechanism

selection strategies need to be stationary. In this case, even in the no-gap case, the seller

sells at a price equal to her cost. In this section we demonstrated the simplicity and

cutting power of our approach: to focus on states rather than selection strategies. We

recreated the conceptual difference between the gap and no-gap case without resorting

to complex selection strategies.

6. Comparison with Vartiainen (2013)

In this section we will shortly summarize the approach by Vartiainen (2013). Varti-

ainen argues that sequential rationality of the principal, and the agent’s knowledge of

this, requires that a mechanism selection strategy of the principal σp reflects consistency

and optimization. To be able to define these conditions, we first need to develop some

concepts.

We start by stating the payoff of the principal from using mechanism Mt = (Zt, wt(·))

after history ht given that the agent plays this mechanism optimally in the sense of
22For a comparison of our solution concept with Vartiainen (2013) see Section 6.
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Lemma 1. As above, denote by νMt ∈ ∆(Zt) the measure on Zt that is induced by the

strategy σa(ht, θ) of the agent and the belief of the principal µt after history ht. The

payoff of the principal can then be written as

V (Mt) =

∫
Zt
v(wt(z))dνMt .

Suppose at history ht the principal can commit to following her mechanism selection

strategy in the future. For z ∈ Zt define hzt+1 by hzt+1 = (ht, (Mt, z, wt(z))). We say the

principal will not change a mechanism Mt = (Zt, wt(·)) today given that σp is followed

in the future if for all z ∈ Zt it holds

v(wt(z)) ≥ V (σp(hzt+1)).

That is, after every possible realization of mechanism Mt, the mechanism selection strat-

egy of the principal would prescribe to implementing a mechanism with a weakly lower

expected surplus. Thus, if the principal follows her mechanism selection strategy, in-

dependent of the message of the agent, Mt would not be renegotiated ex post. Such a

mechanism would be played optimally by the agent in the sense of Lemma 1 given the

mechanism selection strategy of the principal.

We denote byMσp(ht) the set of all mechanisms that are truthfully playable at history

ht given that the principal follows her mechanism selection strategy σp afterwards. That

is,

Mσp(ht) =
{
M = (Z, w(z)) ∈M : v(w(z)) ≥ V (σp(hzt+1)) for all z ∈ Z

}
.

We are now in the position to formally specify conditions that Vartiainen (2013) im-

poses on a mechanism selection strategy of the principal. The first condition requires

consistency. That is, employing σp ex-ante should not contradict employing σp ex-post.

The second condition implies optimality. Given σp and ht, the principal should choose

a mechanism that maximizes her payoff in the set Mσp(ht). In particular, under the

hypothesis that σp can be committed to in the future, the principal does not want to

change σp for any message of the agent.

Definition 5. A mechanism selection strategy σp
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(1) is consistent if σp(ht) ∈Mσp(ht) for all ht ∈ H.

(2) is optimal if V (σp(ht)) ≥ V (M) for all M ∈Mσp(ht) for all ht ∈ H.

A thorough discussion of this approach can be found in Vartiainen (2013). Vartianinen

summarizes why Definition 5 implies that the principal can commit to the selection

strategies that are consistent with it as follows. Note that optimality together with

consistency reflects sequential rationality. This is due to the fact that a selection strategy

σp with these properties maximizes the principal’s payoff inMσp . That all states of σp(ht)

are in Mσp(ht) for every history guarantees that this act of optimization is consistent

with foresight. That is, since σp is obeyed in the future, σp ∈ Mσp guarantees that σp

will not be redesigned and thus can be committed to.

Vartiainen (2014) demonstrates that a mechanism selection rule that is consistent and

optimal can be interpreted as a reduced form (weak) Perfect Bayesian Equilibrium of the

mechanism design game as defined in Section 2. That is, the sub-games of this games can

be viewed as single-stage mechanisms that result from a consistent mechanism selection

strategy. In particular, consistency of the mechanism selection rule implies incentive

compatibility of the mechanisms as if a mechanism M is in Mσp at any history it will

not be redesigned ex-post and the agent can play the mechanism optimally.

We are now in a position to compare our solution concept with Vartiainen (2013).

Proposition 3. The following holds true

(1) Let σp be a history independent mechanism selection strategy that is consistent

and optimal (Definition 5). In this case,
⋃
C∈Γ f(σp(C), C, σa) is internally and

externally consistent (Definition 3).

(2) For every Ω that is internally and externally consistent such that for all C ∈ Γ

the solution to

max
{C(z)}

∫
Z
v(w(z))dν

s.t. {C(z)) = (w(z), µ(· : z)) : z ∈ Z} ∈ X(C)

{C(z)) = (w(z), µ(· : z)) : z ∈ Z} ⊂ Ω.
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exists, there is a mechanism selection strategy of the principal σp that is consistent

and satisfies the one deviation property such that
⋃
C∈Γ f(σp(C), C, σa) ⊂ Ω.23

Proof. The proof is relegated to the appendix. �

On one hand, a history independent, consistent and optimal mechanism selection strat-

egy in the sense of Vartiainen (2013) generates for each subgame a set of states that is

internally and externally consistent. On the other hand, whenever we have a set of

renegotiation-proof states that is internally and externally consistent, the mechanism se-

lection strategy of choosing a mechanism that leads to the principal-optimal renegotiaton-

proof states is a consistent and optimal mechanism selection strategy. Thus, both solution

concepts coincide.

7. Conclusion

The main contribution of this manuscript is to construct the optimal mechanism for

the screening problem of a principal who is not able to commit to not renegotiating any

contract resulting from the mechanism she proposes. In the case of private values with

non-linear contracts, the optimal mechanism is inefficient given that it leads to a pooling

of types. This is different from previous work on contract design without commitment

that find that with private values the principal can only implement efficient contracts.24

With continuous types, we observe a countably infinite number of pooling contracts which

each satisfy a “no-distortion-at-the-bottom” property.

To arrive at the results we characterize the set of renegotiation-proof states by using

internal and external consistency. The main advantage of this approach is that, in contrast

to other definitions of renegotiation-proofness, we do not assume that renegotiation-proof

states must be efficient. This is due to the fact that we do not consider states as blocking

which themselves are subject to renegotiation.

We demonstrate the cutting power of our concept by also considering the Coase con-

jecture. We show that, if there is a gap between the costs of the seller and the lowest

valuation of the buyer, the seller can only charge a price equal to the lowest valuation
23Whether for a given Ω the solution to the maximization problem exists, can be verified directly for
each setting at hand. In our applications in Sections 4 and 5 this is straightforward.
24For example see Gretschko and Wambach (2016), Maestri (2017), Strulovici (2017), and Vartiainen
(2013).
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of the buyer. However, if there is no such gap, the seller is able to charge the monopoly

price even without commitment.

Appendix

Proof of Lemma 7.

Proof. Three cases are relevant. Either there exists a type θ̃ in supp(µ) such that q = q∗(θ̃)

or for θ′ = min (supp(µ)) it holds q < q∗(θ′) or for θ′′ = max (supp(µ)) it holds q > q∗(θ′′).

We focus on the first case only, the other cases can be proven analogously.

Let q = q∗(θ̃) for some θ̃ ∈ supp(µ). Consider the following set of efficient and separat-

ing states
{
C(θ) = ((q∗(θ), p(θ)), µθ)

}
such that p(θ̃) = p and pθ(θ) = uq(q

∗(θ), θ)q∗(θ).

An agent of type θ̃ will receive the initial contract and an agent of type θ 6= θ̃ will receive

a contract that makes him strictly better off. Thus, this set of states is individually

rational for each type of the agent (condition (i) of Definition 1). Moreover, p(θ) satisfies

equation 3. Thus, this set of states is incentive compatible (condition (ii)) and satisfies

Bayesian consistency (condition (iii)). As a consequence of

pθ(θ)− vq(q∗(θ))q∗θ(θ) = (uqq
∗(θ), θ)− vq(q∗(θ)))q∗θ(θ) = 0,

the principal is indifferent between all states in
{
C(θ) = ((q∗(θ), p(θ)), µθ)

}
. In particular,

she is then indifferent between the original state C and any state in

{
C(θ) = ((q∗(θ), p(θ)), µθ)

}
.

Hence, the proposed set of states satisfies individual rationality of the principal (condition

(iv)). Overall, this implies that

{
C(θ) = ((q∗(θ), p(θ)), µθ)

}
∈ X(C).

�

Proof of Lemma 11. The proof is divided into five steps. We show that

Step 1 In the set of optimal states, higher types obtain higher quality
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Step 2 In the set of optimal states, the seller achieves a weakly higher profit from higher

types

Step 3 Efficient and separating states are not in the set of optimal states

Step 4 For every state in the set of optimal states, the lowest type in the support of the

belief of the principal receives his efficient quality.

Step 5 The set of optimal states is countably infinite.

Denote by {C(z)} the set of feasible, profit-maximizing states for the seller starting from

C0 and by {w(z)} the set of corresponding contracts.

Step 1: In the set of optimal states, higher types obtain higher quality.

Proof. The principal maximizes among efficient and separating or pooling and connected

states such that one of the types receives his efficient quality. Thus, for θ2 > θ1 with q2

and q1 denoting the quality that type θ2 respectively θ1 receives, two cases are relevant.

Firstly, both types obtain their efficient quality q2 = q∗(θ2) and q1 = q∗(θ1). In this case,

as q∗ is an increasing function, q2 > q1. Secondly, both types are in different pooling

states.25 In this case, as one of the types in each pool receives his efficient quality, the

pools are connected and due to the fact that q∗ is an increasing function, q2 > q1. Thirdly,

both types are in the same pooling state. In this case, q2 = q1. Summing up, it follows

that if θ2 > θ1, q2 ≥ q1, that is, higher types receive a higher quality. �

Step 2: In the set of optimal states, the seller achieves a weakly higher profit from higher

types.

Proof. We will show that for any type θ there exists an ε > 0 such that for all types θ′ ∈

(θ, θ+ ε) the seller realizes an equal or higher profit than with type θ. Let C = ((p, q), µ)

such that θ ∈ supp(µ). If θ < max {supp(µ)} , that is, if C is a pooling and connected

state and θ is not the largest type in the pool, there exists an ε > 0 such that all types

θ′ ∈ (θ, θ + ε) receive the same contract. Thus, the seller makes the same profit with

all these types. Assume that θ = max {supp(µ)}, that is, assume that θ is the largest

type in the pool or that C is an efficient and separating state. All types θ′ > θ obtain

a different contract than type θ. If there exists an ε > 0 such that almost all types in

25Or one of the types receives his efficient quality and the other is in a pooling state.
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θ′ ∈ (θ, θ + ε) receive their efficient contract, then the seller makes the same profit from

all of these types (Lemma 6). If type θ also obtains his efficient quality, the seller makes

the same profit from θ and any θ′. If type θ does not obtain his efficient quality, then

the seller makes a strictly larger profit from any type θ′. Thus, assume that for all ε > 0

the amount of types in (θ, θ + ε) that do not receive their efficient contract is of positive

measure. In this case there exists an ε > 0 such that all types in (θ, θ+ ε) are in the same

pooling state with a contract ŵ = (p̂, q∗(θ̂)) for some θ̂. Call this state Ĉ = (ŵ, µ̂). If the

seller obtains the same profit or higher with (p̂, q∗(θ̂)) than with (p, q), we are done. Thus,

assume that the seller makes less profit with (p̂, q∗(θ̂)). We will show that there exists a

set of states that makes the seller strictly better off. In this case there exists a type θ′

with θ < θ′ < θ̂ and a contract w′ = (p′, q∗(θ′)) such that ū((p, q), θ) = ū((p′, q∗(θ′)), θ),

ū((p̂, q∗(θ̂)), θ̂) > ū((p′, q∗(θ′)), θ̂), and v((p′, q∗(θ′)) > (p̂, q∗(θ̂)). That is, we can find

a contract with an efficient quality for type θ′ ∈ (θ, θ̂). Moreover, type θ is indifferent

between his original contract and the new contract, type θ̂ strictly prefers his original

contract, and the principal makes a higher profit from the new contract. Now consider

the following set of states {C(z)} \Ĉ ∪ {C ′, C ′′} with C ′ = (w′, µ′) and C ′′ = (ŵ, µ′′). By

construction, there exists a type θ′′ ∈ (θ, θ̂) such that all types between θ and θ′′ prefer

w′ to w and all types between θ′′ and max {supp(µ̂)} = θ̃ prefer ŵ. Thus, set µ′ such that

it is Bayesian consistent and satisfies supp(µ′) = (θ, θ′′] and µ′′ such that it is Bayesian

consistent and satisfies supp(µ′′) = (θ′′, θ̃). It follows that the constructed set of states,

{C(z)} \Ĉ ∪ {C ′, C ′′}, is feasible and leaves the principal better off. Thus, the original

set of states, {C(z)}, could not have been optimal. �

Step 3: Efficient and separating states are not in the set of optimal states.

Proof. We will show that there is no interval [θ′, θ′′] ⊂ Θ with µ0 ([θ′, θ′′]) > 0 such that

all types θ ∈ [θ′, θ′′] obtain their efficient quality q∗(θ). Denote the set of states that

contain those types by {C(θ)} ⊆ {C(z)} . We will find a different set of states that is

feasible starting from C0 and makes the principal strictly better off. Denote by p′ the

price of the contract that θ′ obtains. Consider the following two contracts w1 = (p′, q∗(θ′))

and w2 = (p̂, q∗(θ̂)) with θ̂ = (1/2)(θ′′ + θ′) and p̂ = ū(q∗(θ′), θ̂) − p′. Now consider the

following set of states {C(z)} \ {C(θ)} ∪ {C1, C2} with C1 = (w1, µ1) and C2 = (w2, µ2).
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By construction, all types not in [θ′, θ′′] still prefer their old contract w(z) to both w1 and

w2. Types in [θ′, θ̂] prefer w1 to any other contract in {w(z)} \ {w(θ)} . Types in [θ̂, θ′′]

prefer either w2 or some contract in {w(z)} \ {w(θ)} that is also preferred by a higher

type. Thus, there exist Bayesian consistent µ1 and µ2 such that the constructed set of

states {C(z)} \ {C(θ)} ∪ {C1, C2} is feasible starting from C0 and makes the principal

strictly better off.26 �

Step 4: For every state in the set of optimal states, the lowest type in the support of the

belief of the principal receives his efficient quality.

Proof. Suppose to the contrary that there exists a C(ẑ) = (w(ẑ), µ(ẑ)) = ((p, q), µ(ẑ)) ∈

{C(z)} such that min supp(µ) = θ but q > q∗(θ). Consider the following contract

(p′, q∗(θ)) with p′ = ū(q∗(θ), θ)−ū(q, θ)+p and the following set of states {C(z)} \ {C(z)}z≥ẑ∪

C ′ ∪
{
Ĉ(z)

}
z>z̄

with C ′ = ((p′, q∗(θ)), µ′) and Ĉ(z) = ((w(z), µ̂(z)). That is, construct a

set of states such that all contracts which are in the new set of states are the same as in

{C(z)} with the exception that (p, q) is swapped for (p′, q∗(θ)). By construction, all types

below θ still prefer their old contract. Moreover, there exists a θ′ > θ such that all types

in [θ, θ′) ⊆ supp(µ) prefer (p′, q∗(θ)) and all types in [θ′,max supp(µ)] prefer one of the

contracts w(z) with z > ẑ. By construction, the principal makes a strictly higher profit

from types in [θ, θ′). Step 1 implies that the principal makes at least as much profit from

types in [θ′,max supp(µ)] as if the set of states were {C(z)}. Thus, there exist Bayesian

consistent µ′ and {µ̂(z)} such that the constructed set of states is feasible starting from

C0 and makes the principal strictly better off.27 �

Step 5: The set of optimal states is countably infinite.

Proof. So far we have shown that the optimal set of states partitions
[
θ, θ̄
]
in connected

intervals of strictly positive measure. This implies that if the set of states is infinite it

must be countable. Thus, we merely need to show that the set of optimal states is not

26The idea of this proof is straightforward. If the principal gives each type of agent in some interval his
efficient quality and satisfies the incentive compatibility constraints, she does not earn any additional
rent from higher types by increasing the information rent they earn. If the principal offers two pooling
contracts instead, the information rent to the high types is reduced.
27The idea of the proof is the following. If a pooling state contains a contract where q is optimal for
some intermediate type, the lower types are distorted in the wrong direction. They obtain too much
quality. The seller thus prefers to give some of those types a contract with a lower quality.
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finite. Suppose to the contrary that there exists a θ ∈ Θ = [θ, θ̄] and C = ((p, q∗(θ)), µ) ∈

{C(z)} such that supp(µ) = [θ, θ̄]. Now take any θ′ ∈ (θ, θ̄), consider the contract

w′ = ((p′, q∗(θ′)) with p′ = ū(q∗(θ′), θ′)− ū(q∗(θ), θ′)+p, and construct a new set of states

{C(z)} \C ∪{C1, C2} with C1 = ((p, q∗(θ)), µ1) and C2 = ((p′, q∗(θ′)), µ2). Types in [θ, θ′)

prefer (p, q∗(θ)) and types in [θ′, θ̄] prefer (p′, q∗(θ′)). The principal obtains a strictly

higher profit from (p′, q∗(θ′)). Thus, there exist Bayesian consistent µ1 and µ2 such that

the constructed set of states is feasible starting from C0 and makes the principal strictly

better off. �

Proof of Proposition 2.

Proof. We start by showing that Ω is externally consistent. Let C = ((p, q) , µ) be not Ω.

Consider the following two states C1 = ((p+ (1− q)c, 1) , µ1) and C2 = ((p− qc, 0) , µ2)

such that µ1(·) = µ(· : θ ≥ c) and µ2(·) = µ(· : θ < c). That is, an state in which the

good is traded at a price of p+(1−q)c and an state in which the object is not traded and

the price is p− qc. We check now whether the conditions of Definition 1 and Definition

2are satisfied and the proposed states are feasible and make the seller weakly better off.

(i) Individual rationality. State C1 is individually rational for buyers with a valuation

above c and state C2 is individually rational for buyers with a valuation below c.

(ii) Incentive compatibility. State C1 is strictly preferred by buyers with a valuation

above c to state C2. State C2 is strictly preferred by buyers with a valuation below c.

The seller does not believe that she is facing buyers with a valuation below c in state C1

and buyers with a valuation above c in state C2.

(iii) Bayesian consistency. The probability of reaching state C1 is µ ((θ, c]) and of

reaching C2 is µ
([
c, θ̄
])
. Thus, µ ((θ, c])µ1 + µ

([
c, θ̄
])
µ2 = µ.

(iv) Individual rationality of the seller. The seller is indifferent between C, C1, and

C2.

Thus, {C1, C2} ∈ X(C) is feasible, makes the seller weakly better off and by definition

of Ω, C1 and C2 are in Ω.

Now that we have shown that Ω is externally consistent we turn our attention to

internal consistency. We show that for all states C ∈ Ω there is no set of feasible states

that is also in Ω and makes the seller strictly better off.
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For every state with q = 1 and θ ≥ c or q = 0 and θ ≤ c for all θ in supp(µ) there

exists no set of states which would make the seller strictly better off and the buyer not

worse off. Thus, any such state cannot be improved.

We turn our attention to states C = ((0, p) , µ) such that max(supp(µ)) = pM and

there exists an ε > 0 such that for all δ ≤ ε it holds µ [(c− δ, c+ δ) ∩ supp(µ)] > 0. Due

to incentive compatibility of the buyer any feasible set of states starting from C consists

of at most two states. One state where the object is exchanged (q = 1) and one where

the object is not exchanged (q = 0). The set of states that merely consists of one state

in Ω with q = 0 either does not make the seller better off or is not individually rational

to the buyer starting from C. The set of states that merely consist of one state in Ω with

q = 1 and a belief such that all θ ≥ c, either does not make the seller better off, due to

µ [(c− δ, c+ δ) ∩ supp(µ)] > 0 or does not satisfy individual rationality of the buyer or

does not satisfy Bayesian consistency. Thus, again due to µ [(c− δ, c+ δ) ∩ supp(µ)] > 0

the only set of feasible states that are in Ω is {C1 = ((p+ c, 1), µ1) , C1 = ((p, 0), µ2)}

with µ1(·) = µ(· : θ ≥ c) and µ2(·) = µ(· : θ < c). However, the seller is indifferent is

indifferent as to whether he does not sell at a price of p or sells at a price of p+ c. Thus,

starting from C = ((0, p) , µ) as defined above, there exists no set of feasible states that is

also in Ω and makes the seller better off. This implies that Ω is internally consistent. �

Proof of Proposition 3.

Proof. Ad (i): Let σp be a mechanism selection strategy that is consistent and optimal.

Let Ω =
⋃
C∈Γ f(σp(C), C, σa). External consistency follows, by definition, from the fact

that for every C in Γ, f(σp(C), C, σa) is in X(C) and a subset of Ω. It remains to check

that Ω is internally consistent. Let C ∈ Ω and {C(z) = (w(z), µ(z)) : z ∈ Z} ∈ X(C)

with C(z) ∈ Ω for all z ∈ Z and some metric space Z. Denote by M = (Z, w(z))

the mechanism that is induced by {C(z) : z ∈ Z}. As {C(z) : z ∈ Z} is in X(C), M

exists and is well defined. Due to consistency of σp and the fact that C(z) is in Ω it

follows that σp(C(z)) ≤ v(w(z)). Thus, M is inMσp . Due to optimality of σ it follows

that V (σp(C)) ≥ V (M). Thus, again by consistency, V (σp(C)) ≤ v(w) and thereby

V (M) ≤ v(w).
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Ad (ii): Let Ω be externally and internally consistent and let the solution to

(6)

max
{C(z)}

∫
Z
v(w(z))dν

s.t. {C(z)) = (w(z), µ(· : z) : z ∈ Z} ∈ X(C)

{C(z)) = (w(z), µ(· : z) : z ∈ Z} ⊂ Ω.

exist. Define σp as follows. Choose for every C = (w, µ) ∈ Ω, σp(C) = (Z, w(z) ≡ w) and

for C /∈ Ω, σp(C) = (Z, w(z)) such that {C(z) : z ∈ Z} ∈ X(C), {C(z) : z ∈ Z} ⊂ Ω

and {C(z)} is a solution to Problem 6. This is always possible due to external consistency

and the fact that a solution exists. For any C ∈ Γ, f(σp(C), C, σa) is a subset of Ω. Thus,

by definition, for every C ′ = (w′, µ′) ∈ f(σp(C), C, σa), v(w′) ≥ V (σp(C ′)) = v(w′). It

follows that σp(C) is in Mσp(C) and thereby σp is consistent. For optimality take any

M = (Z, w(z)) in Mσp(C). Observe that {C(z) : z ∈ Z} = f(M,C, σa) is feasible and

makes the principal weakly better off. First, suppose that {C(z) : z ∈ Z} ⊂ Ω it follows

from the definition of σp(C) as the solution to Problem (6) that V (σp(C)) ≥ V (M).

Thus, suppose that there exists Z ′ ⊆ Z such that for all z′∈ Z ′, C(z′) /∈ Ω. Consider

the following set of states C = {C(z) : z ∈ Z \ Z ′} ∪
⋃
z′∈Z′ f(σ(C(z′), C(z′), σa). By

definition of σp, C is feasible starting from C and makes the principal weakly better off,

C ⊂ Ω and V (C) ≥ V (M). It follows from the definition of σp as the solution of Problem

(6) that V (σp(C)) ≥ V (C) ≥ V (M). �
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